JP2005285376A - Organic/inorganic hybrid electrode, and secondary battery using the same - Google Patents

Organic/inorganic hybrid electrode, and secondary battery using the same Download PDF

Info

Publication number
JP2005285376A
JP2005285376A JP2004093639A JP2004093639A JP2005285376A JP 2005285376 A JP2005285376 A JP 2005285376A JP 2004093639 A JP2004093639 A JP 2004093639A JP 2004093639 A JP2004093639 A JP 2004093639A JP 2005285376 A JP2005285376 A JP 2005285376A
Authority
JP
Japan
Prior art keywords
compound
sulfur
group
electrode
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004093639A
Other languages
Japanese (ja)
Other versions
JP4892174B2 (en
Inventor
Masahiko Taniguchi
雅彦 谷口
Asao Iwata
麻男 岩田
Ryuji Shiozaki
竜二 塩崎
Toshiharu Matoba
俊晴 的場
Shinji Miyagawa
慎二 宮川
Hideichiro Yamaguchi
秀一郎 山口
Noboru Koyama
昇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Mitsui and Co Ltd
Shirouma Science Co Ltd
Original Assignee
Mitsui and Co Ltd
Shirouma Science Co Ltd
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui and Co Ltd, Shirouma Science Co Ltd, Fuji Heavy Industries Ltd filed Critical Mitsui and Co Ltd
Priority to JP2004093639A priority Critical patent/JP4892174B2/en
Publication of JP2005285376A publication Critical patent/JP2005285376A/en
Application granted granted Critical
Publication of JP4892174B2 publication Critical patent/JP4892174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic/inorganic hybrid electrode for a secondary battery capable of attaining both of high capacity and high cycle property. <P>SOLUTION: The hybrid electrode is composed of a conductive base body and an electrode material layer formed of the surface of the conductive base body. The electrode material contains a laminar compound of at least one element chosen from V and VI group element of periodic table, at least one non-conductive organic sulfur compound having redox activity, and at least one sulfur-containing organic conductive polymer. The sulfur-containing organic conductive polymer and the organic sulfur compound are interposed between the laminar compounds. The secondary battery has the hybrid electrode as a cathode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機・無機ハイブリッド電極およびそれを用いた二次電池に関する。   The present invention relates to an organic / inorganic hybrid electrode and a secondary battery using the same.

従来の非水溶媒系リチウム(イオン)二次電池は、正極材料としてコバルト酸リチウム、マンガン酸リチウムまたはニッケル酸リチウムを用いているが、容量は、理論的にも、それぞれ、137mAh/g、148mAh/g、193mAh/gであり、200mAh/gを超えるものではない。また、現在、正極材料として、オリビン酸鉄系材料や酸化バナジウム系材料の開発も行われているが、これら材料は元々が絶縁性であるため大量の導電性物質(例えばカーボンブラック等)を添加する必要があり、また充放電によって発生する相変態によるサイクル特性が問題となっている。   The conventional non-aqueous solvent type lithium (ion) secondary battery uses lithium cobaltate, lithium manganate or lithium nickelate as the positive electrode material, but the capacity is theoretically 137 mAh / g, 148 mAh, respectively. / G, 193 mAh / g, not exceeding 200 mAh / g. Currently, iron olivicate-based materials and vanadium oxide-based materials are also being developed as positive electrode materials. Since these materials are originally insulating, a large amount of conductive material (for example, carbon black) is added. In addition, there is a problem in cycle characteristics due to a phase transformation generated by charging and discharging.

高容量を目指した正極材料として、非特許文献1には、層状化合物である五酸化バナジウムの層間にポリ(3,4−エチレンジオキシチオフェン)(PEDOT)を挿入した有機・無機ハイブリッド正極が記載されている。この正極は、240mAh/gという正極容量を示す。非特許文献2には、五酸化バナジウムとPEDOTからなる正極材料においてPEDOTの量を最適化して329mAh/gもの容量を示す正極が記載されている。しかし、これら正極は、いずれも、そのように高い容量を示すのは、最初の充放電サイクルだけであり、しかも放電電位範囲は2Vまでと狭いものである。   As a positive electrode material aiming at high capacity, Non-Patent Document 1 describes an organic / inorganic hybrid positive electrode in which poly (3,4-ethylenedioxythiophene) (PEDOT) is inserted between layers of vanadium pentoxide which is a layered compound. Has been. This positive electrode exhibits a positive electrode capacity of 240 mAh / g. Non-Patent Document 2 describes a positive electrode having a capacity of 329 mAh / g by optimizing the amount of PEDOT in a positive electrode material made of vanadium pentoxide and PEDOT. However, all of these positive electrodes exhibit such a high capacity only in the first charge / discharge cycle, and the discharge potential range is as narrow as 2V.

また、非導電性有機硫黄化合物を五酸化バナジウムの層間に挿入した正極材料もいくつか知られている。非特許文献3には、高エネルギー密度を有する2,5−ジメルカプト−1,3,4−チアジアゾール(DMcT)を五酸化バナジウムの層間に挿入した正極材料が記載されている。また、非特許文献4には、DMcTとともに導電性ポリマー材料であるポリアニリン(PANI)を挿入した正極材料が記載されている。しかしながら、いずれの正極も、容量は200mAh/g程度であり、放電下限電位もせいぜい2Vまでであり、それほど大きな容量と放電電位を示すまでには至っていない。   Some positive electrode materials in which a non-conductive organic sulfur compound is inserted between vanadium pentoxide layers are also known. Non-Patent Document 3 describes a positive electrode material in which 2,5-dimercapto-1,3,4-thiadiazole (DMcT) having a high energy density is inserted between vanadium pentoxide layers. Non-Patent Document 4 describes a positive electrode material in which polyaniline (PANI), which is a conductive polymer material, is inserted together with DMcT. However, each of the positive electrodes has a capacity of about 200 mAh / g and a discharge lower limit potential of up to 2 V at most, and has not yet reached such a large capacity and discharge potential.

さらに、特許文献1には、導電性ポリマー、非導電性有機硫黄化合物および金属の3種の材料を混合することにより高容量を達成する手法が提案されている。しかしながら、特許文献1に開示された正極は、集電体に銅を用いており、その高い容量は正極活物質によるよりも、Cu−Li電池による容量が支配的であることは明白である。   Furthermore, Patent Document 1 proposes a technique for achieving a high capacity by mixing three materials of a conductive polymer, a nonconductive organic sulfur compound, and a metal. However, the positive electrode disclosed in Patent Document 1 uses copper as a current collector, and it is clear that the capacity of the high capacity is dominated by the Cu-Li battery rather than by the positive electrode active material.

また、DMcTを正極材料に用いた電池は、DMcT自体がモノマー化すると溶出し、正極から遊離して負極上に到達し、DMcTのメルカプト基のプロトンが還元されて水素ガスが発生するという問題がある。ガス発生を抑制するために、特許文献2には、DMcTの代わりにそのリチウム塩を用いることが開示されている。しかしながら、かかる正極の初期容量は140mAh/gであり、200サイクルの充放電後には、その容量は80mAh/gまで低下していた。
J. Mater. Chem. 2001, 11, 2470-2475 Electrochemistry Communication 4 (2002) 384-387 Langmuir 1999, 15, 669-973 Journal of Power Sources 103 (2002) 273-279 特開平10−321217号公報 特開2000−82468号公報
In addition, a battery using DMcT as a positive electrode material is eluted when DMcT itself becomes a monomer, and is released from the positive electrode and reaches the negative electrode, and the proton of the mercapto group of DMcT is reduced to generate hydrogen gas. is there. In order to suppress gas generation, Patent Document 2 discloses using a lithium salt instead of DMcT. However, the initial capacity of the positive electrode was 140 mAh / g, and after 200 cycles of charge / discharge, the capacity had dropped to 80 mAh / g.
J. Mater. Chem. 2001, 11, 2470-2475 Electrochemistry Communication 4 (2002) 384-387 Langmuir 1999, 15, 669-973 Journal of Power Sources 103 (2002) 273-279 Japanese Patent Laid-Open No. 10-32217 JP 2000-82468 A

従って、本発明は、高い容量と高いサイクル特性を同時に達成し得る有機・無機ハイブリッド電極およびそれを用いた二次電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide an organic / inorganic hybrid electrode that can simultaneously achieve high capacity and high cycle characteristics, and a secondary battery using the same.

本発明者らは、鋭意研究した結果、五酸化バナジウム(V25)のような酸化性を有する層状化合物の層間に、PEDOTのようなレドックス活性を有する硫黄含有導電性ポリマーとともにDMcTのような非導電性有機硫黄化合物をも挿入することによって、従来達成し得なかった高い容量と高いサイクル特性を同時に達成し得ることを見いだした。本発明は、かかる知見に基づく。 As a result of diligent research, the present inventors have found that a layered compound having an oxidizing property such as vanadium pentoxide (V 2 O 5 ) and a sulfur-containing conductive polymer having a redox activity such as PEDOT together with DMcT. It was found that by inserting a non-conductive organic sulfur compound, a high capacity and a high cycle characteristic that could not be achieved at the same time can be achieved at the same time. The present invention is based on such knowledge.

すなわち、本発明の1つの側面によれば、導電性基体と、この導電性基体の表面に形成された電極材料層を備え、前記電極材料は、周期律表第V族元素および第VI族元素から選ばれる少なくとも1種の元素の層状化合物と、レドックス活性を有する少なくとも1種の非導電性有機硫黄化合物と、レドックス活性を有する少なくとも1種の硫黄含有導電性ポリマーを含み、前記硫黄含有導電性ポリマーおよび前記有機硫黄化合物は、前記層状化合物の層間に挿入されていることを特徴とする有機・無機ハイブリッド電極が提供される。   That is, according to one aspect of the present invention, a conductive substrate and an electrode material layer formed on the surface of the conductive substrate are provided, and the electrode material includes Group V elements and Group VI elements of the periodic table. A layered compound of at least one element selected from the group consisting of: at least one non-conductive organic sulfur compound having redox activity; and at least one sulfur-containing conductive polymer having redox activity. An organic-inorganic hybrid electrode is provided in which the polymer and the organic sulfur compound are inserted between layers of the layered compound.

また、本発明の別の側面によれば、正極と、負極と、前記正極と負極との間に配置された電解質層を備え、前記正極が、本発明のハイブリッド電極により構成されることを特徴とする二次電池が提供される。   According to another aspect of the present invention, a positive electrode, a negative electrode, and an electrolyte layer disposed between the positive electrode and the negative electrode are provided, and the positive electrode is constituted by the hybrid electrode of the present invention. A secondary battery is provided.

本発明によれば、高い容量と高いサイクル特性を同時に達成し得る有機・無機ハイブリッド電極およびそれを用いた二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the organic-inorganic hybrid electrode which can achieve a high capacity | capacitance and a high cycle characteristic simultaneously, and a secondary battery using the same are provided.

以下、本発明をより詳しく説明する。
本発明の有機・無機ハイブリッド電極は、導電性基体の表面に電極材料の層を有する。電極材料は、周期律表第V族元素および/または第VI族元素の少なくとも1種の層状化合物と、レドックス活性を有する少なくとも1種の非導電性有機硫黄化合物とレドックス活性を有する少なくとも1種の硫黄含有導電性ポリマーとを含む有機・無機ハイブリッド(複合)材料である。硫黄含有導電性ポリマーと有機硫黄化合物は、層状化合物の層間に挿入されている。
Hereinafter, the present invention will be described in more detail.
The organic / inorganic hybrid electrode of the present invention has a layer of an electrode material on the surface of a conductive substrate. The electrode material comprises at least one layered compound of Group V elements and / or Group VI elements of the periodic table, at least one non-conductive organic sulfur compound having redox activity, and at least one type having redox activity. An organic-inorganic hybrid (composite) material containing a sulfur-containing conductive polymer. The sulfur-containing conductive polymer and the organic sulfur compound are inserted between layers of the layered compound.

本発明において、電極材料層を支持する基体(集電体)は、少なくとも本発明の電極材料層と接する表面において導電性を示す導電性基体である。この基体は、金属、導電性金属酸化物、導電性カーボン等の導電性材料で形成することができるが、銅、金、アルミニウムもしくはそれらの合金または導電性カーボンで形成することが好ましい。あるいは、基体は、非導電性材料で形成された基体本体をこれら導電性材料で被覆することによっても形成することができる。   In the present invention, the substrate (current collector) that supports the electrode material layer is a conductive substrate that exhibits conductivity at least on the surface in contact with the electrode material layer of the present invention. The substrate can be formed of a conductive material such as metal, conductive metal oxide, or conductive carbon, but is preferably formed of copper, gold, aluminum, an alloy thereof, or conductive carbon. Alternatively, the substrate can also be formed by coating a substrate body formed of a nonconductive material with these conductive materials.

本発明において、周期律表第V族元素および/または第VI族元素の少なくとも1種の層状化合物は、第V族元素および第VI族元素の酸化物および硫化物からなる群の中から選ぶことができる。層状化合物は、バナジウム、ニオブおよびタンタルの酸化物および硫化物であることが好ましく、五酸化バナジウムであることが特に好ましい。層状化合物は、単独で、あるいは組み合わせて用いることができる。酸化物または硫化物のように酸化性の層状化合物は、以後詳述する層状化合物の層間での硫黄含有導電性ポリマーの重合による生成に際し、硫黄含有導電性ポリマーを生成するモノマー(単量体)とレドックス相互作用を行い、その結果モノマーは酸化重合して硫黄含有導電性ポリマーを生成する。   In the present invention, at least one layered compound of Group V element and / or Group VI element in the periodic table is selected from the group consisting of oxides and sulfides of Group V element and Group VI element. Can do. The layered compound is preferably an oxide or sulfide of vanadium, niobium and tantalum, and particularly preferably vanadium pentoxide. The layered compounds can be used alone or in combination. An oxidizable layered compound such as an oxide or sulfide is a monomer that forms a sulfur-containing conductive polymer when it is formed by polymerization of a sulfur-containing conductive polymer between layers of the layered compound described in detail below. As a result, the monomer undergoes oxidative polymerization to form a sulfur-containing conductive polymer.

本発明で使用されるレドックス活性を有する少なくとも1種の非導電性有機硫黄化合物は、硫黄を含有する有機化合物であり、チオレート基またはチオール基を有する有機化合物を含む。本発明では、例えば、2−メルカプトエチルエーテル、2−メルカプトエチルスルフィド、1,2−エタンジオール、テトラチオエチレンジアミン、N,N’−ジチオ−N,N’−ジメチルエチレンジアミン、トリチオシアヌル酸、2,4−ジチオピリジン、4,5−ジアミノ−2,6−ジメチルメルカプトピリミジン、N,N’−ジメルカプトピペラジン、2,5−ジメルカプト−1,3,4−チアジアゾール(DMcT)等を使用することができ、さらには下記式(1)〜(5):

Figure 2005285376
The at least one non-conductive organic sulfur compound having redox activity used in the present invention is an organic compound containing sulfur and includes an organic compound having a thiolate group or a thiol group. In the present invention, for example, 2-mercaptoethyl ether, 2-mercaptoethyl sulfide, 1,2-ethanediol, tetrathioethylenediamine, N, N′-dithio-N, N′-dimethylethylenediamine, trithiocyanuric acid, 2,4 -Dithiopyridine, 4,5-diamino-2,6-dimethylmercaptopyrimidine, N, N'-dimercaptopiperazine, 2,5-dimercapto-1,3,4-thiadiazole (DMcT), etc. can be used. Furthermore, the following formulas (1) to (5):
Figure 2005285376

で示される化合物も使用することができる。これら有機硫黄化合物は、オリゴマーやポリマーの形態にあってもよい。これらの有機硫黄化合物のうち、DMcTを用いて形成された電極を正極として有する二次電池、特にリチウム二次電池は、特に優れた充放電特性を示す。 The compound shown by can also be used. These organic sulfur compounds may be in the form of oligomers or polymers. Among these organic sulfur compounds, secondary batteries having an electrode formed using DMcT as a positive electrode, particularly lithium secondary batteries, exhibit particularly excellent charge / discharge characteristics.

本発明で使用される硫黄含有導電性ポリマーは、レドックス活性を有するものであって、硫黄を含有するものである。そのような硫黄含有導電性ポリマーとしては、ポリチオフェン化合物を用いることができる。ポリチオフェン化合物は、下記式(I):

Figure 2005285376
The sulfur-containing conductive polymer used in the present invention has redox activity and contains sulfur. A polythiophene compound can be used as such a sulfur-containing conductive polymer. The polythiophene compound has the following formula (I):
Figure 2005285376

(ここで、R1およびR2は、それぞれ独立に、水素もしくは炭素数1〜4のアルキル基であり、または互いに結合して、置換されていてもよい炭素数1〜4のアルキレン基または1,2−シクロヘキシン基を形成してもよい)で示される繰り返し単位を有するポリチオフェン化合物が好ましい。中でも、ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)が特に好ましい。これらポリチオフェン化合物は、下記式(II):

Figure 2005285376
(Here, R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, or bonded to each other and optionally substituted alkylene group or 1 , 2-cyclohexyne group may be formed), and a polythiophene compound having a repeating unit represented by Among these, poly (3,4-ethylenedioxythiophene) (PEDOT) is particularly preferable. These polythiophene compounds have the following formula (II):
Figure 2005285376

(ここで、R1およびR2は、式(I)におけるR1およびR2と同じ意味を有する)で示されるチオフェン化合物(モノマー)の重合により得ることができる。式(II)で示されるチオフェン化合物としては、3,4−エチレンジオキシチオフェン(EDOT)が特に好ましい。 (Here, R 1 and R 2 have the same meaning as R 1 and R 2 in formula (I)), and can be obtained by polymerization of a thiophene compound (monomer). As the thiophene compound represented by the formula (II), 3,4-ethylenedioxythiophene (EDOT) is particularly preferable.

本発明の電極材料は、層状化合物100重量部当たり、有機硫黄化合物を0.5〜20重量部の割合で、硫黄含有導電性ポリマーを1〜30重量部の割合で含有することが好ましい。有機硫黄化合物の量が、0.5重量部未満であると、容量向上効果がほとんど得られず、20重量部を超えると、導電性が低下するとともに、有機硫黄化合物が層状化合物の層間に取り込まれきれずに溶出し、それによる反応でガスが発生してサイクル特性が低下するおそれがある。また、硫黄含有導電性ポリマーの量が、1重量部未満であると、導電性が保てず、30重量部を超えると、硫黄含有導電性ポリマーが層状化合物の層間に取り込まれきれずに容量が低下する傾向を示す。本発明の電極材料は、層状化合物100重量部当たり、有機硫黄化合物を1〜10重量部の割合で、硫黄含有導電性ポリマーを5〜20重量部の割合で含有することがさらに好ましい。   The electrode material of the present invention preferably contains an organic sulfur compound in a proportion of 0.5 to 20 parts by weight and a sulfur-containing conductive polymer in a proportion of 1 to 30 parts by weight per 100 parts by weight of the layered compound. When the amount of the organic sulfur compound is less than 0.5 parts by weight, the capacity improvement effect is hardly obtained, and when it exceeds 20 parts by weight, the conductivity is lowered and the organic sulfur compound is taken in between the layers of the layered compound. Elution is not complete, and there is a possibility that gas is generated by the reaction and cycle characteristics are deteriorated. Further, if the amount of the sulfur-containing conductive polymer is less than 1 part by weight, the conductivity cannot be maintained, and if it exceeds 30 parts by weight, the sulfur-containing conductive polymer cannot be taken in between the layers of the layered compound and the capacity is increased. Shows a downward trend. More preferably, the electrode material of the present invention contains 1 to 10 parts by weight of the organic sulfur compound and 5 to 20 parts by weight of the sulfur-containing conductive polymer per 100 parts by weight of the layered compound.

本発明の電極材料は、上記層状化合物、有機硫黄化合物および硫黄含有導電性ポリマーに加えて、導電性粒子を含有することが好ましい。導電性粒子は、本発明の電極材料の導電性を向上させる。導電性粒子の例を挙げると、導電性カーボン(ケッチェンブラック等の導電性カーボンブラック等)、銅、鉄、銀、ニッケル、パラジウム、金、白金、インジウム、タングステン等の金属、酸化インジウム、酸化スズ等の導電性金属酸化物等である。これら導電性粒子は、上記層状化合物、有機硫黄化合物および硫黄含有導電性ポリマーの合計量の1〜30重量%の割合で含まれることが好ましい。   The electrode material of the present invention preferably contains conductive particles in addition to the layered compound, organic sulfur compound and sulfur-containing conductive polymer. The conductive particles improve the conductivity of the electrode material of the present invention. Examples of conductive particles include conductive carbon (conductive carbon black such as ketjen black), copper, iron, silver, nickel, palladium, gold, platinum, indium, tungsten and other metals, indium oxide, oxidation Conductive metal oxides such as tin. These conductive particles are preferably contained in a proportion of 1 to 30% by weight of the total amount of the layered compound, organic sulfur compound and sulfur-containing conductive polymer.

本発明の電極材料は、層状化合物、硫黄含有導電性ポリマーに対応するモノマーおよび有機硫黄化合物を水、水とアルコール(メタノール、エタノール等)との混合溶媒等に懸濁させ、その懸濁物を、上記モノマーが重合する条件に供することによって製造することが好ましい。通常、重合は、上記懸濁物を還流下に約12時間以上加熱することによって行うことができる。層状化合物が酸化物である場合、層状化合物から酸素が抜け出すことを抑制するために、重合中に上記懸濁物に酸素ガスを供給することができる。硫黄含有導電性ポリマーに対応するモノマーは、層状化合物の層間で重合し、従って層状化合物の層間に存在することとなる。また、有機硫黄化合物も層状化合物の層間に挿入され、また層状化合物の層間で重合してポリマーとなり得る。   The electrode material of the present invention suspends a layered compound, a monomer corresponding to a sulfur-containing conductive polymer, and an organic sulfur compound in water, a mixed solvent of water and alcohol (methanol, ethanol, etc.), and the suspension It is preferable that the monomer is produced by subjecting it to conditions under which the monomer is polymerized. Usually, the polymerization can be carried out by heating the suspension under reflux for about 12 hours or more. When the layered compound is an oxide, oxygen gas can be supplied to the suspension during the polymerization in order to prevent oxygen from escaping from the layered compound. The monomer corresponding to the sulfur-containing conductive polymer polymerizes between the layers of the layered compound, and therefore exists between the layers of the layered compound. An organic sulfur compound can also be inserted between the layered compounds and polymerized between the layered compounds to form a polymer.

このようにして得られる電極材料を、乾燥後、ポリフッ化ビニリデン等のバインダーと好ましくは導電性粒子とともに混合し、電極基体(集電体)上に塗布することにより、本発明の有機・無機ハイブリッド電極を作製することができる。   The electrode material thus obtained is dried, mixed with a binder such as polyvinylidene fluoride, preferably with conductive particles, and coated on the electrode substrate (current collector), whereby the organic / inorganic hybrid of the present invention. An electrode can be produced.

本発明において、電極材料層は、10〜100μmの厚さを有することが好ましい。   In the present invention, the electrode material layer preferably has a thickness of 10 to 100 μm.

本発明の電極材料では、層状化合物の層間に硫黄含有導電性ポリマーが挿入されているので、絶縁性の層状化合物の容量をその硫黄含有導電性ポリマーにより最大限に引き出すことが可能であるとともに、層状化合物の結晶構造の相変態を制御することができる。この結晶構造の相変態の抑制は、硫黄含有導電性ポリマーが層状化合物の層間から外部に延出した部分を有し、その延出部分が硫黄含有導電性ポリマーの結晶構造をある程度固定することによるものといえる。さらに、本発明の電極材料では、絶縁性(非導電性)の有機硫黄化合物のレドックス容量も利用して放電電位範囲を広げることができる。また、有機硫黄化合物も層状化合物の層間に挿入されているので、有機硫黄化合物自体の溶出も制御できるとともに、有機硫黄化合物がメルカプト基を含むものである場合であっても、ポリマーとなった非導電性有機硫黄化合物がモノマー化されてもそのモノマーの溶出を抑制でき、メルカプト基のプロトンが負極上で還元されて発生するH2ガスを低減できる。こうして、本発明の電極材料は、高い容量と高いサイクル特性を同時に達成することができ、放電下限電圧も2V以下となる。本発明の電極材料は、X線回折パターンにおいて、回折角(2θ)10°以下に少なくとも1つのピークを有する。 In the electrode material of the present invention, since the sulfur-containing conductive polymer is inserted between the layers of the layered compound, the capacity of the insulating layered compound can be maximized by the sulfur-containing conductive polymer, The phase transformation of the crystal structure of the layered compound can be controlled. The suppression of the phase transformation of this crystal structure is due to the fact that the sulfur-containing conductive polymer has a part extending from the layer of the layered compound to the outside, and the extended part fixes the crystal structure of the sulfur-containing conductive polymer to some extent. It can be said that. Furthermore, in the electrode material of the present invention, the discharge potential range can be expanded by utilizing the redox capacity of an insulating (non-conductive) organic sulfur compound. In addition, since the organic sulfur compound is also inserted between the layers of the layered compound, the elution of the organic sulfur compound itself can be controlled, and even if the organic sulfur compound contains a mercapto group, it is a non-conductive material that has become a polymer. Even if the organic sulfur compound is made into a monomer, elution of the monomer can be suppressed, and H 2 gas generated by reduction of the proton of the mercapto group on the negative electrode can be reduced. Thus, the electrode material of the present invention can simultaneously achieve a high capacity and a high cycle characteristic, and the discharge lower limit voltage is 2 V or less. The electrode material of the present invention has at least one peak at a diffraction angle (2θ) of 10 ° or less in the X-ray diffraction pattern.

本発明のハイブリッド電極は、二次電池の正極として、特にリチウム二次電池の正極として用いることが好ましい。二次電池は、正極と負極を備え、それらの間に電解質層が配置されている。リチウム二次電池において、負極は、リチウム系材料で形成することが好ましい。そのようなリチウム系材料としては、金属リチウムやリチウム合金(例えば、Li−Al合金)のようなリチウム系金属材料、スズやケイ素のような金属とリチウムとの金属間化合物材料、窒化リチウムのようなリチウム化合物、またはリチウムインターカレーション炭素材料を例示することができる。リチウム系金属材料は、箔の形態で使用することが電池の軽量化の上で好ましい。   The hybrid electrode of the present invention is preferably used as a positive electrode of a secondary battery, particularly as a positive electrode of a lithium secondary battery. The secondary battery includes a positive electrode and a negative electrode, and an electrolyte layer is disposed between them. In the lithium secondary battery, the negative electrode is preferably formed of a lithium-based material. Examples of such lithium-based materials include lithium-based metal materials such as metallic lithium and lithium alloys (for example, Li-Al alloys), intermetallic compound materials of metals such as tin and silicon, and lithium nitride. Examples of the lithium compound or lithium intercalation carbon material can be given. The lithium-based metal material is preferably used in the form of a foil in order to reduce the weight of the battery.

リチウム二次電池においては、電解質として、CF3SO3Li、C49SO8Li、(CF3SO22NLi、(CF3SO23CLi、LiBF4、LiPF6、LiClO4等のリチウム塩を使用することができる。これら電解質を溶解する溶媒は非水溶媒であることが好ましい。非水溶媒には、鎖状カーボネート、環状カーボネート、環状エステル、ニトリル化合物、酸無水物、アミド化合物、ホスフェート化合物、アミン化合物等が含まれる。非水溶媒の具体例を挙げると、エチレンカーボネート、ジエチルカーボネート(DEC)、プロピレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、n−メチルピロリジノン、N,N’−ジメチルアセトアミド、アセトニトリル、あるいはプロピレンカーボネートとジメトキシエタンとの混合物、スルホランとテトラヒドロフランとの混合物等である。正極と負極との間に介挿される電解質層としては、上記電解質の非水溶媒中の溶液であってもよいし、この電解質溶液を含むポリマーゲル(ポリマーゲル電解質)であってもよい。 In the lithium secondary battery, as electrolyte, CF 3 SO 3 Li, C 4 F 9 SO 8 Li, (CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, LiBF 4 , LiPF 6 , LiClO 4 are used. Lithium salts such as can be used. The solvent for dissolving these electrolytes is preferably a non-aqueous solvent. Non-aqueous solvents include chain carbonates, cyclic carbonates, cyclic esters, nitrile compounds, acid anhydrides, amide compounds, phosphate compounds, amine compounds, and the like. Specific examples of the non-aqueous solvent include ethylene carbonate, diethyl carbonate (DEC), propylene carbonate, dimethoxyethane, γ-butyrolactone, n-methylpyrrolidinone, N, N′-dimethylacetamide, acetonitrile, or propylene carbonate and dimethoxyethane. And a mixture of sulfolane and tetrahydrofuran. The electrolyte layer interposed between the positive electrode and the negative electrode may be a solution of the above electrolyte in a non-aqueous solvent or a polymer gel (polymer gel electrolyte) containing this electrolyte solution.

以下、本発明を実施例によりさらに説明する。   Hereinafter, the present invention will be further described by examples.

実施例1
五酸化バナジウム2g、3,4−エチレンジオキシチオフェン(EDOT)1gおよび2,5−ジメルカプト−1,3,4−チアジアゾール(DMcT)0.3gを水とエタノールとの体積比1:1の混合溶媒中に懸濁させ、撹拌しながら、還流下に12時間加熱することによって所望の有機・無機ハイブリッド電極材料を合成した。このハイブリッド電極材料を乾燥後、その25重量%に相当する量の導電性カーボンブラックおよびその5重量%に相当する量のポリフッ化ビニリデン(PVDF)(バインダー)と混合し、溶媒としてN−メチルピロリドン(NMP)を用いてスラリー化した後、アルミニウム箔上にドクターブレード法によってコーティングして正極を作製した。この正極を用い、電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比1:3の混合溶媒中に1M濃度でLiBF4を含有する溶液を、負極に金属リチウムを用いてリチウム二次電池を組み立て、0.1C放電にて充放電評価を行い、100サイクル後のガス発生量も測定した。
Example 1
Mixing 2 g of vanadium pentoxide, 1 g of 3,4-ethylenedioxythiophene (EDOT) and 0.3 g of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) in a 1: 1 volume ratio of water and ethanol The desired organic / inorganic hybrid electrode material was synthesized by suspending in a solvent and heating with stirring for 12 hours under reflux. After drying this hybrid electrode material, it is mixed with conductive carbon black in an amount corresponding to 25% by weight and polyvinylidene fluoride (PVDF) (binder) in an amount corresponding to 5% by weight, and N-methylpyrrolidone as a solvent. After slurrying using (NMP), a positive electrode was produced by coating on an aluminum foil by a doctor blade method. Using this positive electrode, as the electrolytic solution, a solution containing LiBF 4 at a concentration of 1M in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 3 was used, and metallic lithium was used for the negative electrode. A lithium secondary battery was assembled, charge / discharge evaluation was performed with 0.1 C discharge, and the amount of gas generated after 100 cycles was also measured.

結果を図1および図2に示す。図1は、電極活物質(五酸化バナジウム、PEDOTおよびDMcT)1グラム当たりの放電容量と電圧との関係を示し、図2は、電極活物質1グラム当たりの放電容量とサイクル数との関係を示す。図1および図2に示す結果からわかるように、0.1C放電での電位1Vカットにおいて活物質あたりの容量は400mAh/gを超え、100サイクル後でもこの容量低下はほとんど見られず、100サイクル後の0.05C、1Vにおいては活物質あたり600mAh/gもの容量を示した。また、100サイクル後の水素発生はなかった。全ガス発生量は、0.8mLであった。   The results are shown in FIG. 1 and FIG. FIG. 1 shows the relationship between the discharge capacity per gram of electrode active material (vanadium pentoxide, PEDOT and DMcT) and voltage, and FIG. 2 shows the relationship between the discharge capacity per gram of electrode active material and the number of cycles. Show. As can be seen from the results shown in FIGS. 1 and 2, the capacity per active material exceeded 400 mAh / g at a potential of 1 V cut at 0.1 C discharge, and this capacity decrease was hardly seen even after 100 cycles. In the subsequent 0.05 C and 1 V, a capacity of 600 mAh / g per active material was shown. Moreover, there was no hydrogen generation after 100 cycles. The total gas generation amount was 0.8 mL.

従来例1
五酸化バナジウム2gとEDOT1gを水に懸濁させ、撹拌しながら、還流下に12時間加熱することによって従来例1の正極材料を合成した。この正極材料を用いて、実施例1と同様にして二次電池を組み立て、充放電評価を行った。結果を図3に示す。
Conventional Example 1
The positive electrode material of Conventional Example 1 was synthesized by suspending 2 g of vanadium pentoxide and 1 g of EDOT in water and heating them under reflux for 12 hours while stirring. Using this positive electrode material, a secondary battery was assembled in the same manner as in Example 1, and charge / discharge evaluation was performed. The results are shown in FIG.

図3に示す結果からわかるように、0.1C放電、1Vカットにおいては初期特性は活物質(五酸化バナジウムとPEDOT)あたり約500mAh/gと良好であったが、サイクル特性が著しく低下することが示された。   As can be seen from the results shown in FIG. 3, the initial characteristics were good at about 500 mAh / g per active material (vanadium pentoxide and PEDOT) at 0.1 C discharge and 1 V cut, but the cycle characteristics were significantly reduced. It has been shown.

従来例2
五酸化バナジウム2gとDMcT0.3gを水に懸濁させ、撹拌しながら、還流下に12時間加熱することによって従来例2の正極材料を合成した。この正極材料を用いて、実施例1と同様にして二次電池を組み立て、充放電評価を行った。結果を図4に示す。ここで、活物質は、五酸化バナジウムとDMcTである。
Conventional example 2
The positive electrode material of Conventional Example 2 was synthesized by suspending 2 g of vanadium pentoxide and 0.3 g of DMcT in water, and heating under reflux for 12 hours with stirring. Using this positive electrode material, a secondary battery was assembled in the same manner as in Example 1, and charge / discharge evaluation was performed. The results are shown in FIG. Here, the active materials are vanadium pentoxide and DMcT.

図4に示す結果からわかるように、0.1C放電、電位1Vカットにおいては初期特性は350mAh/g程度にすぎず、サイクル特性も著しく低下することが示された。   As can be seen from the results shown in FIG. 4, the initial characteristics were only about 350 mAh / g with 0.1 C discharge and potential 1 V cut, and the cycle characteristics were also significantly reduced.

実施例1および従来例1〜2の正極材料のX線回折(XRD)パターンを図5に示す。これらのXRDパターンには、いずれも、五酸化バナジウムのパターン以外に低角度側にピークが存在し、有機物が挿入されて五酸化バナジウムの層間が10Å以上になっている部分が存在することが示された。   The X-ray diffraction (XRD) patterns of the positive electrode materials of Example 1 and Conventional Examples 1 and 2 are shown in FIG. In these XRD patterns, in addition to the vanadium pentoxide pattern, there is a peak on the low-angle side, and there is a portion where the organic substance is inserted and the layer of vanadium pentoxide is 10 mm or more. It was done.

また、実施例1および従来例1〜2の正極材料からバナジウムを取り除き、有機物のみを取り出してIRスペクトルを測定した。結果を図6に示す。この結果からわかるように、層間に挿入されている有機物は、PEDOT(従来例1)、ポリDMcT(従来例2)、およびそれらの複合重合体(実施例1)であった。   In addition, vanadium was removed from the positive electrode materials of Example 1 and Conventional Examples 1 and 2, and only the organic matter was taken out and the IR spectrum was measured. The results are shown in FIG. As can be seen from the results, the organic substances inserted between the layers were PEDOT (Conventional Example 1), poly DMcT (Conventional Example 2), and their composite polymers (Example 1).

従来例3
DMcTとPANIをその25重量%に相当する量の導電性カーボンブラック、その5重量%に相当する量のポリフッ化ビニリデン(PVDF)と混合し、溶媒としてN−メチルピロリドン(NMP)を用いてスラリーにした後、Al箔上にドクターブレード法によってコーティングを行って正極を作製した。この正極を用い、実施例1と同様にしてリチウム二次電池を組み立て、0.1C放電にて充放電評価を行い、また100サイクル後ガス発生量も測定した。その結果、水素ガスの発生量は1.7mLであり、全ガス発生量は、7.8mLであり、実施例1と比較して10倍もガスが発生することが示された。
Conventional example 3
DMcT and PANI were mixed with conductive carbon black in an amount corresponding to 25% by weight thereof, and polyvinylidene fluoride (PVDF) in an amount corresponding to 5% by weight, and a slurry using N-methylpyrrolidone (NMP) as a solvent. Then, coating was performed on the Al foil by the doctor blade method to produce a positive electrode. Using this positive electrode, a lithium secondary battery was assembled in the same manner as in Example 1, charge / discharge evaluation was performed with 0.1 C discharge, and the amount of gas generated after 100 cycles was also measured. As a result, the generation amount of hydrogen gas was 1.7 mL, the total generation amount of gas was 7.8 mL, and it was shown that 10 times as much gas was generated as compared with Example 1.

従来例4
特開2000−82468号公報に従い、DMcTのジリチウム塩とPANIをその25重量%に相当する量の導電性カーボンブラックおよびその5重量%に相当する量のポリフッ化ビニリデン(PVDF)と混合し、溶媒としてルNMPを用いてスラリーにした後、Al箔上にドクターブレード法によってコーティングを行って正極を作製した。この正極を用い、実施例1と同様にしてリチウム二次電池を組み立て、0.1C放電にて充放電評価を行い、また100サイクル後のガス発生量も測定した。その結果、特開2000−82468号公報に記載されている通り、ガス発生量は少なかった(水素ガス発生量0.2mL;全ガス発生量1.0mL)が、初期特性は特開2000−82468号公報に記載されている、140mAh/g程度であった。
Conventional example 4
According to JP 2000-82468, a dilithium salt of DMcT and PANI are mixed with conductive carbon black in an amount corresponding to 25% by weight and polyvinylidene fluoride (PVDF) in an amount corresponding to 5% by weight, and a solvent. As a slurry using NMP, a positive electrode was prepared by coating on an Al foil by the doctor blade method. Using this positive electrode, a lithium secondary battery was assembled in the same manner as in Example 1, charge / discharge evaluation was performed with 0.1 C discharge, and the amount of gas generated after 100 cycles was also measured. As a result, as described in JP-A-2000-82468, the gas generation amount was small (hydrogen gas generation amount 0.2 mL; total gas generation amount 1.0 mL), but the initial characteristics were JP-A 2000-82468. It was about 140 mAh / g described in the publication.

実施例1の電極材料の電極活物質1グラム当たりの放電容量と電圧との関係を示すグラフ。The graph which shows the relationship between the discharge capacity per gram of electrode active materials of the electrode material of Example 1, and a voltage. 実施例1の電極材料の電極活物質1グラム当たりの放電容量とサイクル数との関係を示すグラフ。The graph which shows the relationship between the discharge capacity per gram of electrode active materials of the electrode material of Example 1, and the number of cycles. 従来例1の電極材料の電極活物質1グラム当たりの放電容量とサイクル数との関係を示すグラフ。The graph which shows the relationship between the discharge capacity per gram of electrode active materials of the electrode material of the prior art example 1, and the number of cycles. 従来例2の電極材料の電極活物質1グラム当たりの放電容量とサイクル数との関係を示すグラフ。The graph which shows the relationship between the discharge capacity per gram of electrode active materials of the electrode material of the prior art example 2, and a cycle number. 実施例1の電極材料のX線回折パターンを従来例1および従来例2のそれとともに示す図。The figure which shows the X-ray-diffraction pattern of the electrode material of Example 1 with that of the prior art example 1 and the prior art example 2. FIG. 実施例1の電極材料のIRスペクトルを従来例1および従来例2のそれとともに示す図。The figure which shows IR spectrum of the electrode material of Example 1 with that of the prior art example 1 and the prior art example 2. FIG.

Claims (11)

導電性基体と、この導電性基体の表面に形成された電極材料層を備え、前記電極材料は、周期律表第V族元素および第VI族元素から選ばれる少なくとも1種の元素の層状化合物と、レドックス活性を有する少なくとも1種の非導電性有機硫黄化合物と、レドックス活性を有する少なくとも1種の硫黄含有導電性ポリマーを含み、前記硫黄含有導電性ポリマーおよび前記有機硫黄化合物は、前記層状化合物の層間に挿入されていることを特徴とする有機・無機ハイブリッド電極。   A conductive substrate and an electrode material layer formed on the surface of the conductive substrate, the electrode material comprising a layered compound of at least one element selected from Group V elements and Group VI elements of the Periodic Table; , At least one non-conductive organic sulfur compound having redox activity, and at least one sulfur-containing conductive polymer having redox activity, wherein the sulfur-containing conductive polymer and the organic sulfur compound are: An organic / inorganic hybrid electrode characterized by being inserted between layers. 前記層状化合物が、バナジウム、ニオブおよびタンタルの酸化物および硫化物からなる群の中から選ばれる少なくとも1種を含むことを特徴とする請求項1に記載のハイブリッド電極。   The hybrid electrode according to claim 1, wherein the layered compound contains at least one selected from the group consisting of oxides and sulfides of vanadium, niobium, and tantalum. 前記層状化合物が、五酸化バナジウムを含むことを特徴とする請求項2に記載のハイブリッド電極。   The hybrid electrode according to claim 2, wherein the layered compound contains vanadium pentoxide. 前記有機硫黄化合物が、2,5−ジメルカプト−1,3,4−チアジアゾール、2−メルカプトエチリルエーテル、2−メルカプトエチリルスルフィド、1,2−エタンジチオール、テトラチオエチレンジアミン、N,N’−ジチオ−N,N’−ジメチルエチレンジアミン、トリチオシアヌル酸、2,4−ジチオピリジン、4,5−ジアミノ−2,6−ジメチルメルカプト−1,3,4−チアジアゾール、下記式(1)、(2)、(3)、(4)および(5):
Figure 2005285376
で示される化合物並びにそれらのポリマーからなる群の中から選ばれる少なくとも1種を含むことを特徴とする請求項1〜3のいずれか1項に記載のハイブリッド電極。
The organic sulfur compound is 2,5-dimercapto-1,3,4-thiadiazole, 2-mercaptoethylyl ether, 2-mercaptoethylyl sulfide, 1,2-ethanedithiol, tetrathioethylenediamine, N, N′— Dithio-N, N′-dimethylethylenediamine, trithiocyanuric acid, 2,4-dithiopyridine, 4,5-diamino-2,6-dimethylmercapto-1,3,4-thiadiazole, the following formulas (1) and (2) , (3), (4) and (5):
Figure 2005285376
The hybrid electrode according to any one of claims 1 to 3, comprising at least one selected from the group consisting of a compound represented by formula (1) and a polymer thereof.
前記硫黄含有導電性ポリマーが、前記有機硫黄化合物の存在下で、前記層状化合物の層間において、その対応するモノマーから重合されたものであることを特徴とする請求項1〜4のいずれか1項に記載のハイブリッド電極。   The sulfur-containing conductive polymer is polymerized from the corresponding monomer between the layers of the layered compound in the presence of the organic sulfur compound. The hybrid electrode according to 1. 前記硫黄含有導電性ポリマーが、ポリチオフェン化合物を含むことを特徴とする請求項1〜5のいずれか1項に記載のハイブリッド電極。   The hybrid electrode according to any one of claims 1 to 5, wherein the sulfur-containing conductive polymer contains a polythiophene compound. 前記ポリチオフェン化合物が、下記式(I):
Figure 2005285376
(ここで、R1およびR2は、それぞれ独立に、水素もしくは炭素数1〜4のアルキル基であり、または互いに結合して、置換されていてもよい炭素数1〜4のアルキレン基または1,2−シクロヘキシン基を形成してもよい)で示される繰り返し単位を有することを特徴とする請求項6に記載のハイブリッド電極。
The polythiophene compound is represented by the following formula (I):
Figure 2005285376
(Here, R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, or bonded to each other and optionally substituted alkylene group or 1 , 2-cyclohexyne group may be formed), and the hybrid electrode according to claim 6.
前記ポリチオフェン化合物が、下記式(II):
Figure 2005285376
(ここで、R1およびR2は、それぞれ独立に、水素もしくは炭素数1〜4のアルキル基であり、または互いに結合して、置換されていてもよい炭素数1〜4のアルキレン基または1,2−シクロヘキシン基を形成してもよい)で示されるチオフェン化合物の重合によって得られたものであることを特徴とする請求項6に記載のハイブリッド電極。
The polythiophene compound is represented by the following formula (II):
Figure 2005285376
(Here, R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, or bonded to each other and optionally substituted alkylene group or 1 The hybrid electrode according to claim 6, wherein the hybrid electrode is obtained by polymerization of a thiophene compound represented by (2), which may form a 2-cyclohexyne group).
前記電極材料が、導電性粒子をさらに含むことを特徴とする請求項1ないし8のいずれか1項に記載のハイブリッド電極。   The hybrid electrode according to claim 1, wherein the electrode material further includes conductive particles. 正極と、負極と、前記正極と負極との間に配置された電解質層を備え、前記正極が、請求項1〜9のいずれか1項に記載のハイブリッド電極により構成されることを特徴とする二次電池。   A positive electrode, a negative electrode, and an electrolyte layer disposed between the positive electrode and the negative electrode are provided, and the positive electrode is constituted by the hybrid electrode according to any one of claims 1 to 9. Secondary battery. 前記二次電池が、リチウム二次電池であることを特徴とする請求項10に記載の二次電池。   The secondary battery according to claim 10, wherein the secondary battery is a lithium secondary battery.
JP2004093639A 2004-03-26 2004-03-26 Organic / inorganic hybrid electrode and secondary battery using the same Expired - Fee Related JP4892174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093639A JP4892174B2 (en) 2004-03-26 2004-03-26 Organic / inorganic hybrid electrode and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093639A JP4892174B2 (en) 2004-03-26 2004-03-26 Organic / inorganic hybrid electrode and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005285376A true JP2005285376A (en) 2005-10-13
JP4892174B2 JP4892174B2 (en) 2012-03-07

Family

ID=35183550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093639A Expired - Fee Related JP4892174B2 (en) 2004-03-26 2004-03-26 Organic / inorganic hybrid electrode and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4892174B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165097A (en) * 2005-12-13 2007-06-28 Fuji Heavy Ind Ltd Positive electrode material for nonaqueous lithium secondary battery, and nonaqueous lithium secondary battery using the same
JP2007165095A (en) * 2005-12-13 2007-06-28 Fuji Heavy Ind Ltd Positive electrode for lithium battery, and secondary battery using it
WO2008056791A1 (en) * 2006-11-10 2008-05-15 Fuji Jukogyo Kabushiki Kaisha Lithium-ion secondary battery
JP2008123826A (en) * 2006-11-10 2008-05-29 Fuji Heavy Ind Ltd Power storage device
JP2008124227A (en) * 2006-11-10 2008-05-29 Fuji Heavy Ind Ltd Battery device and its manufacturing method
JP2011228289A (en) * 2010-03-27 2011-11-10 Osaka Municipa Technical Research Institute Electrode material for secondary battery and secondary battery using the same
WO2013066448A2 (en) * 2011-08-08 2013-05-10 Battelle Memorial Institute Polymer-sulfur composite materials for electrodes in li-s energy storage devices
JP2018081830A (en) * 2016-11-16 2018-05-24 株式会社リコー Electrode active material, electrode for power storage element, and power storage element
CN112331837A (en) * 2020-11-24 2021-02-05 中国科学院物理研究所 Organic-inorganic composite electrode material and preparation method and application thereof
CN113270583A (en) * 2021-05-19 2021-08-17 惠州亿纬锂能股份有限公司 Vulcanized polymer composite material, positive pole piece comprising vulcanized polymer composite material, and preparation method and application of positive pole piece

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130356A (en) * 1993-10-28 1995-05-19 Ricoh Co Ltd Electrode for secondary battery and secondary battery having the electrode
JPH1027615A (en) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd Composite electrode containing organic disulfide compound and its manufacture
JP2002203541A (en) * 2000-12-14 2002-07-19 Korea Electronics Telecommun Organic-inorganic complex oxide for positive electrode of lithium secondary battery and its manufacturing method
WO2003067687A1 (en) * 2002-02-07 2003-08-14 Fuji Jukogyo Kabushiki Kaisya Redox active reversible electrode and novel cell using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130356A (en) * 1993-10-28 1995-05-19 Ricoh Co Ltd Electrode for secondary battery and secondary battery having the electrode
JPH1027615A (en) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd Composite electrode containing organic disulfide compound and its manufacture
JP2002203541A (en) * 2000-12-14 2002-07-19 Korea Electronics Telecommun Organic-inorganic complex oxide for positive electrode of lithium secondary battery and its manufacturing method
WO2003067687A1 (en) * 2002-02-07 2003-08-14 Fuji Jukogyo Kabushiki Kaisya Redox active reversible electrode and novel cell using it

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165097A (en) * 2005-12-13 2007-06-28 Fuji Heavy Ind Ltd Positive electrode material for nonaqueous lithium secondary battery, and nonaqueous lithium secondary battery using the same
JP2007165095A (en) * 2005-12-13 2007-06-28 Fuji Heavy Ind Ltd Positive electrode for lithium battery, and secondary battery using it
WO2008056791A1 (en) * 2006-11-10 2008-05-15 Fuji Jukogyo Kabushiki Kaisha Lithium-ion secondary battery
JP2008123826A (en) * 2006-11-10 2008-05-29 Fuji Heavy Ind Ltd Power storage device
JP2008124227A (en) * 2006-11-10 2008-05-29 Fuji Heavy Ind Ltd Battery device and its manufacturing method
JP2011228289A (en) * 2010-03-27 2011-11-10 Osaka Municipa Technical Research Institute Electrode material for secondary battery and secondary battery using the same
WO2013066448A2 (en) * 2011-08-08 2013-05-10 Battelle Memorial Institute Polymer-sulfur composite materials for electrodes in li-s energy storage devices
WO2013066448A3 (en) * 2011-08-08 2013-08-08 Battelle Memorial Institute Polymer-sulfur composite materials for electrodes in li-s energy storage devices
US9929429B2 (en) 2011-08-08 2018-03-27 Battelle Memorial Institute Polymer-sulfur composite materials for electrodes in Li-S energy storage devices
JP2018081830A (en) * 2016-11-16 2018-05-24 株式会社リコー Electrode active material, electrode for power storage element, and power storage element
CN112331837A (en) * 2020-11-24 2021-02-05 中国科学院物理研究所 Organic-inorganic composite electrode material and preparation method and application thereof
CN113270583A (en) * 2021-05-19 2021-08-17 惠州亿纬锂能股份有限公司 Vulcanized polymer composite material, positive pole piece comprising vulcanized polymer composite material, and preparation method and application of positive pole piece

Also Published As

Publication number Publication date
JP4892174B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP5270600B2 (en) Novel electrode materials derived from polyquinone-based ionic compounds and their use in electrochemical generators
WO2017122597A1 (en) Aqueous electrolytic solution for electrical storage device, and electrical storage device including said aqueous electrolytic solution
US10062925B2 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery
WO2006080110A1 (en) Positive electrode material for lithium secondary cell
KR100854837B1 (en) Redox active reversible electrode and secondary battery using the same
JP5410277B2 (en) Nonaqueous electrolyte additive having cyano group and electrochemical device using the same
WO2018168505A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte composition, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
WO2012153734A1 (en) Nonaqueous electrolyte solution and lithium ion battery
JP2009205918A (en) Power storage device
JP2005340165A (en) Positive electrode material for lithium secondary cell
JP2009218065A (en) Lithium secondary battery and method for manufacturing the same
US20120156555A1 (en) Non-aqueous electrolyte secondary battery
JP5326575B2 (en) Method for producing polyradical compound-conductive substance complex
JP2012216401A (en) Lithium ion power storage device
JP2002154815A (en) Carbon polysulfide, method for manufacturing the same and nonaqueous electrolyte battery which uses the same
JP4892174B2 (en) Organic / inorganic hybrid electrode and secondary battery using the same
KR20200067829A (en) Method for inhibiting decomposition of silyl ester compounds
JP4826699B2 (en) Power storage device
JP2007280747A (en) Electrode material, as well as secondary battery and capacitor using it
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4139960B2 (en) Electricity storage device
KR20200013865A (en) Aqueous electrolyte and electrochemical device comprising the same
JP4932243B2 (en) Positive electrode for lithium battery and secondary battery using the same
CN110679030B (en) Electrolyte solution and electrochemical device
KR101018142B1 (en) Non-aqueous electrolyte and secondary battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees