JP2004200058A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2004200058A
JP2004200058A JP2002368424A JP2002368424A JP2004200058A JP 2004200058 A JP2004200058 A JP 2004200058A JP 2002368424 A JP2002368424 A JP 2002368424A JP 2002368424 A JP2002368424 A JP 2002368424A JP 2004200058 A JP2004200058 A JP 2004200058A
Authority
JP
Japan
Prior art keywords
storage device
power storage
pitch
positive electrode
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002368424A
Other languages
Japanese (ja)
Other versions
JP4139960B2 (en
Inventor
Kentaro Nakahara
謙太郎 中原
Jiro Iriyama
次郎 入山
Shigeyuki Iwasa
繁之 岩佐
Yukiko Morioka
森岡  由紀子
Masahiro Suguro
雅博 須黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002368424A priority Critical patent/JP4139960B2/en
Publication of JP2004200058A publication Critical patent/JP2004200058A/en
Application granted granted Critical
Publication of JP4139960B2 publication Critical patent/JP4139960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high output power storage device which has a small irreversible capacitance. <P>SOLUTION: The power storage device has a positive electrode containing a nitroxyl compound which turns into a N-oxo-ammonium cation partial substructure as shown by formula (I) in the oxidation state and turns into a nitroxyl radical partial substructure as shown by formula (II) in the reduction state, and uses a reaction shown by reaction formula (A) that performs electron transfer between above two states as a positive electrode reaction. A negative electrode contains active carbon covered by pitch. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高出力・高エネルギー密度の蓄電デバイスに関するものである。
【0002】
【従来の技術】
高出力電子機器、電気自動車などの市場拡大に伴い、これらに用いられる高出力の蓄電デバイスが求められている。これまで、ニッケル水素電池や鉛蓄電池、電気二重層キャパシタ等の蓄電デバイスが、高出力を必要とするバックアップ電源や高出力電子機器電源、電気自動車用電源として利用されてきた。しかし、エネルギー密度が小さいため、十分に小型軽量化することは困難であった。
【0003】
例えば特許文献1において、酸化状態にオキソアンモニウムカチオン部分構造をとり、還元状態においてニトロキシルラジカル部分構造をとるニトロキシル化合物を電極中に含有し、その2つの状態間で電子の授受を行う反応を電極反応として用いる蓄電デバイスが、高エネルギー密度の蓄電デバイスとして提案されている。このデバイスを用いると、高い出力で使用する蓄電デバイスをより小型軽量化することが可能である。
【0004】
この蓄電デバイスにおいて使用する負極として、リチウム金属やグラファイト系負極、活性炭が提案されている。特に、負極として活性炭を用いた蓄電デバイスは、高出力領域において高いエネルギー密度を示すことが期待されている。このような利点を有する一方、表面積の大きな活性炭を負極として使用した場合、活性炭表面で電解液の分解が起こり、不可逆容量が大きくなる傾向があるという点で不利であり、この点において更なる改善の余地があった。
【0005】
【特許文献1】
特開2002−304996号公報
【0006】
【発明が解決しようとする課題】
本発明は、不可逆容量の小さな高出力蓄電デバイスを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、酸化状態において式(I)で示されるN−オキソ−アンモニウムカチオン部分構造をとり、還元状態において式(II)で示されるニトロキシルラジカル部分構造をとるニトロキシル化合物を正極中に含有し、その2つの状態間で電子の授受を行う反応式(A)で示される反応を正極反応として用いる蓄電デバイスにおいて、ピッチで被覆された活性炭を含有する負極を有することを特徴とする蓄電デバイスである。
【0008】
【化2】

Figure 2004200058
【0009】
前記ピッチで被覆された活性炭が、500m2/g以上3000m2/g以下の比表面積を有する活性炭がピッチで被覆されたものであることが好ましい。
【0010】
【発明の実施の形態】
本発明における蓄電デバイスは、少なくとも正極と負極、電解質を有し、化学的に蓄えられたエネルギーを電気エネルギーの形で取り出すことのできるデバイスのことである。蓄電デバイスとして、一次電池および充放電可能な二次電池、キャパシタおよびコンデンサ等の電気容量デバイス等を挙げることができる。尚、蓄電デバイスにおいて正極とは、酸化還元電位が貴な電極のことであり、負極とは逆に酸化還元電位が卑な方の電極のことである。
【0011】
活性炭は、吸着性の強い、大部分が炭素質からなる非晶質の炭である。木材、褐炭、泥炭などを塩化亜鉛、リン酸などの活性化剤で処理して乾留する、あるいは木炭などを水蒸気で活性化することによって製造される。表面積の広さを活かして、溶剤の精製、ガスの精製、脱臭、汚染物質の除去、キャパシタ用電極などとして利用されている。
【0012】
本発明における活性炭の比表面積としては、十分に大きな容量を示すために、ピッチによって被覆されていない状態で、好ましくは500m2/g以上、より好ましくは1500m2/g以上であることが望まれる。また不可逆容量を小さくし電子導電性を高める観点から、好ましくは3000m2/g以下、より好ましくは2500m2/g以下であることが望まれる。
【0013】
ピッチは、石油、石炭、木材などの有機物質の乾留によって得られるタールを蒸留したときにおける、釜残油の総称である。
【0014】
本発明における、ピッチで表面を覆った活性炭は、例えば、H.Kinoshita et.al.,The 41st Battery Symposiumin Japan,562,2000、A.Yoshino et.al.,The 43rd Battery Symposium in Japan,458,2002、H.Satake et.al.,The 43rd Battery Symposium in Japan,460,2002、Y.Okano et.al.,The 43rd Battery Symposiumin Japan,462,2002等に記載される方法に準じて作製することができる。
【0015】
本発明におけるピッチで表面を被覆した活性炭を含有する負極には、他に、負極活物質や導電性付与剤、バインダー、触媒効果を示す化合物等を含有させることができる。
【0016】
本発明における負極には、従来公知の負極活物質を含有させることができる。例えば、ピッチ処理していない活性炭やハードカーボン等の炭素材料、グラファイト、カーボンブラック、アセチレンブラック、リチウム金属またはリチウム合金等のリチウムイオン吸蔵炭素、その他各種の金属単体または合金、ポリアセチレン、ポリフェニレン、ポリアニリン、ポリピロール等の導電性高分子、硫黄、ジスルフィド化合物等が挙げられる。導電性付与剤としては、例えばカーボンブラック、アセチレンブラック等の炭素材料、金属粉などが挙げられる。バインダーとしては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド等が挙げられる。
【0017】
正極中に含有されるニトロキシル化合物は、反応式(B)で示されるように、電子の授受により式(I)〜(III)の状態を取りうる。
【0018】
【化3】
Figure 2004200058
【0019】
本発明では、その中でも式(I)と(II)の間の反応を正極の電極反応として用いて、それに伴う電子の蓄積と放出により蓄電デバイスとして機能させるものである。この酸化還元反応は、有機化合物の構造変化を伴わない反応機構であるため反応速度が大きく、従って本発明の蓄電デバイスは一度に大きな電流を流すことが可能である。
【0020】
本発明におけるニトロキシル化合物は従来公知のものを用いることができる。このような化合物としては、例えばラジカル状態において、脂環式ニトロキシラジカル構造を有するものや、脂肪族ニトロキシルラジカル構造を有するものや、芳香族ニトロキシルラジカル構造を有するものが挙げられる。脂環式ニトロキシラジカル構造を有するものとしては、例えば、2,2,6,6−テトラメチルピペリジノキシラジカル構造、2,2,5,5−テトラメチルピロリジノキシラジカル構造、2,2,5,5−テトラメチルピロリノロキシラジカル構造を有するものが挙げられる。特に、前記2,2,6,6−テトラメチルピペリジノキシラジカル構造を持つものの中でも、安定性の観点から、ポリ(2,2,6,6−テトラメチルピペリジノキシラジカルメタクリレート)が好ましい。脂肪族ニトロキシルラジカル構造を有するものとしては、例えば置換もしくは無置換のジターシャリーブチルニトロキシルラジカル構造を有するものが挙げられ、芳香族ニトロキシルラジカル構造を有するものとしては、置換もしくは無置換のジフェニルニトロキシルラジカル構造、および置換もしくは無置換のターシャリーブチルフェニルニトロキシルラジカル構造を有するものが挙げられる。これらニトロキシル化合物は、例えばN.Nakahara et.al.,Chem.Phys.Lett.,359,351,2002等に準じて合成することができる。
【0021】
本発明における正極中には、さらに蓄電デバイス電極材料として従来公知の正極活物質や導電性補助剤、バインダー等を含んでもよい。従来公知の正極活物質としては、例えばLiMnO2、LiCoO2、LiNiO2、あるいはLix25(0<x<2)等の金属酸化物、導電性高分子、活性炭等が挙げられる。導電補助剤として活性炭やグラファイト、カーボンブラック、アセチレンブラック等の炭素材料、ポリアセチレン、ポリフェニレン、ポリアニリン、ポリピロール等の導電性高分子が挙げられる。また、バインダーとしてポリフッ化ビニリデン、ポリテトラフルオロエチレン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド等の樹脂を挙げることができる。その他ジスルフィド化合物や触媒効果を示す化合物、イオン導電性高分子等を適宜含有しても良い。
【0022】
本発明における蓄電デバイス構造の一例を図1に示す。図に示された蓄電デバイスは負極3と正極5とを電解質を含むセパレータ4を介して重ね合わせた構成を有している。
【0023】
本発明の蓄電デバイスには、従来公知の電解質を用いることができる。例えば電解質塩を有機溶剤に溶解した電解液を利用することができる。このような溶剤としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート系溶媒、γ−ブチロラクトン等のエステル系溶媒、テトラヒドロフラン、ジオキソラン等のエーテル系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド系溶媒が挙げられる。本発明ではこれらの溶剤を単独もしくは2種類以上混合して用いることもできる。
【0024】
また、電解質塩としては、例えばリチウム塩や四級アンモニウム塩、四級ホスホニウム塩等が挙げられる。リチウム塩としては、例えばLiBr,LiCl,LiF等のハロゲン化リチウム塩、LiPF6、LiBF4等の無機ハロゲン化物リチウム塩、LiClO4等の過ハロゲン酸リチウム塩、LiN(C25SO22、LiN(CF3SO22等のイミドリチウム塩、LiC(CF3SO23等のメチドリチウム塩等が挙げられる。四級アンモニウム塩としては、テトラメチルアンモニウムテトラフルオロボレート、テトラメチルアンモニウムテトラフルオロホスフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムテトラフルオロホスフェート、テトラブチルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムテトラフルオロホスフェート等が挙げられる。四級ホスホニウム塩としては、テトラエチルホスホニウムテトラフルオロボレート等が挙げられる。
【0025】
図1に示した蓄電デバイスの構造では、セパレータ4に電解質を含ませて使用される。
【0026】
また、電解質として固体電解質を用いても良い。これら固体電解質のうち、有機固体電解質材料としては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体等のフッ化ビニリデン系重合体や、アクリロニトリル−メチルメタクリレート共重合体、アクリロニトリル−メチルアクリレート共重合体等のアクリルニトリル系重合体、さらにポリエチレンオキサイドなどが挙げられる。これらの高分子材料は、電解液を含ませてゲル状にして用いても、また高分子物質のみをそのまま用いても良い。一方、無機固体電解質としては、CaF2、AgI、LiF、βアルミナ、ガラス素材等が挙げられる。このような固体電解質を用いるときは、セパレータは使用しなくてもよい。
【0027】
負極集電体1および正極集電体6の材質としては、ニッケルやアルミニウム、銅、金、銀、チタン、アルミニウム合金、ステンレス、炭素素材等を挙げることができる。また、形状としては、箔や平板、メッシュ状のものを用いることができる。また、集電体に触媒効果を持たせたり、活物質と集電体とを化学結合させたりしてもよい。また、本発明における蓄電デバイスには、負極3および正極5の電気的接触を防ぐ目的で、多孔質フィルムからなるセパレータや不織布を用いることができる。一方、負極集電体1と正極集電体6の電気的接触を防ぐ目的で、プラスティック樹脂からなる絶縁パッキン2を用いることができる。
【0028】
本発明における蓄電デバイスの形状は、従来公知の形状を用いることができる。蓄電デバイス形状の例としては、電極の積層体あるいは巻回体を、金属ケース、樹脂ケース、あるいはラミネートフィルム等によって封止したものが挙げられる。また外観としては、円筒型、角型、コイン型、およびシート型等が挙げられる。
【0029】
【実施例】
以下、本発明を実施例により具体的に説明する。
【0030】
<ピッチ処理した活性炭負極の作製>
比表面積2200m2/gの活性炭、およびピッチを電気炉中、窒素気流下700℃で熱処理して、活性炭の表面にピッチを被覆させた。X線回折分析を行い、低結晶性のピッチ成分が活性炭の表面を被覆していることを確認した。活性炭とピッチ成分との質量比は、65対35であった。ピッチ処理した後の活性炭は、比表面積が250m2/gに減少していることを確認した。ピッチ処理した活性炭を、導電補助剤のアセチレンブラック、およびバインダーのポリフッ化ビニリデンと混合し、負極を作製した。
【0031】
<ニトロキシル化合物の合成例>
還流管を付けた100mlナスフラスコ中に、2,2,6,6−テトラメチルピペリジンメタクリレートモノマー20g(0.089mol)を入れ、乾燥テトラヒドロフラン80mlに溶解させた。そこへ、アゾビスイソブチロニトリル(AIBN)0.29g(0.00187mol)(モノマー/AIBN質量比=50/1)を加え、アルゴン雰囲気下75〜80℃で攪拌した。6時間反応後、室温まで放冷した。へキサン中でポリマーを析出させて濾別し、減圧乾燥してポリ(2,2,6,6−テトラメチルピペリジンメタクリレート)18g(収率90%)を得た。
【0032】
次に、得られたポリ(2,2,6,6−テトラメチルピペリジンメタクリレート)10gを乾操ジクロロメタン100mlに溶解させた。ここへm−クロロ過安息香酸15.2g(0.088mol)のジクロロメタン溶液100mlを室温にて攪拌しながら1時間かけて滴下した。さらに6時間攪拌後、沈殿したm−クロロ安息香酸を濾別して除き、濾液を炭酸ナトリウム水溶液および水で洗浄後、ジクロロメタンを留去した。残った固形分を粉砕し、得られた粉末をジエチルカーボネート(DEC)で洗浄し、減圧下乾燥させてポリ(2,2,6,6−テトラメチルピペリジノキシラジカルメタクリレート)(PTMA)7.2gを得た(収率68.2%、茶褐色粉末)。得られた高分子の構造はIRで確認した。また、GPCにより測定した結果、重量平均分子量Mw=89000、分散度Mw/Mn=3.30という値が得られた。
【0033】
<ニトロキシル化合物を含有する正極の作製>
合成したPTMA600mgと、カーボンブラック粉末1200mg、ポリテトラフルオロエチレン樹脂バインダー100mgを測り採り、メノウ乳鉢で混合した。10分ほど乾式混合して得られた混合体を、圧力を掛けてローラー延伸して、厚さ600μmの薄型電極板を得た。薄型電極板を、真空中80℃で一晩乾燥した後、縦52mm、横70mmの長方形に切り取り、蓄電デバイス用正極として成型した。電極の総質量は1.15gであり、これには345mg(30質量%)のPTMAが含まれる。電極の嵩密度は0.527g/cm3であった。
【0034】
<実施例1>
上記の方法で得られたピッチ処理した負極と、ニトロキシル化合物を含有する正極とを、多孔質のポリエチレンフィルムからなるセパレータを挟んで重ね合わせ電極積層体を得た。得られた電極積層体を、袋状のアルミニウムラミネートフィルム中に挿入し、そこに1モル濃度のLiPF6電解質塩を溶解させたエチレンカーボネート、ジエチルカーボネート混合溶媒(混合質量比3対7)を注入し真空含浸させた。ラミネートフィルムの注液口を真空中で封止して蓄電デバイスを得た。
【0035】
<比較例1>
活性炭をピッチで被覆しなかったこと以外は実施例1と同様に蓄電デバイスを得た。
【0036】
実施例1および比較例1で作製した蓄電デバイスの平衡電位および100mAの一定電流で充放電を行った際の初期容量、2回目以降の可逆容量、および不可逆容量を表1に示す。充電は4.2Vでカットオフ、放電は2.5Vでカットオフした。
【0037】
【表1】
Figure 2004200058
その結果、ピッチ処理した活性炭負極を用いた方が、ピッチ処理しない活性負極を用いた比較例よりも不加逆容量が減少していることが分かった。
【0038】
【発明の効果】
以上のように、本発明によれば、不可逆容量の小さな高出力蓄電デバイスを提供することができる。
【図面の簡単な説明】
【図1】
蓄電デバイスの構成の一例を示す概観図である。
【符号の説明】
1 負極集電体
2 絶縁パッキン
3 負極
4 セパレータ
5 正極
6 正極集電体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power storage device with high output and high energy density.
[0002]
[Prior art]
With the market expansion of high-output electronic devices, electric vehicles, and the like, high-output power storage devices used for these devices have been demanded. Hitherto, power storage devices such as nickel-metal hydride batteries, lead-acid batteries, and electric double layer capacitors have been used as backup power supplies, high-output electronic equipment power supplies, and electric vehicle power supplies that require high output. However, due to the low energy density, it has been difficult to reduce the size and weight sufficiently.
[0003]
For example, in Patent Document 1, an electrode contains a nitroxyl compound which has an oxoammonium cation partial structure in an oxidized state and a nitroxyl radical partial structure in a reduced state, and exchanges electrons between the two states. A power storage device used as a reaction has been proposed as a high energy density power storage device. When this device is used, a power storage device used with high output can be reduced in size and weight.
[0004]
As a negative electrode used in the electric storage device, a lithium metal, a graphite-based negative electrode, and activated carbon have been proposed. In particular, an electricity storage device using activated carbon as a negative electrode is expected to exhibit a high energy density in a high output region. On the other hand, when an active carbon having a large surface area is used as the negative electrode, decomposition of the electrolyte occurs on the surface of the activated carbon, which is disadvantageous in that the irreversible capacity tends to be large. There was room for
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-304996
[Problems to be solved by the invention]
An object of the present invention is to provide a high-output power storage device having a small irreversible capacity.
[0007]
[Means for Solving the Problems]
The present invention comprises, in a positive electrode, a nitroxyl compound having an N-oxo-ammonium cation partial structure represented by the formula (I) in an oxidized state and a nitroxyl radical partial structure represented by a formula (II) in a reduced state. An energy storage device using, as a positive electrode reaction, a reaction represented by the reaction formula (A) for transferring electrons between the two states, wherein the energy storage device has a negative electrode containing activated carbon coated with a pitch. is there.
[0008]
Embedded image
Figure 2004200058
[0009]
It is preferable that the activated carbon coated with the pitch be one coated with the activated carbon having a specific surface area of 500 m 2 / g or more and 3000 m 2 / g or less.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The power storage device according to the present invention is a device having at least a positive electrode, a negative electrode, and an electrolyte, and capable of extracting chemically stored energy in the form of electric energy. Examples of the power storage device include a primary battery, a chargeable / dischargeable secondary battery, and an electric capacity device such as a capacitor and a capacitor. Note that, in the power storage device, the positive electrode refers to an electrode having a noble oxidation-reduction potential, and the opposite of the negative electrode means an electrode having a lower oxidation-reduction potential.
[0011]
Activated carbon is an amorphous charcoal that is strongly adsorbent and consists mostly of carbonaceous material. It is produced by treating wood, lignite, peat or the like with an activator such as zinc chloride or phosphoric acid to dry distill it, or activating charcoal or the like with steam. Utilizing the wide surface area, it is used as a solvent purification, gas purification, deodorization, contaminant removal, capacitor electrode, and the like.
[0012]
The specific surface area of the activated carbon in the present invention is preferably not less than 500 m 2 / g, more preferably not less than 1500 m 2 / g in a state not covered by the pitch in order to exhibit a sufficiently large capacity. . Further, from the viewpoint of reducing the irreversible capacity and enhancing the electronic conductivity, it is desired that the irreversible capacity is preferably 3000 m 2 / g or less, more preferably 2500 m 2 / g or less.
[0013]
Pitch is a generic term for bottom oil when distilling tar obtained by carbonization of organic substances such as petroleum, coal, and wood.
[0014]
Activated carbon covered with a pitch in the present invention is, for example, H.I. Kinoshita et. al. , The 41 st Battery Symposium Japan, 562, 2000; Yoshino et. al. , The 43 rd Battery Symposium in Japan, 458, 2002; Satake et. al. , The 43 rd Battery Symposium in Japan, 460, 2002; Okano et. al. , The 43 rd Battery Symposiumin Japan, can be prepared according to the method described in 462,2002 like.
[0015]
The negative electrode containing activated carbon whose surface is coated with the pitch in the present invention may further contain a negative electrode active material, a conductivity imparting agent, a binder, a compound having a catalytic effect, and the like.
[0016]
The negative electrode of the present invention may contain a conventionally known negative electrode active material. For example, carbon materials such as activated carbon and hard carbon that have not been subjected to pitch processing, graphite, carbon black, acetylene black, lithium ion storage carbon such as lithium metal or lithium alloy, other various metals or alloys, polyacetylene, polyphenylene, polyaniline, Examples thereof include conductive polymers such as polypyrrole, sulfur, and disulfide compounds. Examples of the conductivity-imparting agent include carbon materials such as carbon black and acetylene black, and metal powder. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, and polyimide.
[0017]
The nitroxyl compound contained in the positive electrode can take the states of formulas (I) to (III) by transfer of electrons, as shown in reaction formula (B).
[0018]
Embedded image
Figure 2004200058
[0019]
In the present invention, the reaction between the formulas (I) and (II) is used as the electrode reaction of the positive electrode, and the function of the device is made to function as a power storage device by accumulating and discharging electrons. Since this oxidation-reduction reaction is a reaction mechanism that does not involve a structural change of the organic compound, the reaction speed is high, and therefore, the electric storage device of the present invention can flow a large current at a time.
[0020]
As the nitroxyl compound in the present invention, conventionally known compounds can be used. Examples of such a compound include a compound having an alicyclic nitroxy radical structure, a compound having an aliphatic nitroxyl radical structure, and a compound having an aromatic nitroxyl radical structure in a radical state. Examples of those having an alicyclic nitroxy radical structure include, for example, a 2,2,6,6-tetramethylpiperidinoxy radical structure, a 2,2,5,5-tetramethylpyrrolidinoxy radical structure, Those having a 2,5,5-tetramethylpyrrolinoloxy radical structure are exemplified. In particular, among those having the 2,2,6,6-tetramethylpiperidinoxy radical structure, poly (2,2,6,6-tetramethylpiperidinoxy radical methacrylate) is preferred from the viewpoint of stability. preferable. Those having an aliphatic nitroxyl radical structure include, for example, those having a substituted or unsubstituted ditertiary butyl nitroxyl radical structure, and those having an aromatic nitroxyl radical structure include substituted or unsubstituted diphenyl. Examples thereof include those having a nitroxyl radical structure and a substituted or unsubstituted tertiary butylphenyl nitroxyl radical structure. These nitroxyl compounds are described, for example, in N.I. Nakahara et. al. Chem. Phys. Lett. , 359, 351, 2002 and the like.
[0021]
The positive electrode of the present invention may further contain a conventionally known positive electrode active material, a conductive auxiliary, a binder, and the like as an electrode material for a power storage device. Examples of conventionally known positive electrode active materials include, for example, metal oxides such as LiMnO 2 , LiCoO 2 , LiNiO 2 , or Li x V 2 O 5 (0 <x <2), conductive polymers, activated carbon, and the like. Examples of the conductive auxiliary include carbon materials such as activated carbon, graphite, carbon black, and acetylene black, and conductive polymers such as polyacetylene, polyphenylene, polyaniline, and polypyrrole. Examples of the binder include resins such as polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, and polyimide. In addition, a disulfide compound, a compound having a catalytic effect, an ion-conductive polymer, or the like may be appropriately contained.
[0022]
FIG. 1 shows an example of a power storage device structure according to the present invention. The power storage device shown in the figure has a configuration in which a negative electrode 3 and a positive electrode 5 are overlapped via a separator 4 containing an electrolyte.
[0023]
A conventionally known electrolyte can be used for the electricity storage device of the present invention. For example, an electrolytic solution obtained by dissolving an electrolyte salt in an organic solvent can be used. As such a solvent, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, carbonate solvents such as methyl ethyl carbonate, ester solvents such as γ-butyrolactone, tetrahydrofuran, ether solvents such as dioxolane, dimethylformamide, Amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone are exemplified. In the present invention, these solvents may be used alone or in combination of two or more.
[0024]
Examples of the electrolyte salt include a lithium salt, a quaternary ammonium salt, and a quaternary phosphonium salt. Examples of the lithium salt include lithium halide salts such as LiBr, LiCl, and LiF; lithium halide salts such as LiPF 6 and LiBF 4; lithium perhalate salts such as LiClO 4 ; and LiN (C 2 F 5 SO 2 ). 2 , imide lithium salts such as LiN (CF 3 SO 2 ) 2 and methide lithium salts such as LiC (CF 3 SO 2 ) 3 . Examples of the quaternary ammonium salt include tetramethylammonium tetrafluoroborate, tetramethylammonium tetrafluorophosphate, tetraethylammonium tetrafluoroborate, tetraethylammonium tetrafluorophosphate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium tetrafluorophosphate, and the like. . Examples of the quaternary phosphonium salt include tetraethylphosphonium tetrafluoroborate and the like.
[0025]
In the structure of the electricity storage device shown in FIG. 1, the separator 4 is used with an electrolyte contained therein.
[0026]
Further, a solid electrolyte may be used as the electrolyte. Among these solid electrolytes, organic solid electrolyte materials include vinylidene fluoride polymers such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, acrylonitrile-methyl methacrylate copolymer, and acrylonitrile-methyl acrylate copolymer. Examples include acrylonitrile-based polymers such as polymers, and polyethylene oxide. These polymer materials may be used in the form of a gel containing an electrolytic solution, or only the polymer material may be used as it is. On the other hand, examples of the inorganic solid electrolyte include CaF 2 , AgI, LiF, β-alumina, and a glass material. When using such a solid electrolyte, the separator may not be used.
[0027]
Examples of the material of the negative electrode current collector 1 and the positive electrode current collector 6 include nickel, aluminum, copper, gold, silver, titanium, an aluminum alloy, stainless steel, and a carbon material. Further, as the shape, a foil, a flat plate, or a mesh can be used. Further, the current collector may have a catalytic effect, or the active material and the current collector may be chemically bonded. Further, for the purpose of preventing electrical contact between the negative electrode 3 and the positive electrode 5, a separator or a nonwoven fabric made of a porous film can be used for the power storage device in the present invention. On the other hand, for the purpose of preventing electrical contact between the negative electrode current collector 1 and the positive electrode current collector 6, an insulating packing 2 made of a plastic resin can be used.
[0028]
As the shape of the power storage device in the present invention, a conventionally known shape can be used. As an example of the shape of the power storage device, a structure in which a laminated body or a wound body of electrodes is sealed with a metal case, a resin case, a laminated film, or the like is given. In addition, examples of the external appearance include a cylindrical type, a square type, a coin type, and a sheet type.
[0029]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
[0030]
<Preparation of pitch-treated activated carbon anode>
The activated carbon having a specific surface area of 2200 m 2 / g and the pitch were heat-treated at 700 ° C. in an electric furnace under a nitrogen stream to coat the activated carbon surface with the pitch. An X-ray diffraction analysis was performed to confirm that a low-crystalline pitch component covers the surface of the activated carbon. The mass ratio between the activated carbon and the pitch component was 65:35. It was confirmed that the activated carbon after the pitch treatment had a specific surface area reduced to 250 m 2 / g. The pitch-treated activated carbon was mixed with acetylene black as a conductive additive and polyvinylidene fluoride as a binder to prepare a negative electrode.
[0031]
<Synthesis example of nitroxyl compound>
20 g (0.089 mol) of 2,2,6,6-tetramethylpiperidine methacrylate monomer was placed in a 100 ml eggplant flask equipped with a reflux tube, and dissolved in 80 ml of dry tetrahydrofuran. Thereto was added 0.29 g (0.00187 mol) of azobisisobutyronitrile (AIBN) (mass ratio of monomer / AIBN = 50/1), and the mixture was stirred at 75 to 80 ° C. under an argon atmosphere. After reacting for 6 hours, the mixture was allowed to cool to room temperature. The polymer was precipitated in hexane, separated by filtration, and dried under reduced pressure to obtain 18 g of poly (2,2,6,6-tetramethylpiperidine methacrylate) (yield 90%).
[0032]
Next, 10 g of the obtained poly (2,2,6,6-tetramethylpiperidine methacrylate) was dissolved in 100 ml of dry dichloromethane. 100 ml of a dichloromethane solution of 15.2 g (0.088 mol) of m-chloroperbenzoic acid was added dropwise thereto over 1 hour while stirring at room temperature. After stirring for further 6 hours, the precipitated m-chlorobenzoic acid was removed by filtration, and the filtrate was washed with an aqueous sodium carbonate solution and water, and then dichloromethane was distilled off. The remaining solid content was pulverized, and the obtained powder was washed with diethyl carbonate (DEC) and dried under reduced pressure to obtain poly (2,2,6,6-tetramethylpiperidinoxy radical methacrylate) (PTMA) 7. 0.2 g (yield 68.2%, brown powder). The structure of the obtained polymer was confirmed by IR. Further, as a result of measurement by GPC, values of weight average molecular weight Mw = 89,000 and dispersity Mw / Mn = 3.30 were obtained.
[0033]
<Preparation of positive electrode containing nitroxyl compound>
600 mg of the synthesized PTMA, 1200 mg of carbon black powder, and 100 mg of a polytetrafluoroethylene resin binder were measured and mixed in an agate mortar. The mixture obtained by dry mixing for about 10 minutes was subjected to roller stretching by applying pressure to obtain a thin electrode plate having a thickness of 600 μm. The thin electrode plate was dried in a vacuum at 80 ° C. overnight, cut into a rectangle having a length of 52 mm and a width of 70 mm, and molded as a positive electrode for an electric storage device. The total weight of the electrode is 1.15 g, which contains 345 mg (30% by weight) of PTMA. The bulk density of the electrode was 0.527 g / cm 3 .
[0034]
<Example 1>
The pitch-treated negative electrode obtained by the above method and a positive electrode containing a nitroxyl compound were overlapped with a separator made of a porous polyethylene film interposed therebetween to obtain an electrode laminate. The obtained electrode laminate is inserted into a bag-like aluminum laminate film, and a mixed solvent of ethylene carbonate and diethyl carbonate (mixing ratio by mass: 3 to 7) in which a 1 mol concentration of LiPF 6 electrolyte salt is dissolved is injected therein. And vacuum impregnated. The injection port of the laminate film was sealed in a vacuum to obtain an electricity storage device.
[0035]
<Comparative Example 1>
An electricity storage device was obtained in the same manner as in Example 1, except that the activated carbon was not covered with the pitch.
[0036]
Table 1 shows the equilibrium potential of the electric storage devices manufactured in Example 1 and Comparative Example 1, and the initial capacity, the reversible capacity after the second charge and the irreversible capacity when charging and discharging were performed at a constant current of 100 mA. The charge was cut off at 4.2V, and the discharge was cut off at 2.5V.
[0037]
[Table 1]
Figure 2004200058
As a result, it was found that the irreversible capacity was smaller when the pitch-treated activated carbon anode was used than in the comparative example using the pitch-untreated activated anode.
[0038]
【The invention's effect】
As described above, according to the present invention, a high-output power storage device with small irreversible capacity can be provided.
[Brief description of the drawings]
FIG.
FIG. 2 is an overview diagram illustrating an example of a configuration of a power storage device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 negative electrode current collector 2 insulating packing 3 negative electrode 4 separator 5 positive electrode 6 positive electrode current collector

Claims (2)

酸化状態において式(I)で示されるN−オキソ−アンモニウムカチオン部分構造をとり、還元状態において式(II)で示されるニトロキシルラジカル部分構造をとるニトロキシル化合物を正極中に含有し、その2つの状態間で電子の授受を行う反応式(A)で示される反応を正極反応として用いる蓄電デバイスにおいて、ピッチで被覆された活性炭を含有する負極を有することを特徴とする蓄電デバイス。
Figure 2004200058
A nitroxyl compound having an N-oxo-ammonium cation partial structure represented by the formula (I) in an oxidized state and a nitroxyl radical partial structure represented by a formula (II) in a reduced state is contained in a positive electrode. A power storage device using a reaction represented by the reaction formula (A) for transferring electrons between states as a positive electrode reaction, comprising a negative electrode containing activated carbon coated with a pitch.
Figure 2004200058
前記ピッチで被覆された活性炭が、500m2/g以上3000m2/g以下の比表面積を有する活性炭がピッチで被覆されたものである請求項1記載の蓄電デバイス。Activated carbon coated with the pitch, 500 meters electric storage device according to claim 1, wherein the activated carbon is one which is coated with a pitch having the following specific surface area of 2 / g or more 3000 m 2 / g.
JP2002368424A 2002-12-19 2002-12-19 Electricity storage device Expired - Lifetime JP4139960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368424A JP4139960B2 (en) 2002-12-19 2002-12-19 Electricity storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368424A JP4139960B2 (en) 2002-12-19 2002-12-19 Electricity storage device

Publications (2)

Publication Number Publication Date
JP2004200058A true JP2004200058A (en) 2004-07-15
JP4139960B2 JP4139960B2 (en) 2008-08-27

Family

ID=32764999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368424A Expired - Lifetime JP4139960B2 (en) 2002-12-19 2002-12-19 Electricity storage device

Country Status (1)

Country Link
JP (1) JP4139960B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186227A (en) * 2004-12-28 2006-07-13 Tdk Corp Electrochemical device
WO2007009363A1 (en) * 2005-07-15 2007-01-25 Fudan University An electrochemical supercapacitor using organic polymer free radical /carbon composite material as positive electrode
JP2009117094A (en) * 2007-11-05 2009-05-28 Tokai Carbon Co Ltd Carbon particle powder for lithium-ion secondary battery anode material, its manufacturing method, and lithium-ion secondary battery anode material
JP2011029135A (en) * 2009-06-30 2011-02-10 Murata Mfg Co Ltd Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
JP2011029136A (en) * 2009-06-30 2011-02-10 Murata Mfg Co Ltd Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
KR20150039745A (en) * 2012-07-26 2015-04-13 가부시키가이샤 아데카 Electricity storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2950319B1 (en) * 2013-01-22 2020-08-12 Asahi Kasei Kabushiki Kaisha Lithium ion capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186227A (en) * 2004-12-28 2006-07-13 Tdk Corp Electrochemical device
JP4529683B2 (en) * 2004-12-28 2010-08-25 Tdk株式会社 Electrochemical devices
WO2007009363A1 (en) * 2005-07-15 2007-01-25 Fudan University An electrochemical supercapacitor using organic polymer free radical /carbon composite material as positive electrode
JP2009117094A (en) * 2007-11-05 2009-05-28 Tokai Carbon Co Ltd Carbon particle powder for lithium-ion secondary battery anode material, its manufacturing method, and lithium-ion secondary battery anode material
JP2011029135A (en) * 2009-06-30 2011-02-10 Murata Mfg Co Ltd Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
JP2011029136A (en) * 2009-06-30 2011-02-10 Murata Mfg Co Ltd Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
KR20150039745A (en) * 2012-07-26 2015-04-13 가부시키가이샤 아데카 Electricity storage device
KR102046335B1 (en) * 2012-07-26 2019-11-19 가부시키가이샤 아데카 Electricity storage device

Also Published As

Publication number Publication date
JP4139960B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
EP1381100B1 (en) Electricity storage device
KR100413595B1 (en) secondary battery
KR101430615B1 (en) Cathode and lithium battery using the same
JP5516578B2 (en) Power storage device
JP5228531B2 (en) Electricity storage device
JP5076560B2 (en) Electricity storage device
WO2006080110A1 (en) Positive electrode material for lithium secondary cell
JP3687513B2 (en) battery
JP4797577B2 (en) battery
JP5177211B2 (en) Negative electrode active material, negative electrode and battery
EP3451437B1 (en) Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device
JP4830207B2 (en) battery
JP4078542B2 (en) Power storage device
JP4900994B2 (en) Nonaqueous electrolyte secondary battery
JP5082221B2 (en) Negative electrode for secondary battery and secondary battery
JP2000077100A (en) Nonaqueous electrolyte secondary battery
JP4139960B2 (en) Electricity storage device
JP2005183632A (en) Electrochemical device and electric double layer capacitor or battery using the same
WO2020202661A1 (en) Lithium ion secondary battery
JP2005285376A (en) Organic/inorganic hybrid electrode, and secondary battery using the same
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP2013112619A (en) Composite, electrode active material for secondary battery having the same and secondary battery
CN110679030B (en) Electrolyte solution and electrochemical device
JP4998392B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4139960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

EXPY Cancellation because of completion of term