JP2004200566A - Radiator and its producing process, substrate for power module, and power module - Google Patents

Radiator and its producing process, substrate for power module, and power module Download PDF

Info

Publication number
JP2004200566A
JP2004200566A JP2002369846A JP2002369846A JP2004200566A JP 2004200566 A JP2004200566 A JP 2004200566A JP 2002369846 A JP2002369846 A JP 2002369846A JP 2002369846 A JP2002369846 A JP 2002369846A JP 2004200566 A JP2004200566 A JP 2004200566A
Authority
JP
Japan
Prior art keywords
radiator
low
heat
conductive material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002369846A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nagase
敏之 長瀬
Takeshi Negishi
健 根岸
Yoshiyuki Nagatomo
義幸 長友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002369846A priority Critical patent/JP2004200566A/en
Publication of JP2004200566A publication Critical patent/JP2004200566A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the weight while enhancing machinability and to attain a sufficient strength while preventing warp. <P>SOLUTION: The radiator 16 is formed by impregnating a low density molding 17 formed of a material having characteristics of low thermal expansion coefficient with a metal high heat conduction material 18. The low thermal expansion material composing the low density molding 17 is an iron-nickel based alloy, e.g. Invar alloy. The high heat conduction material 18 is formed of a material having a high thermal conductivity, e.g. Cu or its alloy, or Al or its alloy. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、放熱体及びその製造方法と、パワーモジュール用基板と、パワーモジュールとに係り、特に大電圧・大電流を制御する半導体装置に用いられて、半導体チップ等の発熱体から発生する熱を放散させるのに好適な技術に関する。
【0002】
【従来の技術】
この種のパワーモジュール用基板にあっては、セラミックス材料からなる絶縁基板の一方の面に回路層を、他方の面に放熱体を各々備え、この放熱体の絶縁基板と対向する面に、冷却水等の冷却手段を備えた冷却シンク部を備えた構成のものが一般的である。
このようなパワーモジュール用基板に設けられる放熱体は、絶縁基板と接合するために低熱膨張係数の特性を有することが要求される一方、絶縁基板に搭載された半導体チップの熱を放熱するために高熱伝導性も要求される。
【0003】
これらの要求を満たすため、放熱体として、セラミックス仮焼結体にAlを含浸したAlSiCや、Cuを含浸したCuSiC、更にはカーボンにAl又はCuを含浸したAlC又はCuCなどが知られているが、金属系としては、従来では、モリブデン(Mo)やタングステン(W)の仮焼結体にCuを含浸したCuMoやCuWが提案されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2001−358266号公報
【0005】
【発明が解決しようとする課題】
ところで、従来のパワーモジュール用基板において、放熱体がAlSiC、CuSiCで構成されると、金属とセラミックスとからなるので、加工性に劣る問題がある。しかも、AlとCとの場合、またCuとCとの場合、つまり金属とカーボンとの接合体のであるので、完全な接合性を得ることができにくく、強度上の問題もあり、しかも絶縁基板と高温によって接合されたとき、熱膨張係数の違いにより大きな反りを発生するという問題もあった。
一方、CuMoやCuWの場合では、重量が大きくなる問題もあった。
【0006】
この発明は、このような事情を考慮してなされたもので、その目的は、加工性が良好で軽量化を図り、また充分な強度を得ることができると共に反り防止を図ることができる放熱体及びその製造方法と、その放熱体を有するパワーモジュール用基板及びパワーモジュールを提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、この発明は以下の手段を提案している。
請求項1に係る発明は、伝達される熱を放熱させる放熱体の製造方法において、鉄ニッケル系合金により形成された低密度成形体に、金属製の高熱伝導材の溶湯を含浸させて放熱体を形成することを特徴とする。
【0008】
この発明に係る放熱体の製造方法によれば、鉄ニッケル系合金からなる低密度成形体に金属製の高熱伝導材の溶湯を含浸することで形成されるので、構成材料が全て金属となる放熱体を確実に形成することができ、従って、全ての構成材料が金属となるので、加工性が良好になると共に、構成材料間の接合性も良好となり、かつ放熱体自体を軽量化することができる。
【0009】
請求項2に係る発明は、伝達される熱を放熱させる放熱体の製造方法において、鉄ニッケル系合金により形成された低密度成形体に、金属製の高熱伝導材の溶湯を含浸させてコア体を形成し、次いで、前記コア体を高熱伝導材からなる金属板で挟着して放熱体を形成することを特徴とする。
【0010】
この発明に係る放熱体の製造方法によれば、低密度成形体に高熱伝導材の溶湯を含浸させてコア体を形成し、これを高熱伝導材からなる金属板で挟着して放熱体を形成するので、構成材料が全て金属となる放熱体を確実に形成することができ、従って、全ての構成材料が金属となるので、加工性が良好になると共に、構成材料間の接合性も良好となり、かつ放熱体自体を軽量化することができる。
【0011】
請求項3に係る発明は、請求項2記載の放熱体の製造方法において、前記金属板は、熱間圧延又は冷間圧延によりコア体を挟着することを特徴とする。
この発明に係る放熱体の製造方法によれば、金属板が熱間圧延又は冷間圧延でコア体を挟着するので、放熱体を強固に形成することができ、良好な放熱体を形成できる。
【0012】
請求項4に係る発明は、請求項1記載の放熱体又は請求項2記載のコア体は、前記低密度成形体に対し前記高熱伝導材の溶湯を高圧鋳造することを特徴とする。
この発明に係る放熱体の製造方法によれば、低密度成形体に高熱伝導材が高圧鋳造されることで放熱体を形成するので、低密度成形体と高熱伝導材とを確実に一体に形成することができる。
【0013】
請求項5に係る発明は、伝達される熱を放熱させる放熱体において、鉄ニッケル系合金により形成された低密度成形体と、該低密度成形体に含浸により一体に形成された金属製の高熱伝導材とにより形成することを特徴とする。
【0014】
この発明に係る放熱体によれば、低密度成形体と、これに含浸によって一体に形成された高熱伝導材とで形成されるので、構成材料が全て金属となる放熱体を確実に形成することができ、従って、全ての構成材料が金属となることで、加工性が良好になると共に、構成材料間の接合性も良好となり、かつ放熱体自体を軽量化することができる。
【0015】
請求項6に係る発明は、伝達される熱を放熱させる放熱体において、鉄ニッケル系合金により形成された低密度成形体に、高熱伝導材を含浸により一体に形成されたコア体と、該コア体を挟着し、かつ高熱伝導材からなる金属板とにより形成することを特徴とする。
【0016】
この発明に係る放熱体によれば、低密度成形体及びこれに一体に形成された高熱伝導材によってコア体と、これを挟着する金属板とで形成されるので、構成材料が全て金属となる放熱体を確実に形成することができ、従って、全ての構成材料が金属となることで、加工性が良好になると共に、構成材料間の接合性も良好となり、かつ放熱体自体を軽量化することができる。
【0017】
請求項7に係る発明は、請求項5又は6記載の放熱体において、前記低密度成形体は、所望の気孔率を有する気孔部を設けていることを特徴とする。
この発明に係る放熱体によれば、高熱伝導材を含浸させると、高熱伝導材の溶湯が低密度成形体の気孔部に入り込むことで、低密度成形体内の熱伝導率を高めることができ、これにより、低熱膨張係数を有する材質で形成されてあっても、良好な熱伝導を得ることができる。
【0018】
請求項8に係る発明は、請求項5〜7のいずれか記載の放熱体において、前記高熱伝導材は、Cuと、その合金と、Alと、その合金とのいずれかであることを特徴とする。
この発明に係る放熱体によれば、高熱伝導材がCuとその合金とAlとその合金とのいずれかからなるので、鉄ニッケル系合金と確実に接合することができ、良好な放熱体を形成することができる。
【0019】
請求項9に係る発明は、請求項5〜8のいずれか記載の放熱体を、絶縁基板に取り付けることを特徴とする。
この発明に係るパワーモジュール用基板によれば、加工性が良好で、かつ軽量化を図ることができ、その上、構成部材間の接合性が良好となる放熱体を有するので、それだけ信頼性が高まる。
【0020】
請求項10に係る発明は、請求項9記載のパワーモジュール用基板の絶縁基板上にチップを搭載してなることを特徴とする。
この発明に係るパワーモジュールによれば、加工性が良好で、かつ軽量化を図ることができ、その上、構成部材間の接合性が良好となる放熱体を有するので、それだけ信頼性が高まる。
【0021】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。図1から図4はこの発明の第1の実施の形態に係る放熱体を示す図であって、図1は放熱体を適用したパワーモジュールを示す全体図、図2は放熱体を示す説明用斜視図、図3は放熱体を製造するときの説明図、図4は低密度成形体を型締めする説明図である。
図1に示すパワーモジュール10は、被放熱体としてのパワーモジュール用基板11に放熱体16が接合して構成されている。
パワーモジュール用基板11は、例えばAlN、Al、Si、SiC等により所望の大きさに形成された絶縁基板であって、その上面に回路層12が積層接合されると共に、その下面に金属層13が積層接合される。回路層12及び金属層13は、Al、Cu等により形成されている。以下、パワーモジュール用基板11を「絶縁基板11」と略称する。
【0022】
絶縁基板11の回路層12上には、図1に示すように、はんだ14によって半導体チップ30が搭載される一方、金属層13の下面にはんだ15によって、或いはろう付けや拡散接合等によって放熱体16が接合され、更に、この放熱体16が冷却シンク部20に取り付けられて使用され、該冷却シンク部20内の冷却水(或いは冷却空気)21により、放熱体16に伝達される熱が外部に放熱されることで、パワーモジュール10が構成されている。放熱体16は、冷却シンク部20に取付ねじ22によって密着した状態で取り付けられる。
【0023】
この実施形態の放熱体16は、図2に示すように、熱膨張係数の小さい低熱膨張係数の特性を有する材料によって形成された低密度成形体17に、これより熱膨張係数の大きい材質からなる金属製の高熱伝導材18が含浸されて形成されている。
【0024】
即ち、低密度成形体17を構成する低熱膨張材としては、いわゆる鉄ニッケル系合金であり、例えばインバー合金からなっている。インバー合金(以下、インバーと略称す)は、室温付近でほとんど熱膨張が生じない合金であって、Feが64.6mol%で、Niが35.4mol%の組成率となっている。但し、Fe中には、それ以外の不可避不純物が含まれたものもインバー合金と呼ばれている。高熱伝導材18としては、例えばCu、又はその合金、或いはAl若しくはその合金のような熱伝導率の良好な材質によって形成されている。
【0025】
低密度成形体17は、インバーの粉末が金型によって成形されることで低密度の状態に形成され、内外部に図3に示すように気孔部17aが設けられる。これは例えば、図4に示すように、インバーの粉末19が焼結金型31で型締めされることで低密度成形体17が形成されたとき、その低密度成形体17に気孔部17aが必然的に形成されるものである。焼結金型31に限らず、通常の成形金型で成形してもよい。このような気孔部17aは、インバーの粉末19の場合、40〜70%程度の気孔率からなっている。
なお、図4に示す焼結金型31は、ダイ32のキャビティ内にコア33がセットされると低熱膨張材の粉末19が充填され、その状態でパンチ34が下降することで、図3のような低密度成形体17が形成される。
【0026】
また、低密度成形体17の成形に際し、インバーの粉末19のみならず、それ以外の他の金属製の低熱膨張材が混入されてあってもよく、例えば線状に形成されたフィラー等を混入させてもよく、要は、その後に含浸すべき高熱伝導材より小さい低熱膨張材であって、その高熱伝導材との接合性が良好な鉄ニッケル系合金であればよい。
【0027】
そして、低密度成形体17が形成された後、その低密度成形体17を放熱体成形金型に入れ、次いで、その金型に高熱伝導材18の溶湯を含浸すると、その溶湯が気孔部17a内に充満し、その状態で硬化させることで、放熱体16が、図1及び図2に示すように低密度成形体17と、これに鋳ぐまれた高熱伝導材18とによって形成されるようになっている。この場合、高熱伝導材18の溶湯が高圧鋳造されることで、低密度成形体17内の気孔部17aに確実に充填されるようになっている。なお、図1、図2に示す高熱伝導材18、及び図3に示す気孔部17aは説明の都合上、極端に描かれている。
【0028】
このようにして形成された放熱体16は、例えば熱伝導率が100W/mK以上で、熱膨張係数が絶縁基板11の熱膨張係数αの±40%程度、つまり4×10−6/K<α<10×10−6/Kの大きさとなっている。この場合、放熱体16全体における低密度成形体の占める割合としては、体積含有率(断面積比率ともいう)が少なくとも30%以上、好ましいのは50%以上である。
【0029】
このように、放熱体16がインバーのような低熱膨張材によって形成された低密度成形体17に、高熱伝導材18の溶湯を鋳ぐるむことで形成されると、放熱体16全体としての熱膨張係数を確実に下げることができるので、放熱体16と絶縁基板11間の熱膨張係数の差を小さくして絶縁基板11に近づけることができる。そのため、両者16、11をはんだ15(若しくはろう付けや拡散接合等)によって接合した場合、放熱体16に絶縁基板11に向かうような反りが発生するのを防止することができると共に、絶縁基板11から放熱体16への熱伝達が良好に行われることとなる。
【0030】
この実施形態の放熱体16は、前述したように、インバーのような低熱膨張材からなる低密度成形体17に高熱伝導材18の溶湯を含浸させることで形成され、従って、従来のようにカーボンを使用しておらず、全ての構成材料が金属となることで加工性が良好になると共に、構成部材間の接合性が良好となる。また、MoやWも使用していないので、放熱体16自体を軽量化することができ、ひいては絶縁基板11全体の軽量化を図ることができると共に、それだけパワーモジュール10を軽量化できる。
【0031】
また、低密度成形体17に高熱伝導材18を高圧鋳造によって鋳込むと、高熱伝導材18が低密度成形体中の気孔部17aの隅々まで流れ込み、しかも低密度成形体17と高熱伝導材18とが互いに金属結合してアンカーボルト効果が作用するので、高熱伝導材18と低密度成形体17との接合性を強固にすることができ、強固な接合性が得られる。
しかも、低密度成形体17は、高熱伝導材18に比較すると、熱伝達率が落ちるものの、気孔部17aに高熱伝導材18が入り込むことで、放熱体16としての熱伝達が低下するのを回避することができ、低密度成形体17内における熱伝導を良好に行うことができる。
【0032】
従って、この実施形態によれば、構成部材が全て金属であって重い材料が使用されていないことから、加工性が良好で、かつ軽量化を図ることができ、その上、構成部材間の接合性が良好となる放熱体を確実に形成でき、これにより、絶縁基板11及びパワーモジュール10としての信頼性を高めることができる。
【0033】
図5は、この発明の第2の実施の形態の放熱体を示している。
この実施の形態においては、低密度成形体17に高熱伝導材18の溶湯を含浸させることでコア体24を形成した後、次いで、高熱伝導材18と同程度の高熱伝導材からなる金属板25を用意し、これらの金属板25、25でコア体24を挟着することで放熱体16が構成される。この金属板25は、コア体24中における高熱伝導材18との接合性を考慮すれば、高熱伝導材18と同一であることが好ましいが、異なってもよい。
【0034】
従って、前述した実施形態の放熱体の場合と同様にしてコア体24を形成した後、これを金属板25で挟着することで放熱体16が形成されることとなる。その場合、金属板25は、熱間圧延又は冷間圧延加工されることでコア体20を確実にかつ強固に挟着することができる。このようにして形成された放熱体16の熱伝導率及び熱膨張率は、前述した実施形態の場合と同程度に構成される。
【0035】
この実施形態によれば、低密度成形体17に高熱伝導材18を含浸させて形成されたコア体24を用いるので、基本的には第1の実施形態と同様の作用効果を得ることができ、しかも、コア体24が金属板25で挟着されるので、第1の実施形態に比較すると、絶縁基板11と放熱体16間での熱伝導がいっそう良好なり、放熱作用がいっそう高まる利点もある。
【0036】
なお、上記実施の形態において、低密度成形体17又はコア体24として、インバーを用いた例を示したが、他の低熱膨張材を用いてもよく、例えば、42合金のような低熱膨張材によって形成してもよい。42合金によって形成された低密度成形体の場合、気孔率が50%程度若しくはそれより低くなるが、インバーの場合には30〜70%の気孔率が得られる。これらの気孔率の大きさは、使用する低熱膨張材の材質、含浸すべき高熱伝導材19の材質、目標とすべき熱伝導率や熱膨張係数の値によって適宜選定すればよい。また上記の材質以外にもスーパーインバー等を用いてもよく、いずれにしろ、低熱膨張材として鉄ニッケル系合金であればよく、図示実施形態に限定されるものではない。
更に、放熱体16に冷却シンク部20を設けた構成を示したが、この形態に限らず、放熱体16表面にろう材を介してコルゲートフィンを設ける構成としてもよい。
【0037】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、鉄ニッケル系合金からなる低密度成形体に金属製の高熱伝導材を含浸し、構成材料が全て金属となる放熱体を形成するようにしたので、加工性が良好になると共に、構成材料間の接合性も良好となり、かつ放熱体自体を軽量化でき、熱伝導と放熱特性に優れた良好な放熱体を製造できる効果が得られる。
【0038】
請求項2に係る発明によれば、低密度成形体に高熱伝導材の溶湯を含浸させてコア体を形成し、これを金属板で挟着して放熱体を形成することで、請求項1と同様全ての構成材料が金属となるので、加工性が良好で、構成材料間の接合性も良好となり、かつ放熱体自体の軽量化できる結果、熱伝導と放熱特性に優れた良好な放熱体を製造できる効果が得られる。
【0039】
請求項3に係る発明によれば、放熱体を強固に形成することができるという効果が得られる。
【0040】
請求項4に係る発明によれば、低密度成形体に高熱伝導材が高圧鋳造されることで放熱体を形成するので、低密度成形体と高熱伝導材とを確実に一体に形成できるという効果が得られる。
【0041】
請求項5に係る発明によれば、低密度成形体と、これに含浸によって一体に形成された高熱伝導材とで形成されるので、加工性が良好で、構成材料間の接合性も良好となり、かつ放熱体自体の軽量化できる結果、熱伝導と放熱特性に優れる効果が得られる。
【0042】
請求項6に係る発明によれば、全ての構成材料が金属であることにより、加工性が良好になると共に、構成材料間の接合性も良好となり、かつ放熱体自体を軽量化できる結果、熱伝導と放熱特性に優れる効果が得られる。
【0043】
請求項7に係る発明によれば、低密度成形体内の熱伝導率を高めることができ、低熱膨張材で形成されてあっても、良好な熱伝導を得るという効果が得られる。
【0044】
請求項8に係る発明によれば、高熱伝導材がCuとその合金とAlとその合金とのいずれかからなるので、鉄ニッケル系合金と確実に接合することができ、良好な放熱体を形成することができる。
【0045】
請求項9に係る発明によれば、加工性が良好で軽量化を図り、かつ構成部材間の接合性が良好となる放熱体を有するので、パワーモジュール用基板としての信頼性が高まる効果が得られ、特に窒化アルミのような基板にろう付けのような高温で放熱体を接合するのに有益となる。
【0046】
請求項10に係る発明によれば、加工性が良好で軽量化を図り、かつ構成部材間の接合性が良好となる放熱体を有するので、パワーモジュールとしての信頼性が高まる効果が得られる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態に係る放熱体を適用したパワーモジュールを示す全体図である。
【図2】放熱体を示す説明用斜視図である。
【図3】図1及び図2における放熱体を製造するときの説明図である。
【図4】低密度成形体を型締めする説明図である。
【図5】この発明の第2の実施の形態に係る放熱体を示す要部の断面図である。
【符号の説明】
10 パワーモジュール
11 パワーモジュール用基板(絶縁基板)
16 放熱体
17 低密度成形体
18 高熱伝導材
19 インバーの粉末
24 コア体
25 金属板
30 半導体チップ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat radiator and a method for manufacturing the same, a power module substrate, and a power module, and is particularly used for a semiconductor device for controlling a large voltage and a large current, and generates heat from a heating element such as a semiconductor chip. The present invention relates to a technique suitable for dissipating heat.
[0002]
[Prior art]
In this type of power module substrate, a circuit layer is provided on one surface of an insulating substrate made of a ceramic material, and a radiator is provided on the other surface, and a cooling layer is provided on a surface of the radiator facing the insulating substrate. A configuration having a cooling sink portion provided with a cooling means such as water is generally used.
A radiator provided on such a power module substrate is required to have a characteristic of a low coefficient of thermal expansion in order to be bonded to the insulating substrate, while in order to radiate heat of the semiconductor chip mounted on the insulating substrate. High thermal conductivity is also required.
[0003]
In order to satisfy these requirements, AlSiC or AlSiC in which Al is impregnated with Cu or CuSiC in which Al is impregnated with Cu, and AlC or CuC in which carbon is impregnated with Al or Cu are known as radiators. Conventionally, as a metal material, CuMo or CuW in which a temporary sintered body of molybdenum (Mo) or tungsten (W) is impregnated with Cu has been proposed (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-358266 A
[Problems to be solved by the invention]
By the way, in the conventional power module substrate, if the heat radiator is made of AlSiC or CuSiC, it is composed of metal and ceramics, so that there is a problem of poor workability. In addition, in the case of Al and C, or in the case of Cu and C, that is, a bonded body of metal and carbon, it is difficult to obtain perfect bonding, and there is a problem in strength. When joined at high temperatures, there is also a problem that a large warpage is generated due to a difference in thermal expansion coefficient.
On the other hand, in the case of CuMo or CuW, there is also a problem that the weight increases.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to provide a heat radiator that has good workability, can be reduced in weight, can have sufficient strength, and can prevent warpage. Another object of the present invention is to provide a power module substrate and a power module having the heat radiator.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes the following means.
The invention according to claim 1 is a method of manufacturing a radiator for radiating transmitted heat, wherein the low-density molded body formed of an iron-nickel alloy is impregnated with a molten metal of a high heat conductive material made of metal. Is formed.
[0008]
According to the method for manufacturing a heat radiator according to the present invention, the heat radiator is formed by impregnating a low-density molded body made of an iron-nickel alloy with a molten metal of a high heat conductive material made of metal. Since the body can be formed reliably, and therefore all the constituent materials are made of metal, the workability is improved, the bonding between the constituent materials is improved, and the weight of the radiator itself can be reduced. it can.
[0009]
According to a second aspect of the present invention, in the method for manufacturing a radiator for dissipating the transmitted heat, a low-density compact formed of an iron-nickel alloy is impregnated with a molten metal of a high thermal conductive material made of metal. Then, the core body is sandwiched between metal plates made of a high thermal conductive material to form a radiator.
[0010]
According to the method for manufacturing a radiator according to the present invention, a low-density molded body is impregnated with a molten metal of a high thermal conductive material to form a core body, and this is sandwiched between metal plates made of a high thermal conductive material to form a radiator. Since it is formed, a radiator in which all the constituent materials are made of metal can be reliably formed. Therefore, since all of the constituent materials are made of metal, the workability is improved and the bonding between the constituent materials is also improved. And the radiator itself can be reduced in weight.
[0011]
According to a third aspect of the present invention, in the method for manufacturing a radiator according to the second aspect, the metal plate sandwiches the core body by hot rolling or cold rolling.
ADVANTAGE OF THE INVENTION According to the manufacturing method of the radiator which concerns on this invention, since a metal plate clamps a core body by hot rolling or cold rolling, a radiator can be formed firmly and a favorable radiator can be formed. .
[0012]
According to a fourth aspect of the present invention, the heat radiator of the first aspect or the core body of the second aspect is characterized in that a molten metal of the high thermal conductive material is cast at a high pressure on the low density molded body.
According to the method for manufacturing a heat radiator according to the present invention, the heat radiator is formed by high-pressure casting of the high-thermal-conductivity material on the low-density compact, so that the low-density compact and the high-thermal-conductivity material are reliably formed integrally. can do.
[0013]
According to a fifth aspect of the present invention, there is provided a radiator for dissipating the transmitted heat, wherein a low-density molded body formed of an iron-nickel alloy and a metal high-heat formed integrally by impregnation of the low-density molded body. It is characterized by being formed of a conductive material.
[0014]
According to the heat dissipating body of the present invention, since the heat dissipating body is formed of the low density molded body and the high thermal conductive material integrally formed by impregnation, the heat dissipating body in which the constituent materials are all metal can be reliably formed. Therefore, since all the constituent materials are made of metal, workability is improved, bondability between the constituent materials is improved, and the heat radiator itself can be reduced in weight.
[0015]
According to a sixth aspect of the present invention, there is provided a heat dissipating body for dissipating heat to be transmitted, comprising: a low-density molded body formed of an iron-nickel alloy; It is characterized by being formed by a metal plate sandwiching the body and made of a high thermal conductive material.
[0016]
According to the radiator according to the present invention, since the core body and the metal plate sandwiching the core body are formed by the low-density molded body and the high thermal conductive material integrally formed with the low-density molded body, all the constituent materials are made of metal. Radiator can be reliably formed, and therefore all the constituent materials are made of metal, so that the workability is improved, the bonding property between the constituent materials is improved, and the radiator itself is reduced in weight. can do.
[0017]
The invention according to claim 7 is characterized in that, in the heat radiator according to claim 5 or 6, the low-density molded body is provided with a pore portion having a desired porosity.
According to the heat radiator according to the present invention, when impregnated with the high thermal conductive material, the molten metal of the high thermal conductive material enters the pores of the low density molded body, thereby increasing the thermal conductivity in the low density molded body, Thereby, good heat conduction can be obtained even if the material is formed of a material having a low coefficient of thermal expansion.
[0018]
The invention according to claim 8 is the radiator according to any one of claims 5 to 7, wherein the high thermal conductive material is any of Cu, an alloy thereof, Al, and an alloy thereof. I do.
ADVANTAGE OF THE INVENTION According to the radiator of this invention, since a high thermal conductive material consists of either Cu and its alloy, and Al and its alloy, it can join reliably with an iron-nickel alloy and form a favorable radiator. can do.
[0019]
According to a ninth aspect of the present invention, a heat radiator according to any one of the fifth to eighth aspects is attached to an insulating substrate.
ADVANTAGE OF THE INVENTION According to the board | substrate for power modules which concerns on this invention, workability is favorable and it can aim at weight reduction, and also since it has the radiator which the joining property between component members becomes favorable, reliability is so much. Increase.
[0020]
The invention according to claim 10 is characterized in that a chip is mounted on the insulating substrate of the power module substrate according to claim 9.
ADVANTAGE OF THE INVENTION According to the power module which concerns on this invention, since workability is favorable and weight reduction can be attained, and since it has the heat radiator which the joining property between component members becomes favorable, reliability improves correspondingly.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 4 are views showing a heat radiator according to a first embodiment of the present invention. FIG. 1 is an overall view showing a power module to which the heat radiator is applied, and FIG. 2 is an explanatory diagram showing the heat radiator. FIG. 3 is a perspective view, FIG. 3 is an explanatory view when manufacturing a radiator, and FIG. 4 is an explanatory view of clamping a low density molded body.
The power module 10 shown in FIG. 1 is configured by joining a heat radiator 16 to a power module substrate 11 as a heat radiator.
The power module substrate 11 is an insulating substrate formed in a desired size with, for example, AlN, Al 2 O 3 , Si 3 N 4 , SiC, etc., and a circuit layer 12 is laminated and joined on the upper surface thereof. The metal layer 13 is laminated and joined to its lower surface. The circuit layer 12 and the metal layer 13 are formed of Al, Cu, or the like. Hereinafter, the power module substrate 11 is abbreviated as “insulating substrate 11”.
[0022]
As shown in FIG. 1, the semiconductor chip 30 is mounted on the circuit layer 12 of the insulating substrate 11 by solder 14, while the radiator is mounted on the lower surface of the metal layer 13 by solder 15 or by brazing or diffusion bonding. Further, the radiator 16 is used by being attached to the cooling sink portion 20, and the heat transmitted to the radiator 16 is cooled by the cooling water (or cooling air) 21 in the cooling sink portion 20. The power module 10 is configured by radiating heat. The radiator 16 is attached to the cooling sink unit 20 in a state in which the radiator 16 is in close contact with the attachment screw 22.
[0023]
As shown in FIG. 2, the heat radiator 16 of this embodiment is made of a low-density molded body 17 formed of a material having a low coefficient of thermal expansion and a characteristic of a low coefficient of thermal expansion, and is made of a material having a larger coefficient of thermal expansion. It is formed by impregnating a high heat conductive material 18 made of metal.
[0024]
That is, the low thermal expansion material forming the low density molded body 17 is a so-called iron-nickel alloy, for example, an invar alloy. An invar alloy (hereinafter, abbreviated as invar) is an alloy that hardly undergoes thermal expansion near room temperature, and has a composition ratio of 64.6 mol% of Fe and 35.4 mol% of Ni. However, Fe containing other unavoidable impurities is also called an Invar alloy. The high thermal conductive material 18 is formed of a material having a good thermal conductivity, such as Cu or an alloy thereof, or Al or an alloy thereof.
[0025]
The low-density molded body 17 is formed in a low-density state by molding Invar powder with a mold, and has pores 17a inside and outside as shown in FIG. For example, as shown in FIG. 4, when the low density molded body 17 is formed by clamping the Invar powder 19 with the sintering mold 31, the pores 17 a are formed in the low density molded body 17. It is necessarily formed. The molding is not limited to the sintering mold 31 and may be performed using a normal molding die. In the case of the powder 19 of Invar, such a pore portion 17a has a porosity of about 40 to 70%.
In the sintered mold 31 shown in FIG. 4, when the core 33 is set in the cavity of the die 32, the powder 19 of the low-thermal-expansion material is filled, and the punch 34 is lowered in this state. Such a low-density molded body 17 is formed.
[0026]
When molding the low-density compact 17, not only the Invar powder 19 but also other metal low-thermal-expansion materials may be mixed therein. For example, a linear filler or the like may be mixed. What is essential is that the ferro-nickel alloy is a low thermal expansion material smaller than the high thermal conductive material to be subsequently impregnated, and has good bondability with the high thermal conductive material.
[0027]
Then, after the low-density molded body 17 is formed, the low-density molded body 17 is put into a radiator molding die, and then the molten metal of the high thermal conductive material 18 is impregnated in the die. By filling the inside and curing in that state, the heat dissipating body 16 is formed by the low-density molded body 17 and the high thermal conductive material 18 cast into the molded body 17, as shown in FIGS. It has become. In this case, the molten metal of the high thermal conductive material 18 is cast at a high pressure, so that the pores 17 a in the low density molded body 17 are reliably filled. Note that the highly heat conductive material 18 shown in FIGS. 1 and 2 and the pore portion 17a shown in FIG. 3 are drawn extremely for convenience of explanation.
[0028]
The radiator 16 thus formed has, for example, a thermal conductivity of 100 W / mK or more and a thermal expansion coefficient of about ± 40% of the thermal expansion coefficient α of the insulating substrate 11, that is, 4 × 10 −6 / K <. α <10 × 10 −6 / K. In this case, the low-density molded body occupies at least 30% or more, and preferably 50% or more, as a proportion of the low-density molded body in the entire radiator 16.
[0029]
As described above, when the radiator 16 is formed by casting the molten metal of the high thermal conductive material 18 into the low density molded body 17 formed of a low thermal expansion material such as Invar, the heat of the radiator 16 as a whole is Since the coefficient of expansion can be reliably reduced, the difference in the coefficient of thermal expansion between the heat radiator 16 and the insulating substrate 11 can be reduced so as to be closer to the insulating substrate 11. Therefore, when the two members 16 and 11 are joined by the solder 15 (or brazing, diffusion bonding, or the like), it is possible to prevent the radiator 16 from warping toward the insulating substrate 11 and to prevent the insulating substrate 11 from being warped. The heat transfer from the radiator to the heat radiator 16 is performed favorably.
[0030]
The radiator 16 of this embodiment is formed by impregnating a low-density molded body 17 made of a low-thermal-expansion material such as Invar with a molten metal of a high-thermal-conductivity material 18 as described above. Is not used, and since all the constituent materials are made of metal, the workability is improved and the bondability between the constituent members is improved. Further, since neither Mo nor W is used, the heat radiator 16 itself can be reduced in weight, and thus the entire insulating substrate 11 can be reduced in weight, and the power module 10 can be reduced accordingly.
[0031]
Also, when the high thermal conductive material 18 is cast into the low density molded body 17 by high pressure casting, the high thermal conductive material 18 flows into every corner of the pores 17a in the low density molded body, and the low density molded body 17 and the high thermal conductive material 18 and the low-density molded body 17 can be strengthened, and a strong joint can be obtained.
In addition, the low-density molded body 17 has a lower heat transfer coefficient than the high heat conductive material 18, but avoids a decrease in heat transfer as the heat radiator 16 due to the high heat conductive material 18 entering the pores 17 a. And heat conduction in the low-density molded body 17 can be favorably performed.
[0032]
Therefore, according to this embodiment, since the constituent members are all metal and a heavy material is not used, the workability is good and the weight can be reduced. It is possible to reliably form a heat radiator having good performance, thereby improving the reliability of the insulating substrate 11 and the power module 10.
[0033]
FIG. 5 shows a radiator according to a second embodiment of the present invention.
In this embodiment, after the core body 24 is formed by impregnating the low-density molded body 17 with the molten metal of the high thermal conductive material 18, the metal plate 25 made of the same high thermal conductive material as the high thermal conductive material 18 is then formed. Are prepared, and the heat radiator 16 is configured by sandwiching the core body 24 between these metal plates 25, 25. The metal plate 25 is preferably the same as the high heat conductive material 18 in consideration of the bonding property with the high heat conductive material 18 in the core body 24, but may be different.
[0034]
Therefore, after forming the core body 24 in the same manner as in the case of the heat radiator of the above-described embodiment, the heat radiator 16 is formed by sandwiching the core body 24 with the metal plate 25. In this case, the metal plate 25 can securely and firmly hold the core body 20 by hot rolling or cold rolling. The thermal conductivity and the thermal expansion coefficient of the radiator 16 formed in this way are configured to be substantially the same as those of the above-described embodiment.
[0035]
According to this embodiment, since the core body 24 formed by impregnating the low-density molded body 17 with the high thermal conductive material 18 is used, basically the same functions and effects as those of the first embodiment can be obtained. Moreover, since the core body 24 is sandwiched between the metal plates 25, the heat conduction between the insulating substrate 11 and the heat radiator 16 is further improved and the heat radiating action is further improved as compared with the first embodiment. is there.
[0036]
In the above-described embodiment, an example is shown in which invar is used as the low-density molded body 17 or the core body 24. However, another low-thermal-expansion material may be used, for example, a low-thermal-expansion material such as 42 alloy. May be formed. In the case of a low-density compact formed of 42 alloy, the porosity is about 50% or lower, but in the case of Invar, a porosity of 30 to 70% is obtained. The magnitude of the porosity may be appropriately selected depending on the material of the low thermal expansion material to be used, the material of the high thermal conductive material 19 to be impregnated, and the target values of the thermal conductivity and the thermal expansion coefficient. In addition to the above materials, Super Invar or the like may be used. In any case, the low thermal expansion material may be an iron-nickel alloy, and is not limited to the illustrated embodiment.
Further, the configuration in which the cooling sink portion 20 is provided on the heat radiator 16 has been described. However, the configuration is not limited to this, and a corrugated fin may be provided on the surface of the heat radiator 16 via a brazing material.
[0037]
【The invention's effect】
As described above, according to the first aspect of the present invention, a low-density formed body made of an iron-nickel alloy is impregnated with a high-thermal-conductivity material made of metal to form a radiator in which all constituent materials are metal. As a result, the workability is improved, the bonding property between the constituent materials is also improved, and the heat radiator itself can be reduced in weight, and the effect of producing a good heat radiator excellent in heat conduction and heat radiation characteristics can be obtained. .
[0038]
According to the second aspect of the present invention, a low-density molded body is impregnated with a molten metal of a high thermal conductive material to form a core body, and this is sandwiched between metal plates to form a radiator. Since all the constituent materials are made of metal in the same manner as described above, the workability is good, the bonding property between the constituent materials is good, and the heat radiator itself can be reduced in weight, resulting in a good heat radiator with excellent heat conduction and heat radiation characteristics. Can be obtained.
[0039]
According to the third aspect of the invention, there is obtained an effect that the heat radiator can be firmly formed.
[0040]
According to the fourth aspect of the present invention, since the heat radiator is formed by casting the high thermal conductive material into the low density molded body at a high pressure, the low density molded body and the high thermal conductive material can be surely integrally formed. Is obtained.
[0041]
According to the invention according to claim 5, since the low-density molded body and the high-thermal-conductivity material integrally formed by impregnation with the low-density molded body, the workability is good and the joining property between the constituent materials is good. In addition, as a result of reducing the weight of the heat radiator itself, an effect that is excellent in heat conduction and heat radiation characteristics can be obtained.
[0042]
According to the invention as set forth in claim 6, since all the constituent materials are metal, workability is improved, bonding properties between the constituent materials are improved, and the heat radiator itself can be reduced in weight. The effect of excellent conduction and heat dissipation characteristics can be obtained.
[0043]
According to the invention according to claim 7, the thermal conductivity in the low-density molded body can be increased, and even if it is formed of a low-thermal-expansion material, an effect of obtaining good thermal conductivity can be obtained.
[0044]
According to the invention according to claim 8, since the high thermal conductive material is made of any one of Cu and its alloy and Al and its alloy, it can be securely bonded to the iron-nickel alloy and forms a good heat radiator. can do.
[0045]
According to the ninth aspect of the present invention, since the heat radiator having good workability and light weight and good jointability between constituent members is provided, an effect of increasing reliability as a power module substrate is obtained. This is particularly useful for bonding a heat radiator to a substrate such as aluminum nitride at a high temperature such as brazing.
[0046]
According to the tenth aspect of the present invention, since there is provided a heat radiator having good workability and light weight, and having good bonding between constituent members, an effect of increasing reliability as a power module can be obtained.
[Brief description of the drawings]
FIG. 1 is an overall view showing a power module to which a heat radiator according to a first embodiment of the present invention is applied.
FIG. 2 is an explanatory perspective view showing a radiator.
FIG. 3 is an explanatory view when manufacturing the radiator shown in FIGS. 1 and 2;
FIG. 4 is an explanatory diagram for clamping a low density molded body.
FIG. 5 is a sectional view of a main part showing a radiator according to a second embodiment of the present invention.
[Explanation of symbols]
10 Power module 11 Power module substrate (insulating substrate)
Reference Signs List 16 Heat radiator 17 Low density molded body 18 High thermal conductive material 19 Invar powder 24 Core body 25 Metal plate 30 Semiconductor chip

Claims (10)

伝達される熱を放熱させる放熱体の製造方法において、
鉄ニッケル系合金により形成された低密度成形体に、金属製の高熱伝導材の溶湯を含浸させて放熱体を形成することを特徴とする放熱体の製造方法。
In a method of manufacturing a radiator that dissipates the transmitted heat,
A method for manufacturing a radiator, comprising: forming a radiator by impregnating a low-density formed body made of an iron-nickel alloy with a molten metal of a high thermal conductive material made of metal.
伝達される熱を放熱させる放熱体の製造方法において、
鉄ニッケル系合金により形成された低密度成形体に、金属製の高熱伝導材の溶湯を含浸させてコア体を形成し、
次いで、前記コア体を高熱伝導材からなる金属板で挟着して放熱体を形成することを特徴とする放熱体の製造方法。
In a method of manufacturing a radiator that dissipates the transmitted heat,
A low-density compact formed of an iron-nickel alloy is impregnated with a molten metal of a high thermal conductive material to form a core body,
Next, a method for manufacturing a heat radiator, comprising forming the heat radiator by sandwiching the core body with a metal plate made of a high thermal conductive material.
請求項2記載の放熱体の製造方法において、
前記金属板は、熱間圧延又は冷間圧延によりコア体を挟着することを特徴とする放熱体の製造方法。
The method for manufacturing a radiator according to claim 2,
A method for manufacturing a heat radiator, wherein the metal plate sandwiches a core body by hot rolling or cold rolling.
請求項1記載の放熱体又は請求項2記載のコア体は、前記低密度成形体に対し前記高熱伝導材の溶湯を高圧鋳造することを特徴とする放熱体の製造方法。The method for manufacturing a heat radiator according to claim 1, wherein the heat radiator according to claim 1 or the core body according to claim 2, wherein the molten metal of the high thermal conductive material is cast at a high pressure on the low density molded body. 伝達される熱を放熱させる放熱体において、
鉄ニッケル系合金により形成された低密度成形体と、該低密度成形体に含浸により一体に形成された金属製の高熱伝導材とにより形成することを特徴とする放熱体。
In a radiator that dissipates the transmitted heat,
A heat radiator, comprising: a low-density formed body formed of an iron-nickel alloy; and a metal high-thermal-conductivity material integrally formed by impregnating the low-density formed body.
伝達される熱を放熱させる放熱体において、
鉄ニッケル系合金により形成された低密度成形体に、金属製の高熱伝導材を含浸により一体に形成されたコア体と、該コア体を挟着し、かつ高熱伝導材からなる金属板とにより形成することを特徴とする放熱体。
In a radiator that dissipates the transmitted heat,
A low-density molded body formed of an iron-nickel alloy is impregnated with a metal high-thermal-conductivity material and integrally formed by a core body, and a metal plate sandwiching the core body and made of a high-thermal-conductivity material. A heat radiator characterized by being formed.
請求項5又は6記載の放熱体において、
前記低密度成形体は、所望の気孔率を有する気孔部を設けていることを特徴とする放熱体。
The radiator according to claim 5 or 6,
The heat radiator according to claim 1, wherein the low-density molded body has a pore portion having a desired porosity.
請求項5〜7のいずれか記載の放熱体において、
前記高熱伝導材は、Cuと、その合金と、Alと、その合金とのいずれかであることを特徴とする放熱体。
The radiator according to any one of claims 5 to 7,
The heat radiator according to claim 1, wherein the high thermal conductive material is one of Cu, an alloy thereof, Al, and an alloy thereof.
請求項5〜8のいずれか記載の放熱体を、絶縁基板に取り付けることを特徴とするパワーモジュール用基板。A power module substrate, wherein the heat radiator according to any one of claims 5 to 8 is attached to an insulating substrate. 請求項9記載のパワーモジュール用基板の絶縁基板上にチップを搭載してなることを特徴とするパワーモジュール。A power module comprising a chip mounted on an insulating substrate of the power module substrate according to claim 9.
JP2002369846A 2002-12-20 2002-12-20 Radiator and its producing process, substrate for power module, and power module Pending JP2004200566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369846A JP2004200566A (en) 2002-12-20 2002-12-20 Radiator and its producing process, substrate for power module, and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369846A JP2004200566A (en) 2002-12-20 2002-12-20 Radiator and its producing process, substrate for power module, and power module

Publications (1)

Publication Number Publication Date
JP2004200566A true JP2004200566A (en) 2004-07-15

Family

ID=32765948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369846A Pending JP2004200566A (en) 2002-12-20 2002-12-20 Radiator and its producing process, substrate for power module, and power module

Country Status (1)

Country Link
JP (1) JP2004200566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134984A (en) * 2004-11-04 2006-05-25 Neomax Material:Kk Metal composite material and heat dissipation member containing the same
CN103474403A (en) * 2013-07-02 2013-12-25 邵敏芝 Non-metallic heat radiation film, production equipment, and manufacturing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134984A (en) * 2004-11-04 2006-05-25 Neomax Material:Kk Metal composite material and heat dissipation member containing the same
JP4633443B2 (en) * 2004-11-04 2011-02-16 株式会社Neomaxマテリアル Metal composite material, heat dissipation member including the metal composite material, and method for producing metal composite material
CN103474403A (en) * 2013-07-02 2013-12-25 邵敏芝 Non-metallic heat radiation film, production equipment, and manufacturing process

Similar Documents

Publication Publication Date Title
JP4378334B2 (en) Heat spreader module and manufacturing method thereof
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
KR101419627B1 (en) Substrate for power module, and power module
JP4134537B2 (en) Power module and power module with heat sink
WO2002013267A1 (en) Power module and power module with heat sink
WO1998008256A1 (en) Silicon nitride circuit board and semiconductor module
JP2006294971A (en) Substrate for power module and its production process
KR20190098971A (en) Carrier Substrate for Electrical Element and Manufacturing Method of Carrier Substrate
JP2009206191A (en) Power module
JP5520815B2 (en) Insulating substrate and base for power module
JP2001358266A (en) Material of heat radiation substrate for mounting semiconductor, method of manufacturing the same, and ceramic package using the same
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP4148123B2 (en) Radiator and power module
CN103057202A (en) Lamination-structured heat sink material and preparation method
JP2004200567A (en) Radiator and its producing process, substrate for power module, power module
JP2004200566A (en) Radiator and its producing process, substrate for power module, and power module
JP2007096252A (en) Liquid-cooling circuit substrate and liquid cooling electronic device
JP2004022964A (en) Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE
JP2004200369A (en) Power module and substrate therefor
JP2004087927A (en) Ceramic substrate
JP2004200571A (en) Substrate for power module and its producing process, and power module
JP2003283063A (en) Ceramic circuit board
JP3960192B2 (en) Radiator
JP2003092383A (en) Power semiconductor device and its heat sink
JP2005019875A (en) Heat radiating plate, heat radiating module, semiconductor mounted module, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061002

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070307

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070413