JP2004200441A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004200441A
JP2004200441A JP2002367716A JP2002367716A JP2004200441A JP 2004200441 A JP2004200441 A JP 2004200441A JP 2002367716 A JP2002367716 A JP 2002367716A JP 2002367716 A JP2002367716 A JP 2002367716A JP 2004200441 A JP2004200441 A JP 2004200441A
Authority
JP
Japan
Prior art keywords
region
type
trench
gate electrode
type column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002367716A
Other languages
Japanese (ja)
Inventor
Yoshikuni Hatsutori
佳晋 服部
Makoto Kuwabara
誠 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2002367716A priority Critical patent/JP2004200441A/en
Publication of JP2004200441A publication Critical patent/JP2004200441A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make an increase in on-state resistance hardly happen even if there is a misalignment of a mask when forming a trench, to reduce on-state resistance, to stabilize the breakdown characteristic, and to make a parasitic transistor hardly turn on. <P>SOLUTION: A semiconductor device comprises a semiconductor section 21 wherein trenches 33 are formed, a gate insulation film 34 formed along the wall face of the trenches 33, and gate electrodes 36 formed inside the trenches 33. A p-type body region 30 of the semiconductor section 21 includes an area adjacent to the gate electrodes 36. P-type column regions 24 and n-type column regions 26 are extended in a direction vertical to the depthwise direction of the gate electrodes 36 in a plain view, and are in contact with the p-type body region 30. The p-type column regions 24 and the n-type column regions 26 are in contact with each other. An n-type region 28 includes an area formed between the bottoms of the gate electrodes 36 and top faces of the p-type column regions 24. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、半導体装置とその製造方法に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
【特許文献1】
特開平9−266311号公報(その公報の図面の図7〜図9等)
【特許文献2】
特開2000−260984号公報(その公報の図面の図1、図4等)
【0003】
特許文献1には、図1に示すように、ドリフト領域にいわゆるスーパージャンクション構造部23を設けたパワーMOSFETが示されている。スーパージャンクション構造部23には、p型コラム領域24とn型コラム領域26が交互に形成されている。
ドリフト領域にスーパージャンクション構造部23を設けると、ドリフト領域がn型領域のみの場合に比べて、オン抵抗とソース・ドレイン間耐圧のトレードオフの関係を改善できる。
【0004】
図1の構造では、p型コラム領域24とn型コラム領域26は、平面視したときにゲート電極36の奥行方向に対して非平行方向(この例では直交方向)に伸びている。別の表現をすると、p型コラム領域24とn型コラム領域26は、平面視したときにゲート電極36の奥行方向に対して非直交方向(この例では平行方向)に交互に形成されている。これらの態様を以下では「第1態様」という。
これに対し、図2に示すように、p型コラム領域24とn型コラム領域26が、平面視したときにゲート電極36の奥行方向に対して平行方向に伸びる構造がある。別の表現をすると、p型コラム領域24とn型コラム領域26が、平面視したときにゲート電極の奥行方向に対して直交方向に交互に形成されている構造がある。これらの態様を以下では「第2態様」という。
第1態様は、トレンチ33を形成する際のマスクずれが生じた場合(例えば図示横方向にずれた場合)でも、ゲート電極36とn型コラム領域26が重なる領域の変化が小さい。よって、第2態様に比べてオン抵抗の変化が小さいという利点がある。
【0005】
第2態様の場合、トレンチ33を形成する際のマスクが図示横方向にずれたときに、オン抵抗が増加し易い。第2態様において、本来図3に示す位置にトレンチ33を形成するはずであったのに、マスクずれによって図4に示す位置にトレンチ33が形成されたとする。図3の場合、半導体装置のオン時には、ゲート電極36に隣接するボディ領域30にチャネル30xが形成される。一方、図4の場合、このチャネル30xに加えて、本来チャネルを形成する予定になかったp型領域の部分24xにもチャネル(反転層)が形成されてしまう。この反転層24xの部分は30xの部分に比べて高抵抗になる。よって、オン抵抗が増加してしまう。
これに対し、図1に例示される第1態様によると、上記のようなマスクずれが生じた場合でも、オン抵抗が増加しにくい。
【0006】
特許文献2には、図5に示すように、ボディ領域30の底面とスーパージャンクション構造部23の頂面の間全体に、n型領域50を設けた構造が示されている。このようなn型領域50を設けると、オン抵抗を低減できる旨が特許文献2に記載されている。
【0007】
しかし、図5に示す構造によると、p型コラム領域24がフローティングの電位状態となってしまう。p型コラム領域24がフローティングの電位状態になると、耐圧時にp型コラム領域24とn型コラム領域26のpn接合部に、これらの領域24,26を空乏化させるための充分な電圧がかからない場合が生じる。この結果、耐圧特性が不安定となる場合が生じる。
【0008】
特許文献2にはさらに図6に示すように、半導体装置の後部に、p型コラム領域54の後部頂面とp型ボディ領域30の後面をつなぐためのp型の接続用領域58を設けた構造が示されている。この構造によると、p型コラム領域54がフローティングの電位状態となることを回避できる。
【0009】
しかし、このようにp型ボディ領域30とp型コラム領域54の間に接続用領域58を設けると、p型ボディ領域30とp型コラム領域54の間の電流経路が長くなる。この結果、この電流経路が長くなった分、抵抗が増加してしまう。これにより、n型ソース領域32とp型ボディ領域30とn型ドレイン領域22で形成されるnpn構造の寄生トランジスタのベース抵抗が高くなる。このため、この寄生トランジスタがオンし易くなってしまう。
【0010】
本発明は、半導体装置について以下の課題を解決することを目的とする。
(1)トレンチを形成する際のマスクずれが生じてもオン抵抗が増加しにくくすること。
(2)オン抵抗を低減すること。
(3)耐圧特性を安定化すること。
(4)寄生トランジスタをオンさせにくくすること。
【0011】
【課題を解決するための手段及び作用と効果】本発明に係る半導体装置は、トレンチが形成された半導体部と、トレンチの壁面に沿って形成されたゲート絶縁膜と、トレンチ内に形成されたゲート電極を備えている。半導体部は、第1導電型のボディ領域と、第1導電型の第1領域と、第2導電型の第2領域と、第2導電型の第3領域を有する。ボディ領域は、ゲート電極にゲート絶縁膜を介して隣合う領域を有する。第1領域は、平面視したときにゲート電極の奥行方向に対して非平行方向に伸びているとともにボディ領域に接している。第2領域は、平面視したときにゲート電極の奥行方向に対して非平行方向に伸びているとともに第1領域と隣合っている。第3領域は、ゲート電極と第1領域の間に形成されている。
ここで、第1領域と第2領域は接していてもよいし、第1領域と第2領域の間に例えば絶縁層が介在していてもよい。
【0012】
本発明に係る他の半導体装置は、トレンチが形成された半導体部と、トレンチの壁面に沿って形成されたゲート絶縁膜と、トレンチ内に形成されたゲート電極を備えている。半導体部は、第1導電型のボディ領域と、第1導電型の第1領域と、第2導電型の第2領域と、第2導電型の第3領域を有する。ボディ領域は、ゲート電極にゲート絶縁膜を介して隣合う領域を有する。第1領域と第2領域は、平面視したときにゲート電極の奥行方向に対して非直交方向に交互に形成されている。第3領域は、ゲート電極と第1領域の間に形成されている。
【0013】
本発明者は研究の結果、図1に例示される態様(第1態様)に関する新たな知見を得た。具体的には、半導体装置のオン時に、n型コラム領域26だけでなく、p型コラム領域24のうちゲート電極36に隣接する領域にも電流が流れるという知見を得た(図7〜図10を参照して実施例の欄で説明する内容を参照)。図1に示す構造では、p型コラム領域24のゲート電極36に隣接する領域に反転層が形成され、電流が流れる。この反転層の部分は高抵抗であるため、オン抵抗を増加させる要因となる。
本発明者は、上記知見から図1のゲート電極36とp型コラム領域24の間に、高抵抗の反転層の代わりに予めn型領域(上記第3領域の一例)を設けておけば、オン抵抗を低減できることを見出した。
また、本発明者は、上記知見から図1の構造のようにp型ボディ領域30とp型コラム領域24の間の全体にn型領域50を設けなくてもオン抵抗を低減できることを見出した。即ち、p型コラム領域24がp型ボディ領域30に直接的に接する構造でも、オン抵抗を効果的に低減できることを見出した。
【0014】
(1)本発明に係る半導体装置では、第1領域と第2領域は、平面視したときにゲート電極の奥行方向に対して非平行方向に伸びている。あるいは、第1領域と第2領域は、平面視したときにゲート電極の奥行方向に対して非直交方向に交互に形成されている。よって、トレンチを形成する際のマスクずれが生じた場合等でも、オン抵抗が増加しにくい。
(2)本発明に係る半導体装置は、ゲート電極と第1領域の間に形成された第3領域を有する。よって、上記したようにオン抵抗をより低減できる。
(3)本発明に係る半導体装置では、第1導電型の第1領域は第1導電型のボディ領域に接している。よって、第1領域がフローティングの電位状態となることを回避できる。このため、耐圧特性を安定化できる。
(4)本発明に係る半導体装置では、第1領域はボディ領域に接している。よって、第1領域とボディ領域間の電流経路を短くできる。このため、半導体装置内の寄生トランジスタをオンさせにくくすることができる。
【0015】
第1領域と第2領域は、平面視したときにゲート電極の奥行方向に対してほぼ直交方向に伸びていることが好ましい。第1領域と第2領域は、平面視したときにゲート電極の奥行方向に対してほぼ平行方向に交互に形成されていることが好ましい。
【0016】
第1領域は、ゲート電極の下方に位置する領域を有し、第3領域は、ゲート電極の底面と第1領域の頂面の間に形成された領域を有することが好ましい。また、第3領域は、ゲート電極の側面と第1領域の間に形成された領域を有することが好ましい。
これによると、オン抵抗をより有効に低減できる。
【0017】
第3領域の不純物濃度は、第1領域及び/又は第2領域の不純物濃度よりも高いことが好ましい。
これによると、耐圧の低下を抑制しながら、オン抵抗をより低減できる。
【0018】
半導体部は、第1領域及び/又は第2領域に接する第1導電型のドレイン領域を有することが好ましい。半導体部は、ボディ領域に接する第2導電型のソース領域を有することが好ましい。
第1領域と第2領域は、ボディ領域とドレイン領域の間に形成されていることが好ましい。第1領域と第2領域は、ほぼ同じ方向にストライプ状に伸びていることが好ましい。第1領域はオフ状態で実質的に完全空乏化することが好ましい。第2領域はオン状態で電流が流れ、オフ状態で実質的に完全空乏化することが好ましい。
【0019】
本発明に係る半導体装置の製造方法は、第1導電型の第1領域と第2導電型の第2領域上の半導体領域の一部を少なくとも除去して、平面視したときに第1領域と第2領域が伸びる方向に対して非平行方向に伸び、かつ、第1領域と第2領域が露出する深さまで達するトレンチを形成する工程と、トレンチの底面に隣接する第1領域に第2導電型不純物を添加する工程を有する。この製造方法は、第2導電型不純物を活性化する工程をさらに有することが好ましい。
上記トレンチ形成工程に代えて、第1導電型の第1領域と第2導電型の第2領域上の半導体領域の一部を少なくとも除去して、平面視したときに第1領域と第2領域が交互に形成された方向に対して非直交方向に伸び、かつ、第1領域と第2領域が露出する深さまで達するトレンチを形成する工程を採用してもよい。
この製造方法によると、第1領域と第2領域上に半導体領域が存在する場合でも、第1領域に第2導電型不純物を効率的な方法で添加できる。
【0020】
トレンチを形成する工程では、半導体領域のうちトレンチを形成しない領域上をマスクで覆い、マスクで覆っていない領域を除去してトレンチを形成し、第2導電型不純物を添加する工程では、半導体領域を前記マスクで覆ったままの状態で第2導電型不純物を添加することが好ましい。
これによると、第2導電型不純物を添加するために、新たにマスクを追加しなくてもよい。よって、製造工程を簡単化できる。
【0021】
トレンチの側面に隣合う半導体領域への第2導電型不純物の侵入を抑制するマスクでトレンチの側面を覆う工程を有することが好ましい。
これによると、トレンチの側面に隣合う半導体領域に第2導電型不純物が侵入することで生じるゲートしきい値電圧の変動等を抑制できる。
【0022】
また、他の半導体装置の製造方法は、第1導電型の第1領域と第2導電型の第2領域上に、第1領域を含む所定領域上が開口したマスクを配置する工程と、前記所定領域に第2導電型不純物を添加する工程と、第1領域と第2領域上に半導体領域を形成する工程と、少なくとも半導体領域の一部を除去して、第1領域と第2領域が伸びる方向に対して非平行方向に伸び、かつ、第2導電型不純物を添加した領域が露出する深さまで達するトレンチを形成する工程を有する。
上記トレンチ形成工程に代えて、少なくとも半導体領域の一部を除去して、平面視したときに第1領域と第2領域が交互に形成された方向に対して非直交方向に伸び、かつ、第2導電型不純物を添加した領域が露出する深さまで達するトレンチを形成する工程を採用してもよい。
【0023】
【発明の実施の形態】本発明の実施例の半導体装置について説明する前に、図1に示す従来の半導体装置について行ったシミュレーションの内容と結果を説明する。
図7は、従来の半導体装置としてシミュレーションを行った構造の斜視図を示す。シミュレーションは、スーパージャンクション構造部23の繰返しの最小単位(ハーフセル)で行った。基板22はn型シリコン基板を用いた。p型コラム領域24及びn型コラム領域26の幅は2μmとした。p型コラム領域24の奥行方向の長さは1.5μm、不純物濃度は1×1016cm−3とした。n型コラム領域26の奥行方向の長さは0.5μm、不純物濃度は3×1016cm−3とした。スーパージャンクション構造部23の深さは、耐圧200Vを想定して12μmとした。p型ボディ領域30は1×1017cm−3の表面濃度を持ち、2μmの深さまでガウス分布を持つようにした。n型ソース領域32とp型ボディコンタクト領域30aの厚さは共に0.5μm、不純物濃度は共に1×1019cm−3とした。ゲート電極36の幅は0.3μm、深さは2.5μmとした。ゲート絶縁膜34の厚さは0.1μmとした。
【0024】
図8(A)は図7のA−A断面図、即ちn型コラム領域26のオン時の電流分布を示す。図8(B)は図7のB−B断面図、即ちp型コラム領域24のオン時の電流分布を示す。図8(C)は図7のC−C断面図、即ちp型コラム領域24のオン時の電流分布を示す。図9(A)〜(C)はそれぞれ、図8(A)〜(C)のゲート電極36付近の拡大図である。
この時のバイアス条件は、ソース電圧(V)=0V、ドレイン電圧(V)=0.1V、ゲート電圧(V)=15Vとした。
【0025】
図8と図9において、色が濃くなっている箇所が電流の流れている箇所である。色が濃くなるにつれて(黒色に近づくにつれて)、電流密度が高くなっている。但し、ゲート絶縁膜34の部分は除く。
図8(A)から、n型ドレイン領域22を流れ出た電流は、n型コラム領域26を通り、さらに、ゲート電極36に隣合うp型ボディ領域30に形成されたチャネルを経由して、n型ソース領域32へ流れていることがわかる。
図8(B)(C)と図9(B)(C)から、n型コラム領域26を流れる電流は、n型コラム領域26の直上のp型ボディ領域(但し、ゲート電極36の側面に隣接した領域)30だけでなく、p型コラム領域24の直上のp型ボディ領域のゲート電極36の側面に隣接した領域30にも流れていることがわかる。この結果から、p型コラム領域24とn型コラム領域26がゲート電極36の奥行方向と非平行に(この例では直交して)伸びている構造では、p型ボディ領域30(ゲート電極36)の下方のスーパージャンクション構造部23の導電型に関係なく、p型ボディ領域30のゲート電極36の側面に隣接した領域にチャネルが形成され、電流が流れていることがわかる。
また、図9(B)(C)から明らかなように、ゲート電極36の底面に隣接するp型コラム領域24の上部(頂部)にも反転層が形成され、電流が流れていることがわかる。
しかし、n型コラム領域26を流れる電流の密度と、ゲート電極36の底面に隣接するp型コラム領域24の反転層を流れる電流の密度を比較すると、p型コラム領域24の反転層の方が電流の密度が少ないことがわかる。これが、オン抵抗の増加の要因となっていることがわかる。
【0026】
図10は、図7に示す構造のオン時のゲート電圧(V)−ドレイン電流(I)特性を示す。このときのバイアス条件は、ソース電圧(V)=0V、ドレイン電圧(V)=0.1Vである。図10に示す特性から、ゲート電圧(V)=15Vのときの規格化オン抵抗(Specific On resistance:Ron)を求めると、0.16Ω・mmであった。なお、耐圧は225Vであった。
【0027】
図11は、本発明の第1実施例の半導体装置の斜視図を示す。本実施例で説明する半導体装置は、トレンチゲート構造を有するパワーMOSFETである。この半導体装置は、半導体部21を備えている。半導体部21は、n型ドレイン領域22と、ドリフト領域と、p型ボディ領域30と、n型ソース領域32を有する。ドリフト領域は、スーパージャンクション構造部23と、n型領域(第3領域の一例)28を有する。スーパージャンクション構造部23は、p型コラム領域(第1領域の一例)24とn型コラム領域(第2領域の一例)26を有する。半導体部21には、トレンチ33が形成されている。このトレンチ33の壁面(底面と側面)に沿って、ゲート絶縁膜34が形成されている。トレンチ33内には、ゲート電極36が形成されている。ゲート電極36はゲート端子に接続されている。なお、トレンチ33の形状は、U型でもよいし、V型でもよいし、その他の形状であってもよい。
【0028】
スーパージャンクション構造部23のp型コラム領域24とn型コラム領域26は、n型ドレイン領域22とp型ボディ領域30の間に位置している。p型コラム領域24とn型コラム領域26は、n型ドレイン領域22に接している。p型コラム領域24とn型コラム領域26は、p型ボディ領域30に接している。p型コラム領域24とn型コラム領域26は、平面視したときにゲート電極36の奥行方向(長手方向ともいえる)に対して非平行方向(この例では直交方向)に伸びている。p型コラム領域24とn型コラム領域26は、同じ方向にストライプ状に伸びている。別の表現をすると、p型コラム領域24とn型コラム領域26は、平面視したときにゲート電極36の奥行方向に対して非直交方向(この例では平行方向)に交互に繰返し形成されている。
【0029】
p型コラム領域24とn型コラム領域26は接している。p型コラム領域24とn型コラム領域26は、ゲート電極36の下方に位置する領域を有する。p型コラム領域24とn型コラム領域26は、ゲート電極36の下方において、ゲート電極36の奥行方向に平行な方向に交互に繰返し形成された領域を有する。p型コラム領域24はオフ状態で実質的に完全空乏化する。n型コラム領域26はオン状態でドリフト電流が流れ、オフ状態で実質的に完全空乏化する。
なお、p型コラム領域24とn型コラム領域26は、接していなくてもよい。例えばp型コラム領域24とn型コラム領域26の間に絶縁層が介在していてもよい。
【0030】
n型領域28は、ゲート電極36とp型コラム領域24の間に形成されている。この例では、n型領域28は、ゲート電極36の底面とp型コラム領域24の頂面の間に形成されている。
n型領域28の不純物濃度は、p型コラム領域24の不純物濃度よりも高く設定することが好ましい。n型領域28の不純物濃度は、1×1017cm−3〜1×1019cm−3であることが好ましい。n型領域28の厚さは、チャネルの厚さ以上に設定することが好ましい。n型領域28の厚さは、0.1μm〜0.5μmであることが好ましい。
n型領域28の不純物濃度は、p型コラム領域24及び/又はn型コラム領域26の不純物濃度よりも高く設定すると、オン抵抗を効果的に低減できる。
【0031】
p型ボディ領域30は、n型ソース領域32に接している。p型ボディ領域30は、ゲート電極36にゲート絶縁膜34を介して隣合う領域を有する。この領域は、n型ソース領域32とスーパージャンクション構造部23の間に形成されている。この領域にはチャネルが形成される。
型ドレイン領域22の底面には、ドレイン電極20が接続されている。ドレイン電極20はドレイン端子に接続されている。n型ソース領域32とp型ボディ領域30(ボディコンタクト領域30a)には、ソース電極(図示省略)が接続されている。ソース電極は、ソース端子に接続されている。
【0032】
次に、第1実施例の半導体装置の動作を説明する。n型ドレイン領域22に正電圧を印加し、n型ソース領域32とp型ボディ領域30(p型ボディコンタクト領域)を接地する。この状態で、ゲート電極36に正電圧を印加する。すると、半導体装置がオンし、n型ドレイン領域22からn型ソース領域32に電流が流れる。より具体的には、p型ボディ領域30中の電子はゲート電極36に隣接する領域に集まり、n型チャネルが形成される。これにより、n型ソース領域32から供給される電子は、p型ボディ領域30のn型チャネル、ゲート電極36の側面に隣接するn型コラム領域26、n型領域28、n型コラム領域26の順に流れ、n型ドレイン領域22に達する。但し、n型ソース領域32から供給される電子の中には、p型ボディ領域30のn型チャネル、ゲート電極36の側面に隣接するp型コラム領域24に形成された反転層、n型領域28、n型コラム領域26の順に流れ、n型ドレイン領域22に達するものもある。
【0033】
このように、第1実施例の半導体装置では、p型ボディ領域30のn型チャネルを流れ出た電子は、n型領域28を経由して、n型ドレイン領域22に達する。従来のようにn型領域28がない構造では、このn型領域28が位置する領域にもp型コラム領域24の上部(頂部)が形成されている(図1参照)。図1の構造では、オン時にはこのp型コラム領域24の上部(頂部)に反転層が形成される。この反転層は高抵抗であるため、オン抵抗を増加させる要因となる。
これに対し、第1実施例の半導体装置では、高抵抗の反転層の代わりに上記のように予めn型領域28を設けている。従って、同じにゲートバイアスの場合、オン時にp型コラム領域24を流れる電流を増加させることができる。よって、このようなn型領域28が設けられていない場合に比べて、オン抵抗を低減できる。
【0034】
一方、n型ソース領域32とn型ドレイン領域22間の耐圧測定時には、ゲート電極36とn型ソース領域32の電位を0Vにする。また、n型ドレイン領域22の電位を0Vから徐々に上昇させる。すると、(1)p型コラム領域24とn型コラム領域26のpn接合部、(2)p型コラム領域24とn型領域28のpn接合部、及び(3)p型ボディ領域30とn型コラム領域26のpn接合部から、各領域24,26,28,30に空乏層が広がる。但し、n型領域28の不純物濃度が高い場合は、n型領域28には空乏層が広がりにくい。所望の耐圧時には、p型コラム領域24とn型コラム領域26が実質的に完全空乏化される。即ち、ドリフト領域が実質的に完全空乏化することによって高耐圧が確保される。
【0035】
また、先に述べたように、p型コラム領域24はp型ボディ領域30に接している。p型ボディ領域30(p型ボディコンタクト領域)は、ソース電極に接続されている。よって、p型コラム領域24はフローティングの電位状態とならない。このため、耐圧特性を安定化できる。
【0036】
また、p型コラム領域24はp型ボディ領域30に接しているので、p型ボディ領域30とp型コラム領域24間の電流経路を短くできる。よって、n型ソース領域32とp型ボディ領域30とn型ドレイン領域22で形成されるnpn構造の寄生トランジスタのベース抵抗を低くできる。このため、この寄生トランジスタをオンさせにくくすることができる。
【0037】
また、p型コラム領域24とn型コラム領域26は、平面視したときにゲート電極36の奥行方向に対して直交方向に伸びている。別の表現をすると、p型コラム領域24とn型コラム領域26は、平面視したときにゲート電極36の奥行方向に対して平行方向に交互に繰返し形成されている。よって、トレンチ33を形成する際のマスクずれが生じた場合でも、オン抵抗が増加しにくい。
【0038】
図12は、本発明の第2実施例の半導体装置の斜視図を示す。この半導体装置は、n型領域38が、ゲート電極36の底面とp型コラム領域24の頂面の間のみならず、ゲート電極36の側面とp型コラム領域24の側面の間にも形成されている。上記の点で第1実施例の半導体装置と異なる。
【0039】
第2実施例の半導体装置では、ゲート電極36の側面に隣接する領域にもn型領域38が形成されている。第1実施例では、このゲート電極36の側面に隣接する領域にもp型コラム領域24が形成されており、オン時にはこのp型コラム領域24に反転層が形成され、電流が流れる。よって、第2実施例のようにゲート電極36の側面に隣接する領域にもp型コラム領域24に代えてn型領域28を形成することで、よりオン抵抗を低減できる。
【0040】
図13は、本発明の実施例としてシミュレーションを行った構造の斜視図を示す。図13に示す構造は、図7に示す構造において、ゲート電極36の底面とp型コラム領域24の頂面の間にn型領域28を介在させた構造である。このn型領域28の厚さは0.5μm、不純物濃度は1×1017cm−3である。その他のデバイスパラメータは、図7に示す構造と同様である。
【0041】
図14は、図13に示す半導体装置のオン時の電流分布を示す。図14に示すように、n型ドレイン領域22から、n型コラム領域26、n型領域28、p型ボディ領域30のチャネルを経て、n型ソース領域32へ電流が流れていることがわかる。
【0042】
図15は、図13に示す半導体装置のオン時のゲート電圧(V)−ドレイン電流(I)特性を示す。バイアス条件は、図10の場合と同様である。図15に示す特性から求めた規格化オン抵抗(Ron)は0.15Ω・mmであった。図7に示す構造のオン抵抗(0.16Ω・mm)と比較すると、約6%オン抵抗が減少していることがわかる。これにより、図13に示す構造が有効であることがわかる。
【0043】
図7と図13に示す構造において、スーパージャンクション構造部23の深さは12μmである。これは先に述べたように耐圧200Vを想定した設定した値である。耐圧はスーパージャンクション構造部23の深さで決まる。今回対象とした半導体装置のサイズの場合、オン抵抗のうちドリフト抵抗(ドリフト領域としてのn型コラム領域26の抵抗成分)は約85%を占める。図13に示す構造のゲート電極36とp型コラム領域24の間に設けたn型領域28は、ドリフト抵抗の低減には基本的に寄与しない。このn型領域28は、ドリフト抵抗以外の抵抗成分(p型コラム領域24の抵抗成分)を減少させる効果がある。
【0044】
耐圧が低い構造では、スーパージャンクション構造部23の深さは浅くなる。この結果、オン抵抗のうちドリフト抵抗の占める割合が減少する。換言すると、オン抵抗のうちドリフト抵抗以外の抵抗成分の占める割合が増加する。上記したように、n型領域28を設けると、このドリフト抵抗以外の抵抗成分を減少させることができる。よって、耐圧が低い構造(スーパージャンクション構造部23の深さが浅い構造)では、n型領域28を設けることによるオン抵抗の低減効果がより顕著になる。
【0045】
また、図13に示す構造の耐圧は221Vであり、図10に示す構造(耐圧225V)とほぼ同様の耐圧値が得られた。
【0046】
図16〜図18は、本発明の実施例の半導体装置の第1製造方法の説明図を示す。図16に示すように、n型の半導体基板22上に、p型コラム領域24とn型コラム領域26が交互に繰返された構造(スーパージャンクション構造部)を形成する。スーパージャンクション構造部の形成方法としては種々の方法がある。例えば、斜めイオン注入法(例えばISPSD2000,p.77-80)、マルチエピタキシャル法(例えばIEDM98,p683-685)、埋込みエピタキシャル法(例えばISPSD2001,p.363-366)によって形成することができる。次に、p型コラム領域24とn型コラム領域26上にp型半導体領域30をエピタキシャル成長させる。
【0047】
次に、上記のように形成されたp型半導体領域30を貫通するトレンチ33を形成する。具体的には、p型半導体領域30上にマスク42をCVD(ChemicalVapor Deposition)法によって形成する。本実施例ではマスク材として、アンドープド・シリケート・ガラス(Undoped Silicate Glass:以下では「USG」という)を用いている。なお、マスク42とp型半導体領域30の間には、酸化膜40を形成している。また、トレンチフォト工程とマスクエッチングにより、p型コラム領域24とn型コラム領域26が伸びる方向に対して直交する方向に伸びるp型半導体領域30をマスク42から露出させる。
次に、露出しているp型半導体領域30等をRIE等のドライエッチング(異方性エッチング)で所定深さまで除去する。この例では、この所定深さは、p型の半導体領域30を貫通して、p型コラム領域24とn型コラム領域26の上部(頂部)に達するまでの深さである。これにより、トレンチ33が形成される。
【0048】
次に、図17に示すように、トレンチ33の底面に隣接するp型コラム領域24とn型コラム領域26に、所定深さまでn型不純物(ドーパント)をイオン注入する。このイオン注入は、p型半導体領域30上をマスク42で覆ったままの状態で行う。符号38の領域がn型不純物がイオン注入された領域である。このn型不純物の注入は、トレンチ33の底面に垂直な方向に行う。
【0049】
次に、図18に示すように、熱酸化法やCVD法等によってトレンチ33の壁面に沿ってゲート絶縁膜34を形成する。次に、CVD法等によってトレンチ33内に電極材料(ポリシリコン等)36を積層する。次に、p型半導体領域30の上部のうち、トレンチ33の側面に近い側の領域にn型不純物をイオン注入する。この領域は、n型ソース領域32となる。また、p型半導体領域30の上部のうち、n型不純物をイオン注入した領域に隣合う領域にp型不純物をイオン注入する。この領域は、p型ボディコンタクト領域30aとなる。
【0050】
次に、熱処理工程(アニール工程)を行う。これにより、イオン注入された不純物が活性化される。また、トレンチ33の底面に隣接する領域にイオン注入したn型不純物38が広がる。そして、このn型領域38は、図18に示すように、トレンチ33の底面部を覆うような形状(即ち、図12に示す第2実施例のn型領域38の形状)となる。
以上のような製造工程を経て、本発明の実施例の半導体装置が製造される。
【0051】
この製造方法では、図16に示すトレンチ33が形成される前の状態の半導体層を加工する。即ち、p型コラム領域24とn型コラム領域26上にp型半導体領域30をエピタキシャル成長させた状態の半導体層を加工する。
このように、p型コラム領域24とn型コラム領域26上に半導体領域30が形成された半導体層を加工する場合でも、この製造方法によると、p型コラム領域24とn型コラム領域26の上部(頂部)に効率的な方法でn型領域38を形成できる。また、この製造方法によると、n型領域38を形成する際には、トレンチ33の形成の際のマスク42(図16,図17参照)を利用できる。よって、新たにマスクを追加しなくてもよい。このため、製造工程を簡単化できる。
【0052】
図19と図20は、本発明の実施例の半導体装置の第2製造方法の説明図を示す。第1製造方法と同様にしてトレンチ33等を形成した後、図19に示すように、熱酸化法やCVD法等によってトレンチ33の壁面(側面と底面)に沿って酸化膜44を形成する。次に、その酸化膜44を覆うようにCVD法等によって窒化膜46を形成する。次に、トレンチ33の底面部に位置する酸化膜44と窒化膜46をRIE(Reactive Ion Etching)法等でエッチングして除去する。この結果、トレンチ33の側面部のみに酸化膜44と窒化膜46が形成された状態となる。次に、図20に示すように、第1製造方法の場合と同様にして、n型不純物をイオン注入してn型領域38を形成する。次に、トレンチ33の側面部の酸化膜44と窒化膜46を除去する。次に、第1製造方法の場合と同様に、ゲート絶縁膜の形成等の工程を行う。
【0053】
n型領域38を形成するためのn型不純物のイオン注入角度がトレンチ33の底面に垂直な方向からずれて、トレンチ底面に対し斜め方向となる場合がある。この場合、トレンチ33の側面に隣合うp型半導体領域30が露出した状態であると、その半導体領域30にn型不純物が注入されてしまう場合が生じる。トレンチ33の側面に隣接するp型半導体領域30にはチャネルが形成される。このチャネルが形成される領域にn型不純物が侵入すると、ゲートしきい値電圧の変動等が生じるおそれがある。これに対し、上記製造方法では、トレンチ33の側面を覆う酸化膜44と窒化膜46を形成した後にn型不純物のイオン注入を行う。この結果、これらの酸化膜44と窒化膜46によって、トレンチ33の側面に隣合うp型半導体領域30へのn型不純物の侵入をほぼ阻止できる。よって、トレンチ33の側面に隣合う半導体領域30にn型不純物が侵入することで生じるゲートしきい値電圧の変動等を抑制できる。
なお、酸化膜44と窒化膜46のどちらか一方のみでトレンチ33の側面を覆うようにしても、n型不純物の侵入を抑制する効果が得られる。
【0054】
図21と図22は、本発明の実施例の半導体装置の第3製造方法の説明図を示す。図21に示すように、p型コラム領域24とn型コラム領域26が交互に繰返された構造(スーパージャンクション構造部)を形成する。次に、p型コラム領域24とn型コラム領域26上の所定領域にマスク(レジスト)48を塗布する。次に、トレンチフォト工程とマスクエッチングを行うことで、p型コラム領域24とn型コラム領域26のうち、これらの領域24,26が交互に繰返し形成された方向に伸びる領域をマスク48から露出させる。次に、この露出した領域から所定深さまでn型不純物をイオン注入する。これにより、n型領域38が形成される。次に、熱処理を行ってn型領域38のn型不純物を活性化させる。次に、図22に示すように、p型コラム領域24とn型コラム領域26上にp型半導体領域30をエピタキシャル成長させる。次に、第1製造方法と同様にして、トレンチ33の形成等の工程を経て、本発明の実施例の半導体装置を製造する。
【0055】
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【図面の簡単な説明】
【図1】従来の第1の半導体装置の斜視図を示す。
【図2】従来の第2の半導体装置の斜視図を示す。
【図3】第2態様においてトレンチを形成する際のマスクずれが生じなかった場合の説明図を示す。
【図4】第2態様においてトレンチを形成する際のマスクずれが生じた場合の説明図を示す。
【図5】従来の第3の半導体装置の斜視図を示す。
【図6】従来の第4の半導体装置の斜視図を示す。
【図7】従来の第1の半導体装置としてシミュレーションを行った構造の斜視図を示す。
【図8】(A)は図7のA−A線断面図のオン時の電流分布を示す。(B)は図7のB−B線断面図のオン時の電流分布を示す。(C)は図7のC−C線断面図のオン時の電流分布を示す。
【図9】(A)は図7のA−A線断面図の部分拡大図のオン時の電流分布を示す。(B)は図7のB−B線断面図の部分拡大図のオン時の電流分布を示す。(C)は図7のC−C線断面図の部分拡大図のオン時の電流分布を示す。
【図10】図7に示す半導体装置のオン時のゲート電圧(V)−ドレイン電流(I)特性を示す。
【図11】本発明の第1実施例の半導体装置の斜視図を示す。
【図12】本発明の第2実施例の半導体装置の斜視図を示す。
【図13】本発明の実施例としてシミュレーションを行った構造の斜視図を示す。
【図14】図13に示す半導体装置のオン時の電流分布を示す。
【図15】図13に示す半導体装置のオン時のゲート電圧(V)−ドレイン電流(I)特性を示す。
【図16】本発明の実施例の半導体装置の第1製造方法の説明図を示す(1)。
【図17】本発明の実施例の半導体装置の第1製造方法の説明図を示す(2)。
【図18】本発明の実施例の半導体装置の第1製造方法の説明図を示す(3)。
【図19】本発明の実施例の半導体装置の第2製造方法の説明図を示す(1)。
【図20】本発明の実施例の半導体装置の第2製造方法の説明図を示す(2)。
【図21】本発明の実施例の半導体装置の第3製造方法の説明図を示す(1)。
【図22】本発明の実施例の半導体装置の第3製造方法の説明図を示す(2)。
【符号の説明】
20:ドレイン電極
21:半導体部
22:n型ドレイン領域
23:スーパージャンクション構造部
24:p型コラム領域(第1領域の一例)
26:n型コラム領域(第2領域の一例)
28:n型領域(第3領域の一例)
30:p型ボディ領域
32:n型ソース領域
34:ゲート絶縁膜
36:ゲート電極
[0001]
The present invention relates to a semiconductor device and a method for manufacturing the same.
[0002]
[Prior Art and Problems to be Solved by the Invention]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-26631 (FIGS. 7 to 9 in the drawings of the publication)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-260984 (FIGS. 1 and 4 in the drawings of the publication)
[0003]
Patent Document 1 discloses a power MOSFET in which a so-called super junction structure 23 is provided in a drift region as shown in FIG. In the super junction structure portion 23, p-type column regions 24 and n-type column regions 26 are formed alternately.
By providing the super junction structure portion 23 in the drift region, the trade-off relationship between the on-resistance and the withstand voltage between the source and the drain can be improved as compared with the case where the drift region is only the n-type region.
[0004]
In the structure of FIG. 1, the p-type column region 24 and the n-type column region 26 extend in a non-parallel direction (in this example, orthogonal direction) with respect to the depth direction of the gate electrode 36 when viewed in plan. In other words, the p-type column regions 24 and the n-type column regions 26 are alternately formed in a non-orthogonal direction (parallel direction in this example) with respect to the depth direction of the gate electrode 36 when viewed in plan. . These embodiments are hereinafter referred to as “first embodiment”.
On the other hand, as shown in FIG. 2, there is a structure in which the p-type column region 24 and the n-type column region 26 extend in a direction parallel to the depth direction of the gate electrode 36 when viewed in plan. In other words, there is a structure in which the p-type column regions 24 and the n-type column regions 26 are alternately formed in a direction orthogonal to the depth direction of the gate electrode when viewed in plan. These embodiments are hereinafter referred to as “second embodiment”.
In the first mode, even when a mask shift occurs when the trench 33 is formed (for example, when the mask shifts in the horizontal direction in the drawing), a change in a region where the gate electrode 36 and the n-type column region 26 overlap is small. Therefore, there is an advantage that the change in the on-resistance is small as compared with the second mode.
[0005]
In the case of the second aspect, when the mask used for forming the trench 33 is shifted in the horizontal direction in the drawing, the on-resistance is likely to increase. In the second embodiment, it is assumed that the trench 33 was originally formed at the position shown in FIG. In the case of FIG. 3, when the semiconductor device is turned on, a channel 30x is formed in the body region 30 adjacent to the gate electrode. On the other hand, in the case of FIG. 4, in addition to the channel 30x, a channel (inversion layer) is formed also in the portion 24x of the p-type region where the channel was not originally planned to be formed. The inversion layer 24x has a higher resistance than the 30x portion. Therefore, the on-resistance increases.
On the other hand, according to the first mode illustrated in FIG. 1, even when the above-described mask shift occurs, the on-resistance does not easily increase.
[0006]
Patent Document 2 discloses that, as shown in FIG. 5, the entire area between the bottom surface of the body region 30 and the top surface of the super junction structure portion 23 has n The structure provided with the mold region 50 is shown. Such n Patent Document 2 describes that the provision of the mold region 50 can reduce the on-resistance.
[0007]
However, according to the structure shown in FIG. 5, the p-type column region 24 has a floating potential state. When the p-type column region 24 is in a floating potential state, a sufficient voltage is not applied to the pn junction between the p-type column region 24 and the n-type column region 26 to deplete these regions 24 and 26 during withstand voltage. Occurs. As a result, there is a case where the breakdown voltage characteristics become unstable.
[0008]
In Patent Document 2, as shown in FIG. 6, a p-type connection region 58 for connecting a rear top surface of a p-type column region 54 and a rear surface of a p-type body region 30 is provided at the rear of the semiconductor device. The structure is shown. According to this structure, p-type column region 54 can be prevented from being in a floating potential state.
[0009]
However, when the connection region 58 is provided between the p-type body region 30 and the p-type column region 54 in this manner, the current path between the p-type body region 30 and the p-type column region 54 becomes longer. As a result, the resistance increases as the current path becomes longer. This gives n + Source region 32, p-type body region 30, and n + The base resistance of the npn-structure parasitic transistor formed by the drain region 22 is increased. Therefore, the parasitic transistor is easily turned on.
[0010]
An object of the present invention is to solve the following problems of a semiconductor device.
(1) It is difficult to increase the on-resistance even if a mask shift occurs when forming a trench.
(2) To reduce on-resistance.
(3) To stabilize the breakdown voltage characteristics.
(4) To make it difficult to turn on a parasitic transistor.
[0011]
According to the present invention, there is provided a semiconductor device having a semiconductor portion having a trench, a gate insulating film formed along a wall surface of the trench, and a semiconductor device formed in the trench. A gate electrode is provided. The semiconductor unit has a body region of the first conductivity type, a first region of the first conductivity type, a second region of the second conductivity type, and a third region of the second conductivity type. The body region has a region adjacent to the gate electrode via a gate insulating film. The first region extends in a non-parallel direction with respect to the depth direction of the gate electrode when viewed in plan, and is in contact with the body region. The second region extends in a non-parallel direction with respect to the depth direction of the gate electrode when viewed in plan, and is adjacent to the first region. The third region is formed between the gate electrode and the first region.
Here, the first region and the second region may be in contact with each other, or, for example, an insulating layer may be interposed between the first region and the second region.
[0012]
Another semiconductor device according to the present invention includes a semiconductor portion having a trench, a gate insulating film formed along a wall surface of the trench, and a gate electrode formed in the trench. The semiconductor unit has a body region of the first conductivity type, a first region of the first conductivity type, a second region of the second conductivity type, and a third region of the second conductivity type. The body region has a region adjacent to the gate electrode via a gate insulating film. The first region and the second region are alternately formed in a direction orthogonal to the depth direction of the gate electrode when viewed in a plan view. The third region is formed between the gate electrode and the first region.
[0013]
As a result of the research, the inventor has obtained new findings regarding the embodiment (first embodiment) illustrated in FIG. Specifically, it has been found that when the semiconductor device is turned on, a current flows not only in the n-type column region 26 but also in a region of the p-type column region 24 adjacent to the gate electrode 36 (FIGS. 7 to 10). With reference to the contents described in the Examples section). In the structure shown in FIG. 1, an inversion layer is formed in a region of p-type column region 24 adjacent to gate electrode 36, and a current flows. Since the inversion layer has high resistance, it causes an increase in on-resistance.
From the above findings, the present inventor has provided an n-type region (an example of the third region) instead of the high-resistance inversion layer between the gate electrode 36 and the p-type column region 24 in FIG. It has been found that the on-resistance can be reduced.
In addition, the present inventor has found that the on-resistance can be reduced without providing the n-type region 50 entirely between the p-type body region 30 and the p-type column region 24 as in the structure of FIG. . That is, it has been found that even in a structure in which the p-type column region 24 is in direct contact with the p-type body region 30, the on-resistance can be effectively reduced.
[0014]
(1) In the semiconductor device according to the present invention, the first region and the second region extend in a non-parallel direction to the depth direction of the gate electrode when viewed in plan. Alternatively, the first region and the second region are alternately formed in a direction orthogonal to the depth direction of the gate electrode when viewed in a plan view. Therefore, even when the mask is displaced when forming the trench, the on-resistance hardly increases.
(2) The semiconductor device according to the present invention has a third region formed between the gate electrode and the first region. Therefore, the on-resistance can be further reduced as described above.
(3) In the semiconductor device according to the present invention, the first region of the first conductivity type is in contact with the body region of the first conductivity type. Therefore, it is possible to prevent the first region from being in a floating potential state. Therefore, the breakdown voltage characteristics can be stabilized.
(4) In the semiconductor device according to the present invention, the first region is in contact with the body region. Therefore, the current path between the first region and the body region can be shortened. Therefore, it is possible to make it difficult to turn on the parasitic transistor in the semiconductor device.
[0015]
The first region and the second region preferably extend in a direction substantially orthogonal to the depth direction of the gate electrode when viewed in a plan view. It is preferable that the first region and the second region are alternately formed in a direction substantially parallel to a depth direction of the gate electrode when viewed in plan.
[0016]
Preferably, the first region has a region located below the gate electrode, and the third region has a region formed between a bottom surface of the gate electrode and a top surface of the first region. Further, the third region preferably has a region formed between the side surface of the gate electrode and the first region.
According to this, the on-resistance can be reduced more effectively.
[0017]
It is preferable that the impurity concentration of the third region is higher than the impurity concentration of the first region and / or the second region.
According to this, the on-resistance can be further reduced while suppressing the decrease in the withstand voltage.
[0018]
The semiconductor section preferably has a first conductivity type drain region in contact with the first region and / or the second region. The semiconductor section preferably has a source region of the second conductivity type in contact with the body region.
It is preferable that the first region and the second region are formed between the body region and the drain region. It is preferable that the first region and the second region extend in a stripe shape in substantially the same direction. Preferably, the first region is substantially completely depleted in the off state. It is preferable that a current flows in the second region in the on state and that the second region is substantially completely depleted in the off state.
[0019]
The method of manufacturing a semiconductor device according to the present invention includes the steps of: removing at least a portion of the semiconductor region on the first region of the first conductivity type and the second region of the second conductivity type; Forming a trench extending in a non-parallel direction to a direction in which the second region extends and reaching a depth where the first region and the second region are exposed; and forming a second conductive layer in the first region adjacent to the bottom surface of the trench. A step of adding a mold impurity. This manufacturing method preferably further includes a step of activating the second conductivity type impurity.
Instead of the trench forming step, at least a part of the semiconductor region on the first region of the first conductivity type and the semiconductor region on the second region of the second conductivity type is removed, and the first region and the second region are viewed in plan. May be formed in a non-orthogonal direction to the direction in which the first and second regions are alternately formed.
According to this manufacturing method, even when a semiconductor region exists on the first region and the second region, the second conductivity type impurity can be added to the first region by an efficient method.
[0020]
In the step of forming a trench, a region of the semiconductor region where the trench is not formed is covered with a mask, the region not covered with the mask is removed to form a trench, and in the step of adding a second conductivity type impurity, the semiconductor region is formed. Is preferably added with the second conductivity type while the mask is covered with the mask.
According to this, it is not necessary to add a new mask in order to add the second conductivity type impurity. Therefore, the manufacturing process can be simplified.
[0021]
It is preferable that the method further includes a step of covering the side surface of the trench with a mask for suppressing intrusion of the second conductivity type impurity into the semiconductor region adjacent to the side surface of the trench.
According to this, it is possible to suppress a change in the gate threshold voltage and the like caused by the second conductivity type impurity penetrating into the semiconductor region adjacent to the side surface of the trench.
[0022]
Another method for manufacturing a semiconductor device includes a step of disposing a mask having an opening on a predetermined region including the first region on the first region of the first conductivity type and the second region of the second conductivity type; Adding a second conductivity type impurity to a predetermined region, forming a semiconductor region on the first region and the second region, and removing at least a part of the semiconductor region to form a first region and a second region. Forming a trench extending in a non-parallel direction to the extension direction and reaching a depth at which the region to which the second conductivity type impurity is added is exposed.
Instead of the trench forming step, at least a part of the semiconductor region is removed, and extends in a non-perpendicular direction to a direction in which the first region and the second region are alternately formed when viewed in plan, and A step of forming a trench reaching a depth where the region to which the two-conductivity-type impurity is added is exposed may be employed.
[0023]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing a semiconductor device according to an embodiment of the present invention, the contents and results of a simulation performed on the conventional semiconductor device shown in FIG. 1 will be described.
FIG. 7 is a perspective view of a structure obtained by performing a simulation as a conventional semiconductor device. The simulation was performed in the minimum unit (half cell) of the repetition of the super junction structure portion 23. The substrate 22 is n + A silicon substrate was used. The width of the p-type column region 24 and the n-type column region 26 was 2 μm. The length in the depth direction of the p-type column region 24 is 1.5 μm, and the impurity concentration is 1 × 10 16 cm -3 And The length of the n-type column region 26 in the depth direction is 0.5 μm, and the impurity concentration is 3 × 10 16 cm -3 And The depth of the super junction structure 23 was 12 μm assuming a withstand voltage of 200 V. The p-type body region 30 is 1 × 10 17 cm -3 And a Gaussian distribution up to a depth of 2 μm. n-type source region 32 and p + Both the thickness of the mold body contact region 30a is 0.5 μm and the impurity concentration is 1 × 10 19 cm -3 And The width of the gate electrode 36 was 0.3 μm and the depth was 2.5 μm. The thickness of the gate insulating film 34 was 0.1 μm.
[0024]
FIG. 8A is a sectional view taken along line AA of FIG. 7, that is, a current distribution when the n-type column region 26 is turned on. FIG. 8B is a sectional view taken along line BB of FIG. 7, that is, a current distribution when the p-type column region 24 is turned on. FIG. 8C is a cross-sectional view taken along the line CC of FIG. 7, that is, a current distribution when the p-type column region 24 is turned on. FIGS. 9A to 9C are enlarged views of the vicinity of the gate electrode 36 in FIGS. 8A to 8C, respectively.
The bias condition at this time is that the source voltage (V S ) = 0 V, drain voltage (V D ) = 0.1 V, gate voltage (V G ) = 15V.
[0025]
In FIGS. 8 and 9, a portion where the color is dark is a portion where a current flows. As the color becomes darker (closer to black), the current density becomes higher. However, the portion of the gate insulating film 34 is excluded.
From FIG. 8A, n + The current flowing out of the p-type drain region 22 passes through the n-type column region 26, and further passes through a channel formed in the p-type body region 30 adjacent to the gate electrode 36. + It can be seen that the current flows to the mold source region 32.
From FIGS. 8B and 9C and FIGS. 9B and 9C, the current flowing through the n-type column region 26 is changed to the p-type body region immediately above the n-type column region 26 (provided that the side surface of the gate electrode 36 It can be seen that the current flows not only in the region 30 adjacent to the p-type column region 24 but also in the region 30 adjacent to the side surface of the gate electrode 36 in the p-type body region immediately above the p-type column region 24. From this result, in a structure in which the p-type column region 24 and the n-type column region 26 extend in a direction non-parallel to (in this example, perpendicular to) the depth direction of the gate electrode 36, the p-type body region 30 (the gate electrode 36) It can be seen that a channel is formed in the region adjacent to the side surface of the gate electrode 36 in the p-type body region 30 and current flows regardless of the conductivity type of the super junction structure portion 23 below the super junction structure 23.
Further, as apparent from FIGS. 9B and 9C, an inversion layer is also formed on the top (top) of the p-type column region 24 adjacent to the bottom surface of the gate electrode 36, and a current flows. .
However, comparing the density of the current flowing in the n-type column region 26 with the density of the current flowing in the inversion layer of the p-type column region 24 adjacent to the bottom surface of the gate electrode 36, the inversion layer of the p-type column region 24 is It can be seen that the current density is low. It can be seen that this is the cause of the increase in on-resistance.
[0026]
FIG. 10 shows a gate voltage (V) when the structure shown in FIG. G ) -Drain current (I D ) Shows the characteristics. The bias condition at this time is that the source voltage (V S ) = 0 V, drain voltage (V D ) = 0.1V. From the characteristics shown in FIG. 10, the gate voltage (V G ) = 15V, the standardized on resistance (Ron) is 0.16Ω · mm 2 Met. The withstand voltage was 225V.
[0027]
FIG. 11 is a perspective view of the semiconductor device according to the first embodiment of the present invention. The semiconductor device described in this embodiment is a power MOSFET having a trench gate structure. This semiconductor device includes a semiconductor unit 21. The semiconductor unit 21 has n + Drain region 22, drift region, p-type body region 30, + It has a mold source region 32. The drift region has a super junction structure portion 23 and an n-type region (an example of a third region) 28. The super junction structure 23 has a p-type column region (an example of a first region) 24 and an n-type column region (an example of a second region) 26. A trench 33 is formed in the semiconductor section 21. A gate insulating film 34 is formed along the wall surfaces (bottom and side surfaces) of the trench 33. A gate electrode 36 is formed in the trench 33. The gate electrode 36 is connected to a gate terminal. The shape of the trench 33 may be U-shaped, V-shaped, or another shape.
[0028]
The p-type column region 24 and the n-type column region 26 of the super junction structure 23 + It is located between the p-type body region 30 and the p-type drain region 22. The p-type column region 24 and the n-type column region 26 + In contact with the mold drain region 22. P-type column region 24 and n-type column region 26 are in contact with p-type body region 30. The p-type column region 24 and the n-type column region 26 extend in a non-parallel direction (orthogonal direction in this example) with respect to a depth direction (a longitudinal direction) of the gate electrode 36 when viewed in plan. The p-type column region 24 and the n-type column region 26 extend in a stripe shape in the same direction. In other words, the p-type column regions 24 and the n-type column regions 26 are alternately formed in a non-orthogonal direction (parallel direction in this example) with respect to the depth direction of the gate electrode 36 when viewed in plan. I have.
[0029]
The p-type column region 24 and the n-type column region 26 are in contact. The p-type column region 24 and the n-type column region 26 have regions located below the gate electrode 36. The p-type column region 24 and the n-type column region 26 have regions below the gate electrode 36 that are alternately and repeatedly formed in a direction parallel to the depth direction of the gate electrode 36. The p-type column region 24 is substantially completely depleted in the off state. A drift current flows in the n-type column region 26 in the on state, and is substantially completely depleted in the off state.
The p-type column region 24 and the n-type column region 26 need not be in contact with each other. For example, an insulating layer may be interposed between the p-type column region 24 and the n-type column region 26.
[0030]
The n-type region 28 is formed between the gate electrode 36 and the p-type column region 24. In this example, the n-type region 28 is formed between the bottom surface of the gate electrode 36 and the top surface of the p-type column region 24.
It is preferable that the impurity concentration of n-type region 28 be set higher than that of p-type column region 24. The impurity concentration of the n-type region 28 is 1 × 10 17 cm -3 ~ 1 × 10 19 cm -3 It is preferable that It is preferable that the thickness of the n-type region 28 is set to be equal to or greater than the thickness of the channel. It is preferable that the thickness of the n-type region 28 be 0.1 μm to 0.5 μm.
When the impurity concentration of the n-type region 28 is set higher than the impurity concentration of the p-type column region 24 and / or the n-type column region 26, the on-resistance can be effectively reduced.
[0031]
The p-type body region 30 is + It is in contact with the mold source region 32. The p-type body region 30 has a region adjacent to the gate electrode 36 via the gate insulating film 34. This region is n + It is formed between the mold source region 32 and the super junction structure 23. A channel is formed in this region.
n + The drain electrode 20 is connected to the bottom of the mold drain region 22. The drain electrode 20 is connected to a drain terminal. n + A source electrode (not shown) is connected to the type source region 32 and the p-type body region 30 (body contact region 30a). The source electrode is connected to the source terminal.
[0032]
Next, the operation of the semiconductor device of the first embodiment will be described. n + A positive voltage is applied to the drain region 22 and n + Source region 32 and p-type body region 30 (p + (The body contact region). In this state, a positive voltage is applied to the gate electrode 36. Then, the semiconductor device is turned on and n + Type drain region 22 to n + A current flows through the mold source region 32. More specifically, electrons in p-type body region 30 gather in a region adjacent to gate electrode 36 to form an n-type channel. This gives n + Electrons supplied from the type source region 32 flow in the order of the n-type channel of the p-type body region 30, the n-type column region 26 adjacent to the side surface of the gate electrode 36, the n-type region 28, and the n-type column region 26. + Reaches the mold drain region 22. Where n + The electrons supplied from the type source region 32 include an n-type channel of the p-type body region 30, an inversion layer formed in the p-type column region 24 adjacent to the side surface of the gate electrode 36, an n-type region 28, n Flows in the order of the mold column region 26, and n + Some reach the mold drain region 22.
[0033]
As described above, in the semiconductor device of the first embodiment, the electrons flowing out of the n-type channel of the p-type body region 30 pass through the n-type region 28 and + Reaches the mold drain region 22. In the conventional structure without the n-type region 28, the upper portion (top) of the p-type column region 24 is also formed in the region where the n-type region 28 is located (see FIG. 1). In the structure shown in FIG. 1, an inversion layer is formed above (top) the p-type column region 24 when it is turned on. Since the inversion layer has high resistance, it causes an increase in on-resistance.
On the other hand, in the semiconductor device of the first embodiment, the n-type region 28 is provided in advance as described above instead of the high-resistance inversion layer. Therefore, in the case of the same gate bias, the current flowing through the p-type column region 24 at the time of ON can be increased. Therefore, the on-resistance can be reduced as compared with the case where such n-type region 28 is not provided.
[0034]
On the other hand, n + Type source region 32 and n + When the breakdown voltage between the drain regions 22 is measured, the gate electrode 36 and n + The potential of the mold source region 32 is set to 0V. Also, n + The potential of the mold drain region 22 is gradually increased from 0V. Then, (1) a pn junction between the p-type column region 24 and the n-type column region 26, (2) a pn junction between the p-type column region 24 and the n-type region 28, and (3) a p-type body region 30 and n A depletion layer extends from the pn junction of the mold column region 26 to the regions 24, 26, 28, and 30. However, when the impurity concentration of the n-type region 28 is high, the depletion layer hardly spreads in the n-type region 28. At a desired breakdown voltage, p-type column region 24 and n-type column region 26 are substantially completely depleted. That is, a high breakdown voltage is ensured by the drift region being substantially completely depleted.
[0035]
Further, as described above, p-type column region 24 is in contact with p-type body region 30. The p-type body region 30 (p + The mold body contact region) is connected to the source electrode. Therefore, the p-type column region 24 does not enter a floating potential state. Therefore, the breakdown voltage characteristics can be stabilized.
[0036]
Further, since p-type column region 24 is in contact with p-type body region 30, the current path between p-type body region 30 and p-type column region 24 can be shortened. Therefore, n + Source region 32, p-type body region 30, and n + The base resistance of the parasitic transistor having the npn structure formed by the drain region 22 can be reduced. This makes it difficult to turn on the parasitic transistor.
[0037]
The p-type column region 24 and the n-type column region 26 extend in a direction orthogonal to the depth direction of the gate electrode 36 when viewed in plan. In other words, the p-type column region 24 and the n-type column region 26 are alternately formed in a direction parallel to the depth direction of the gate electrode 36 when viewed in plan. Therefore, even if a mask shift occurs when the trench 33 is formed, the on-resistance hardly increases.
[0038]
FIG. 12 is a perspective view of a semiconductor device according to a second embodiment of the present invention. In this semiconductor device, the n-type region 38 is formed not only between the bottom surface of the gate electrode 36 and the top surface of the p-type column region 24 but also between the side surface of the gate electrode 36 and the side surface of the p-type column region 24. ing. This is different from the semiconductor device of the first embodiment in the above points.
[0039]
In the semiconductor device of the second embodiment, an n-type region 38 is also formed in a region adjacent to the side surface of the gate electrode 36. In the first embodiment, the p-type column region 24 is also formed in a region adjacent to the side surface of the gate electrode 36. When the p-type column region 24 is turned on, an inversion layer is formed in the p-type column region 24, and a current flows. Therefore, by forming the n-type region 28 in the region adjacent to the side surface of the gate electrode 36 instead of the p-type column region 24 as in the second embodiment, the on-resistance can be further reduced.
[0040]
FIG. 13 is a perspective view of a structure simulated as an embodiment of the present invention. The structure shown in FIG. 13 differs from the structure shown in FIG. 7 in that n-type region 28 is interposed between the bottom surface of gate electrode 36 and the top surface of p-type column region 24. The thickness of the n-type region 28 is 0.5 μm and the impurity concentration is 1 × 10 17 cm -3 It is. Other device parameters are the same as in the structure shown in FIG.
[0041]
FIG. 14 shows a current distribution when the semiconductor device shown in FIG. 13 is turned on. As shown in FIG. + N channel region 26, n-type region 28, and p-type body region 30 + It can be seen that current flows to the mold source region 32.
[0042]
FIG. 15 shows the gate voltage (V) when the semiconductor device shown in FIG. 13 is turned on. G ) -Drain current (I D ) Shows the characteristics. The bias condition is the same as in FIG. The normalized on-resistance (Ron) obtained from the characteristics shown in FIG. 2 Met. The on-resistance of the structure shown in FIG. 2 ), The ON resistance is reduced by about 6%. This shows that the structure shown in FIG. 13 is effective.
[0043]
In the structure shown in FIGS. 7 and 13, the depth of the super junction structure 23 is 12 μm. This is a value set assuming a withstand voltage of 200 V as described above. The breakdown voltage is determined by the depth of the super junction structure 23. In the case of the size of the semiconductor device targeted this time, the drift resistance (the resistance component of the n-type column region 26 as the drift region) accounts for about 85% of the on-resistance. N-type region 28 provided between gate electrode 36 and p-type column region 24 having the structure shown in FIG. 13 does not basically contribute to reduction of drift resistance. The n-type region 28 has an effect of reducing a resistance component other than the drift resistance (the resistance component of the p-type column region 24).
[0044]
In a structure having a low withstand voltage, the depth of the super junction structure portion 23 is small. As a result, the proportion of the on-resistance occupied by the drift resistance decreases. In other words, the ratio of resistance components other than the drift resistance in the on-resistance increases. As described above, when the n-type region 28 is provided, a resistance component other than the drift resistance can be reduced. Therefore, in a structure having a low withstand voltage (a structure in which the depth of the super junction structure portion 23 is shallow), the effect of reducing the on-resistance by providing the n-type region 28 becomes more remarkable.
[0045]
Further, the breakdown voltage of the structure shown in FIG. 13 was 221 V, and a breakdown voltage value almost similar to that of the structure shown in FIG.
[0046]
16 to 18 are explanatory views of a first manufacturing method of the semiconductor device according to the embodiment of the present invention. As shown in FIG. + A structure (super junction structure) in which a p-type column region 24 and an n-type column region 26 are alternately repeated is formed on a semiconductor substrate 22 of a type. There are various methods for forming the super junction structure. For example, it can be formed by an oblique ion implantation method (for example, ISPSD2000, p.77-80), a multi-epitaxial method (for example, IEDM98, p683-685), or a buried epitaxial method (for example, ISPSD2001, p.363-366). Next, a p-type semiconductor region 30 is epitaxially grown on the p-type column region 24 and the n-type column region 26.
[0047]
Next, a trench 33 penetrating the p-type semiconductor region 30 formed as described above is formed. Specifically, a mask 42 is formed on the p-type semiconductor region 30 by a CVD (Chemical Vapor Deposition) method. In this embodiment, undoped silicate glass (Undoped Silicate Glass: hereinafter referred to as “USG”) is used as a mask material. Note that an oxide film 40 is formed between the mask 42 and the p-type semiconductor region 30. Further, the p-type semiconductor region 30 extending in a direction orthogonal to the direction in which the p-type column region 24 and the n-type column region 26 extend is exposed from the mask 42 by a trench photo process and mask etching.
Next, the exposed p-type semiconductor region 30 and the like are removed to a predetermined depth by dry etching (anisotropic etching) such as RIE. In this example, the predetermined depth is a depth that penetrates the p-type semiconductor region 30 and reaches the upper portion (top) of the p-type column region 24 and the n-type column region 26. Thus, a trench 33 is formed.
[0048]
Next, as shown in FIG. 17, an n-type impurity (dopant) is ion-implanted to a predetermined depth into the p-type column region 24 and the n-type column region 26 adjacent to the bottom surface of the trench 33. This ion implantation is performed with the mask 42 covering the p-type semiconductor region 30. A region indicated by reference numeral 38 is a region into which an n-type impurity is ion-implanted. This implantation of the n-type impurity is performed in a direction perpendicular to the bottom surface of the trench 33.
[0049]
Next, as shown in FIG. 18, a gate insulating film 34 is formed along the wall surface of the trench 33 by a thermal oxidation method, a CVD method, or the like. Next, an electrode material (polysilicon or the like) 36 is laminated in the trench 33 by a CVD method or the like. Next, an n-type impurity is ion-implanted into a region near the side surface of the trench 33 in the upper portion of the p-type semiconductor region 30. This region is n + This becomes the mold source region 32. In addition, a p-type impurity is ion-implanted into a region adjacent to the region into which the n-type impurity has been ion-implanted, above the p-type semiconductor region 30. This region is p + It becomes the mold body contact region 30a.
[0050]
Next, a heat treatment step (annealing step) is performed. Thereby, the ion-implanted impurities are activated. Further, the n-type impurity 38 implanted in the region adjacent to the bottom surface of the trench 33 spreads. As shown in FIG. 18, the n-type region 38 has a shape covering the bottom of the trench 33 (that is, the shape of the n-type region 38 of the second embodiment shown in FIG. 12).
Through the above manufacturing steps, the semiconductor device according to the embodiment of the present invention is manufactured.
[0051]
In this manufacturing method, the semiconductor layer in a state before the trench 33 shown in FIG. 16 is formed is processed. That is, the semiconductor layer in a state where the p-type semiconductor region 30 is epitaxially grown on the p-type column region 24 and the n-type column region 26 is processed.
As described above, even when a semiconductor layer in which the semiconductor region 30 is formed on the p-type column region 24 and the n-type column region 26 is processed, the p-type column region 24 and the n-type column region 26 The n-type region 38 can be formed on the top (top) in an efficient manner. Also, according to this manufacturing method, when forming the n-type region 38, the mask 42 (see FIGS. 16 and 17) for forming the trench 33 can be used. Therefore, it is not necessary to newly add a mask. For this reason, the manufacturing process can be simplified.
[0052]
19 and 20 are explanatory views of a second method for manufacturing a semiconductor device according to an embodiment of the present invention. After forming the trench 33 and the like in the same manner as in the first manufacturing method, as shown in FIG. 19, an oxide film 44 is formed along the wall surface (side surface and bottom surface) of the trench 33 by a thermal oxidation method, a CVD method, or the like. Next, a nitride film 46 is formed by a CVD method or the like so as to cover the oxide film 44. Next, the oxide film 44 and the nitride film 46 located on the bottom portion of the trench 33 are removed by etching by RIE (Reactive Ion Etching) or the like. As a result, the oxide film 44 and the nitride film 46 are formed only on the side surfaces of the trench 33. Next, as shown in FIG. 20, an n-type impurity is ion-implanted to form an n-type region 38 in the same manner as in the first manufacturing method. Next, the oxide film 44 and the nitride film 46 on the side surfaces of the trench 33 are removed. Next, as in the case of the first manufacturing method, steps such as formation of a gate insulating film are performed.
[0053]
In some cases, the ion implantation angle of the n-type impurity for forming the n-type region 38 is deviated from the direction perpendicular to the bottom surface of the trench 33 and is oblique to the trench bottom surface. In this case, if the p-type semiconductor region 30 adjacent to the side surface of the trench 33 is exposed, an n-type impurity may be implanted into the semiconductor region 30. A channel is formed in the p-type semiconductor region 30 adjacent to the side surface of the trench 33. When an n-type impurity penetrates into a region where the channel is formed, a change in gate threshold voltage or the like may occur. On the other hand, in the above-described manufacturing method, ion implantation of an n-type impurity is performed after forming the oxide film 44 and the nitride film 46 covering the side surfaces of the trench 33. As a result, the oxide film 44 and the nitride film 46 can substantially prevent the intrusion of the n-type impurity into the p-type semiconductor region 30 adjacent to the side surface of the trench 33. Therefore, it is possible to suppress a change in the gate threshold voltage and the like caused by the n-type impurity entering the semiconductor region 30 adjacent to the side surface of the trench 33.
Note that even if only one of the oxide film 44 and the nitride film 46 covers the side surface of the trench 33, the effect of suppressing the intrusion of the n-type impurity can be obtained.
[0054]
FIG. 21 and FIG. 22 are explanatory views of a third method of manufacturing a semiconductor device according to the embodiment of the present invention. As shown in FIG. 21, a structure (super junction structure) in which p-type column regions 24 and n-type column regions 26 are alternately repeated is formed. Next, a mask (resist) 48 is applied to predetermined regions on the p-type column region 24 and the n-type column region 26. Next, by performing a trench photo process and mask etching, a region of the p-type column region 24 and the n-type column region 26 that extends in a direction in which these regions 24 and 26 are alternately and repeatedly formed is exposed from the mask 48. Let it. Next, an n-type impurity is ion-implanted from the exposed region to a predetermined depth. As a result, an n-type region 38 is formed. Next, heat treatment is performed to activate the n-type impurities in the n-type region 38. Next, as shown in FIG. 22, a p-type semiconductor region 30 is epitaxially grown on the p-type column region 24 and the n-type column region 26. Next, in the same manner as in the first manufacturing method, the semiconductor device according to the embodiment of the present invention is manufactured through steps such as formation of the trench 33.
[0055]
As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and alterations of the specific examples illustrated above.
In addition, the technical elements described in the present specification or the drawings exert technical utility singly or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Further, the technology exemplified in the present specification or the drawings can simultaneously achieve a plurality of objects, and has technical utility by achieving one of the objects.
[Brief description of the drawings]
FIG. 1 is a perspective view of a conventional first semiconductor device.
FIG. 2 shows a perspective view of a second conventional semiconductor device.
FIG. 3 is an explanatory view showing a case where no mask shift occurs when forming a trench in the second mode.
FIG. 4 is an explanatory view showing a case where a mask shift occurs when forming a trench in the second mode.
FIG. 5 is a perspective view of a third conventional semiconductor device.
FIG. 6 is a perspective view of a fourth conventional semiconductor device.
FIG. 7 is a perspective view of a structure obtained by performing a simulation as a conventional first semiconductor device.
FIG. 8A shows a current distribution at the time of turning on in a cross-sectional view taken along the line AA of FIG. 7; (B) shows the current distribution at the time of ON in the cross-sectional view taken along the line BB of FIG. 7. (C) shows the current distribution at the time of ON in the cross-sectional view taken along the line CC of FIG. 7.
9A shows a current distribution at the time of ON in a partially enlarged view of a cross-sectional view taken along the line AA of FIG. 7; (B) shows a current distribution at the time of ON in a partially enlarged view of a cross-sectional view taken along the line BB of FIG. 7. (C) shows a current distribution at the time of ON in a partially enlarged view of a cross-sectional view taken along line CC of FIG. 7.
10 shows a gate voltage (V) of the semiconductor device shown in FIG. G ) -Drain current (I D ) Shows the characteristics.
FIG. 11 is a perspective view of the semiconductor device according to the first embodiment of the present invention.
FIG. 12 is a perspective view of a semiconductor device according to a second embodiment of the present invention.
FIG. 13 is a perspective view of a structure simulated as an example of the present invention.
14 shows a current distribution when the semiconductor device shown in FIG. 13 is turned on.
FIG. 15 illustrates a gate voltage (V) of the semiconductor device illustrated in FIG. G ) -Drain current (I D ) Shows the characteristics.
FIG. 16 is an explanatory view of a first method for manufacturing a semiconductor device according to an example of the present invention (1).
FIG. 17 is an explanatory view of a first method for manufacturing a semiconductor device according to an example of the present invention (2).
FIG. 18 is an explanatory view (3) of the first manufacturing method of the semiconductor device according to the embodiment of the present invention;
FIG. 19 is an explanatory view of a second method for manufacturing a semiconductor device according to an example of the present invention (1).
FIG. 20 is an explanatory view (2) of a second method for manufacturing a semiconductor device according to an example of the present invention.
FIG. 21 is an explanatory view of a third method of manufacturing the semiconductor device according to the example of the present invention (1).
FIG. 22 is an explanatory view of a third method of manufacturing a semiconductor device according to an example of the present invention (2).
[Explanation of symbols]
20: drain electrode
21: Semiconductor section
22: n + Drain region
23: Super junction structure
24: p-type column region (an example of a first region)
26: n-type column region (an example of the second region)
28: n-type region (an example of a third region)
30: p-type body region
32: n + Type source area
34: Gate insulating film
36: Gate electrode

Claims (9)

トレンチが形成された半導体部と、トレンチの壁面に沿って形成されたゲート絶縁膜と、トレンチ内に形成されたゲート電極を備え、
半導体部は、第1導電型のボディ領域と、第1導電型の第1領域と、第2導電型の第2領域と、第2導電型の第3領域を有し、
ボディ領域は、ゲート電極にゲート絶縁膜を介して隣合う領域を有し、
第1領域は、平面視したときにゲート電極の奥行方向に対して非平行方向に伸びているとともにボディ領域に接しており、
第2領域は、平面視したときにゲート電極の奥行方向に対して非平行方向に伸びているとともに第1領域と隣合っており、
第3領域は、ゲート電極と第1領域の間に形成されている半導体装置。
A semiconductor portion in which the trench is formed, a gate insulating film formed along the wall surface of the trench, and a gate electrode formed in the trench;
The semiconductor unit has a body region of the first conductivity type, a first region of the first conductivity type, a second region of the second conductivity type, and a third region of the second conductivity type,
The body region has a region adjacent to the gate electrode via a gate insulating film,
The first region extends in a non-parallel direction with respect to the depth direction of the gate electrode when viewed in plan, and is in contact with the body region,
The second region extends in a non-parallel direction with respect to the depth direction of the gate electrode when viewed in plan and is adjacent to the first region,
A semiconductor device in which the third region is formed between the gate electrode and the first region.
第1領域と第2領域は、平面視したときにゲート電極の奥行方向に対してほぼ直交方向に伸びている請求項1に記載の半導体装置。2. The semiconductor device according to claim 1, wherein the first region and the second region extend in a direction substantially orthogonal to a depth direction of the gate electrode when viewed in a plan view. トレンチが形成された半導体部と、トレンチの壁面に沿って形成されたゲート絶縁膜と、トレンチ内に形成されたゲート電極を備え、
半導体部は、第1導電型のボディ領域と、第1導電型の第1領域と、第2導電型の第2領域と、第2導電型の第3領域を有し、
ボディ領域は、ゲート電極にゲート絶縁膜を介して隣合う領域を有し、
第1領域と第2領域は、平面視したときにゲート電極の奥行方向に対して非直交方向に交互に形成されており、
第3領域は、ゲート電極と第1領域の間に形成されている半導体装置。
A semiconductor portion in which the trench is formed, a gate insulating film formed along the wall surface of the trench, and a gate electrode formed in the trench;
The semiconductor unit has a body region of the first conductivity type, a first region of the first conductivity type, a second region of the second conductivity type, and a third region of the second conductivity type,
The body region has a region adjacent to the gate electrode via a gate insulating film,
The first region and the second region are alternately formed in a non-orthogonal direction with respect to the depth direction of the gate electrode when viewed in plan,
A semiconductor device in which the third region is formed between the gate electrode and the first region.
第1領域と第2領域は、平面視したときにゲート電極の奥行方向に対してほぼ平行方向に交互に形成されている請求項3に記載の半導体装置。4. The semiconductor device according to claim 3, wherein the first region and the second region are alternately formed in a direction substantially parallel to a depth direction of the gate electrode when viewed in a plan view. 第1領域は、ゲート電極の下方に位置する領域を有し、
第3領域は、ゲート電極の底面と第1領域の頂面の間に形成された領域を有する請求項1〜4のいずれかに記載の半導体装置。
The first region has a region located below the gate electrode,
The semiconductor device according to claim 1, wherein the third region has a region formed between a bottom surface of the gate electrode and a top surface of the first region.
第3領域の不純物濃度は、第1領域及び/又は第2領域の不純物濃度よりも高い請求項1〜5のいずれかに記載の半導体装置。The semiconductor device according to claim 1, wherein an impurity concentration of the third region is higher than an impurity concentration of the first region and / or the second region. 第1導電型の第1領域と第2導電型の第2領域上の半導体領域の一部を少なくとも除去して、平面視したときに第1領域と第2領域が伸びる方向に対して非平行方向に伸び、かつ、第1領域と第2領域が露出する深さまで達するトレンチを形成する工程と、
トレンチの底面に隣接する第1領域に第2導電型不純物を添加する工程を有する半導体装置の製造方法。
At least a part of the semiconductor region on the first region of the first conductivity type and the semiconductor region on the second region of the second conductivity type is removed, and is non-parallel to the direction in which the first region and the second region extend in plan view. Forming a trench extending in the direction and reaching a depth where the first region and the second region are exposed;
A method for manufacturing a semiconductor device, comprising: adding a second conductivity type impurity to a first region adjacent to a bottom surface of a trench.
トレンチを形成する工程では、半導体領域のうちトレンチを形成しない領域上をマスクで覆い、マスクで覆っていない領域を除去してトレンチを形成し、
第2導電型不純物を添加する工程では、半導体領域を前記マスクで覆ったままの状態で第2導電型不純物を添加する請求項7に記載の半導体装置の製造方法。
In the step of forming a trench, a region of the semiconductor region where the trench is not formed is covered with a mask, and the region not covered with the mask is removed to form a trench.
8. The method of manufacturing a semiconductor device according to claim 7, wherein in the step of adding the second conductivity type impurity, the second conductivity type impurity is added while the semiconductor region is covered with the mask.
トレンチの側面に隣合う半導体領域への第2導電型不純物の侵入を抑制するマスクでトレンチの側面を覆う工程を有する請求項7又は8に記載の半導体装置の製造方法。9. The method of manufacturing a semiconductor device according to claim 7, further comprising a step of covering the side surface of the trench with a mask that suppresses penetration of a second conductivity type impurity into a semiconductor region adjacent to the side surface of the trench. 10.
JP2002367716A 2002-12-19 2002-12-19 Semiconductor device and its manufacturing method Pending JP2004200441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002367716A JP2004200441A (en) 2002-12-19 2002-12-19 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367716A JP2004200441A (en) 2002-12-19 2002-12-19 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004200441A true JP2004200441A (en) 2004-07-15

Family

ID=32764520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367716A Pending JP2004200441A (en) 2002-12-19 2002-12-19 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004200441A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324432A (en) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2006351713A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Insulating-gate semiconductor device
JP2007173783A (en) * 2005-11-25 2007-07-05 Denso Corp Semiconductor device and its manufacturing method
JP2007180116A (en) * 2005-12-27 2007-07-12 Toyota Central Res & Dev Lab Inc Semiconductor device
DE102008023474A1 (en) 2007-05-14 2008-11-20 Denso Corp., Kariya-shi Semiconductor device with super-junction structure and method for its production
US7943991B2 (en) 2005-12-22 2011-05-17 Fuji Electric Systems Co., Ltd. Semiconductor device
US8080846B2 (en) 2006-06-15 2011-12-20 Fuji Electric Co., Ltd. Semiconductor device having improved breakdown voltage and method of manufacturing the same
WO2012108167A1 (en) * 2011-02-11 2012-08-16 Denso Corporation Silicon carbide semiconductor device and method for manufacturing the same
WO2012108165A1 (en) * 2011-02-11 2012-08-16 Denso Corporation Silicon carbide semiconductor device
CN118197923A (en) * 2024-05-20 2024-06-14 扬州扬杰电子科技股份有限公司 Silicon carbide MOSFET device capable of reducing trench gate oxide electric field and preparation method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324432A (en) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2006351713A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Insulating-gate semiconductor device
JP4735067B2 (en) * 2005-06-14 2011-07-27 トヨタ自動車株式会社 Insulated gate semiconductor device
JP2007173783A (en) * 2005-11-25 2007-07-05 Denso Corp Semiconductor device and its manufacturing method
US8125027B2 (en) 2005-12-22 2012-02-28 Fuji Electric Co., Ltd. Semiconductor device having trenches extending through channel regions
DE102006060374B4 (en) 2005-12-22 2018-06-28 Fuji Electric Co., Ltd. Semiconductor device
US7943991B2 (en) 2005-12-22 2011-05-17 Fuji Electric Systems Co., Ltd. Semiconductor device
JP2007180116A (en) * 2005-12-27 2007-07-12 Toyota Central Res & Dev Lab Inc Semiconductor device
US8080846B2 (en) 2006-06-15 2011-12-20 Fuji Electric Co., Ltd. Semiconductor device having improved breakdown voltage and method of manufacturing the same
DE102008023474A1 (en) 2007-05-14 2008-11-20 Denso Corp., Kariya-shi Semiconductor device with super-junction structure and method for its production
US8349693B2 (en) 2007-05-14 2013-01-08 Denso Corporation Method of manufacturing a semiconductor device having a super junction
US7915671B2 (en) 2007-05-14 2011-03-29 Denso Corporation Semiconductor device having super junction structure
WO2012108167A1 (en) * 2011-02-11 2012-08-16 Denso Corporation Silicon carbide semiconductor device and method for manufacturing the same
WO2012108165A1 (en) * 2011-02-11 2012-08-16 Denso Corporation Silicon carbide semiconductor device
JP2012169386A (en) * 2011-02-11 2012-09-06 Denso Corp Silicon carbide semiconductor device and method of manufacturing the same
CN102844867A (en) * 2011-02-11 2012-12-26 株式会社电装 Silicon carbide semiconductor device and method for manufacturing same
CN118197923A (en) * 2024-05-20 2024-06-14 扬州扬杰电子科技股份有限公司 Silicon carbide MOSFET device capable of reducing trench gate oxide electric field and preparation method

Similar Documents

Publication Publication Date Title
JP5586887B2 (en) Semiconductor device and manufacturing method thereof
JP4744958B2 (en) Semiconductor device and manufacturing method thereof
JP4738562B2 (en) Manufacturing method of semiconductor device
JP5767430B2 (en) Semiconductor device and manufacturing method of semiconductor device
CN105448712B (en) Method for manufacturing semiconductor device
JP2012169386A (en) Silicon carbide semiconductor device and method of manufacturing the same
JP2006073740A (en) Semiconductor device and its manufacturing method
JP2003069017A (en) Transistor and diode
JP4447474B2 (en) Semiconductor device and manufacturing method thereof
US7649222B2 (en) Semiconductor device
JP2009246225A (en) Semiconductor device
JP2017191817A (en) Method for manufacturing switching element
KR20160002642A (en) Semiconductor device and method of manufacturing the same
JP2004200441A (en) Semiconductor device and its manufacturing method
JP5168876B2 (en) Semiconductor device and manufacturing method thereof
JP5037103B2 (en) Silicon carbide semiconductor device
JP2009016480A (en) Semiconductor device, and manufacturing method of semiconductor device
JP2008306022A (en) Semiconductor device
JP4794546B2 (en) Semiconductor device and manufacturing method thereof
JP2009038214A (en) Semiconductor device
JP4952042B2 (en) Semiconductor device
JP2005197287A (en) Semiconductor device and its fabrication process
JP2006140239A (en) Semiconductor device and its manufacturing method
JP2006086549A (en) Field effect transistor and its manufacturing method
JP4146857B2 (en) Semiconductor device and manufacturing method thereof