JP4134537B2 - Power module and power module with heat sink - Google Patents

Power module and power module with heat sink Download PDF

Info

Publication number
JP4134537B2
JP4134537B2 JP2001242349A JP2001242349A JP4134537B2 JP 4134537 B2 JP4134537 B2 JP 4134537B2 JP 2001242349 A JP2001242349 A JP 2001242349A JP 2001242349 A JP2001242349 A JP 2001242349A JP 4134537 B2 JP4134537 B2 JP 4134537B2
Authority
JP
Japan
Prior art keywords
heat sink
power module
circuit board
plate
insulating circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001242349A
Other languages
Japanese (ja)
Other versions
JP2003086744A (en
Inventor
義幸 長友
敏之 長瀬
正一 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001242349A priority Critical patent/JP4134537B2/en
Publication of JP2003086744A publication Critical patent/JP2003086744A/en
Application granted granted Critical
Publication of JP4134537B2 publication Critical patent/JP4134537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放熱板の一方の主面に絶縁回路基板が固着されたパワーモジュールに関するものである。
【0002】
【従来の技術】
図4(a)に示すように、この種のパワーモジュール1として放熱板2の一方の主面に絶縁回路基板3が固着されたものが知られており、絶縁回路基板3はセラミック基板3aの両面に第1及び第2Al板3b、3cを接合することにより作製される。この絶縁回路基板3の第2Al板3cはエッチングにより所定のパターンの回路となり、一点鎖線で示す半導体チップ等4が搭載される。この絶縁回路基板3の第1Al板3bは、AlSiC複合材料により形成された応力緩衝層6を介してAl系合金板からなる放熱板2の上面に接合され、放熱板2は必要に応じて図示しないヒートシンクに取り付けられる。この従来のパワーモジュール1では、半導体チップ等4が発した熱は第2Al板3c、セラミック基板3a、第1Al板3b及び応力緩衝層6を介して放熱板2に伝達し、その放熱板2又はその放熱板2が取り付けられた図示しないヒートシンクからその熱を放散するようになっている。
一方、パワーモジュール1は、搭載した半導体チップ等4が発した熱を放散させるために、熱を発する半導体チップ等4と実際に熱を放散する放熱板2までの距離を近づけてその間の熱抵抗を可能な限り低減することが好ましい。この点からすると、応力緩衝層6を設けることなく図4(b)に示すように、放熱板2に絶縁回路基板3を直接固着することが考えられる。
【0003】
【発明が解決しようとする課題】
しかし、放熱板2に絶縁回路基板3を直接固着すると、半導体チップ等4の発熱及び非発熱により絶縁回路基板3の温度が高温と低温との間で繰り返し変化することにより、絶縁回路基板3を構成する第1Al板3bが繰り返し作用する応力により、応力が作用された部分が加工硬化を起こす不具合がある。そして第1Al板3bが加工硬化を起こすとその応力を吸収することが困難になり、その接合部分に剥離を生じさせてパワーモジュール1の熱サイクル寿命を短くする問題点がある。
また、放熱板2と絶縁回路基板3の固着をロウ付けにより行うとすると、ロウ付けは一般的に比較的高温により行う必要があり、ロウ付けした後冷却すると熱収縮率の相違により、常温状態でパワーモジュール1に著しい反りを生じさせる不具合もある。
【0004】
本発明の目的は、著しい反りを生じさせることなく絶縁回路基板を放熱板に直接ロウ付けさせて放熱特性を向上させたパワーモジュール及びヒートシンク付パワーモジュールを提供することにある。
本発明の別の目的は、このように直接ロウ付けされた場合にも熱サイクル時の応力による加工硬化を起こすことがなく、熱サイクル寿命が長いパワーモジュール及びヒートシンク付パワーモジュールを提供することにある。
【0005】
【課題を解決するための手段】
本発明は、図1に示すように、放熱板11の一方の主面に1又は2以上の方形の絶縁回路基板12が固着されたパワーモジュールの改良である。
本発明は、放熱板11は、その厚さ(A)が3〜10mmのAl系合金板であって、絶縁回路基板12は、その一辺(B)が30mm以下であって、絶縁回路基板12は、Si、AlN又はAlからなるセラミック基板12aと、セラミック基板12aの両面に接合された第1及び第2Al板12b,12cとを備え、前記第1Al板(12b)の純度が99.98重量%以上であるとともに、その厚さが0.25〜0.6 mm とされており、Al系合金板からなる放熱板11に、絶縁回路基板12の第1Al板12bが、Al−Si,Al−Ge,Al−Cu,Al−Mg又はAl−Mn系ロウ材から選ばれる1又は2以上のロウ材により直接ロウ付けされてなり、放熱板11から第1Al板12b側に0.2mm離れた該第1Al板12b内の領域において、EPMAにより5点定量分析を行って測定された元素含有量の平均値は重量%で、前記ロウ材がAl−Si系の場合、0.05%≦Si≦3.0%、Al−Cu系の場合、0.05%≦Cu≦2.0%、Al−Mg系の場合、0.05%≦Mg≦2.0%、Al−Mn系の場合、0.05%≦Mn≦1.0%、Al−Ge系の場合、0.05%≦Ge≦3.0%の範囲であることを特徴とする。
すなわち、絶縁回路基板12の一辺Bを30mm以下に制限することで、放熱板11と絶縁回路基板12の熱収縮率の相違に基づく絶縁回路基板12の縁における収縮量の相違を比較的小さく抑制することができる。また、比較的厚い3〜10mmの厚さの放熱板11を使用することで、放熱板11と絶縁回路基板12を直接ロウ付けした場合に生じるパワーモジュール10の著しい反りを抑制することができる。更に、絶縁回路基板12を放熱板11に直接ロウ付けすることで、絶縁回路基板12と放熱板11との間の距離を熱応力緩衝層を有する従来のものに比較してより近づけることができるので、熱の放散効果を高めることができる。尚、本発明において絶縁回路基板12の一辺の長さは、絶縁回路基板12の外形の一辺の長さを指すものである。
【0006】
また、本発明のパワーモジュールは、図1に示すように、放熱板11に絶縁回路基板12が直接ロウ付けされて構成されおり、そのロウ材はAl−Si,Al−Ge,Al−Cu,Al−Mg又はAl−Mn系から選ばれる1又は2以上のロウ材とされている。このように絶縁回路基板12と放熱板11とがろう接された本発明のパワーモジュールにおいては、接合材であるロウ材に含まれる成分が、絶縁回路基板12と放熱板11との接合部からこれらの内部に拡散し、絶縁回路基板12のAl板12bと、放熱板11との接合部分に拡散層が形成される。
【0007】
この拡散層の形成により十分な接合強度を得ることができ、パワーモジュールの信頼性の向上を実現することができるが、同時に上記拡散層においては、構成材料の硬化が生じる。この硬化の程度が大きすぎるとパワーモジュールに加熱、冷却の繰り返し(熱サイクル)が付加された際の放熱板11と絶縁回路基板12との収縮量の相違による応力を吸収しきれず、接合部での剥離の原因となる場合がある。逆に、ロウ材の絶縁回路基板12及び放熱板11への拡散が不充分である場合には、絶縁回路基板12と放熱板11との接合強度自体が小さくなるために、絶縁回路基板12の剥離が起こりやすくなる。従って、本発明では、ロウ材成分の拡散の程度を規定することで接合強度を高めつつ、加熱冷却に伴う収縮による剥離を防止した熱サイクル寿命の長いパワーモジュールを実現した。
【0008】
本発明では、上記拡散の程度を、放熱板11から0.2mm内側の絶縁回路基板12のAl板12b内の領域においてEPMA(電子プローブマイクロアナライザ)による5点定量分析(詳細は後述する)により測定することとした。そして、本発明者はこれらの測定点で検出されたロウ材成分の含有量の平均値が、下記の含有量の範囲であれば、十分な接合強度を備え、かつ、熱サイクルに伴う膨張収縮による応力によって絶縁回路基板12と放熱板11との接合面が剥離するのを効果的に防止できることを知見し、本発明を考案した。すなわち、本発明のパワーモジュールは、上記測定点で測定されたSi,Cu,Mg,Mn,Geの含有量が、ロウ材がAl−Si系の場合は0.05重量%≦Si≦3.0重量%、Al−Cu系の場合は0.05重量%≦Cu≦2.0%、Al−Mg系の場合は0.05重量%≦Mg≦2.0%、Al−Mn系の場合は0.05重量%≦Mn≦1.0%、Al−Ge系の場合は0.05重量%≦Ge≦3.0%とされている。これらの成分の含有量は、測定点においてEPMAにより測定された値の平均値であり、ロウ材成分が拡散したものか、絶縁回路基板12のAl板12bに当初から含まれていたものかは問わない。すなわち、上記含有量の範囲は、Al板12bに当初から含まれている成分と、ロウ材が拡散した成分との和の範囲を規定したものである。また、本発明者はこれらのロウ材成分含有量の範囲が適切であることを後述の実施例において検証しており、その具体的な方法や結果については実施例にて詳述する。
【0009】
ここで、本発明におけるEPMAによる5点定量分析について、図3を参照して以下に説明する。本発明においてEPMAによる5点定量分析とは、図3に示すように、放熱板11とロウ材(図示せず)を介して接合されたAl板12bの内部であって、放熱板11の主面から0.2mm離れたAl板12b内の任意の5点(P1〜P5)を測定点とし、これらの測定点P1〜P5にてEPMAにより測定されたSi,Cu,Mg,Mn,又はGeの含有量の平均値を導出するものである。このようにして、Al板12b内の上記含有量が適切であることを容易に確認することができが、前記Al板12bと放熱板11との接合面は、図3においては放熱板11の主面111のうち絶縁回路基板12が接合される面111Aのみをいうが、この接合面が不明瞭である場合に、該面111Aと平行かつそこから0.2mm離れた面を特定する際には、主面111のうち、面111A以外の面111Bを基準にしても良い。また、測定点P1〜P5は、接合面から0.2mm離れた面内で任意の5点を選択することができるが、より正確に拡散層の情報を得るために、隣接する測定点どうしの間隔を0.5mm以上とすることが好ましい。
【0010】
また、第1Al板12bの純度が99.98重量%以上であるので、比較的加工硬化を起こし難い。このようなAl板12bを放熱板11に直接ロウ付けする本発明のパワーモジュールでは、絶縁回路基板12の温度が高温と低温との間で繰り返し変化しても、Al板12bの応力吸収作用が低下することはなく、パワーモジュール10の熱サイクル寿命を比較的長くすることができる。
【0011】
次に、本発明は、図1に示すように、先に記載のパワーモジュール10の放熱板11の他方の主面をAl系合金からなる水冷又は空冷式のヒートシンク14に接合したことを特徴とするヒートシンク付パワーモジュールを提供する。先に記載の本発明のパワーモジュール10は、搭載した半導体チップ等16が発した熱を放熱板11に速やかに伝導させる。このパワーモジュール10をヒートシンク14に接合した本構成では、その熱をヒートシンク14から速やかに放散させることができる。
【0012】
次に、本発明のヒートシンク付パワーモジュールは、図2に示すように、ヒートシンク24が、その冷媒流路25aが形成されたヒートシンク本体25と、前記冷媒流路25aを覆って密封するように前記ヒートシンク本体25に接合された蓋体26とを備え、先に記載のパワーモジュールの放熱板11が、前記蓋体26を兼ねる構成とすることもできる。
本構成のヒートシンク付パワーモジュールは、放熱板が蓋体26を兼ねることにより、実際に熱を放散させる冷媒と熱を発する半導体チップ等16との距離は更に縮められ、半導体チップ等16が発した熱をこのヒートシンク24から効果的に放散させることができる。
【0021】
【発明の実施の形態】
次に、本発明の第1の実施形態について説明する。
図1に示すように、本発明のパワーモジュール10は、放熱板11の一方の主面に1又は2以上の方形の絶縁回路基板12が固着されたものである。放熱板11はAl系合金板からなる板材であって、その厚さAが3〜10mmのものが使用される。絶縁回路基板12は、Si34、AlN又はAl23からなる厚さが0.3〜1.5mmのセラミック基板12aと、このセラミック基板12aの両面に接合された第1及び第2Al板12b、12cとを備える。この第1及び第2Al板12b、12cには、純度が99.98重量%以上であって、その厚さが0.25〜0.6mmのものを使用することが好ましい。このセラミック基板12aと第1及び第2Al板12b、12cは積層されて絶縁回路基板12となった状態で一辺Bが30mm以下になるような方形状のものが使用される。
【0022】
セラミック基板12aの両面への第1及び第2Al板12b、12cの積層接着は、ロウ材を介して行われる。具体的には、第1Al板12bの上にAl−Si系ロウ材(図示せず)、セラミック基板12a、Al−Si系ロウ材(図示せず)及び第2Al板12cをこの順序で重ねた状態で、これらに荷重50〜500kPaを加え、真空中で580〜650℃に加熱することにより行われる。このように積層接着することにより一辺Bが30mm以下の絶縁回路基板12が得られ、その後上面における第2Al板12cはエッチングにより所定のパターンの回路となる。尚、Al−Si系ロウ材は95〜80重量%のAlと、5〜20重量%のSiとの合金からなるものであって、その融点が575℃のものが使用される。
【0023】
一辺Bが30mm以下とされた絶縁回路基板12は、放熱板11にロウ材により直接ロウ付けされ、このロウ材としてはAl−Si,Al−Cu,Al−Mg,Al−Mn又はAl−Ge系ロウ材から選ばれる1又は2以上のロウ材を用いることが好ましい。絶縁回路基板12の放熱板11へのロウ付けは、放熱板11の上に前記のロウ材(図示せず)と絶縁回路基板12をこの順序で重ねた状態で、これらに荷重50〜500kPaを加え、真空中で580〜650℃に加熱してロウ材を溶融させ、その後冷却してそのロウ材を固化させることにより行われる。この場合、前記ロウ材は融点が575℃程度のものが使用され、セラミック基板12aと第1及び第2Al板12b、12cを積層接着したロウ材を溶融させることなく、放熱板11と絶縁回路基板12を構成する第1Al板12bとを接合させる。このように構成されたパワーモジュール10は、放熱板11の隅に形成された取付孔11aに雄ねじ13を挿入して水冷式のヒートシンク14に形成された雌ねじ14aに螺合することにより、放熱板11の他方の主面はAl合金からなる水冷式のヒートシンク14に接合される。
【0024】
また、本実施形態のパワーモジュールでは、絶縁回路基板12と放熱板11との接合によりロウ材に含まれる成分が、絶縁回路基板12及び放熱板11へ拡散されるが、この拡散の程度は、荷重条件及び加熱条件の調整により、最適な拡散程度となるように調整することができ、以下のような測定を行うことで容易に確認することができる。すなわち、絶縁回路基板12のAl板12b内の領域において放熱板11から0.2mm離れた位置でのEPMAによる5点定量分析で測定された含有量の平均値が、ロウ材がAl−Si系の場合は0.05重量%≦Si≦3.0重量%、Al−Cu系の場合は0.05重量%≦Cu≦2.0重量%、Al−Mg系の場合は0.05重量%≦Mg≦2.0重量%、Al−Mn系の場合は0.05重量%≦Mn≦1.0重量%、Al−Ge系の場合は0.05重量%≦Ge≦3.0重量%の範囲であれば、両者が適切に接合されているといえる。
【0025】
このように構成されたパワーモジュール10では、半導体チップ等16が実際に搭載される絶縁回路基板12を放熱板11に直接ロウ付けしたので、その間の距離は半導体チップ等16が発した熱を放熱板11に速やかに伝導させて水冷式ヒートシンク14から速やかに放散させることができる。
また、放熱板11と絶縁回路基板12の固着をロウ付けにより行っているが、本発明のパワーモジュール10は、比較的反りの生じ難い厚さである比較的厚い3〜10mmの厚さの放熱板11を使用し、絶縁回路基板12の一辺Bを30mm以下に制限しているため、ロウ付け時における放熱板11と絶縁回路基板12の熱収縮率の相違に基づく絶縁回路基板12の縁における収縮量の相違を比較的小さく抑制できる。この結果、パワーモジュール10に著しい反りを生じさせることはなく、熱サイクル時に生じる絶縁回路基板12の縁における収縮量の相違も比較的小さく抑制できて、パワーモジュール10の熱サイクル寿命を比較的長く維持することができる。
【0026】
更に、本実施形態のパワーモジュール1では、絶縁回路基板12を構成するAl板12bであって、放熱板11に実際にロウ付けされるものに、加工硬化を起こし難い純度99.98重量%以上のAl板12bを使用したため、半導体チップ等16の発熱および非発熱により絶縁回路基板12の温度が高温と低温との間で繰り返し変化してもそのAl板12bが繰り返し作用する熱応力により加工硬化を起こすことはなく、温度サイクルに起因する応力を吸収する機能の低下を抑制して、パワーモジュール10の熱サイクルに起因する応力を吸収する機能の低下を抑制して、パワーモジュール10の熱サイクル寿命を更に長く維持することができる。
【0027】
尚、上述した実施の形態では、絶縁回路基板12は、セラミック基板12aの両面に第1及び第2Al板12b、12cを接合するためのロウ付けと、それらが接合されて形成された絶縁回路基板12を放熱板11に接合するロウ付けを別工程で行ったが、単一のロウ付け工程によりこれらを同時に接合しても良い。
【0032】
尚、上述した第1実施の形態では、パワーモジュール10の放熱板11の他方の主面を水冷式のヒートシンク14に接合したヒートシンク付パワーモジュール10を示したが、ヒートシンクは空冷式のものであっても良い。ここで、図2に示すように、ヒートシンク24が冷媒流路25aが形成されたヒートシンク本体25と、この冷媒流路25aを覆って密封するようにヒートシンク本体25に接合された蓋体26とを備えるものであるならば、放熱板が蓋体26を兼ねるようにしても良い。図における蓋体26はヒートシンク本体25にろう接されるものを示し、このように放熱板が蓋体26を兼ねれば、実際に熱を放散させる冷媒である水27と熱を発する半導体チップ等16との距離は更に縮められることにより、半導体チップ等16が発した熱をこのヒートシンク24から更に速やかに放散させることができる。
【0033】
【実施例】
次に、本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図1に示すように、縦、横及び厚さがそれぞれ15mm、15mm及び0.635mmのセラミック基板12aの両面に、縦、横がセラミック基板12aと同一で、厚さが0.4mmのAl板12b,12cを積層した絶縁回路基板12と、縦、横及び厚さがそれぞれ100mm、100mm及び3mmのAl系合金板からなる放熱板11を用意した。ここで絶縁回路基板12は、Si34からなるセラミック基板12aの両面に純度が99.98重量%以上の第1及び第2Al板12b、12cを接合したものを使用した。
この絶縁回路基板12を放熱板11に積層して荷重150kPaを加え、真空中で620℃に加熱した。20分経過後冷却することにより絶縁回路基板12が放熱板11にAl−Siロウ材により直接ロウ付けされたパワーモジュール10を得た。このようにして得られたパワーモジュールを実施例1の試料とした。
【0034】
<実施例2>
実施例1のパワーモジュールと同一材料からなる縦、横及び厚さがそれぞれ20mm、20mm及び0.635mmのセラミック基板12aの両面に、縦、横がセラミック基板12aと同一で、厚さが0.4mmのAl板12b,12cを積層した絶縁回路基板12と、縦、横及び厚さがそれぞれ100mm、100mm及び6mmのAl系合金板からなる放熱板11を用意した。
この絶縁回路基板12を実施例1と同一の条件でAl−Siロウ材により放熱板11に直接ロウ付けすることによりパワーモジュール10を得た。このようにして得られたパワーモジュールを実施例2の試料とした。
<実施例3>
実施例1のパワーモジュールと同一材料からなる縦、横及び厚さがそれぞれ30mm、30mm及び0.635mmのセラミック基板12aの両面に、縦、横がセラミック基板12aと同一で、厚さが0.4mmのAl板12b,12cを積層した絶縁回路基板12と、縦、横及び厚さがそれぞれ100mm、100mm及び8mmのAl系合金板からなる放熱板11を用意した。
この絶縁回路基板12を実施例1と同一の条件でAl−Siロウ材により放熱板11に直接ロウ付けすることによりパワーモジュール10を得た。このようにして得られたパワーモジュールを実施例3の試料とした。
【0035】
<比較例1>
実施例1のパワーモジュールと同一材料からなる縦、横及び厚さがそれぞれ30mm、30mm及び0.635mmのセラミック基板12aの両面に、縦、横がセラミック基板12aと同一で、厚さが0.4mmのAl板12b,12cを積層した絶縁回路基板12と、縦、横及び厚さがそれぞれ100mm、100mm及び15mmのAl系合金板からなる放熱板11を用意した。
この絶縁回路基板12を実施例1と同一の条件でAl−Siロウ材により放熱板11に直接ロウ付けすることによりパワーモジュール10を得た。このようにして得られたパワーモジュールを比較例1の試料とした。
【0036】
<比較例2>
実施例1のパワーモジュールと同一材料からなる縦、横及び厚さがそれぞれ50mm、50mm及び0.635mmのセラミック基板12aの両面に、縦、横がセラミック基板12aと同一で、厚さが0.4mmのAl板12b,12cを積層した絶縁回路基板12と、縦、横及び厚さがそれぞれ100mm、100mm及び5mmのAl系合金板からなる放熱板11を用意した。
この絶縁回路基板12を実施例1と同一の条件で放熱板11に直接ロウ付けすることによりパワーモジュール10を得た。このようにして得られたパワーモジュールを比較例2の試料とした。
【0037】
<比較例3>
実施例1のパワーモジュールと同一材料からなる縦、横及び厚さがそれぞれ40mm、40mm及び0.635mmのセラミック基板12aの両面に、縦、横がセラミック基板12aと同一で、厚さが0.4mmのAl板12b,12cを積層した絶縁回路基板12と、縦、横及び厚さがそれぞれ100mm、100mm及び2mmのAl系合金板からなる放熱板11を用意した。
この絶縁回路基板12を実施例1と同一の条件で放熱板11に直接ロウ付けすることによりパワーモジュール10を得た。このようにして得られたパワーモジュールを比較例3の試料とした。
尚、上述した実施例1〜3、比較例1〜3のそれぞれのパワーモジュールの構成を表1に示す。
【0038】
<比較試験及び評価>
実施例1〜3、比較例1〜3のそれぞれのパワーモジュールを冷熱衝撃試験器にて−40℃30分〜室温30分〜125℃30分〜室温30分を1サイクルとする温度サイクルを付加した。温度サイクルを100回付加した時点で絶縁回路基板12と放熱板11の間の剥離の有無を観察し、剥離が確認されない場合には更に温度サイクルを100回付加した。これを繰り返して剥離が確認されるまでの温度サイクル回数を温度サイクル寿命として測定した。尚、剥離の有無は拡大鏡により確認することにより行った。この結果も表1に併記する。
【0039】
【表1】

Figure 0004134537
【0040】
表1から明らかなように、放熱板の厚さが3〜10mmであって、絶縁回路基板の一辺Bが30mm以下である実施例1〜3では、温度サイクル寿命が全て3000回以上と比較的高い数値を示した。これは、絶縁回路基板12の一辺Bを30mm以下に制限しているため、熱サイクル時に生じる絶縁回路基板12の縁における収縮量の相違を比較的小さく抑制できた結果によるものと考えられる。
一方、上記要件から外れる比較例1〜3のパワーモジュールでは、絶縁回路基板が一番小さい比較例1のパワーモジュールにおける2000回が最高であり、絶縁回路基板が一番大きい比較例3のパワーモジュールではわずか100回であった。これは、絶縁回路基板12が大きいために、熱サイクル時に生じる絶縁回路基板12の縁における収縮量の相違が比較的大きくなったことに起因しているものと考えられる。また、実施例3のパワーモジュールの絶縁回路基板と同一の絶縁回路基板を使用している比較例1のパワーモジュールでは、放熱板の厚さが大きいために、絶縁回路基板の縁における収縮量の相違が主に絶縁回路基板に吸収され、結果として温度サイクル寿命が悪化したものと考えられる。
【0041】
<実施例4>
次に、実施例1のパワーモジュールと同一材料からなる縦、横及び厚さがそれぞれ15mm、15mm及び0.635mmのセラミック基板12aの両面に、縦、横がセラミック基板12aと同一で、厚さが0.4mmのAl板12b,12cを積層した絶縁回路基板12と、縦、横及び厚さがそれぞれ100mm、100mm及び3mmのAl系合金板からなる放熱板11を用意した。
この絶縁回路基板12を、Al−Si系ロウ材を介して放熱板11に積層して荷重を加え、真空中で加熱して接合した。この際の荷重条件及び加熱条件を適宜調整することで、前記ロウ材に含まれるSiの絶縁回路基板12及び放熱板11への拡散の程度を調整した。20分経過後冷却することにより絶縁回路基板12が放熱板11に直接ロウ付けされたパワーモジュールを得た。このようにして得られたパワーモジュールを試料4Aとした。このパワーモジュールについて、上述のEPMAによる5点定量分析により、絶縁回路基板12のAl板12b内の領域で放熱板11から0.2mm離れた位置におけるSi含有量を測定したところ、Si含有量は0.05重量%であった。このEPMA測定に用いる測定装置及び測定条件を以下に示す。
【0042】
Figure 0004134537
【0043】
次に、上記試料4Aのパワーモジュールと同一材料からなる縦、横及び厚さがそれぞれ15mm、15mm及び0.635mmのセラミック基板12aの両面に、縦、横がセラミック基板12aと同一で、厚さが0.4mmのAl板12b,12cを積層した絶縁回路基板12と、縦、横及び厚さがそれぞれ100mm、100mm及び3mmのAl系合金板からなる放熱板11を用意した。
この絶縁回路基板12を、Al−Si系ロウ材を介して放熱板11に積層して荷重を加え、真空中で加熱して接合した。この際の荷重条件及び加熱条件を変化させることで、前記ロウ材に含まれるSiの絶縁回路基板12及び放熱板11への拡散の程度を調整して両者を接合し、4種類のパワーモジュールを作製した。そして、20分経過後冷却することにより絶縁回路基板12が放熱板11に直接ロウ付けされたパワーモジュールを得た。このようにして得られたパワーモジュールをそれぞれ試料4B〜4Eとした。これらのパワーモジュールについて、上述のEPMAによる5点定量分析により、絶縁回路基板12のAl板12b内で放熱板11から0.2mm離れた位置におけるSi含有量を測定したところ、試料4Bのパワーモジュールでは1.5重量%、試料4Cのパワーモジュールでは3.0重量%、試料4Dのパワーモジュールでは0.02重量%、試料4Eのパワーモジュールでは4.0重量%であった。
【0044】
<実施例5>
次に、ロウ材にAl−Cu系のロウ材を用いた以外は上記実施例4と同様にしてパワーモジュールを作製した。絶縁回路基板12を、放熱板11に接合する際の荷重条件及び加熱条件を種々に変化させることにより、前記ロウ材に含まれるCuの絶縁回路基板12及び放熱板11への拡散の程度を変化させて、5種類のパワーモジュールを作製し、それぞれを試料5A〜5Eとした。これらのパワーモジュールについて、上記実施例4と同様にしてCu含有量を測定したところ、それぞれ0.02重量%、0.05重量%、1.0重量%、2.0重量%、3.0重量%であった。
【0045】
<実施例6>
次に、ロウ材にAl−Mg系のロウ材を用いた以外は上記実施例4と同様の構成のパワーモジュールを作製した。絶縁回路基板12を、放熱板11に接合する際の荷重条件及び加熱条件を種々に変化させることにより、前記ロウ材に含まれるMgの絶縁回路基板12及び放熱板11への拡散の程度を変化させて、5種類のパワーモジュールを作製し、これらを試料6A〜6E。これらのパワーモジュールについて、上記実施例4と同様にしてMg含有量を測定したところ、それぞれ0.03重量%、0.05重量%、1.0重量%、2.0重量%、3.0重量%であった。
【0046】
<実施例7>
次に、ロウ材にAl−Mn系のロウ材を用いた以外は上記実施例4と同様の構成のパワーモジュールを作製した。絶縁回路基板12を、放熱板11に接合する際の荷重条件及び加熱条件を種々に変化させることにより、前記ロウ材に含まれるMnの絶縁回路基板12及び放熱板11への拡散の程度を変化させて、5種類のパワーモジュールを作製し、これらを試料7A〜7Eとした。これらのパワーモジュールについて、上記実施例4と同様にしてMn含有量を測定したところ、それぞれ0.01重量%、0.05重量%、0.5重量%、1.0重量%、2.0重量%であった。
【0047】
<実施例8>
次に、ロウ材にAl−Ge系のロウ材を用いた以外は上記実施例4と同様の構成としてパワーモジュールを作製した。絶縁回路基板12を、放熱板11に接合する際の荷重条件及び加熱条件を種々に変化させることにより、前記ロウ材に含まれるGeの絶縁回路基板12及び放熱板11への拡散の程度を変化させて、5種類のパワーモジュールを作製し、これらを試料8A〜8Eとした。これらのパワーモジュールについて、上記実施例4と同様にしてGe含有量を測定したところ、それぞれ0.02重量%、0.05重量%、1.5重量%、3.0重量%、4.0重量%であった。
【0048】
<評価>
以上の実施例4〜8の各試料のパワーモジュールについて、上記実施例1〜3と同様に温度サイクル寿命の評価を行った。その結果を表2に示す。表2に示すように、ロウ材成分の測定点における含有量が、重量%で0.05≦%Si≦3.0%、0.05%≦Cu≦2.0%、0.05%≦Mg≦2.0%、0.05%≦Mn≦1.0%、0.05%≦Ge≦3.0%の範囲であるパワーモジュールは、いずれも良好な温度サイクル寿命を有することが確認された。これに対して、上記ロウ材成分の測定点における含有量が、上記範囲を越えるものは、いずれも上記範囲内のものよりも温度サイクル寿命が短くなった。これらのうち、含有量が少なすぎるものは、絶縁回路基板12と放熱板11との接合強度が不足したためであり、逆に含有量が多すぎるものは、絶縁回路基板12のAl板12bが硬化し、温度サイクルに伴う放熱板11の膨張収縮による応力を吸収しきれなかったためであると考えられる。
【0049】
【表2】
Figure 0004134537
【0050】
【発明の効果】
以上述べたように、本発明では、放熱板の一方の主面に1又は2以上の方形の絶縁回路基板が固着されたパワーモジュールにおいて、前記放熱板の厚さが3〜10mmのAl系合金板とされ、前記絶縁回路基板はその一辺が30mm以下であって、前記放熱板に直接ロウ付けされ、ロウ材の成分が前記絶縁回路基板及び/又は放熱板へ拡散された構成とされる。すなわち、絶縁回路基板の一辺を30mm以下に制限することで、放熱板と絶縁回路基板の熱収縮率の相違に基づく絶縁回路基板の縁における収縮量の相違を比較的小さく抑制する効果を得ることができる。また、比較的厚い3〜10mmの厚さの放熱板を使用することで、放熱板と絶縁回路基板を直接ロウ付けした場合に生じるパワーモジュールの著しい反りを抑制することができる効果が得られる。さらに、絶縁回路基板を放熱板に直接ロウ付けすることで、絶縁回路基板と放熱板の間の距離を従来のものに比較してより近づけられ、熱放散を高める効果を得ることができる。この結果、著しい反りを生じることなく、放熱特性を向上させることができる。
【0051】
また、前記ロウ材としてロウ材が、Al−Si,Al−Ge,Al−Cu,Al−Mg又はAl−Mn系ロウ材から選ばれる1または2以上のロウ材を用いるならば、これらのロウ材は、絶縁回路基板及び放熱板を構成する材料との親和性が高いため、接合が容易であるとともに十分な接合強度が得やすくなる。
【0052】
また、絶縁回路基板として両面にAl板が接合されたセラミック基板を用い、放熱板にロウ付けされる絶縁回路基板のAl板の純度を99.98重量%以上にすれば、そのAl板における温度サイクルに起因する応力を吸収する機能の低下を抑制して、パワーモジュールの熱サイクル寿命を長く維持することができる。一方、そのAl板を省いてセラミック基板の他方の面を放熱板に直接ロウ付けすれば、パワーモジュールに著しい反りを生じさせることなく熱抵抗を更に低減することができ、そのAl板が加工硬化を起こすことに起因する熱サイクル寿命を更に長く維持することができる。
【0053】
更に、このパワーモジュールをヒートシンクに接合すれば、絶縁回路基板に搭載した半導体チップ等が発した熱を速やかにヒートシンクから放散させることができ、パワーモジュールの放熱板がヒートシンクの蓋体を兼ねるように構成すれば、実際に熱を放散させる冷媒と、熱を発する半導体チップ等の距離を更に縮めることができ、半導体チップ等が発した熱をヒートシンクから効果的に放散させることができる。
【0054】
また本発明のパワーモジュールは、絶縁回路基板は、Si34、AlN又はAl23からなるセラミック基板と、前記セラミック基板の両面に接合された第1及び第2Al板とを備え、Al系合金板からなる放熱板に、前記絶縁回路基板の第1Al板が、Al−Si,Al−Ge,Al−Cu,Al−Mg又はAl−Mn系ロウ材から選ばれる1又は2以上のロウ材により直接ロウ付けされてなり、前記放熱板から第1Al板側に0.2mm離れた該第1Al板内の領域において、EPMAにより5点定量分析を行って測定された元素含有量の平均値は重量%で、前記ロウ材がAl−Si系の場合、0.05%≦Si≦3.0%、Al−Cu系の場合、0.05%≦Cu≦2.0%、Al−Mg系の場合、0.05%≦Mg≦2.0%、Al−Mn系の場合、0.05%≦Mn≦1.0%、Al−Ge系の場合、0.05%≦Ge≦3.0%の範囲であることとしたことで、十分な接合強度を備え、かつ、熱サイクルに伴う膨張収縮による応力によって絶縁回路基板と放熱板との接合面が剥離するのを効果的に防止することができる。
【0055】
さらに、上記のパワーモジュールにおいて、絶縁回路基板の一辺の長さを30mm以下とし、放熱板の厚さを3〜10mmとするならば、放熱板と絶縁回路基板の熱収縮率の相違に基づく絶縁回路基板の縁における収縮量の相違を小さく抑制することができ、かつ放熱板の著しい反りを抑えることができるので、加熱冷却に伴う収縮による剥離を防止し、熱サイクル寿命を長くすることができる。
【図面の簡単な説明】
【図1】 図1は、本発明の第1の実施の形態におけるパワーモジュールの構成を示す縦断面図である。
【図2】 図2は、放熱板がヒートシンクの蓋体を兼ねる本発明の別のパワーモジュールの構成を示す縦断面図である。
【図3】 図3は、本発明に係るパワーモジュールをEPMAにより5点定量分析する際の測定点を示す構成図である。
【図4】 図4は、従来のパワーモジュールの構成を示す縦断面図である。
【符号の説明】
10 パワーモジュール
11 放熱板
12 絶縁回路基板
12a セラミック基板
12b 第1Al板
12c 第2Al板
14,24 ヒートシンク
25a 冷媒流路
25 ヒートシンク本体
26 蓋体
A 放熱板の厚さ
B 絶縁回路基板の一辺の長さ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power module in which an insulating circuit board is fixed to one main surface of a heat sink.
[0002]
[Prior art]
  FIG. 4 (a)As shown in FIG. 1, this type of power module 1 is known in which an insulating circuit board 3 is fixed to one main surface of a heat radiating plate 2, and the insulating circuit board 3 is first and second on both sides of a ceramic substrate 3a. It is produced by joining the second Al plates 3b and 3c. The second Al plate 3c of the insulating circuit board 3 becomes a circuit having a predetermined pattern by etching, and a semiconductor chip 4 or the like indicated by a one-dot chain line is mounted thereon. The first Al plate 3b of the insulated circuit board 3 is joined to the upper surface of the heat sink 2 made of an Al-based alloy plate via a stress buffer layer 6 formed of an AlSiC composite material, and the heat sink 2 is illustrated if necessary. Not attached to the heat sink. In this conventional power module 1, heat generated by the semiconductor chip 4 is transmitted to the heat sink 2 via the second Al plate 3c, the ceramic substrate 3a, the first Al plate 3b, and the stress buffer layer 6, and the heat sink 2 or The heat is dissipated from a heat sink (not shown) to which the heat radiating plate 2 is attached.
  On the other hand, in order to dissipate the heat generated by the mounted semiconductor chip 4 or the like, the power module 1 is brought close to the distance between the heat generating semiconductor chip 4 or the like and the heat radiating plate 2 that actually dissipates heat, and the thermal resistance therebetween. Is preferably reduced as much as possible. From this point, without providing the stress buffer layer 6FIG. 4 (b)As shown in FIG. 3, it is conceivable to directly attach the insulating circuit board 3 to the heat sink 2.
[0003]
[Problems to be solved by the invention]
However, when the insulating circuit board 3 is directly fixed to the heat radiating plate 2, the temperature of the insulating circuit board 3 is repeatedly changed between a high temperature and a low temperature due to heat generation and non-heat generation of the semiconductor chip 4 or the like. There is a problem in that the portion to which the stress is applied causes work hardening due to the stress that the first Al plate 3b that constitutes repeatedly acts. When the first Al plate 3b undergoes work hardening, it becomes difficult to absorb the stress, and there is a problem in that the thermal cycle life of the power module 1 is shortened by causing peeling at the joint portion.
Also, if the heat sink 2 and the insulating circuit board 3 are fixed by brazing, it is generally necessary to braze at a relatively high temperature. Thus, there is a problem that the power module 1 is significantly warped.
[0004]
An object of the present invention is to provide a power module and a heat module with a heat sink in which an insulating circuit board is brazed directly to a heat radiating plate without causing significant warpage to improve heat radiation characteristics.
Another object of the present invention is to provide a power module having a long thermal cycle life and a power module with a heat sink without causing work hardening due to stress during thermal cycling even when directly brazed in this way. is there.
[0005]
[Means for Solving the Problems]
  As shown in FIG. 1, the present invention is an improvement of a power module in which one or more rectangular insulating circuit boards 12 are fixed to one main surface of a heat radiating plate 11.
  In the present invention, the heat sink 11 is an Al-based alloy plate having a thickness (A) of 3 to 10 mm, and the insulating circuit board 12 has a side (B) of 30 mm or less, and the insulating circuit board 12 Is Si3N4AlN or Al2O3A ceramic substrate 12a, and first and second Al plates 12b and 12c bonded to both surfaces of the ceramic substrate 12a,The purity of the first Al plate (12b) is 99.98% by weight or more and the thickness thereof is 0.25 to 0.6. mm And1 or 2 in which the first Al plate 12b of the insulated circuit board 12 is selected from Al—Si, Al—Ge, Al—Cu, Al—Mg, or Al—Mn brazing material to the heat sink 11 made of Al alloy plate. Elements that are directly brazed with the above brazing material and measured by EPMA in a region within the first Al plate 12b that is 0.2 mm away from the heat sink 11 toward the first Al plate 12b. The average value of the content is% by weight. When the brazing material is Al—Si, 0.05% ≦ Si ≦ 3.0%, and when it is Al—Cu, 0.05% ≦ Cu ≦ 2.0. 0.05% ≦ Mg ≦ 2.0% in the case of Al—Mg system, 0.05% ≦ Mn ≦ 1.0% in the case of Al—Mn system, 0.05% in the case of Al—Ge system % ≦ Ge ≦ 3.0%.
  That is, by limiting the side B of the insulating circuit board 12 to 30 mm or less, the difference in shrinkage at the edge of the insulating circuit board 12 based on the difference in thermal shrinkage between the heat sink 11 and the insulating circuit board 12 is suppressed to be relatively small. can do. Further, by using the heat sink 11 having a relatively thick thickness of 3 to 10 mm, it is possible to suppress a significant warp of the power module 10 that occurs when the heat sink 11 and the insulating circuit board 12 are directly brazed. Furthermore, by directly brazing the insulating circuit board 12 to the heat radiating plate 11, the distance between the insulating circuit board 12 and the heat radiating plate 11 can be made closer as compared with the conventional one having a thermal stress buffer layer. Therefore, the heat dissipation effect can be enhanced. In the present invention, the length of one side of the insulated circuit board 12 refers to the length of one side of the outer shape of the insulated circuit board 12.
[0006]
  Further, as shown in FIG. 1, the power module of the present invention is configured by directly brazing an insulating circuit board 12 to a heat sink 11, and the brazing material is made of Al—Si, Al—Ge, Al—Cu, One or two or more brazing materials selected from Al-Mg or Al-Mn are used. Thus, in the power module of the present invention in which the insulating circuit board 12 and the heat sink 11 are brazed, the components contained in the brazing material as the bonding material are introduced from the joint between the insulating circuit board 12 and the heat sink 11. Diffusion layers are formed in the junction between the Al plate 12b of the insulating circuit board 12 and the heat sink 11 by diffusing inside these.
[0007]
  By forming this diffusion layer, sufficient bonding strength can be obtained and the reliability of the power module can be improved, but at the same time, the constituent materials are cured in the diffusion layer. If the degree of curing is too large, the power module cannot absorb the stress due to the difference in shrinkage between the heat sink 11 and the insulating circuit board 12 when the heating module is repeatedly heated and cooled (thermal cycle). May cause peeling. On the other hand, when the diffusion of the brazing material to the insulating circuit board 12 and the heat sink 11 is insufficient, the bonding strength between the insulating circuit board 12 and the heat sink 11 itself becomes small. Peeling is likely to occur. Therefore, in the present invention, a power module having a long thermal cycle life is realized in which the degree of diffusion of the brazing material component is defined to increase the bonding strength and prevent peeling due to shrinkage accompanying heating and cooling.
[0008]
  In the present invention, the degree of diffusion is determined by 5-point quantitative analysis (details will be described later) using an EPMA (Electron Probe Microanalyzer) in the region within the Al plate 12b of the insulating circuit board 12 0.2 mm inside the heat radiating plate 11. It was decided to measure. Then, the present inventor has sufficient bonding strength and the expansion and contraction associated with the thermal cycle if the average value of the content of the brazing material component detected at these measurement points is within the following content range. The present invention has been devised by knowing that it is possible to effectively prevent the joint surface between the insulating circuit board 12 and the heat radiating plate 11 from being peeled off by the stress caused by the above. That is, in the power module of the present invention, when the content of Si, Cu, Mg, Mn, Ge measured at the measurement points is 0.05 wt% ≦ Si ≦ 3. 0% by weight, 0.05% by weight ≦ Cu ≦ 2.0% for Al—Cu system, 0.05% by weight ≦ Mg ≦ 2.0% for Al—Mg system, Al—Mn system Is 0.05 wt% ≦ Mn ≦ 1.0%, and in the case of Al—Ge system, 0.05 wt% ≦ Ge ≦ 3.0%. The content of these components is an average value of the values measured by EPMA at the measurement point. Whether the brazing material component is diffused or whether it is included in the Al plate 12b of the insulating circuit board 12 from the beginning. It doesn't matter. That is, the range of the content defines the range of the sum of the component originally contained in the Al plate 12b and the component in which the brazing material is diffused. In addition, the inventor has verified that the range of the content of these brazing material components is appropriate in the examples described later, and specific methods and results thereof will be described in detail in the examples.
[0009]
  Here, the 5-point quantitative analysis by EPMA in the present invention will be described below with reference to FIG. In the present invention, the 5-point quantitative analysis by EPMA is the inside of an Al plate 12b joined to the heat sink 11 via a brazing material (not shown) as shown in FIG. Si, Cu, Mg, Mn, or Ge measured by EPMA at five arbitrary points (P1 to P5) in the Al plate 12b that is 0.2 mm away from the surface. The average value of the content of is derived. In this way, it can be easily confirmed that the content in the Al plate 12b is appropriate, but the bonding surface between the Al plate 12b and the heat sink 11 is the same as that of the heat sink 11 in FIG. Of the main surface 111, only the surface 111A to which the insulated circuit board 12 is bonded is referred to. When this bonded surface is unclear, the surface parallel to the surface 111A and 0.2 mm away from it is specified. May be based on the surface 111B of the main surface 111 other than the surface 111A. In addition, as the measurement points P1 to P5, any five points can be selected within a plane that is 0.2 mm away from the bonding surface. The interval is preferably 0.5 mm or more.
[0010]
  Further, the purity of the first Al plate 12b is 99.98% by weight or more.SoRelatively hard to cause work hardening. In the power module of the present invention in which such an Al plate 12b is brazed directly to the heat radiating plate 11, even if the temperature of the insulating circuit board 12 is repeatedly changed between high and low temperatures, the stress absorbing action of the Al plate 12b is achieved. It does not decrease, and the thermal cycle life of the power module 10 can be made relatively long.
[0011]
Next, as shown in FIG. 1, the present invention is characterized in that the other main surface of the heat radiating plate 11 of the power module 10 described above is joined to a water-cooled or air-cooled heat sink 14 made of an Al-based alloy. A power module with a heat sink is provided. The power module 10 of the present invention described above quickly conducts heat generated by the mounted semiconductor chip 16 to the heat sink 11. In this configuration in which the power module 10 is joined to the heat sink 14, the heat can be quickly dissipated from the heat sink 14.
[0012]
  Next, the power module with heat sink of the present invention isFIG.As shown in FIG. 4, the heat sink 24 includes a heat sink body 25 in which the coolant channel 25a is formed, and a lid body 26 joined to the heat sink body 25 so as to cover and seal the coolant channel 25a. The heat dissipation plate 11 of the power module described above can also serve as the lid body 26.
  In the power module with a heat sink of this configuration, the distance between the refrigerant that actually dissipates heat and the semiconductor chip 16 that generates heat is further reduced by the heat sink also serving as the lid 26, and the semiconductor chip 16 is generated. Heat can be effectively dissipated from the heat sink 24.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next, a first embodiment of the present invention will be described.
As shown in FIG. 1, the power module 10 of the present invention is obtained by fixing one or more rectangular insulated circuit boards 12 to one main surface of a heat sink 11. The heat radiating plate 11 is a plate material made of an Al-based alloy plate and has a thickness A of 3 to 10 mm. The insulated circuit board 12 is made of SiThreeNFourAlN or Al2OThreeAnd a ceramic substrate 12a having a thickness of 0.3 to 1.5 mm, and first and second Al plates 12b and 12c bonded to both surfaces of the ceramic substrate 12a. For the first and second Al plates 12b and 12c, it is preferable to use those having a purity of 99.98% by weight or more and a thickness of 0.25 to 0.6 mm. The ceramic substrate 12a and the first and second Al plates 12b and 12c are used in a rectangular shape such that one side B is 30 mm or less in a state where the ceramic substrate 12a and the insulating circuit substrate 12 are stacked.
[0022]
The laminated adhesion of the first and second Al plates 12b and 12c to both surfaces of the ceramic substrate 12a is performed through a brazing material. Specifically, an Al—Si brazing material (not shown), a ceramic substrate 12a, an Al—Si brazing material (not shown), and a second Al plate 12c are stacked in this order on the first Al plate 12b. In this state, a load of 50 to 500 kPa is applied to these and heated to 580 to 650 ° C. in a vacuum. By thus laminating and bonding, an insulating circuit board 12 having a side B of 30 mm or less is obtained, and then the second Al plate 12c on the upper surface becomes a circuit having a predetermined pattern by etching. The Al—Si brazing material is made of an alloy of 95 to 80% by weight of Al and 5 to 20% by weight of Si, and has a melting point of 575 ° C.
[0023]
The insulating circuit board 12 having a side B of 30 mm or less is directly brazed to the heat radiating plate 11 with a brazing material, and examples of the brazing material include Al—Si, Al—Cu, Al—Mg, Al—Mn, and Al—Ge. It is preferable to use one or two or more brazing materials selected from system brazing materials. The insulating circuit board 12 is brazed to the heat radiating plate 11 with the brazing material (not shown) and the insulating circuit board 12 overlapped on the heat radiating plate 11 in this order, and a load of 50 to 500 kPa is applied thereto. In addition, heating is performed at 580 to 650 ° C. in a vacuum to melt the brazing material, and then cooling to solidify the brazing material. In this case, the brazing material having a melting point of about 575 ° C. is used, and the heat radiating plate 11 and the insulated circuit board are not melted without melting the brazing material obtained by laminating and bonding the ceramic substrate 12a and the first and second Al plates 12b and 12c. The first Al plate 12b that constitutes 12 is joined. The power module 10 thus configured has a heat sink by inserting a male screw 13 into a mounting hole 11a formed at a corner of the heat sink 11 and screwing into a female screw 14a formed on a water-cooled heat sink 14. The other main surface of 11 is joined to a water-cooled heat sink 14 made of an Al alloy.
[0024]
Further, in the power module of the present embodiment, the component contained in the brazing material is diffused to the insulating circuit board 12 and the heat sink 11 by the joining of the insulating circuit board 12 and the heat sink 11. By adjusting the load condition and the heating condition, it can be adjusted so as to achieve an optimum diffusion level, and can be easily confirmed by performing the following measurement. That is, the average value of the content measured by 5-point quantitative analysis by EPMA at a position 0.2 mm away from the heat sink 11 in the region within the Al plate 12b of the insulated circuit board 12 is the brazing material is Al-Si type. 0.05 wt% ≦ Si ≦ 3.0 wt%, Al—Cu type 0.05 wt% ≦ Cu ≦ 2.0 wt%, Al—Mg type 0.05 wt% ≦ Mg ≦ 2.0 wt%, 0.05 wt% ≦ Mn ≦ 1.0 wt% for Al—Mn type, 0.05 wt% ≦ Ge ≦ 3.0 wt% for Al—Ge type If it is the range, it can be said that both are joined appropriately.
[0025]
In the power module 10 configured as described above, the insulating circuit board 12 on which the semiconductor chip 16 is actually mounted is directly brazed to the heat radiating plate 11, so that the distance between them radiates the heat generated by the semiconductor chip 16. It can be quickly conducted to the plate 11 and quickly dissipated from the water-cooled heat sink 14.
Further, the heat radiation plate 11 and the insulating circuit board 12 are fixed by brazing, but the power module 10 of the present invention has a relatively thick heat dissipation of 3 to 10 mm, which is a thickness that is relatively difficult to warp. Since the board 11 is used and one side B of the insulated circuit board 12 is limited to 30 mm or less, the edge of the insulated circuit board 12 based on the difference in thermal shrinkage between the heat sink 11 and the insulated circuit board 12 during brazing is used. The difference in the amount of shrinkage can be suppressed relatively small. As a result, the power module 10 is not significantly warped, the difference in shrinkage at the edge of the insulating circuit board 12 that occurs during the thermal cycle can be suppressed to a relatively small value, and the thermal cycle life of the power module 10 is relatively long. Can be maintained.
[0026]
Furthermore, in the power module 1 of the present embodiment, the purity of 99.98% by weight or more that hardly causes work hardening to the Al plate 12b constituting the insulated circuit board 12 and that is actually brazed to the heat radiating plate 11. Since the Al plate 12b is used, even if the temperature of the insulating circuit board 12 is repeatedly changed between high and low temperatures due to heat generation and non-heat generation of the semiconductor chip 16 or the like, the work hardening is caused by the thermal stress that the Al plate 12b repeatedly acts on. The thermal cycle of the power module 10 is suppressed by suppressing the lowering of the function of absorbing the stress caused by the temperature cycle and the lowering of the function of absorbing the stress caused by the thermal cycle of the power module 10. Longer life can be maintained.
[0027]
In the above-described embodiment, the insulating circuit board 12 is formed by brazing the first and second Al plates 12b and 12c on both surfaces of the ceramic substrate 12a and bonding them together. Although the brazing for joining 12 to the heat sink 11 is performed in a separate process, they may be joined simultaneously by a single brazing process.
[0032]
  As mentioned aboveFirstIn the embodiment, the power module with heat sink 10 in which the other main surface of the heat radiating plate 11 of the power module 10 is joined to the water-cooled heat sink 14 is shown, but the heat sink may be an air-cooled type. here,FIG.If the heat sink 24 includes a heat sink body 25 in which a coolant channel 25a is formed and a lid 26 joined to the heat sink body 25 so as to cover and seal the coolant channel 25a, as shown in FIG. For example, the heat radiating plate may also serve as the lid body 26. A lid body 26 in the figure shows what is brazed to the heat sink body 25. If the heat radiating plate also serves as the lid body 26 in this way, water 27 that is a refrigerant that actually dissipates heat, a semiconductor chip that emits heat, and the like By further reducing the distance to 16, the heat generated by the semiconductor chip 16 can be dissipated more quickly from the heat sink 24.
[0033]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
As shown in FIG. 1, on both sides of a ceramic substrate 12a having a length, width and thickness of 15 mm, 15 mm and 0.635 mm, respectively, an Al plate having the same length and width as the ceramic substrate 12a and a thickness of 0.4 mm. An insulating circuit board 12 in which 12b and 12c are laminated and a heat radiating plate 11 made of an Al-based alloy plate having length, width and thickness of 100 mm, 100 mm and 3 mm, respectively, were prepared. Here, the insulating circuit board 12 is made of Si.ThreeNFourThe first and second Al plates 12b and 12c having a purity of 99.98% by weight or more were bonded to both surfaces of the ceramic substrate 12a made of the above.
This insulating circuit board 12 was laminated on the heat radiating plate 11, a load of 150 kPa was applied, and the resultant was heated to 620 ° C. in a vacuum. After cooling for 20 minutes, the power module 10 in which the insulating circuit board 12 was directly brazed to the heat sink 11 with an Al—Si brazing material was obtained. The power module thus obtained was used as a sample of Example 1.
[0034]
<Example 2>
The length, width, and thickness of the power module of Example 1 are 20 mm, 20 mm, and 0.635 mm, respectively, on both sides of the ceramic substrate 12a. An insulating circuit board 12 in which 4 mm Al plates 12b and 12c were laminated and a heat radiating plate 11 made of Al-based alloy plates having lengths, widths and thicknesses of 100 mm, 100 mm and 6 mm were prepared.
The insulated circuit board 12 was directly brazed to the heat sink 11 with an Al—Si brazing material under the same conditions as in Example 1 to obtain a power module 10. The power module thus obtained was used as a sample of Example 2.
<Example 3>
The vertical, horizontal and vertical sides of the ceramic substrate 12a made of the same material as the power module of the first embodiment and having the vertical, horizontal, and thickness of 30 mm, 30 mm, and 0.635 mm, respectively, are the same as the ceramic substrate 12a, and the thickness is 0. An insulating circuit board 12 in which 4 mm Al plates 12b and 12c were laminated and a heat radiating plate 11 made of Al-based alloy plates having lengths, widths and thicknesses of 100 mm, 100 mm and 8 mm were prepared.
The insulated circuit board 12 was directly brazed to the heat sink 11 with an Al—Si brazing material under the same conditions as in Example 1 to obtain a power module 10. The power module thus obtained was used as a sample of Example 3.
[0035]
<Comparative Example 1>
The vertical, horizontal and vertical sides of the ceramic substrate 12a made of the same material as the power module of the first embodiment and having the vertical, horizontal, and thickness of 30 mm, 30 mm, and 0.635 mm, respectively, are the same as the ceramic substrate 12a, and the thickness is 0. An insulating circuit board 12 in which 4 mm Al plates 12b and 12c were laminated and a heat radiating plate 11 made of Al-based alloy plates of 100 mm, 100 mm and 15 mm in length, width and thickness were prepared.
The insulated circuit board 12 was directly brazed to the heat sink 11 with an Al—Si brazing material under the same conditions as in Example 1 to obtain a power module 10. The power module thus obtained was used as a sample of Comparative Example 1.
[0036]
<Comparative example 2>
The vertical, horizontal, and thickness are 50 mm, 50 mm, and 0.635 mm, respectively, made of the same material as the power module of the first embodiment. An insulating circuit board 12 in which 4 mm Al plates 12b and 12c were laminated, and a heat radiating plate 11 made of Al-based alloy plates of 100 mm, 100 mm and 5 mm in length, width and thickness were prepared.
The insulated circuit board 12 was directly brazed to the heat sink 11 under the same conditions as in Example 1 to obtain a power module 10. The power module thus obtained was used as a sample of Comparative Example 2.
[0037]
<Comparative Example 3>
The vertical, horizontal, and thickness of the power module of Example 1 are 40 mm, 40 mm, and 0.635 mm, respectively. The vertical and horizontal are the same as the ceramic substrate 12 a and the thickness is 0. An insulating circuit board 12 in which 4 mm Al plates 12b and 12c were laminated and a heat radiating plate 11 made of Al-based alloy plates having length, width and thickness of 100 mm, 100 mm and 2 mm were prepared.
The insulated circuit board 12 was directly brazed to the heat sink 11 under the same conditions as in Example 1 to obtain a power module 10. The power module thus obtained was used as a sample of Comparative Example 3.
Table 1 shows the configurations of the power modules of Examples 1 to 3 and Comparative Examples 1 to 3 described above.
[0038]
<Comparison test and evaluation>
Each power module of Examples 1 to 3 and Comparative Examples 1 to 3 is added with a temperature cycle in which a cycle of −40 ° C. 30 minutes to room temperature 30 minutes to 125 ° C. 30 minutes to room temperature 30 minutes is applied in a thermal shock tester. did. When the temperature cycle was added 100 times, the presence or absence of peeling between the insulating circuit board 12 and the heat radiating plate 11 was observed. If no peeling was confirmed, the temperature cycle was further added 100 times. The number of temperature cycles until peeling was confirmed by repeating this was measured as the temperature cycle life. In addition, the presence or absence of peeling was performed by confirming with a magnifier. The results are also shown in Table 1.
[0039]
[Table 1]
Figure 0004134537
[0040]
As is clear from Table 1, in Examples 1 to 3, in which the thickness of the heat sink is 3 to 10 mm and the side B of the insulating circuit board is 30 mm or less, the temperature cycle life is all relatively 3000 times or more. A high number was shown. This is considered to be due to the fact that the difference in shrinkage at the edge of the insulating circuit board 12 that occurs during the thermal cycle can be suppressed to a relatively small value because the side B of the insulating circuit board 12 is limited to 30 mm or less.
On the other hand, in the power modules of Comparative Examples 1 to 3 that deviate from the above requirements, the power module of Comparative Example 3 having the largest insulating circuit board has the highest 2000 times in the power module of Comparative Example 1 having the smallest insulating circuit board. Then it was only 100 times. This is considered to be due to the fact that the difference in shrinkage at the edge of the insulating circuit board 12 that occurs during the thermal cycle is relatively large because the insulating circuit board 12 is large. Moreover, in the power module of the comparative example 1 which uses the same insulated circuit board as the insulated circuit board of the power module of Example 3, since the thickness of the heat sink is large, the shrinkage amount at the edge of the insulated circuit board is small. The difference is mainly absorbed by the insulating circuit board, and as a result, the temperature cycle life is considered to be deteriorated.
[0041]
<Example 4>
Next, the length, width, and thickness of the same material as those of the power module of Example 1 are 15 mm, 15 mm, and 0.635 mm on both sides of the ceramic substrate 12 a, and the length and width are the same as the ceramic substrate 12 a. Prepared an insulating circuit board 12 in which Al plates 12b and 12c having a thickness of 0.4 mm were laminated, and a heat radiating plate 11 made of Al-based alloy plates of 100 mm, 100 mm and 3 mm in length, width and thickness, respectively.
This insulating circuit board 12 was laminated on the heat sink 11 via an Al—Si brazing material, a load was applied, and the insulating circuit board 12 was heated and bonded in vacuum. The degree of diffusion of Si contained in the brazing material into the insulating circuit board 12 and the heat radiating plate 11 was adjusted by appropriately adjusting the load conditions and heating conditions at this time. By cooling after 20 minutes, a power module in which the insulating circuit board 12 was directly brazed to the heat sink 11 was obtained. The power module thus obtained was designated as Sample 4A. About this power module, when the Si content at a position 0.2 mm away from the heat sink 11 in the region within the Al plate 12b of the insulated circuit board 12 was measured by the above-mentioned 5-point quantitative analysis by EPMA, the Si content was 0.05% by weight. The measurement apparatus and measurement conditions used for this EPMA measurement are shown below.
[0042]
Figure 0004134537
[0043]
Next, the length, width, and thickness of the same material as that of the power module of the sample 4A are 15 mm, 15 mm, and 0.635 mm on both sides of the ceramic substrate 12a. Prepared an insulating circuit board 12 in which Al plates 12b and 12c having a thickness of 0.4 mm were laminated, and a heat radiating plate 11 made of Al-based alloy plates of 100 mm, 100 mm and 3 mm in length, width and thickness, respectively.
This insulating circuit board 12 was laminated on the heat sink 11 via an Al—Si brazing material, a load was applied, and the insulating circuit board 12 was heated and bonded in vacuum. By changing the load conditions and heating conditions at this time, the degree of diffusion of Si contained in the brazing material into the insulating circuit board 12 and the heat sink 11 is adjusted, and the two are joined together. Produced. Then, by cooling after 20 minutes, a power module in which the insulating circuit board 12 was directly brazed to the heat sink 11 was obtained. The power modules thus obtained were designated as Samples 4B to 4E, respectively. About these power modules, when the Si content at a position 0.2 mm away from the heat sink 11 in the Al plate 12b of the insulating circuit board 12 was measured by the above-mentioned 5-point quantitative analysis by EPMA, the power module of the sample 4B was measured. Was 1.5% by weight, 3.0% by weight for the power module of sample 4C, 0.02% by weight for the power module of sample 4D, and 4.0% by weight for the power module of sample 4E.
[0044]
<Example 5>
Next, a power module was fabricated in the same manner as in Example 4 except that an Al—Cu brazing material was used as the brazing material. The degree of diffusion of Cu contained in the brazing material into the insulating circuit board 12 and the heat sink 11 is changed by variously changing the load condition and heating condition when the insulating circuit board 12 is joined to the heat sink 11. Thus, five types of power modules were produced, and samples were designated as samples 5A to 5E. For these power modules, the Cu content was measured in the same manner as in Example 4, and the results were 0.02 wt%, 0.05 wt%, 1.0 wt%, 2.0 wt%, and 3.0 wt%, respectively. % By weight.
[0045]
<Example 6>
Next, a power module having the same configuration as that of Example 4 was produced except that an Al—Mg brazing material was used as the brazing material. By varying the load conditions and heating conditions when joining the insulated circuit board 12 to the heat sink 11, the degree of diffusion of Mg contained in the brazing material into the insulated circuit board 12 and the heat sink 11 is changed. 5 types of power modules were produced, and these were samples 6A to 6E. For these power modules, the Mg content was measured in the same manner as in Example 4, and the results were 0.03% by weight, 0.05% by weight, 1.0% by weight, 2.0% by weight, and 3.0%, respectively. % By weight.
[0046]
<Example 7>
Next, a power module having the same configuration as that of Example 4 was prepared except that an Al—Mn brazing material was used as the brazing material. The degree of diffusion of Mn contained in the brazing material into the insulated circuit board 12 and the heat sink 11 is changed by variously changing the load condition and the heating condition when the insulated circuit board 12 is joined to the heat sink 11. Thus, five types of power modules were produced, and these were designated as samples 7A to 7E. For these power modules, the Mn content was measured in the same manner as in Example 4, and the results were 0.01 wt%, 0.05 wt%, 0.5 wt%, 1.0 wt%, and 2.0 wt%, respectively. % By weight.
[0047]
<Example 8>
Next, a power module was fabricated with the same configuration as in Example 4 except that an Al—Ge brazing material was used as the brazing material. The degree of diffusion of Ge contained in the brazing material into the insulating circuit board 12 and the heat sink 11 is changed by variously changing the load condition and heating condition when the insulating circuit board 12 is joined to the heat sink 11. Thus, five types of power modules were produced, and these were used as samples 8A to 8E. For these power modules, the Ge content was measured in the same manner as in Example 4, and the results were 0.02 wt%, 0.05 wt%, 1.5 wt%, 3.0 wt%, and 4.0 wt%, respectively. % By weight.
[0048]
<Evaluation>
About the power module of each sample of the above Examples 4-8, evaluation of the temperature cycle life was performed similarly to the said Examples 1-3. The results are shown in Table 2. As shown in Table 2, the content of the brazing material component at the measurement point is 0.05 ≦% Si ≦ 3.0%, 0.05% ≦ Cu ≦ 2.0%, 0.05% ≦% by weight. Confirmed that all power modules with Mg ≦ 2.0%, 0.05% ≦ Mn ≦ 1.0%, 0.05% ≦ Ge ≦ 3.0% have good temperature cycle life. It was done. On the other hand, when the content of the brazing material component at the measurement point exceeded the above range, the temperature cycle life was shorter than that within the above range. Among these, the one with too little content is because the bonding strength between the insulating circuit board 12 and the heat radiating plate 11 is insufficient, and conversely, the one with too much content hardens the Al plate 12b of the insulating circuit board 12. However, it is considered that the stress due to the expansion and contraction of the heat sink 11 accompanying the temperature cycle could not be absorbed.
[0049]
[Table 2]
Figure 0004134537
[0050]
【The invention's effect】
As described above, in the present invention, in a power module in which one or more rectangular insulated circuit boards are fixed to one main surface of a heat sink, the heat sink has an Al-based alloy having a thickness of 3 to 10 mm. The insulating circuit board has a side of 30 mm or less, and is brazed directly to the heat radiating plate, and the brazing material component is diffused to the insulating circuit board and / or the heat radiating plate. That is, by limiting one side of the insulating circuit board to 30 mm or less, an effect of suppressing the difference in contraction amount at the edge of the insulating circuit board based on the difference in thermal contraction rate between the heat sink and the insulating circuit board to be relatively small can be obtained. Can do. Moreover, the effect which can suppress the remarkable curvature of a power module produced when brazing a heat sink and an insulated circuit board directly is obtained by using a comparatively thick heat sink with a thickness of 3-10 mm. Further, by directly brazing the insulating circuit board to the heat sink, the distance between the insulating circuit board and the heat sink can be made closer than that of the conventional one, and the effect of increasing heat dissipation can be obtained. As a result, the heat dissipation characteristics can be improved without causing significant warpage.
[0051]
Further, if one or more brazing materials selected from Al—Si, Al—Ge, Al—Cu, Al—Mg, and Al—Mn brazing materials are used as the brazing material, these brazing materials are used. Since the material has a high affinity with the material constituting the insulating circuit board and the heat sink, it is easy to join and a sufficient joining strength can be easily obtained.
[0052]
Further, if a ceramic substrate having an Al plate bonded on both sides is used as an insulating circuit substrate and the purity of the Al plate of the insulating circuit substrate brazed to the heat sink is 99.98% by weight or more, the temperature of the Al plate is increased. It is possible to suppress a decrease in the function of absorbing the stress caused by the cycle and to maintain a long thermal cycle life of the power module. On the other hand, if the Al plate is omitted and the other side of the ceramic substrate is brazed directly to the heat sink, the thermal resistance can be further reduced without causing significant warpage of the power module, and the Al plate is work hardened. The thermal cycle life resulting from the occurrence of the
[0053]
Furthermore, if this power module is joined to a heat sink, the heat generated by the semiconductor chip or the like mounted on the insulated circuit board can be quickly dissipated from the heat sink, and the heat radiation plate of the power module also serves as the lid of the heat sink. If comprised, the distance of the refrigerant | coolant which actually dissipates heat, and the semiconductor chip etc. which generate | occur | produce heat can further be shortened, and the heat which the semiconductor chip etc. emitted can be effectively dissipated from a heat sink.
[0054]
In the power module of the present invention, the insulated circuit board is made of Si.ThreeNFourAlN or Al2OThreeA ceramic substrate, and first and second Al plates joined to both surfaces of the ceramic substrate, and the first Al plate of the insulating circuit substrate is formed of Al-Si, Al on a heat sink made of an Al-based alloy plate. It is directly brazed with one or two or more brazing materials selected from -Ge, Al-Cu, Al-Mg or Al-Mn brazing materials, and is 0.2 mm away from the heat sink to the first Al plate side In the region within the first Al plate, the average value of the element content measured by conducting a five-point quantitative analysis with EPMA is wt%, and when the brazing material is Al—Si, 0.05% ≦ Si ≦ 3 0.05% ≦ Cu ≦ 2.0% for Al—Cu system, 0.05% ≦ M ≦ 2.0% for Al—Mg system, 0 for Al—Mn system 0.05% ≦ Mn ≦ 1.0%, in the case of Al—Ge system, 0.05% ≦ e ≦ 3.0% of the range provides sufficient bonding strength and is effective in peeling the bonding surface between the insulating circuit board and the heat sink due to the stress caused by expansion and contraction associated with the thermal cycle. Can be prevented.
[0055]
Furthermore, in the above power module, if the length of one side of the insulated circuit board is 30 mm or less and the thickness of the heat sink is 3 to 10 mm, the insulation based on the difference in heat shrinkage between the heat sink and the insulated circuit board. The difference in shrinkage at the edge of the circuit board can be suppressed to a small extent, and the significant warpage of the heat sink can be suppressed, so that peeling due to shrinkage accompanying heating and cooling can be prevented and the thermal cycle life can be extended. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a configuration of a power module according to a first embodiment of the present invention.
FIG. 2 showsIt is a longitudinal cross-sectional view which shows the structure of another power module of this invention in which a heat sink also serves as the cover body of a heat sink.
FIG. 3 showsIt is a block diagram which shows the measurement point at the time of performing 5-point quantitative analysis of the power module which concerns on this invention by EPMA.
FIG. 4 showsFIG. 5 is a longitudinal sectional view showing a configuration of a conventional power module.
[Explanation of symbols]
10  Power module
11 Heat sink
12 Insulated circuit board
12a Ceramic substrate
12b 1st Al plate
12c 2nd Al plate
14,24 heat sink
25a Refrigerant flow path
25 Heat sink body
26 Lid
A Heat sink thickness
B Length of one side of the insulated circuit board

Claims (3)

放熱板(11)の一方の主面に1又は2以上の方形の絶縁回路基板(12)が固着されたパワーモジュールにおいて、
前記放熱板(11)は、その厚さ(A)が3〜10mmのAl系合金板であって、前記絶縁回路基板(12)は、その一辺(B)が30mm以下であって、
前記絶縁回路基板(12)は、Si、AlN又はAlからなるセラミック基板(12a)と、前記セラミック基板(12a)の両面に接合された第1及び第2Al板(12b,12c)とを備え、
前記第1Al板(12b)の純度が99.98重量%以上であるとともに、その厚さが0.25〜0.6 mm とされており、
Al系合金板からなる放熱板(11)に、前記絶縁回路基板(12)の第1Al板(12b)が、Al−Si,Al−Ge,Al−Cu,Al−Mg又はAl−Mn系ロウ材から選ばれる1又は2以上のロウ材により直接ロウ付けされてなり、
前記放熱板(11)から第1Al板(12b)側に0.2mm離れた該第1Al板(12b)内の領域において、EPMAにより5点定量分析を行って測定された元素含有量の平均値は重量%で、
前記ロウ材がAl−Si系の場合、0.05%≦Si≦3.0%、
Al−Cu系の場合、0.05%≦Cu≦2.0%、
Al−Mg系の場合、0.05%≦Mg≦2.0%、
Al−Mn系の場合、0.05%≦Mn≦1.0%、
Al−Ge系の場合、0.05%≦Ge≦3.0%の範囲であることを特徴とするパワーモジュール。
In the power module in which one or more rectangular insulated circuit boards (12) are fixed to one main surface of the heat sink (11),
The heat radiating plate (11) is an Al-based alloy plate having a thickness (A) of 3 to 10 mm, and the insulating circuit board (12) has a side (B) of 30 mm or less,
The insulating circuit substrate (12) includes a ceramic substrate (12a) made of Si 3 N 4 , AlN or Al 2 O 3 and first and second Al plates (12b, 12b) bonded to both surfaces of the ceramic substrate (12a). 12c),
The purity of the first Al plate (12b) is 99.98% by weight or more, and its thickness is 0.25 to 0.6 mm ,
The first Al plate (12b) of the insulated circuit board (12) is placed on an Al-Si, Al-Ge, Al-Cu, Al-Mg or Al-Mn brazing material on the heat sink (11) made of an Al-based alloy plate. It is directly brazed with one or more brazing materials selected from the materials,
Average value of element content measured by conducting 5-point quantitative analysis with EPMA in a region in the first Al plate (12b) 0.2 mm away from the heat radiating plate (11) to the first Al plate (12b) side Is weight percent,
When the brazing material is Al-Si, 0.05% ≦ Si ≦ 3.0%,
In the case of Al-Cu system, 0.05% ≦ Cu ≦ 2.0%,
In the case of Al—Mg system, 0.05% ≦ Mg ≦ 2.0%,
In the case of Al-Mn system, 0.05% ≦ Mn ≦ 1.0%,
In the case of an Al—Ge system, the power module is in a range of 0.05% ≦ Ge ≦ 3.0%.
請求項1記載のパワーモジュール(10)の放熱板(11)の他方の主面をAl系合金からなる水冷又は空冷式のヒートシンク(14,24)に接合したことを特徴とするヒートシンク付パワーモジュール。A power module with a heat sink, characterized in that the other main surface of the radiator plate (11) of the power module (10) according to claim 1 is joined to a water-cooled or air-cooled heat sink (14, 24) made of an Al-based alloy. . ヒートシンク(24)は、その冷媒流路(25a)が形成されたヒートシンク本体(25)と、前記冷媒流路(25a)を覆って密封するように前記ヒートシンク本体(25)に接合された蓋体(26)とを備え、
前記パワーモジュールの放熱板が、前記蓋体(26)を兼ねるように構成されたことを特徴とする請求項2記載のヒートシンク付パワーモジュール。
The heat sink (24) includes a heat sink body (25) in which the refrigerant flow path (25a) is formed, and a lid joined to the heat sink body (25) so as to cover and seal the refrigerant flow path (25a). (26)
The power module with a heat sink according to claim 2 , wherein a heat radiating plate of the power module is configured to serve also as the lid (26).
JP2001242349A 2000-08-09 2001-08-09 Power module and power module with heat sink Expired - Lifetime JP4134537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001242349A JP4134537B2 (en) 2000-08-09 2001-08-09 Power module and power module with heat sink

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000-240580 2000-08-09
JP2000240580 2000-08-09
JP2001-194034 2001-06-27
JP2001194034 2001-06-27
JP2001242349A JP4134537B2 (en) 2000-08-09 2001-08-09 Power module and power module with heat sink

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007293453A Division JP2008053759A (en) 2000-08-09 2007-11-12 Power module and power module with heat sink

Publications (2)

Publication Number Publication Date
JP2003086744A JP2003086744A (en) 2003-03-20
JP4134537B2 true JP4134537B2 (en) 2008-08-20

Family

ID=27344296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242349A Expired - Lifetime JP4134537B2 (en) 2000-08-09 2001-08-09 Power module and power module with heat sink

Country Status (1)

Country Link
JP (1) JP4134537B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482685B2 (en) * 2003-09-25 2009-01-27 Kabushiki Kaisha Toshiba Ceramic circuit board, method for making the same, and power module
WO2005124018A1 (en) * 2004-06-10 2005-12-29 Abb Ltd. Method and apparatus for water-cooling power modules in an induction calendering control actuator system
JP4881583B2 (en) * 2005-06-27 2012-02-22 株式会社豊田自動織機 Power module heat sink
JP2007067228A (en) * 2005-08-31 2007-03-15 Toyota Industries Corp Circuit board
JP5007296B2 (en) 2006-03-13 2012-08-22 株式会社豊田自動織機 Power module base
JP2007305962A (en) * 2006-05-12 2007-11-22 Honda Motor Co Ltd Power semiconductor module
JP4697475B2 (en) 2007-05-21 2011-06-08 トヨタ自動車株式会社 Power module cooler and power module
JP5194557B2 (en) * 2007-05-23 2013-05-08 三菱マテリアル株式会社 Liquid-cooled cooler for power element mounting and manufacturing method thereof
JP5217246B2 (en) * 2007-05-24 2013-06-19 三菱マテリアル株式会社 Method for manufacturing power module unit
US8237260B2 (en) * 2008-11-26 2012-08-07 Infineon Technologies Ag Power semiconductor module with segmented base plate
JP5316167B2 (en) * 2009-03-31 2013-10-16 三菱マテリアル株式会社 Power module substrate, power module substrate manufacturing method, and power module
KR101690820B1 (en) * 2009-09-09 2016-12-28 미쓰비시 마테리알 가부시키가이샤 Method for producing substrate for power module with heat sink, substrate for power module with heat sink, and power module
JP5640571B2 (en) 2009-09-09 2014-12-17 三菱マテリアル株式会社 Power module substrate manufacturing method
JP5640569B2 (en) * 2009-09-09 2014-12-17 三菱マテリアル株式会社 Power module substrate manufacturing method
JP2011119652A (en) * 2009-09-09 2011-06-16 Mitsubishi Materials Corp Method for producing substrate for power module with heat sink, substrate for power module with heat sink, and power module
JP5640570B2 (en) 2009-09-09 2014-12-17 三菱マテリアル株式会社 Power module substrate manufacturing method
US9414512B2 (en) 2009-10-22 2016-08-09 Mitsubishi Materials Corporation Substrate for power module, substrate with heat sink for power module, power module, method for producing substrate for power module, and method for producing substrate with heat sink for power module
JP2012178513A (en) * 2011-02-28 2012-09-13 Mitsubishi Materials Corp Power module unit and manufacturing method of the same
JP2012248576A (en) * 2011-05-25 2012-12-13 Mitsubishi Shindoh Co Ltd Pin-like fin integrated-type heat sink
JP5957862B2 (en) * 2011-12-05 2016-07-27 三菱マテリアル株式会社 Power module substrate
JP5348265B2 (en) * 2012-03-02 2013-11-20 トヨタ自動車株式会社 Semiconductor module cooling device
JP5348264B2 (en) * 2012-03-02 2013-11-20 トヨタ自動車株式会社 Semiconductor module cooling device
JP6105437B2 (en) * 2013-08-16 2017-03-29 昭和電工株式会社 Heat dissipation device
JP6775385B2 (en) 2015-11-10 2020-10-28 昭和電工株式会社 Base for power module
TWI649528B (en) * 2017-03-13 2019-02-01 謝基生 Diffusion method of small area cold surface and its flat cold plate

Also Published As

Publication number Publication date
JP2003086744A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
JP4134537B2 (en) Power module and power module with heat sink
WO2002013267A1 (en) Power module and power module with heat sink
US9723707B2 (en) Power module substrate, power module substrate with heatsink, power module, and method for producing power module substrate
CN104718615A (en) Semiconductor circuit board, semiconductor device using same, and method for producing semiconductor circuit board
WO2003090277A1 (en) Circuit board, process for producing the same and power module
JP5957862B2 (en) Power module substrate
JP6601512B2 (en) Power module substrate with heat sink and power module
JP2006294971A (en) Substrate for power module and its production process
JP7151583B2 (en) Insulated circuit board with heat sink
JP2011166126A (en) Liquid-cooled integrated substrate, and method of manufacturing the same
JP2007081200A (en) Insulated circuit board with cooling sink section
JP5061442B2 (en) Insulated circuit board and insulated circuit board with cooling sink
JP6958441B2 (en) Manufacturing method of insulated circuit board with heat sink
JP6638284B2 (en) Substrate for power module with heat sink and power module
JP5966512B2 (en) Manufacturing method of power module substrate with heat sink
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
JP2007141932A (en) Power module base
JP2011023545A (en) Heat dissipation structure and power module
JP2008053759A (en) Power module and power module with heat sink
JP2001168569A (en) Cooler for electronic part
JP2004327711A (en) Semiconductor module
JP6565735B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP2008159946A (en) Cooling device of semiconductor module, and manufacturing method therefor
JPH0831990A (en) Heat radiating fin
JP2001298136A (en) Heat sink and wiring board with the heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4134537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

EXPY Cancellation because of completion of term