JP2004200160A - Positive electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery - Google Patents

Positive electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery Download PDF

Info

Publication number
JP2004200160A
JP2004200160A JP2003407139A JP2003407139A JP2004200160A JP 2004200160 A JP2004200160 A JP 2004200160A JP 2003407139 A JP2003407139 A JP 2003407139A JP 2003407139 A JP2003407139 A JP 2003407139A JP 2004200160 A JP2004200160 A JP 2004200160A
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
lithium secondary
oxide
amorphous phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003407139A
Other languages
Japanese (ja)
Other versions
JP4292064B2 (en
Inventor
Yoshiaki Hamano
嘉昭 浜野
Hidefumi Konnai
秀文 近内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Mining Co Ltd filed Critical Kawatetsu Mining Co Ltd
Priority to JP2003407139A priority Critical patent/JP4292064B2/en
Publication of JP2004200160A publication Critical patent/JP2004200160A/en
Application granted granted Critical
Publication of JP4292064B2 publication Critical patent/JP4292064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode material for a lithium secondary battery which has high safety and a large capacity, which is superior in rate characteristics, and superior in charge and discharge efficiency. <P>SOLUTION: This positive electrode material is that in which Al is further added to Li-Ni-Co-Ba-O series raw material, and further preferably that in which oxide amorphous phase is added. This is a compound oxide in which the total composition is expressed by Li<SB>a</SB>Ni<SB>b</SB>Co<SB>c</SB>Ba<SB>d</SB>Al<SB>e</SB>O<SB>x</SB>or Li<SB>a</SB>Ni<SB>b</SB>Co<SB>c</SB>Ba<SB>d</SB>Al<SB>e</SB>M<SB>f</SB>O<SB>x</SB>, and M: is an element of one kind or more selected among a group composed of Na, K, Si, B and P, and a: is 1.0-1.2 mol, b: 0.5-0.95 mol, c: 0.05-0.5 mol, d: 0.0005-0.01 mol, e: 0.01-0.1 mol, and f: 0.01 mol or less (not containing O). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、リチウム二次電池用正極材料、その製造方法及びリチウム電池に関し、さらに詳しくは、Li−Ni−Co−Ba−O系の組成を有するリチウム二次電池用正極材料に改善を加えた新規な材料、その製造方法、及びこの新規な材料を用いたリチウム二次電池に関する。   The present invention relates to a positive electrode material for a lithium secondary battery, a method for producing the same, and a lithium battery. More specifically, the positive electrode material for a lithium secondary battery having a Li-Ni-Co-Ba-O-based composition has been improved. The present invention relates to a novel material, a method for producing the same, and a lithium secondary battery using the novel material.

近年、リチウム二次電池用正極材料は種々の改善が加えられ、高容量の二次電池用正極材料としてLi−Ni−Co−O系又はLi−Ni−Co−Ba−O系の組成を有する材料がある。   In recent years, the lithium secondary battery positive electrode material has been improved in various ways, and has a Li-Ni-Co-O-based or Li-Ni-Co-Ba-O-based composition as a high-capacity secondary battery positive electrode material. There are materials.

一例を挙げると、化学式Li1-X-aX Ni1-Y-bY2 で表される化合物である正極活物質がある。 As an example, there is a positive electrode active material is a compound represented by the chemical formula Li 1-Xa A X Ni 1 -Yb B Y O 2.

但し、A:ストロンチウムもしくはバリウム、又はマグネシウム、カルシウム、ストロ ンチウムおよびバリウムの中から選ばれた少なくとも2種のアルカリ土類金 属元素
B:Niを除く少なくとも1種の遷移金属元素
X:Aの総モル数を表し、0<X≦0.10
Y:Bの総モル数を表し、0<Y≦0.30
a:−0.10≦a≦0.10
b:−0.15≦b≦0.15
である(例えば、特許文献1参照。)。
A: strontium or barium, or at least two alkaline earth metal elements selected from magnesium, calcium, strontium and barium B: at least one transition metal element excluding Ni X: total of A Represents the number of moles and 0 <X ≦ 0.10
Y: represents the total number of moles of B, and 0 <Y ≦ 0.30
a: −0.10 ≦ a ≦ 0.10
b: -0.15 ≦ b ≦ 0.15
(For example, see Patent Document 1).

また、化学式Li1-X-aX Ni1-Y-bY2 で表される化合物からなる正極活物質であり、かつ、該正極活物質が平均粒径0.01μm以上、5.0μm以下である一次粒子の凝集体である二次粒子を形成しており、該二次粒子の平均粒径が5.0μm以上、50μm以下である正極活物質がある。 Further, a positive electrode active material comprising a compound represented by formula Li 1-Xa A X Ni 1 -Yb B Y O 2, and positive electrode active material average particle diameter of 0.01μm or more, below 5.0μm There is a positive electrode active material that forms secondary particles that are aggregates of certain primary particles and has an average particle diameter of 5.0 μm or more and 50 μm or less.

但し、
A:ストロンチウムまたはバリウム
B:少なくとも1種の遷移金属元素
X:Xはストロンチウムまたはバリウムの総モル数、0<X≦0.10
Y:Ni以外の全遷移金属元素の総モル数0<Y≦0.30
a:−0.10≦a≦0.10
b:−0.15≦b≦0.15
である(例えば、特許文献2参照。)。
However,
A: strontium or barium B: at least one transition metal element X: X is the total number of moles of strontium or barium, 0 <X ≦ 0.10
Y: Total number of moles of all transition metal elements other than Ni 0 <Y ≦ 0.30
a: −0.10 ≦ a ≦ 0.10
b: -0.15 ≦ b ≦ 0.15
(For example, see Patent Document 2).

これらの材料は、リチウム二次電池用正極に用いられた場合、二次電池のサイクル特性が優れているが、熱安定性や容量、レート特性、充放電効率および高温保存特性については言及していない。   When these materials are used for a positive electrode for a lithium secondary battery, the cycle characteristics of the secondary battery are excellent, but heat stability, capacity, rate characteristics, charge / discharge efficiency, and high-temperature storage characteristics are mentioned. Absent.

本発明者らは、リチウム二次電池用正極材料について研究を進め、Li−Ni−Co−Ba−O系の技術に対して、Ba量にさらに検討を加え、Ba含有量の狭い範囲において、熱安定性が高く、容量の大きい材料を提案している(例えば、特許文献3参照。)。
特開平9−17430号公報(第2−8頁) 特開平10−79250号公報(第2−7頁) 特願2001−173285号出願(第3−11頁)
The present inventors have conducted research on a cathode material for a lithium secondary battery, and further studied the amount of Ba with respect to the Li-Ni-Co-Ba-O-based technology. A material having a high thermal stability and a large capacity has been proposed (for example, see Patent Document 3).
JP-A-9-17430 (pages 2-8) JP-A-10-79250 (pages 2-7) Application for Japanese Patent Application No. 2001-173285 (pages 3-11)

本発明者らは、上記リチウム二次電池用正極材料の特性の改善についてさらに鋭意研究を進めた結果、さらに優れた特性を有する材料を開発するに至った。   The present inventors have conducted further intensive studies on the improvement of the characteristics of the positive electrode material for a lithium secondary battery, and as a result, have developed a material having more excellent characteristics.

本発明は、安全性が高く、容量が大きいとともに、レート特性、充放電効率および高温保存特性に優れた性能を有する新規なリチウム二次電池用正極材料、その製造方法及びリチウム二次電池を提供することを目的とする。   The present invention provides a novel cathode material for a lithium secondary battery having high safety, large capacity, and excellent performance in rate characteristics, charge / discharge efficiency, and high-temperature storage characteristics, a method for producing the same, and a lithium secondary battery. The purpose is to do.

本発明は、全体組成がLiaNibCocBadAlex で表される複合酸化物の粉末であることを特徴とするリチウム二次電池用正極材料である。
但し、
a/(b+c):1.0〜1.2
b/(b+c):0.5〜0.95
c/(b+c):0.05〜0.5
d/(b+c):0.0005〜0.01
e/(b+c):0.01〜0.1
b+c=1
x:特定しない
である。
The present invention is a positive electrode material for a lithium secondary battery, characterized by overall composition is a powder of composite oxide represented by Li a Ni b Co c Ba d Al e O x.
However,
a / (b + c): 1.0 to 1.2
b / (b + c): 0.5 to 0.95
c / (b + c): 0.05-0.5
d / (b + c): 0.0005 to 0.01
e / (b + c): 0.01 to 0.1
b + c = 1
x: Not specified.

Li−Ni−Co−Ba−O系複合酸化物にAlを0.01〜0.1モル配合することによって、充放電時に正極材内部又は表面におけるLiイオン拡散速度を向上させることにより、大電流における電池動作時でも容量の低下を防ぐ効果が認められる。このため、自動車用などのリチウム二次電池に必要な出力特性の向上を期待することができる。さらに、充電状態における結晶状態が良好になるため、高温環境下でも容量の劣化を防止する。   By mixing 0.01 to 0.1 mol of Al with the Li-Ni-Co-Ba-O-based composite oxide, the lithium ion diffusion rate inside or on the surface of the positive electrode material during charge / discharge is improved so that a large current can be obtained. The effect of preventing the capacity from being reduced even when the battery is operating in the above is recognized. Therefore, an improvement in output characteristics required for a lithium secondary battery for an automobile or the like can be expected. Further, since the crystal state in the charged state is improved, deterioration of the capacity is prevented even in a high temperature environment.

また、前記複合酸化物粒子に酸化物非晶質相が分散していると、電解液の浸透性が良く、放電容量、充放電効率の向上に効果がある。また、充放電による膨張収縮時でも正極材の崩壊を防ぐことにより、サイクル特性の改善が可能になる。さらに電極製造工程においてゲル化防止や電極密度の向上にも効果がある。   Further, when the oxide amorphous phase is dispersed in the composite oxide particles, the permeability of the electrolytic solution is good, which is effective in improving the discharge capacity and the charge / discharge efficiency. Further, by preventing collapse of the positive electrode material even during expansion and contraction due to charge and discharge, cycle characteristics can be improved. Further, it is effective in preventing gelation and improving the electrode density in the electrode manufacturing process.

前記酸化物非晶質相の構成成分が、Li、Ba及びAlからなる群から選ばれた1種又は2種以上の元素の酸化物であると、容易に酸化物非晶質相を形成させることができ好ましい。   When the constituent components of the oxide amorphous phase are oxides of one or more elements selected from the group consisting of Li, Ba, and Al, the oxide amorphous phase is easily formed. This is preferable.

さらに、本発明のリチウム二次電池用正極材料は、全体組成がLiaNibCocBadAlefxで表される複合酸化物であることを特徴とするリチウム二次電池用正極材料である。但し、ここで
M:Na、K、Si、B及びPからなる群から選ばれた1種又は
2種以上の元素
a/(b+c):1.0〜1.2
b/(b+c):0.5〜0.95
c/(b+c):0.05〜0.5
d/(b+c):0.0005〜0.01
e/(b+c):0.01〜0.1
f/(b+c):0.01以下(0を含まない)
b+c=1
x:特定しない
である。
Further, the positive electrode material for a lithium secondary battery of the present invention, for a lithium secondary battery which is a composite oxide entire composition is represented by Li a Ni b Co c Ba d Al e M f O x It is a positive electrode material. Here, M: one selected from the group consisting of Na, K, Si, B and P, or
Two or more elements a / (b + c): 1.0 to 1.2
b / (b + c): 0.5 to 0.95
c / (b + c): 0.05-0.5
d / (b + c): 0.0005 to 0.01
e / (b + c): 0.01 to 0.1
f / (b + c): 0.01 or less (excluding 0)
b + c = 1
x: Not specified.

以上のリチウム二次電池用正極材料は、次の本発明方法によって製造することができる。
(a)Li−Ni−Co−O系原料に、Ba及びAl原料を加えて焼成する。
(b)前記(a)の原料にさらに酸化物非晶質相を形成する成分を混合して焼成する。このことによって粉末粒子の内部に酸化物非晶質相が分散したリチウム二次電池用正極材料を製造することができる。
(c)前記(a)で焼成した後に、さらに酸化物非晶質相を形成する成分を混合して再度焼成する。このことによって粉末粒子の表面に酸化物非晶質相が分散して生成したリチウム二次電池用正極材料を製造することができる。
(d)前記(b)で焼成した後に、さらに酸化物非晶質相を形成する成分を混合して再度焼成することによって、粉末粒子の内部及び表面に酸化物非晶質相が分散したリチウム二次電池用正極材料を製造することができる。
The positive electrode material for a lithium secondary battery described above can be manufactured by the following method of the present invention.
(A) Ba and Al raw materials are added to a Li-Ni-Co-O-based raw material and fired.
(B) The raw material of (a) is further mixed with a component for forming an oxide amorphous phase and fired. Thus, a positive electrode material for a lithium secondary battery in which an oxide amorphous phase is dispersed inside powder particles can be manufactured.
(C) After firing in the step (a), components for forming an oxide amorphous phase are further mixed and fired again. As a result, a positive electrode material for a lithium secondary battery in which an oxide amorphous phase is dispersed on the surface of powder particles can be produced.
(D) After firing in the step (b), a component for forming an oxide amorphous phase is further mixed and fired again to obtain lithium in which the oxide amorphous phase is dispersed inside and on the surface of the powder particles. A positive electrode material for a secondary battery can be manufactured.

なお、本発明は、以上のいずれかのリチウム二次電池用正極材料から構成された正極を備えたことを特徴とするリチウム二次電池を提供する。   The present invention provides a lithium secondary battery including a positive electrode composed of any of the above positive electrode materials for a lithium secondary battery.

本発明によれば、安全性が高く、容量が大きく、出力特性、高温保存特性およびレート特性に優れ、充放電効率の高いリチウム二次電池用の正極材料を得ることができる。   According to the present invention, it is possible to obtain a positive electrode material for a lithium secondary battery having high safety, large capacity, excellent output characteristics, high-temperature storage characteristics and rate characteristics, and high charge / discharge efficiency.

本発明は、Li−Ni−Co−Ba−O系成分を主体とするリチウム二次電池用正極材料粉末であって、
(A)さらにAlを含有していること
(B)粒子内部に酸化物非晶質相が含まれていること
(C)粒子の表面に酸化物非晶質相が形成されていること
(D)粒子内部及び表面に酸化物非晶質相が形成されていること
を特徴とするリチウム二次電池用正極材料である。
The present invention is a positive electrode material powder for a lithium secondary battery mainly comprising a Li-Ni-Co-Ba-O-based component,
(A) Further containing Al (B) An oxide amorphous phase is contained inside the particles (C) An oxide amorphous phase is formed on the surface of the particles (D A) A positive electrode material for a lithium secondary battery, wherein an amorphous oxide phase is formed inside and on the surface of the particles.

Alは、適量を配合することによって、Li−Ni−Co−Ba−O系結晶内でLiイオンの拡散速度向上や高温下における結晶崩壊を防止する効果があると考えられるので、Alを配合した材料を正極に用いて、リチウム二次電池の出力特性やレート特性、高温下における保存特性およびサイクル特性を改善することが可能である。   Al is considered to have an effect of improving the diffusion rate of Li ions in the Li-Ni-Co-Ba-O-based crystal and preventing crystal collapse under high temperature by mixing an appropriate amount. By using the material for the positive electrode, it is possible to improve the output characteristics, rate characteristics, storage characteristics at high temperatures, and cycle characteristics of the lithium secondary battery.

また、酸化物非晶質相の作用に関しては、必ずしも明らかではないが、電解液の浸透性をよくするので、放電容量の向上に効果がある。また、充放電によるLi−Ni−Co−Ba−Al−O系複合酸化物結晶の膨張収縮時でも正極材の崩壊を防ぐことにより、サイクル特性の改善が可能となる。さらに電極製造工程において、ゲル化防止や電極密度の向上にも効果がある。   In addition, although the effect of the oxide amorphous phase is not necessarily clear, the permeability of the electrolytic solution is improved, which is effective in improving the discharge capacity. Further, even when the Li—Ni—Co—Ba—Al—O-based composite oxide crystal expands and contracts due to charge and discharge, the collapse of the positive electrode material is prevented, so that the cycle characteristics can be improved. Further, in the electrode manufacturing process, it is effective in preventing gelation and improving the electrode density.

尚、Li、Ba、及びAl等の元素は、Li−Ni−Co−Ba−Al−O系結晶内に含まれていても良いし、非晶質相を形成していても良い。また、Na、K、Si、B及びPについても同様である。   Note that elements such as Li, Ba, and Al may be contained in the Li-Ni-Co-Ba-Al-O-based crystal, or may form an amorphous phase. The same applies to Na, K, Si, B and P.

酸化物非晶質相の組成としては、Li、Ba及びAlからなる群から選ばれた1種又は2種以上の元素とする。酸化物非晶質相を形成する元素としては、これ以外にも前記Mの定義に含まれるNa、K、Si、BおよびPがあり、さらに例えば、Ca、Mg、Zn、Ti、Sr、Zr、S、Fe、Ge、As、W、Mo、Te、Fなどを含む。上記Li〜Alから成る群から選ばれた1種または2種以上の元素を含む酸化物非晶質相にその他の元素が複合されていてもよい。   The composition of the oxide amorphous phase is one or more elements selected from the group consisting of Li, Ba, and Al. Other elements forming the oxide amorphous phase include Na, K, Si, B and P included in the definition of M, and further include, for example, Ca, Mg, Zn, Ti, Sr, and Zr. , S, Fe, Ge, As, W, Mo, Te, F and the like. Other elements may be combined with the oxide amorphous phase containing one or more elements selected from the group consisting of Li to Al.

以下数値限定理由を説明する。   The reason for limiting the numerical values will be described below.

本発明は、従来から知られているLi−Ni−Co−Ba−O系成分を主体とするリチウム二次電池用正極材料粉末に改善を加えたものである。   The present invention is an improvement on a conventionally known positive electrode material powder for a lithium secondary battery mainly composed of a Li-Ni-Co-Ba-O-based component.

なお、以下の数値は本発明のリチウム二次電池用正極材料である複合酸化物の全体構成をLiaNibCocBadAlex 又はLiaNibCocBadAlefx と表したときに、NiとCoの合計が1モル(すなわちb+c=1)としたときのそれぞれの成分のモル数を示す。 In the following figures the overall structure of a composite oxide is a positive electrode material for a lithium secondary battery of the present invention Li a Ni b Co c Ba d Al e O x or Li a Ni b Co c Ba d Al e M f When expressed as O x , the number of moles of each component when the total of Ni and Co is 1 mole (that is, b + c = 1) is shown.

Liは、1.0〜1.2モルとする。Liが少ないとリチウム欠損が多い結晶構造となり、容量が低下する。多すぎると水酸化リチウムや炭酸リチウムなどを生成し、電極製造が困難となるため1.0〜1.2モルの範囲とする。   Li is 1.0 to 1.2 mol. When the amount of Li is small, the crystal structure has many lithium deficiencies, and the capacity is reduced. If the amount is too large, lithium hydroxide, lithium carbonate or the like is generated, and it becomes difficult to manufacture an electrode.

Coは、熱安定性を高めるが、多すぎると放電容量を低下させるため、0.05〜0.5モルとする。   Co enhances the thermal stability, but if it is too large, it reduces the discharge capacity.

Baは、熱安定性を向上させるために、0.0005〜0.01モルを含有させる。この範囲外では適正な熱安定性を得ることが困難である。   Ba is contained in an amount of 0.0005 to 0.01 mol in order to improve thermal stability. Outside this range, it is difficult to obtain appropriate thermal stability.

Alは0.01〜0.1モルとする。0.01モル未満であると、Liイオン拡散などの効果が少なく、0.1モルを超えて配分すると電池の容量の低下を招くので0.01〜0.1モルに限定した。   Al is 0.01 to 0.1 mol. When the amount is less than 0.01 mol, the effect of diffusion of Li ions is small, and when the amount is more than 0.1 mol, the capacity of the battery is reduced. Therefore, the amount is limited to 0.01 to 0.1 mol.

必要に応じて添加される酸化物非晶質相生成元素は全体では、0.01モル以下とする。0.01モルより多く添加すると、主に放電容量の低下を招くため、0.01モル以下にするのが望ましい。   The total amount of the oxide amorphous phase forming element added as necessary is 0.01 mol or less. Addition of more than 0.01 mol mainly causes a decrease in the discharge capacity.

Li−Ni−Co−Ba−Alの複合酸化物を製造するのに用いる原料としては、酸化物又は製造工程における合成時の焼成反応により酸化物となるものを用いることができる。   As a raw material used for manufacturing the composite oxide of Li-Ni-Co-Ba-Al, an oxide or an oxide which can be formed by a firing reaction at the time of synthesis in a manufacturing process can be used.

Li源としては、水酸化物、硝酸塩等が好ましい。   As the Li source, hydroxide, nitrate and the like are preferable.

Ni源とCo源としては酸化物、水酸化物、硝酸塩等を利用することができ、NiとCoとの均一な混合が重要となるため、例えば、湿式合成法によるNi−Co−(OH)2 が特に好ましい。そのNi−Co−(OH)2 は、Co/(Ni+Co)のモル比が0.05〜0.5で、平均粒径が5〜20μmの二次粒子で、タップ密度が1.8g/cm3以上であることが好ましい。このNi−Co−(OH)2 の形状は焼成反応後のLi−Ni−Co−Ba−Al複合酸化物の形状に反映される。また、Ni−Co−(OH)2 にLi、Na、K、Si、Ba、B、P及びAlなどの成分が含まれた物を使用することもできる。 Oxides, hydroxides, nitrates, and the like can be used as the Ni source and the Co source, and uniform mixing of Ni and Co is important. For example, Ni-Co- (OH) by a wet synthesis method is used. 2 is particularly preferred. The Ni—Co— (OH) 2 is a secondary particle having a Co / (Ni + Co) molar ratio of 0.05 to 0.5, an average particle diameter of 5 to 20 μm, and a tap density of 1.8 g / cm. It is preferably 3 or more. The shape of Ni-Co- (OH) 2 is reflected in the shape of the Li-Ni-Co-Ba-Al composite oxide after the firing reaction. Further, a material in which components such as Li, Na, K, Si, Ba, B, P, and Al are contained in Ni—Co— (OH) 2 can also be used.

Ba源としては、水酸化物、硝酸塩等が好ましく、Al源は酸化物、水酸化物、硝酸塩等が好ましい。   As the Ba source, a hydroxide, a nitrate or the like is preferable, and as the Al source, an oxide, a hydroxide, a nitrate or the like is preferable.

また、本発明は、さらに、Li−Ni−Co−Ba−Al−O系原料に、酸化物非晶質相を形成する成分を混合して焼成するか、又は、Li−Ni−Co−Ba−Al−O系原料を焼成した後に、さらに酸化物非晶質相を形成する成分を混合して再度焼成する。こうすると、粉末の内部に酸化物非晶質相が分散しているか又は粉末の表面に酸化物非晶質相が付着したリチウム二次電池用正極材料を製造することができる。   Further, the present invention further comprises mixing a component for forming an oxide amorphous phase with a Li-Ni-Co-Ba-Al-O-based raw material and firing the mixture, or After firing the -Al-O-based raw material, components for forming an oxide amorphous phase are further mixed and fired again. This makes it possible to produce a positive electrode material for a lithium secondary battery in which an oxide amorphous phase is dispersed in a powder or an oxide amorphous phase is attached to the surface of a powder.

また、Li−Ni−Co−Ba−Al−O系原料に、酸化物非晶質相を形成する成分を混合して焼成した後、さらに酸化物非晶質相を形成する成分を加えて再度焼成すると粒子の内部及び表面に酸化物非晶質相を生成したリチウム二次電池用正極材料を製造することができる。   In addition, after a component forming an oxide amorphous phase is mixed with a Li-Ni-Co-Ba-Al-O-based raw material and baked, a component forming an oxide amorphous phase is added, and the mixture is again formed. When calcined, a positive electrode material for a lithium secondary battery can be produced in which an oxide amorphous phase is formed inside and on the surface of the particles.

生成した酸化物非晶質相は、Li−Ni−Co−Ba−Al−O系原料の粒子中又は表面に点々と散在している。   The generated oxide amorphous phase is scattered throughout the particles or the surface of the Li—Ni—Co—Ba—Al—O-based raw material.

Li、Ba及びAl等の1種以上から成る酸化物系非晶質相を形成するための原料は、酸化物又は焼成により酸化物となるものを適用することができる。さらにLi、Na、K、Si、Ba、B、PおよびAl等の1種以上から成る酸化物系非晶質相を形成するための原料についても同様である。   As a raw material for forming an oxide-based amorphous phase composed of at least one of Li, Ba, and Al, an oxide or a material that becomes an oxide by firing can be used. Further, the same applies to a raw material for forming an oxide-based amorphous phase composed of one or more of Li, Na, K, Si, Ba, B, P, and Al.

Li、Baの硝酸塩は、焼成時において反応性が強く、非晶質相の形成を助けることと、酸化力も強いことから、主体のLi−Ni−Co−Ba−Al−O系化合物に結晶構造的な欠損を与えないことから、正極材として活性な特性が得られるので好適であるが、これに限定するものではない。Na、Kの硝酸塩も同様である。   Li and Ba nitrates have high reactivity during firing, help formation of an amorphous phase, and have strong oxidizing power. Therefore, the main structure of the Li-Ni-Co-Ba-Al-O-based compound is a crystal structure. However, the present invention is not limited to this, since active characteristics can be obtained as a positive electrode material because it does not cause any substantial loss. The same applies to the nitrates of Na and K.

また、AlとSiについてはBET比表面積が100m2/g以上の非晶質の微粒子が好適であるが、これに限定されるものではない。 For Al and Si, amorphous fine particles having a BET specific surface area of 100 m 2 / g or more are suitable, but not limited thereto.

なお、Li、Ba及びAl等の1種以上から成る酸化物系非晶質相は本発明の正極材料粉末にとって有効に作用するものである。この酸化物系非晶質相を形成するためには、上記の、酸化物又は焼成により酸化物となる原料を用いることができるが、あらかじめガラスを作製し、粉砕したガラスパウダーをLi−Ni−Co−Ba−Al−O系原料に添加することも可能である。   The oxide-based amorphous phase composed of at least one of Li, Ba, Al and the like effectively acts on the positive electrode material powder of the present invention. In order to form this oxide-based amorphous phase, the above-mentioned raw material which becomes an oxide or an oxide by firing can be used. However, glass is prepared in advance, and crushed glass powder is converted into Li-Ni- It is also possible to add it to a Co—Ba—Al—O-based raw material.

形成させる酸化物非晶質相の種類により、焼成温度は適宜選択するが、主体のLi−Ni−Co−Ba−Al−O系複合酸化物の電池特性を劣化させないように、焼成は900℃以下の酸化雰囲気であることが好ましい。Li、Na、K、Si、Ba、B、P及びAlの1種以上から成る酸化物系非晶質相についても同様のことがいえる。   The firing temperature is appropriately selected depending on the type of the oxide amorphous phase to be formed. However, the firing is performed at 900 ° C. so as not to deteriorate the battery characteristics of the main Li—Ni—Co—Ba—Al—O-based composite oxide. The following oxidizing atmosphere is preferable. The same can be said for an oxide-based amorphous phase composed of one or more of Li, Na, K, Si, Ba, B, P and Al.

(実施例1)
原料のNi源とCo源として、それぞれ、Co/(Ni+Co)=0.1、0.2、0.3のモル比に調整された3種のNi−Co−(OH)2 を湿式合成法によって作製した。その他の出発原料は、市販の薬品を使用した。それぞれ
Li源には、LiOH・H2
Na源には、NaNO3
K源には、KNO3
Ba源には、Ba(NO32
B源には、H3BO3
Al源には、Al(NO33・9H2
Si源には、SiO2
P源には、P25
を用いた。なお、SiO2 には非晶質の微粒子を用いた。
(Example 1)
Three types of Ni—Co— (OH) 2 adjusted to a molar ratio of Co / (Ni + Co) = 0.1, 0.2, and 0.3 as a Ni source and a Co source, respectively, by a wet synthesis method Produced by As other starting materials, commercially available chemicals were used. Each Li source is LiOH.H 2 O
Na source is NaNO 3
The K source is KNO 3
Ba source is Ba (NO 3 ) 2
B source is H 3 BO 3
The Al source, Al (NO 3) 3 · 9H 2 O
The Si source is SiO 2
P source is P 2 O 5
Was used. Note that amorphous fine particles were used for SiO 2 .

これらの出発原料を選択し、目的の配合組成になるように秤量後、十分に混合し、焼成用の原料とした。焼成は酸素雰囲気で行い、まず400℃で4時間保持し、主に原料中の水分を除去した後、5℃/分の昇温速度で表1に示す焼成温度と時間を保持し、冷却後炉内から焼成物を取り出した。取り出した焼成物を解砕し、正極材料粉末を得た。得られた粉末はレーザー回折法の粒度分布測定と化学分析を行った。粒度分布測定による平均粒度と化学分析値から、Ni+Co=1に対応する各元素のモル比を併せて表1に示す。   These starting materials were selected, weighed so as to have a desired composition, and then mixed well to obtain raw materials for firing. The calcination is performed in an oxygen atmosphere. First, the calcination is carried out at 400 ° C. for 4 hours. After mainly removing the moisture in the raw material, the calcination temperature and time shown in Table 1 are maintained at a rate of 5 ° C./min. The fired product was taken out of the furnace. The fired product taken out was crushed to obtain a positive electrode material powder. The obtained powder was subjected to laser diffraction particle size distribution measurement and chemical analysis. Table 1 also shows the molar ratio of each element corresponding to Ni + Co = 1 from the average particle size obtained by the particle size distribution measurement and the chemical analysis value.

次に、これらからリチウム二次電池用正極を製作し、後述のように電池特性を評価し、表2に示した。   Next, a positive electrode for a lithium secondary battery was manufactured from these, and the battery characteristics were evaluated as described below.

(比較例)
配合組成の変更以外は、原料の種類、焼成工程は実施例と同様に行った。
(Comparative example)
Except for changing the composition, the types of raw materials and the sintering process were the same as in the examples.

表1、表2に実施例と同様に成分、電池特性を示した。   Tables 1 and 2 show the components and battery characteristics as in the examples.

Figure 2004200160
Figure 2004200160

Figure 2004200160
Figure 2004200160

(実施例2)
実施例1No.1で使用した原料及び同様の焼成方法により、初期生成物を得た。その初期生成物に表3に示す添加成分を加え、酸素雰囲気で再度焼成し、解砕後、正極材料粉末を得た。レーザー回折法により平均粒径を求め、化学分析により各元素のモル比を求め表3に示す。
(Example 2)
Example 1 An initial product was obtained by the raw materials used in 1 and the same firing method. Additives shown in Table 3 were added to the initial product, fired again in an oxygen atmosphere, and crushed to obtain a positive electrode material powder. The average particle size was determined by a laser diffraction method, and the molar ratio of each element was determined by a chemical analysis.

No.8−No.11は粒子の表面に酸化物非晶質相が形成されたものであり、No.12−No.13は粒子の表面と内部に酸化物非晶質相が形成されているものである。   No. 8-No. No. 11 shows that an oxide amorphous phase was formed on the surface of the particles. 12-No. Reference numeral 13 denotes an oxide amorphous phase formed on the surface and inside of the particles.

次に、これらからリチウム二次電池用正極を製作し、後述のように電池特性を評価し、表4に示した。   Next, a positive electrode for a lithium secondary battery was manufactured from these, and the battery characteristics were evaluated as described below.

Figure 2004200160
Figure 2004200160

Figure 2004200160
Figure 2004200160

次に電池特性の評価方法を以下に示す。実施例、比較例で得られたリチウム二次電池用正極材料粉末90質量%と、アセチレンブラック5質量%及びポリフッ化ビニリデン5質量%に、N−メチル−2−ピロリドンを添加し、充分混練した後、20μm厚みのアルミニウム集電体に塗布・乾燥したものをロール型プレスで厚み80μmになるように加圧し、直径14mmに打ち抜きしたものを150℃にて15時間真空乾燥して正極とした。負極材料にはリチウム金属シートを用い、セパレータはポリプロピレン製多孔質膜を用いた。電解液には、エチレンカーボネート(EC)/ジメチルカーボネート(DMC)との体積比1:1の混合溶液1リットルにLiPF6を1モル溶解したものを用いた。アルゴン置換したグローブボックス内にて試験セルに組み立てた。1.0mA/cm2の定電流密度にて3.0〜4.2Vの間で充電容量と放電容量を求めた。さらに次式により初回の充放電効率を算出した。 Next, a method for evaluating battery characteristics will be described below. N-methyl-2-pyrrolidone was added to 90% by mass of the positive electrode material powder for a lithium secondary battery obtained in Examples and Comparative Examples, 5% by mass of acetylene black and 5% by mass of polyvinylidene fluoride, and kneaded sufficiently. Thereafter, a product coated and dried on a 20-μm-thick aluminum current collector was pressed by a roll-type press to a thickness of 80 μm, and a punched one having a diameter of 14 mm was vacuum-dried at 150 ° C. for 15 hours to obtain a positive electrode. A lithium metal sheet was used as the negative electrode material, and a polypropylene porous film was used as the separator. As the electrolytic solution, one obtained by dissolving 1 mol of LiPF 6 in 1 liter of a mixed solution of ethylene carbonate (EC) / dimethyl carbonate (DMC) at a volume ratio of 1: 1 was used. It was assembled into a test cell in a glove box replaced with argon. The charge capacity and the discharge capacity were determined between 3.0 and 4.2 V at a constant current density of 1.0 mA / cm 2 . Further, the first charge / discharge efficiency was calculated by the following equation.

初回充放電効率=(初回の放電容量)/(初回の充電容量)×100
レート特性の測定では、さらに5.0mA/cm2の定電流密度にて3.0〜4.2Vで充放電測定を行い次式により算出した。
Initial charge / discharge efficiency = (initial discharge capacity) / (initial charge capacity) × 100
In the measurement of the rate characteristics, charge / discharge measurement was further performed at a constant current density of 5.0 mA / cm 2 at 3.0 to 4.2 V, and calculated by the following equation.

レート特性(%)={(5.0mA/cm2での放電容量値)
/(1.0mA/cm2での放電容量値)}×100
サイクル特性は、同様の試験セルに組み立て、5.0mA/cm2の定電流密度にて3.0〜4.2Vの間で充放電測定を行い、100サイクルまで測定し、次式により算出した。
Rate characteristic (%) = {(discharge capacity value at 5.0 mA / cm 2 )
/ (Discharge capacity value at 1.0 mA / cm 2 )} 100
The cycle characteristics were measured by charging and discharging between 3.0 and 4.2 V at a constant current density of 5.0 mA / cm 2 by assembling the same test cells, measuring up to 100 cycles, and calculating by the following formula. .

サイクル特性(%)={(100サイクル目の放電容量値)
/(1サイクル目の放電容量値)}×100
高温保存特性は、レート特性測定と同様に試験セルを組み立て、5.0mA/cm2の定電流密度にて3.0〜4.2Vの間で充放電測定を行い、高温保存する前の放電容量を測定した後、5.0mA/cm2の定電流密度にて4.2Vまで8時間充電を行う。充電状態の試験セルを槽内60℃に調整した恒温槽の中で20日間、保存した後、試験セルを取出し、室温まで自然冷却をし、5.0mA/cm2の定電流密度にて3.0〜4.2Vの間で高温保存後の放電容量を測定し、次式により算出した。
Cycle characteristics (%) = {(discharge capacity value at 100th cycle)
/ (Discharge capacity value at first cycle)} × 100
For the high-temperature storage characteristics, a test cell was assembled in the same manner as the rate characteristics measurement, charge / discharge measurement was performed at a constant current density of 5.0 mA / cm 2 between 3.0 and 4.2 V, and discharge before high-temperature storage was performed. After measuring the capacity, the battery is charged at a constant current density of 5.0 mA / cm 2 to 4.2 V for 8 hours. After storing the charged test cell in a thermostat adjusted to 60 ° C. for 20 days in the bath, the test cell is taken out, naturally cooled to room temperature, and cooled at a constant current density of 5.0 mA / cm 2. The discharge capacity after high-temperature storage was measured between 0.0 and 4.2 V, and calculated by the following equation.

高温保存特性(%)={(高温保存後の放電容量値)
/(高温保存前の放電容量値)}×100
出力特性の測定方法は以下の通りである。実施例、比較例で得られたリチウム二次電池用正極材料粉末90質量%と、アセチレンブラック5質量%及びポリフッ化ビニリデン5質量%に、N−メチル−2−ピロリドンを添加し、充分混練した後、20μm厚みのアルミニウム集電体に塗布・乾燥したものをロール型プレスで厚み65μmになるように加圧し、直径10mmに打ち抜きしたものを150℃にて15時間真空乾燥して正極とした。負極材料にはリチウム金属シートを用い、セパレータはポリプロピレン製多孔質膜を用いた。電解液には、エチレンカーボネート(EC)/ジメチルカーボネート(DMC)との体積比1:1の混合溶液1リットルにLiPF6を1モル溶解したものを用いた。アルゴン置換したグローブボックス内にて試験セルに組み立てた。1.0mA/cm2 の定電流密度にて8時間、4.25Vまで定電流定電圧充電を行った後、1.0mA/cm2の定電流密度にて2.5Vまで放電を行ったときの放電深度50%において、電流密度3.0、6.0、9.0mA/cm2で10秒間放電したときの電圧を測定した。この時の電流値と電圧値の近似直線より内部抵抗Rと開放電圧V0を求め、正極電極における活物質質量をmとして出力特性W/gを次式から算出した。
High-temperature storage characteristics (%) = {(discharge capacity value after high-temperature storage)
/ (Discharge capacity value before high temperature storage)} × 100
The measuring method of the output characteristics is as follows. N-methyl-2-pyrrolidone was added to 90% by mass of the positive electrode material powder for a lithium secondary battery obtained in Examples and Comparative Examples, 5% by mass of acetylene black and 5% by mass of polyvinylidene fluoride, and kneaded sufficiently. Thereafter, a product coated and dried on an aluminum current collector having a thickness of 20 μm was pressed by a roll-type press so as to have a thickness of 65 μm, and a punched product having a diameter of 10 mm was vacuum dried at 150 ° C. for 15 hours to obtain a positive electrode. A lithium metal sheet was used as the negative electrode material, and a polypropylene porous film was used as the separator. As the electrolytic solution, one obtained by dissolving 1 mol of LiPF 6 in 1 liter of a mixed solution of ethylene carbonate (EC) / dimethyl carbonate (DMC) at a volume ratio of 1: 1 was used. It was assembled into a test cell in a glove box replaced with argon. 8 hours at a constant current density of 1.0 mA / cm 2, after the constant-current constant-voltage charge to 4.25 V, when performing discharge at a constant current density of 1.0 mA / cm 2 to 2.5V At a discharge depth of 50% at a current density of 3.0, 6.0, 9.0 mA / cm 2 for 10 seconds, the voltage was measured. The open circuit voltage V 0 and the internal resistance R from the approximate straight line of the current and voltage values at this time was determined and calculated output characteristic W / g active material mass in the positive electrode as m the following equation.

W/g=V0×2.5/R/m
釘さし試験用電池は下記のように試作を行った。
W / g = V 0 × 2.5 / R / m
Prototypes of the nail test battery were produced as follows.

実施例1で合成したリチウム二次電池用正極材料粉89質量%と、アセチレンブラック6質量%及びポリフッ化ビニリデン5質量%を混合し、N−メチル−2−ピロリドンを添加し、充分混練した後、これを20μm厚みのアルミニウム集電体に塗布し乾燥し加圧して正極を作製した。負極はカーボンブラック92質量%、アセチレンブラック3質量%及びポリフッ化ビニリデン5質量%に、N−メチル−2−ピロリドンを添加し、充分混練した後、これを14μm厚みの銅集電体に塗布し乾燥し加圧して作製した。正極及び負極のそれぞれの電極厚みは75μm及び100μmであった。電解液には、エチレンカーボネート(EC)/ジメチルカーボネート(DMC)との体積比1:1の混合溶液1リットルにLiPF6を1モル溶解したもので、セパレータはポリプロピレン製多孔質膜、アルミニウムラミネートを用いて、60mm×35mm×厚み4mm寸法の角形電池を試作した。160mAの電流値で4.2Vまで充電し、同じ電流値で3.0Vまで放電容量を測定した結果、780mAhであった。 After mixing 89% by mass of the positive electrode material powder for a lithium secondary battery synthesized in Example 1, 6% by mass of acetylene black and 5% by mass of polyvinylidene fluoride, N-methyl-2-pyrrolidone was added and kneaded sufficiently. This was applied to an aluminum current collector having a thickness of 20 μm, dried and pressed to produce a positive electrode. The negative electrode was prepared by adding N-methyl-2-pyrrolidone to 92% by mass of carbon black, 3% by mass of acetylene black and 5% by mass of polyvinylidene fluoride, kneading the mixture sufficiently, and applying the mixture to a 14 μm thick copper current collector. It was made by drying and pressing. The thicknesses of the positive electrode and the negative electrode were 75 μm and 100 μm, respectively. The electrolytic solution was prepared by dissolving 1 mol of LiPF 6 in 1 liter of a mixed solution of ethylene carbonate (EC) / dimethyl carbonate (DMC) at a volume ratio of 1: 1. The separator was a porous polypropylene film and an aluminum laminate. A prismatic battery having a size of 60 mm × 35 mm × thickness of 4 mm was prototyped. The battery was charged up to 4.2 V at a current value of 160 mA, and the discharge capacity was measured up to 3.0 V at the same current value. As a result, it was 780 mAh.

実施例No.4、9、11および13と比較例2、5、6もこれと同じ方法で、各条件で合成したリチウム二次電池用正極材料粉末について電池を作製した。   Example No. In the same manner as in 4, 9, 11, and 13 and Comparative Examples 2, 5, and 6, batteries were produced using the positive electrode material powder for a lithium secondary battery synthesized under each condition.

釘さし試験は電池を160mA電流値で、4.2Vまで定電流、定電圧にて8時間充電した後、電池の中央部に直径2.5mmの釘を15mm/秒の速度で貫通させ、この時の電池の状態を観察した。発煙、発火、破裂がない場合は合格とし、発煙、発火などが認められたときは不合格とした。   In the nailing test, the battery was charged at a constant current of 4.2 mA at a constant current of 4.2 mA for 8 hours at a constant voltage of 8 mA, and then a nail having a diameter of 2.5 mm was passed through the center of the battery at a speed of 15 mm / sec. The state of the battery at this time was observed. If there was no smoking, ignition, or rupture, the test was accepted. If smoke, ignition, etc. was recognized, the test was rejected.

Claims (15)

全体組成がLiaNibCocBadAlex で表される複合酸化物の粉末であることを特徴とするリチウム二次電池用正極材料。
但し、
a/(b+c):1.0〜1.2
b/(b+c):0.5〜0.95
c/(b+c):0.05〜0.5
d/(b+c):0.0005〜0.01
e/(b+c):0.01〜0.1
b+c=1
x:特定しない
である。
Total composition Li a Ni b Co c Ba d Al e O positive electrode material for a lithium secondary battery, which is a powder of composite oxide represented by x.
However,
a / (b + c): 1.0 to 1.2
b / (b + c): 0.5 to 0.95
c / (b + c): 0.05-0.5
d / (b + c): 0.0005 to 0.01
e / (b + c): 0.01 to 0.1
b + c = 1
x: Not specified.
前記複合酸化物の粉末粒子の内部に酸化物非晶質相が分散して形成されていることを特徴とする請求項1記載のリチウム二次電池用正極材料。 2. The positive electrode material for a lithium secondary battery according to claim 1, wherein an oxide amorphous phase is dispersed and formed inside the composite oxide powder particles. 前記複合酸化物の粉末粒子の表面に酸化物非晶質相が形成されていることを特徴とする請求項1記載のリチウム二次電池用正極材料。 The positive electrode material for a lithium secondary battery according to claim 1, wherein an oxide amorphous phase is formed on surfaces of the composite oxide powder particles. 前記複合酸化物の粉末粒子の内部に酸化物非晶質相が分散して形成されると共に、粒子の表面に酸化物非晶質相が形成されていることを特徴とする請求項1記載のリチウム二次電池用正極材料。 The oxide amorphous phase is dispersed and formed inside the powder particles of the composite oxide, and the oxide amorphous phase is formed on the surface of the particles. Positive electrode material for lithium secondary batteries. 前記酸化物非晶質相の構成成分が、Li、Ba及びAlからなる群から選ばれた1種又は2種以上の元素の酸化物であることを特徴とする請求項2〜4の何れかに記載のリチウム二次電池用正極材料。 The constituent component of the oxide amorphous phase is an oxide of one or two or more elements selected from the group consisting of Li, Ba, and Al. 4. The positive electrode material for a lithium secondary battery according to 1. 全体組成がLiaNibCocBadAlefx で表される複合酸化物であることを特徴とするリチウム二次電池用正極材料。
但し、
M:Na、K、Si、B及びPからなる群から選ばれた1種又は
2種以上の元素
a/(b+c):1.0〜1.2
b/(b+c):0.5〜0.95
c/(b+c):0.05〜0.5
d/(b+c):0.0005〜0.01
e/(b+c):0.01〜0.1
f/(b+c):0.01以下(0を含まない)
b+c=1
x:特定しない
である。
Total composition Li a Ni b Co c Ba d Al e M f O positive electrode material for a lithium secondary battery which is a composite oxide represented by x.
However,
M: one selected from the group consisting of Na, K, Si, B and P or
Two or more elements a / (b + c): 1.0 to 1.2
b / (b + c): 0.5 to 0.95
c / (b + c): 0.05-0.5
d / (b + c): 0.0005 to 0.01
e / (b + c): 0.01 to 0.1
f / (b + c): 0.01 or less (excluding 0)
b + c = 1
x: Not specified.
前記複合酸化物が粉末であって、その粉末粒子の内部に酸化物非晶質相が分散して形成されていることを特徴とする請求項6記載のリチウム2次電池用正極材料。 7. The positive electrode material for a lithium secondary battery according to claim 6, wherein the composite oxide is a powder, and an oxide amorphous phase is dispersed and formed inside the powder particles. 前記複合酸化物が粉末であって、その粉末粒子の表面に酸化物非晶質相が形成されていることを特徴とする請求項6記載のリチウム2次電池用正極材料。 7. The positive electrode material for a lithium secondary battery according to claim 6, wherein the composite oxide is a powder, and an oxide amorphous phase is formed on the surface of the powder particles. 前記複合酸化物が粉末であって、その粉末粒子の内部に酸化物非晶質相が分散して形成されていると共に、その粉末粒子の表面に酸化物非晶質相が形成されていることを特徴とする請求項6記載のリチウム2次電池用正極材料。 The composite oxide is a powder, and the oxide amorphous phase is dispersed and formed inside the powder particles, and the oxide amorphous phase is formed on the surface of the powder particles. The positive electrode material for a lithium secondary battery according to claim 6, wherein: Li−Ni−Co−O系原料に、Ba及びAl原料を加えて焼成することを特徴とするリチウム二次電池用正極材料の製造方法。 A method for producing a positive electrode material for a lithium secondary battery, comprising adding a Ba material and an Al material to a Li-Ni-Co-O-based material and calcining the material. Li−Ni−Co−O系原料にBa及びAl原料に加えてNa、K、Si、B及びP原料の1種以上を混合して焼成することを特徴とするリチウム二次電池用正極材料の製造方法。 A cathode material for a lithium secondary battery, characterized by mixing and firing one or more of Na, K, Si, B and P materials in addition to Ba and Al materials to a Li-Ni-Co-O-based material. Production method. Li−Ni−Co−O原料にBa原料、Al原料及び酸化物非晶質相を形成する原料を加えて焼成することを特徴とするリチウム二次電池用正極材料の製造方法。 A method for producing a positive electrode material for a lithium secondary battery, comprising adding a Ba raw material, an Al raw material, and a raw material for forming an oxide amorphous phase to a Li-Ni-Co-O raw material and firing the resultant. Li−Ni−Co−O原料にBa及びAl原料を加えて焼成した後に、さらに酸化物非晶質相を形成する原料を混合して再度焼成することを特徴とするリチウム二次電池用正極材料の製造方法。 A cathode material for a lithium secondary battery, characterized in that, after adding Ba and Al raw materials to a Li-Ni-Co-O raw material and firing, a raw material for forming an oxide amorphous phase is further mixed and fired again. Manufacturing method. Li−Ni−Co−O原料にBa原料、Al原料及び酸化物非晶質相を形成する原料を加えて焼成した後に、さらに酸化物非晶質相を形成する原料を混合して再度焼成することを特徴とするリチウム二次電池用正極材料の製造方法。 After adding a Ba raw material, an Al raw material and a raw material for forming an oxide amorphous phase to a Li-Ni-Co-O raw material and firing, the raw material for forming an oxide amorphous phase is further mixed and fired again. A method for producing a positive electrode material for a lithium secondary battery, comprising: 請求項1〜9記載のいずれかに記載のリチウム二次電池用正極材料からなる正極を備えたことを特徴とするリチウム二次電池。 A lithium secondary battery comprising a positive electrode made of the positive electrode material for a lithium secondary battery according to claim 1.
JP2003407139A 2002-12-06 2003-12-05 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery Expired - Lifetime JP4292064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407139A JP4292064B2 (en) 2002-12-06 2003-12-05 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002355936 2002-12-06
JP2003407139A JP4292064B2 (en) 2002-12-06 2003-12-05 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004200160A true JP2004200160A (en) 2004-07-15
JP4292064B2 JP4292064B2 (en) 2009-07-08

Family

ID=32775108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407139A Expired - Lifetime JP4292064B2 (en) 2002-12-06 2003-12-05 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4292064B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258002A (en) * 2012-06-12 2013-12-26 National Institute Of Advanced Industrial & Technology Crystalline aluminoborate exhibiting lithium ion conductivity
WO2014097569A1 (en) * 2012-12-21 2014-06-26 Jfeミネラル株式会社 Positive electrode material for lithium secondary batteries
JP2018041746A (en) * 2017-12-05 2018-03-15 Jfeミネラル株式会社 Positive electrode material for lithium secondary battery
WO2020170763A1 (en) * 2019-02-19 2020-08-27 Jfeスチール株式会社 Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258002A (en) * 2012-06-12 2013-12-26 National Institute Of Advanced Industrial & Technology Crystalline aluminoborate exhibiting lithium ion conductivity
WO2014097569A1 (en) * 2012-12-21 2014-06-26 Jfeミネラル株式会社 Positive electrode material for lithium secondary batteries
JP2014123529A (en) * 2012-12-21 2014-07-03 Jfe Mineral Co Ltd Positive electrode material for lithium secondary battery
TWI511360B (en) * 2012-12-21 2015-12-01 Jfe Mineral Co Ltd Positive electrode material for lithium secondary battery and method for producing the same and lithium secondary battery
JP2018041746A (en) * 2017-12-05 2018-03-15 Jfeミネラル株式会社 Positive electrode material for lithium secondary battery
WO2020170763A1 (en) * 2019-02-19 2020-08-27 Jfeスチール株式会社 Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell
JPWO2020170763A1 (en) * 2019-02-19 2021-03-11 Jfeスチール株式会社 Positive electrode active material for lithium ion secondary batteries and lithium ion secondary batteries
JP7303273B2 (en) 2019-02-19 2023-07-04 Jfeスチール株式会社 Method for producing positive electrode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP4292064B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4998753B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP5618116B2 (en) Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material
JP5482977B2 (en) Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP2014123529A (en) Positive electrode material for lithium secondary battery
JP2020510971A5 (en)
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP2004253169A (en) Lithium secondary battery and manufacturing method of positive electrode active material used therefor
JP2009152214A (en) Positive electrode active material for lithium secondary battery, and manufacturing method therefor
JP2010064944A5 (en)
JP3943168B2 (en) Lithium composite oxide, method for producing the same, and positive electrode active material for lithium secondary battery
US8029930B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP6142868B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6749884B2 (en) Positive electrode material for lithium secondary batteries
KR101196962B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4292064B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4362355B2 (en) Positive electrode material powder for lithium secondary battery and lithium secondary battery
JP4305613B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004087278A (en) Manufacturing method of lithium secondary battery and positive electrode active material used for it
JP5926746B2 (en) Oxide and method for producing the same
JP3770569B2 (en) Lithium composite oxide, method for producing the same, and positive electrode active material for lithium secondary battery
JPH10106565A (en) Positive electrode active material for non-aqueous electrolyte battery and manufacture therefor
JPH10188954A (en) Lithium battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Ref document number: 4292064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term