KR101018142B1 - Non-aqueous electrolyte and secondary battery comprising the same - Google Patents

Non-aqueous electrolyte and secondary battery comprising the same Download PDF

Info

Publication number
KR101018142B1
KR101018142B1 KR1020080003036A KR20080003036A KR101018142B1 KR 101018142 B1 KR101018142 B1 KR 101018142B1 KR 1020080003036 A KR1020080003036 A KR 1020080003036A KR 20080003036 A KR20080003036 A KR 20080003036A KR 101018142 B1 KR101018142 B1 KR 101018142B1
Authority
KR
South Korea
Prior art keywords
butenesultone
pentensultone
pentenesultone
butensultone
fluoro
Prior art date
Application number
KR1020080003036A
Other languages
Korean (ko)
Other versions
KR20080067964A (en
Inventor
고정환
하용준
박진현
이철행
임영민
안정애
포고체프 드미트리
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20080067964A publication Critical patent/KR20080067964A/en
Application granted granted Critical
Publication of KR101018142B1 publication Critical patent/KR101018142B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D7/00Hinges or pivots of special construction
    • E05D7/08Hinges or pivots of special construction for use in suspensions comprising two spigots placed at opposite edges of the wing, especially at the top and the bottom, e.g. trunnions
    • E05D7/081Hinges or pivots of special construction for use in suspensions comprising two spigots placed at opposite edges of the wing, especially at the top and the bottom, e.g. trunnions the pivot axis of the wing being situated near one edge of the wing, especially at the top and bottom, e.g. trunnions
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D11/00Additional features or accessories of hinges
    • E05D11/06Devices for limiting the opening movement of hinges
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D11/00Additional features or accessories of hinges
    • E05D11/10Devices for preventing movement between relatively-movable hinge parts
    • E05D11/1028Devices for preventing movement between relatively-movable hinge parts for maintaining the hinge in two or more positions, e.g. intermediate or fully open
    • E05D11/105Devices for preventing movement between relatively-movable hinge parts for maintaining the hinge in two or more positions, e.g. intermediate or fully open the maintaining means acting perpendicularly to the pivot axis
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D3/00Hinges with pins
    • E05D3/02Hinges with pins with one pin
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/10Application of doors, windows, wings or fittings thereof for buildings or parts thereof
    • E05Y2900/13Application of doors, windows, wings or fittings thereof for buildings or parts thereof characterised by the type of wing
    • E05Y2900/132Doors

Abstract

본 발명은 kinetic상 SEI막의 형성이 종래 전해액 첨가제보다 유리하여, 전지 초기 용량 감소를 최소화할 수 있는 불포화 설톤 화합물을 포함하는 전해액에 관한 것이다. The present invention relates to an electrolyte solution containing an unsaturated sultone compound in which formation of a kinetic SEI film is more advantageous than conventional electrolyte additives, thereby minimizing battery initial capacity reduction.

Description

비수 전해액 및 이를 포함하는 이차 전지 {NON-AQUEOUS ELECTROLYTE AND SECONDARY BATTERY COMPRISING THE SAME}Non-aqueous electrolyte and secondary battery comprising same {NON-AQUEOUS ELECTROLYTE AND SECONDARY BATTERY COMPRISING THE SAME}

본 발명은 비수 전해액; 및 이를 포함하는 이차 전지에 관한 것이다. 보다 구체적으로, 본 발명은 이차 전지의 초기 용량, 수명 성능을 향상시킬 수 있는 불포화 설톤 화합물을 포함하는 비수 전해액; 및 이를 포함하는 이차 전지에 관한 것이다.The present invention is a non-aqueous electrolyte; And it relates to a secondary battery comprising the same. More specifically, the present invention is a non-aqueous electrolyte containing an unsaturated sultone compound capable of improving the initial capacity, lifespan performance of the secondary battery; And it relates to a secondary battery comprising the same.

최근 전자기기의 소형화 및 경량화 추세에 따라, 전원으로 작용하는 전지도 소형화 및 경량화가 요구되고 있다. 소형 경량화 및 고용량으로 충방전 가능한 전지로서 이차 전지가 실용화되고 있으며, 소형 비디오 카메라, 휴대전화, 노트퍼스컴 등의 휴대용 전자 및 통신기기 등에 이용되고 있다.In recent years, with the trend of miniaturization and weight reduction of electronic devices, miniaturization and weight reduction of batteries serving as power sources are also required. BACKGROUND ART Secondary batteries have been put to practical use as small-sized, light-weight, high-capacitance rechargeable batteries, and are used in portable electronic and communication devices such as small video cameras, mobile phones, and notebook computers.

이차 전지는 양극, 음극, 다공성 분리막, 및 전해질염과 전해질 용매를 포함하는 비수계 전해액으로 구성될 수 있다.The secondary battery may be composed of a positive electrode, a negative electrode, a porous separator, and a non-aqueous electrolyte containing an electrolyte salt and an electrolyte solvent.

상기 비수계 전해액은 전지의 작동 및 사용과 관련하여, 일반적으로 하기와 같은 특성이 요구된다. 첫째, 음극과 양극에서 리튬 이온의 삽입 및 탈리시 두 전극 사이에 이온을 충분히 전달할 수 있어야 하며, 둘째, 두 전극 간의 전위차에서 전기화학적으로 안정하여, 전해액 성분의 분해 등의 부반응 발생 염려가 적어야 한다.The non-aqueous electrolyte generally requires the following characteristics with respect to the operation and use of the battery. First, it must be able to sufficiently transfer ions between two electrodes during insertion and desorption of lithium ions from the cathode and anode, and second, it is electrochemically stable at the potential difference between the two electrodes, so that there is little concern about side reactions such as decomposition of electrolyte components. .

그러나, 전지의 음극, 양극으로 통상적으로 사용되는 탄소 전극과 리튬 금속 화합물 전극의 전위차는 0~4.3V 수준으로서, 카보네이트계 유기 용매와 같은 통상의 전해액 용매는 상기 전위차에서 충방전 중 전극 표면에서 분해되어 전지 내 부반응을 일으킬 수 있다. 또한, 프로필렌 카보네이트(PC), 디메틸 카보네이트(DMC) 또는 디에틸 카보네이트(DEC) 등의 유기 용매는 탄소계 음극에서 흑연 층간에 코인터컬레이션되어, 음극의 구조를 붕괴시킬 수 있다.However, the potential difference between a carbon electrode and a lithium metal compound electrode, which is commonly used as a battery negative electrode and a positive electrode, is in the range of 0 to 4.3 V, and a conventional electrolyte solvent such as a carbonate-based organic solvent decomposes at the electrode surface during charge and discharge at the potential difference. May cause side reactions in the battery. In addition, an organic solvent such as propylene carbonate (PC), dimethyl carbonate (DMC), or diethyl carbonate (DEC) may be co-intercalated between graphite layers in the carbon-based negative electrode, thereby disrupting the structure of the negative electrode.

한편, 상기 문제는 전지의 초기 충전시 카보네이트계 유기 용매의 전기적 환원에 의해 음극 표면에 형성되는 고체 전해질 계면(solid electrolyte interface, 이하 'SEI')막에 의해서 해결될 수 있는 것으로 알려져 있다. 그러나, 이러한 SEI막 형성시, 전해액 내의 리튬 이온이 비가역적으로 관여함으로써, 전지 초기 용량이 필수적으로 감소되는 문제가 있으며, 이는 이론 용량이 작은 탄소계 음극에서 특히 문제된다. On the other hand, it is known that the problem can be solved by a solid electrolyte interface (SEI) film formed on the surface of the negative electrode by the electrical reduction of the carbonate-based organic solvent during the initial charging of the battery. However, when the SEI film is formed, lithium ions in the electrolyte are irreversibly involved, so that the initial capacity of the battery is necessarily reduced, which is particularly problematic in a carbon-based negative electrode having a small theoretical capacity.

또한, 종래 카보네이트계 유기 용매에 의해 형성되는 SEI막은 일반적으로 전기화학적 또는 열적으로 안정하지 못하여, 충방전이 진행됨에 따라 증가된 전기화학적 에너지 및 열에너지에 의해 쉽게 붕괴될 수 있다. 따라서, 전지의 충방전 중 SEI막이 계속적으로 재생성되면서 전지 용량이 감소될 수 있고, 전지의 수명 성능이 저하될 수 있다. 또한, 상기 SEI막의 붕괴로 인해 노출된 음극 표면에서 전해액 분해 등의 부반응이 일어날 수 있으며, 이때 발생되는 가스로 인해 전지가 부풀거 나 내압이 증가하는 문제가 발생될 수 있다.In addition, the SEI film formed by the conventional carbonate-based organic solvent is generally not electrochemically or thermally stable, and may easily collapse due to increased electrochemical energy and thermal energy as charging and discharging proceeds. Therefore, the battery capacity can be reduced while the SEI film is continuously regenerated during charging and discharging of the battery, and the lifespan performance of the battery can be reduced. In addition, side reactions such as electrolyte decomposition may occur on the exposed surface of the negative electrode due to the collapse of the SEI film, and the gas generated at this time may cause a problem that the battery swells or the internal pressure increases.

상술한 문제점을 해결하기 위해서, 1,3-프로판설톤(1,3-propanesultone; 일본특허 출원번호 1999-339850), 1,3-프로펜설톤(1,3-propensultone; 일본특허 출원번호 2001-151863)을 전해액에 첨가하는 방법이 제시되었다. 그러나, 상기 방법의 경우에도 사이클이 지속되면서 용량이 서서히 감소하는 결과를 보여, 여전히 상기와 같은 문제점이 존재한다.In order to solve the above problems, 1,3-propanesultone (Japanese Patent Application No. 1999-339850), 1,3-propenesultone (1,3-propensultone; Japanese Patent Application No. 2001- 151863) has been presented. However, even in the case of the above method, as the cycle continues, the capacity gradually decreases, and the above problems still exist.

본 발명자들은 SEI막 형성시 보다 안정한 중간체를 형성할 수 있는 불포화 설톤 화합물을 전해액 첨가제로 사용하면, kinetic상 종래보다 SEI막의 형성이 유리하여, 전지의 초기 충전시 소모되는 리튬 이온의 양을 최소화할 수 있음을 인식하였다. The inventors of the present invention use an unsaturated sultone compound capable of forming a more stable intermediate when forming an SEI film as an electrolyte additive, which is advantageous in terms of kinetic formation of the SEI film, thereby minimizing the amount of lithium ions consumed during initial charging of the battery. It was recognized that.

이에, 본 발명은 SEI막 형성시 반응 중간체로 공명 구조를 형성할 수 있는 불포화 설톤 화합물을 포함하는 전해액; 및 상기 전해액을 구비하는 이차 전지를 제공하는 것을 목적으로 한다.Thus, the present invention is an electrolyte containing an unsaturated sultone compound that can form a resonance structure as a reaction intermediate when forming the SEI film; And it aims to provide the secondary battery provided with the said electrolyte solution.

본 발명은 전해질염 및 전해액 용매를 포함하는 전해액에 있어서, 상기 전해액은 하기 화학식 1의 화합물을 포함하는 전해액; 및 상기 전해액을 구비하는 이차 전지를 제공한다. The present invention provides an electrolyte solution comprising an electrolyte salt and an electrolyte solvent, wherein the electrolyte solution includes an electrolyte solution containing a compound represented by Chemical Formula 1 below; And it provides a secondary battery having the electrolyte solution.

또한, 본 발명은 하기 화학식 1의 화합물(이하, 본 발명의 불포화 설톤 화합 물)의 화학반응 결과물을 포함하는 고체 전해질 계면(SEI)막이 표면의 일부 또는 전부에 형성된 전극; 및 상기 전극을 구비하는 이차 전지를 제공한다.In addition, the present invention is an electrode formed on a part or all of the surface of the solid electrolyte interface (SEI) film containing the chemical reaction product of the compound of formula 1 (hereinafter, unsaturated sultone compound of the present invention); And it provides a secondary battery having the electrode.

[화학식 1][Formula 1]

Figure 112008002150415-pat00001
Figure 112008002150415-pat00001

상기 화학식 1에서 R1, R2, R3 및 R4는 각각 독립적으로 수소, 불소, C1~C6의 알킬기, 탄소수 3~8의 고리형 알킬(cyclic alkyl)기, C2~C6의 알케닐기, 페닐(phenyl)기, 벤질(benzyl)기, 및 이들의 할로겐 유도체로 이루어진 군으로부터 선택되며, n은 0에서 2인 정수이다.In Formula 1, R 1 , R 2 , R 3, and R 4 are each independently hydrogen, fluorine, an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, and a C 2 to C 6 group. Is selected from the group consisting of an alkenyl group, a phenyl group, a benzyl group, and a halogen derivative thereof, n is an integer of 0 to 2.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

이차 전지의 작동시 일반적으로 초기 사이클에서 전기 용량의 감소가 나타나는데, 이는 초기 충전시 SEI막이 형성되는 과정에서 전해액 내의 리튬 이온이 소모되기 때문으로 추정된다. 또한, 상기에서 소모되는 리튬 이온의 양은 SEI막의 형성 반응의 kinetics에 일부 영향을 받는 것으로 추정된다.In operation of the secondary battery, a decrease in electric capacity generally occurs in the initial cycle, which is presumably because lithium ions in the electrolyte are consumed during the formation of the SEI film during the initial charging. In addition, it is estimated that the amount of lithium ions consumed above is partially influenced by the kinetics of the formation reaction of the SEI film.

이에, 본 발명은 공명(resonance) 구조의 화합물의 경우 보다 우수한 화학적 안정성을 나타낼 수 있다는 점에 착안하여, 전해액 구성 성분으로 SEI막 형성시 반응 중간체로 공명 구조를 형성할 수 있는 불포화 설톤 화합물을 사용하는 것을 특 징으로 한다. Accordingly, the present invention focuses on the fact that the compound having a resonance structure can exhibit better chemical stability, using an unsaturated sultone compound capable of forming a resonance structure as a reaction intermediate when forming an SEI film as an electrolyte component. It is characterized by.

보다 구체적으로는, 본 발명의 전해액은 상기 화학식 1의 불포화 설톤 화합물(이하, '본 발명의 불포화 설톤 화합물')을 포함하여, 전지의 초기 충전시 용량 감소를 최소화할 수 있는 것이 특징이다. 이러한 전지 성능의 향상 작용은 하기와 같이 추정 가능하나, 이에 의해 제한되는 것은 아니다.More specifically, the electrolyte solution of the present invention includes an unsaturated sultone compound of Formula 1 (hereinafter referred to as 'unsaturated sultone compound of the present invention'), and is capable of minimizing capacity reduction during initial charging of a battery. Such improvement of battery performance can be estimated as follows, but is not limited thereto.

전지의 충전시 음극 표면상에 SEI막을 형성하는 전해액 첨가제로 종래에 사용된 불포화 설톤 화합물(이하, '종래 불포화 설톤계 전해액 첨가제')은 하기 화학식 2의 형태로서, SEI막 형성시 일반적으로 하기 화학식 3과 같이 환원되어 중간체를 형성하는 것으로 추정된다.An unsaturated sultone compound (hereinafter, 'a conventional unsaturated sultone electrolyte additive'), which is conventionally used as an electrolyte additive for forming an SEI film on a negative electrode surface during charging of a battery, is in the form of Formula 2 below, It is estimated to be reduced to 3 to form an intermediate.

[화학식 2][Formula 2]

Figure 112008002150415-pat00002
Figure 112008002150415-pat00002

상기 화학식 2에서, R5 내지 R8은 각각 독립적으로 수소, 할로겐, C1~C6의 알킬(alkyl)기, C6~C12의 아릴(aryl)기, C2~C6의 알케닐 (alkenyl)기, 또는 이들의 할로겐 유도체이고, n은 0~3의 정수이다.In Formula 2, R 5 to R 8 are each independently hydrogen, halogen, C 1 ~ C 6 alkyl group, C 6 ~ C 12 aryl group, C 2 ~ C 6 alkenyl (alkenyl) group, or a halogen derivative thereof, n is an integer of 0-3.

[화학식 3](3)

Figure 112008002150415-pat00003
Figure 112008002150415-pat00003

반면, 본 발명의 불포화 설톤 화합물은 SEI 막 형성시 하기 화학식 4와 같이 환원되어 중간체를 형성하는 것으로 추정된다.On the other hand, the unsaturated sultone compound of the present invention is estimated to form an intermediate by reducing as shown in the following formula (4) when forming the SEI film.

[화학식 4][Formula 4]

Figure 112008002150415-pat00004
Figure 112008002150415-pat00004

즉, 본 발명의 불포화 설톤 화합물은 전기적 환원시 황-탄소 결합이 끊어지면서, 도입된 전자와 화합물 내 이중결합 사이에 공명 구조(resonance)가 형성되는 반면, 종래 불포화 설톤계 전해액 첨가제는 환원시 화합물 내 이중 결합이 환원체 내에 그대로 유지된다. 따라서, 본 발명의 불포화 설톤 화합물은 종래 불포화 설톤계 전해액 첨가제보다 더 안정한 구조의 중간체(intermediate)를 형성할 수 있으며, 이는 SEI막 형성시 kinetic상 유리하게 작용할 수 있다. 이로 인해, 본 발명에서는 SEI막 형성에 소모되는 리튬 이온의 양이 감소되어, 그 결과 전지의 초기 용량 감소가 최소화되고, 전지의 수명 성능이 향상될 수 있다.That is, the unsaturated sultone compound of the present invention is a sulfur-carbon bond is broken during electrical reduction, while a resonance structure (resonance) is formed between the introduced electrons and the double bond in the compound, while the conventional unsaturated sultone electrolyte additive is a compound at the time of reduction The double bonds remain in the reducing body. Therefore, the unsaturated sultone compound of the present invention can form an intermediate of a more stable structure (intermediate) than the conventional unsaturated sultone-based electrolyte additive, which may act advantageously kinetic when forming the SEI film. For this reason, in the present invention, the amount of lithium ions consumed to form the SEI film is reduced, and as a result, the initial capacity reduction of the battery can be minimized, and the battery life performance can be improved.

또한, 본발명의 불포화 설톤 화합물은 환원시 환형 구조가 개환되면서, 환원 체의 양 말단에 설포네이트 음이온 라디칼(-SO3 -) 및 알릴기 라디칼을 형성하는데, 이들은 중합 가능한 작용기로서, 기타 전해액 성분과 함께 다양한 형태의 중합 반응을 수행할 수 있다. 그 결과, 본 발명에서는 종래 카보네이트계 유기 용매에 의해 형성된 SEI막에 비해, 보다 안정한 SEI막이 형성될 수 있다.Further, as the unsaturated sultone compounds of the invention are cyclic structure is ring-opened upon reduction, sulfonate anion radical (-SO 3 -) to both ends of the reduced material to form a radical, and an allyl group, which as a polymerizable functionality, other electrolytic solution component Various types of polymerization reactions can be carried out together. As a result, in the present invention, a more stable SEI film can be formed as compared with the SEI film formed by the conventional carbonate organic solvent.

본 발명의 불포화 설톤 화합물은 하기 화학식 1로 표현될 수 있다. The unsaturated sultone compound of the present invention can be represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112008002150415-pat00005
Figure 112008002150415-pat00005

상기 화학식 1에서 R1, R2, R3 및 R4는 각각 독립적으로 수소, 불소, C1~C6의 알킬기, 탄소수 3~8의 고리형 알킬(cyclic alkyl)기, C2~C6의 알케닐기, 페닐(phenyl)기, 벤질(benzyl)기, 및 이들의 할로겐 유도체로 이루어진 군으로부터 선택되며, n은 0에서 2인 정수이다.In Formula 1, R 1 , R 2 , R 3, and R 4 are each independently hydrogen, fluorine, an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, and a C 2 to C 6 group. Is selected from the group consisting of an alkenyl group, a phenyl group, a benzyl group, and a halogen derivative thereof, n is an integer of 0 to 2.

본 발명의 불포화 설톤 화합물의 비제한적인 예로는 2-부텐설톤(2-butensultone), 2-메틸-2-부텐설톤(2-methyl-2-butensultone), 2-에틸-2-부텐설톤(2-ethyl-2-butensultone), 2-프로필-2-부텐설톤(2-propyl-2-butensultone), 3-메틸-2-부텐설톤(3-methyl-2-butensultone), 3-에틸-2-부텐설톤(3-ethyl-2-butensultone), 3-프로필-2-부텐설톤(3-propyl-2-butensultone), 2,3-디메틸-2-부텐설톤(2,3-dimethyl-2-butensultone), 2,3-디에틸-2-부텐설톤(2,3-diethyl-2- butensultone), 2,3-디프로필-2-부텐설톤(2,3-dipropyl-2-butensultone), 2-플루오로-2-부텐설톤(2-fluoro-2-butensultone), 3-플루오로-2-부텐설톤(3-fluoro-2-butensultone), 2,3-디플루오로-2-부텐설톤(2,3-difluoro-2-butensultone), 2-페닐-2-부텐설톤(2-phenyl-2-butensultone), 2-벤질-2-부텐설톤(2-benzyl-2-butensultone), 2-알릴-2-부텐설톤(2-allyl-2-butensultone), 2-시클로펜틸-2-부텐설톤(2-cyclopentyl-2-butensultone), 2-시클로헥실-2-부텐설톤(2-cyclohexyl-2-butensultone), 2,4-디메틸-2-부텐설톤(2,4-dimethyl-2-butensultone), 2,4-디플푸오로-2-부텐설톤(2,4-difluoro-2-butensultone), 2,3,4-트리메틸-2-부텐설톤(2,3,4-trimethyl-2-butensultone), 2,3,4,4-테트라메틸-2-부텐설톤(2,3,4,4-tetramethyl-2-butensultone), 2,3,4-트리플루오로-2-부텐설톤(2,3,4-trifluoro-2-butensultone), 2,3,4,4-테트라플루오로-2-부텐설톤(2,3,4,4-tetrafluoro-2-butensultone), 2-메틸-2-펜텐설톤(2-methyl-2-pentensultone), 2-에틸-2-펜텐설톤(2-ethyl-2-pentensultone), 2-프로필-2-펜텐설톤(2-propyl-2-pentensultone), 3-메틸-2-펜텐설톤(3-methyl-2-pentensultone), 3-에틸-2-펜텐설톤(3-ethyl-2-pentensultone), 3-프로필-2-펜텐설톤(3-propyl-2-pentensultone), 2,3-디메틸-2-펜텐설톤(2,3-dimethyl-2-pentensultone), 2,3-디에틸-2-펜텐설톤(2,3-diethyl-2-pentensultone), 2,3-디프로필-2-펜텐설톤(2,3-dipropyl-2-pentensultone), 2-플루오로-2-펜텐설톤(2-fluoro-2-pentensultone), 3-플루오로-2-펜텐설톤(3-fluoro-2-pentensultone), 2,3-디플루오로-2-펜텐설톤(2,3-difluoro-2-pentensultone), 2-페닐-2-펜텐설톤(2-phenyl-2-pentensultone), 2-벤질-2-펜텐설톤(2-benzyl-2- pentensultone), 2-알릴-2-부텐설톤(2-allyl-2-pentensultone), 2-시클로펜틸-2-펜텐설톤(2-cyclopentyl-2-pentensultone), 2-시클로헥실-2-펜텐설톤(2-cyclohexyl-2-pentensultone), 2,4-디메틸-2-펜텐설톤(2,4-dimethyl-2-pentensultone), 2,4-디플푸오로-2-펜텐설톤(2,4-difluoro-2-pentensultone), 2,3,4-트리메틸-2-펜텐설톤(2,3,4-trimethyl-2-pentensultone), 2,3,4,4-테트라메틸-2-펜텐설톤(2,3,4,4-tetramethyl-2-pentensultone), 2,3,4,5-테트라메틸-2-펜텐설톤(2,3,4,5-tetramethyl-2-pentensultone), 2,3,4-트리플루오로-2-펜텐설톤(2,3,4-trifluoro-2-pentensultone), 2,3,4,4-테트라플루오로-2-펜텐설톤(2,3,4,4-tetrafluoro-2-pentensultone), 2,3,4,5-테트라플루오로-2-펜텐설톤(2,3,4,5-tetrafluoro-2-pentensultone) 등이 있다Non-limiting examples of unsaturated sultone compounds of the present invention are 2-butenesultone, 2-methyl-2-butenesultone, 2-ethyl-2-butenesultone (2 -ethyl-2-butensultone), 2-propyl-2-butenesultone, 3-methyl-2-butenesultone, 3-ethyl-2-butensultone Butenesultone (3-ethyl-2-butensultone), 3-propyl-2-butenesultone (3-propyl-2-butensultone), 2,3-dimethyl-2-butenesultone (2,3-dimethyl-2-butensultone ), 2,3-diethyl-2-butenesultone, 2,3-dipropyl-2-butenesultone, 2- 2-fluoro-2-butenesultone, 3-fluoro-2-butenesultone, 2,3-difluoro-2-butenesultone (2 , 3-difluoro-2-butensultone), 2-phenyl-2-butenesultone, 2-benzyl-2-butenesultone, 2-allyl- 2-allyl-2-butensultone, 2-cyclopentyl-2-butensultone, 2-cyclohexyl-2-part 2-cyclohexyl-2-butensultone, 2,4-dimethyl-2-butenesultone, 2,4-dipfuoro-2-butenesultone difluoro-2-butensultone), 2,3,4-trimethyl-2-butenesultone (2,3,4-trimethyl-2-butensultone), 2,3,4,4-tetramethyl-2-butenesultone (2 , 3,4,4-tetramethyl-2-butensultone), 2,3,4-trifluoro-2-butenesultone (2,3,4-trifluoro-2-butensultone), 2,3,4,4- Tetrafluoro-2-butenesultone (2,3,4,4-tetrafluoro-2-butensultone), 2-methyl-2-pentenesultone, 2-ethyl-2-pentenesultone (2-ethyl-2-pentensultone), 2-propyl-2-pentenesultone, 2-methyl-2-pentenesultone, 3-methyl-2-pentensultone, 3-ethyl- 2-pentenesultone (3-ethyl-2-pentensultone), 3-propyl-2-pentenesultone (3-propyl-2-pentensultone), 2,3-dimethyl-2-pentenesultone (2,3-dimethyl-2 -pentensultone), 2,3-diethyl-2-pentensultone, 2,3-dipropyl-2-pentenesultone, 2-fluoro-2-pentensultone sultone), 3-fluoro-2-pentensultone, 2,3-difluoro-2-pentenesultone, 2-phenyl- 2-phenyl-2-pentensultone, 2-benzyl-2- pentensultone, 2-allyl-2-buttensultone, 2-cyclopentyl-2-pentensultone, 2-cyclohexyl-2-pentensultone, 2,4-dimethyl-2-pentenesultone , 4-dimethyl-2-pentensultone), 2,4-difluoro-2-pentensultone, 2,3,4-trimethyl-2-pentenesultone (2,3 , 4-trimethyl-2-pentensultone), 2,3,4,4-tetramethyl-2-pentenesultone (2,3,4,4-tetramethyl-2-pentensultone), 2,3,4,5-tetra Methyl-2-pentenesultone (2,3,4,5-tetramethyl-2-pentensultone), 2,3,4-trifluoro-2-pentenesultone (2,3,4-trifluoro-2-pentensultone), 2,3,4,4-tetrafluoro-2-pentenesultone (2,3,4,4-tetrafluoro-2-pentensultone), 2,3,4,5-tetrafluoro-2-pentenesultone (2 , 3,4,5-tetrafluoro-2-pentensultone )

본 발명의 전해액에 있어서, 상기 불포화 설톤 화합물의 함량은 전지의 성능을 향상시키고자 하는 목표에 따라 조절 가능하나, 전해액 100 중량부 당 0.1 내지 20 중량부가 바람직하다. 0.1 중량부 미만을 사용하는 경우 원하는 cycle 보존 효과가 미미하며, 20 중량부를 초과하는 경우 전지의 저항이 커질 수 있다.In the electrolyte solution of the present invention, the content of the unsaturated sultone compound can be adjusted according to the goal of improving the performance of the battery, but preferably 0.1 to 20 parts by weight per 100 parts by weight of the electrolyte. If less than 0.1 part by weight, the desired cycle preservation effect is insignificant. If it exceeds 20 parts by weight, the battery resistance may increase.

본 발명의 전해액은 상기 화합물 이외에, 당업계에 알려진 통상적인 전해액 성분, 예컨대 전해질염과 전해액 용매를 포함할 수 있다. In addition to the above compounds, the electrolyte of the present invention may include conventional electrolyte components known in the art, such as electrolyte salts and electrolyte solvents.

상기 전해질염은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고, B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이다. 특히, LiClO4, LiCF3SO3, LiPF6, LiBF4, LiN(C2F5SO2)2, 또는 Li(CF3SO2)2과 같은 리튬염이 바람직하다.The electrolyte salt is A + B - A salt of the structure, such as, A + is Li +, Na +,, and comprising an alkali metal cation or an ion composed of a combination thereof, such as K + B - is PF 6 -, BF 4 -, Cl -, Br - , I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2) 3 - is a salt containing an anion ion or a combination thereof, such as. In particular, lithium salts such as LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiN (C 2 F 5 SO 2 ) 2 , or Li (CF 3 SO 2 ) 2 are preferred.

또한, 전해액 용매는 당업계에 알려진 통상적인 유기 용매, 예컨대 환형 카보네이트 및/또는 선형 카보네이트가 사용 가능하다. 특히, 전해액의 리튬 이온의 해리 및 전달능력을 높이기 위해, 높은 극성을 갖는 환형 카보네이트를 사용하는 것이 바람직하며, 전해액의 점도 상승으로 인한 리튬 이온 전도도의 감소를 방지하기 위해 환형 카보네이트와 선형 카보네이트를 혼용함으로써 전지의 수명특성을 향상을 도모함이 더욱 바람직하다. 상기 전해액 용매의 비제한적인 예로는 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤(GBL), 플루오르에틸렌 카보네이트(FEC), 포름산 메틸, 포름산 에틸, 포름산 프로필, 초산 메틸, 초산 에틸, 초산 프로필, 초산 펜틸, 프로피온산 메틸, 프로피온산 에틸, 프로피온산 프로필, 프로피온산 부틸 또는 이들의 할로겐 유도체 등이 있다. 이들 전해액 용매는 단독 또는 2종 이상을 혼합하여 사용할 수 있으며, 일례로 에틸렌 카보네이트의 저온 성능 저하의 문제를 해결하기 위해 에틸렌 카보네이트와 프로필렌 카보네이트를 혼용할 수 있다.In addition, the electrolyte solvent may be used conventional organic solvents known in the art, such as cyclic carbonate and / or linear carbonate. In particular, in order to increase the dissociation and transfer ability of lithium ions in the electrolyte, it is preferable to use a cyclic carbonate having a high polarity, and to mix the cyclic carbonate and linear carbonate in order to prevent a decrease in the lithium ion conductivity due to the viscosity increase of the electrolyte. It is more preferable to improve the lifespan characteristics of the battery. Non-limiting examples of the solvent solvent is propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxy Ethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl carbonate (EMC), gamma butyrolactone (GBL), fluoroethylene carbonate (FEC), methyl formate, ethyl formate Propyl formate, methyl acetate, ethyl acetate, propyl acetate, pentyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate or halogen derivatives thereof. These electrolyte solvents can be used individually or in mixture of 2 or more types, For example, in order to solve the problem of low temperature performance of ethylene carbonate, ethylene carbonate and propylene carbonate can be mixed.

또한, 본 발명은 상기 화학식 1의 불포화 설톤 화합물의 화학반응 결과물을 포함하는 고체 전해질 계면(SEI)막이 표면의 일부 또는 전부에 형성된 전극, 바람직하게는 음극을 제공한다. In addition, the present invention provides an electrode, preferably a cathode, on which a solid electrolyte interface (SEI) film including a chemical reaction product of the unsaturated sultone compound of Formula 1 is formed on part or all of a surface thereof.

상기 전극은 당업계에 알려진 통상의 방법에 따라 제조된 전극; 및 본 발명의 불포화 설톤 화합물을 포함하는 전해액을 사용하여 전지부를 조립한 후, 1회 이상 충방전을 진행하여 전극활물질 표면에 SEI막을 형성시킴으로써 제조될 수 있다. 또한, 전지부 조립 이전에, 상기 불포화 설톤 화합물이 함유된 전해액에 당업계에 알려진 통상의 방법에 따라 제조된 전극을 함침한 상태로 전기적 환원시킴으로써 SEI막이 기형성된 전극을 제조할 수도 있다.The electrode is an electrode prepared according to a conventional method known in the art; And after assembling the battery unit using the electrolyte solution containing an unsaturated sultone compound of the present invention, it can be prepared by charging and discharging one or more times to form an SEI film on the surface of the electrode active material. In addition, before the battery unit assembly, the electrode having the SEI film preformed may be manufactured by electrically reducing the electrode containing the unsaturated sultone compound in the state of being impregnated with an electrode prepared according to a conventional method known in the art.

상기 SEI막이 형성되기 이전의 전극은 당 업계에 알려진 통상적인 방법에 따라 제조 가능하며, 이의 일 실시예를 들면 음극활물질을 포함하는 전극 슬러리를 음극 전류 집전체 상에 도포 및 건조하여 제조할 수 있다. 이때 선택적으로 도전제 및/또는 바인더를 소량 첨가할 수 있다.The electrode before the SEI film is formed may be manufactured according to a conventional method known in the art, and for example, an electrode slurry including a negative electrode active material may be prepared by applying and drying an electrode slurry on a negative current collector. . In this case, a small amount of a conductive agent and / or a binder may be optionally added.

음극활물질은 종래 이차 전지의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하다. 이의 비제한적인 예로는 리튬 금속 또는 리튬 합금 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite), 흑연화 탄소 또는 기타 탄소류 등의 리튬 흡착물질 등이 있으며, 특히, 엑스선 회절법으로 측정된 탄소질 재료의 결정면 거리 상수 d002 값이 최대 0.338 nm이고, BET 법으로 측정된 비표면적이 최대 10 m2/g 인 흑연화 탄소를 사용하는 것이 바람직하다. 음극 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.As the negative electrode active material, a conventional negative electrode active material that can be used for a negative electrode of a conventional secondary battery can be used. Non-limiting examples thereof include lithium adsorbents such as lithium metal or lithium alloy carbon, petroleum coke, activated carbon, graphite, graphite, graphitized carbon or other carbons. It is preferable to use graphitized carbon having a crystal surface distance constant d002 of a carbonaceous material measured by X-ray diffraction method up to 0.338 nm and a specific surface area measured by BET method up to 10 m 2 / g. Non-limiting examples of cathode current collectors include foils made of copper, gold, nickel or copper alloys or combinations thereof.

나아가, 본 발명의 이차 전지는 상기 화학식 1의 불포화 설톤 화합물을 포함하는 전해액; 및/또는 상기 불포화 설톤 화합물의 화학 반응 결과물을 포함하는 고체 전해질 계면(SEI)막이 표면의 일부 또는 전부에 형성된 전극을 포함한다. 바람직하게는, 본 발명은 분리막; 양극; 상기 화학식 1의 불포화 설톤 화합물의 화학 반응 결과물을 포함하는 고체 전해질 계면(SEI)막이 표면의 일부 또는 전부에 형성된 음극; 및/또는 상기 불포화 설톤 화합물을 포함하는 전해액을 구비하는 이차 전지를 제공한다.Furthermore, the secondary battery of the present invention is an electrolyte containing an unsaturated sultone compound of Formula 1; And / or an electrode on which a solid electrolyte interface (SEI) film comprising the chemical reaction product of the unsaturated sultone compound is formed on part or all of the surface. Preferably, the present invention is a separator; anode; A cathode in which a solid electrolyte interface (SEI) film including a chemical reaction product of the unsaturated sultone compound of Formula 1 is formed on part or all of a surface thereof; And / or It provides a secondary battery having an electrolyte solution containing the unsaturated sultone compound.

상기 이차 전지의 비제한적인 예로는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등이 있다. Non-limiting examples of the secondary battery includes a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.

본 발명의 이차 전지에 적용될 양극은 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 양극활물질이 양극 전류집전체에 결착된 형태로 제조할 수 있다. 양극활물질은 종래 이차 전지의 양극에 사용될 수 있는 통상적인 양극활물질이 사용 가능하며, 이의 비제한적인 예로는 LiMxOy(M = Co, Ni, Mn, CoaNibMnc)와 같은 리튬 전이금속 복합산화물(예를 들면, LiMn2O4 등의 리튬 망간 복합산화물, LiNiO2 등의 리튬 니켈 산화물, LiCoO2 등의 리튬 코발트 산화물 및 이들 산화물의 망간, 니켈, 코발트의 일부를 다른 전이금속 등으로 치환한 것 또는 리튬을 함유한 산화바나듐 등) 또는 칼코겐 화합물(예를 들면, 이산화망간, 이황화티탄, 이황화몰리브덴 등) 등이 있다. 바람직하게는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2 (여기에서, 0≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0<Z<2), LiCoPO4, LiFePO4 또는 이들의 혼합물 등이 있다. 양극 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.The positive electrode to be applied to the secondary battery of the present invention is not particularly limited, and may be manufactured in a form in which a positive electrode active material is bound to a positive electrode current collector according to conventional methods known in the art. The positive electrode active material may be a conventional positive electrode active material that can be used for the positive electrode of a conventional secondary battery, non-limiting examples of lithium such as LiM x O y (M = Co, Ni, Mn, Co a Ni b Mn c ) Transition metal composite oxides (for example, lithium manganese composite oxides such as LiMn 2 O 4 , lithium nickel oxides such as LiNiO 2 , lithium cobalt oxides such as LiCoO 2 , and some of the manganese, nickel and cobalt oxides of these oxides And the like, or a vanadium oxide containing lithium) or a chalcogen compound (for example, manganese dioxide, titanium disulfide, molybdenum disulfide, and the like). Preferably LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1-Y Co Y O 2 , LiCo 1-Y Mn Y O 2 , LiNi 1-Y Mn Y O 2 (where 0 ≦ Y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z O 4 , LiMn 2-z Co z O 4 ( Here, 0 <Z <2), LiCoPO 4 , LiFePO 4, or a mixture thereof is mentioned. Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof.

분리막은 특별한 제한이 없으나, 다공성 분리막이 사용 가능하며, 예를 들면 폴리프로필렌계, 폴리에틸렌계, 폴리올레핀계 다공성 분리막 등이 있다.The separator is not particularly limited, but a porous separator may be used, for example, a polypropylene-based, polyethylene-based, or polyolefin-based porous separator.

본 발명에 따른 이차 전지는 당 기술 분야에 알려진 통상적인 방법에 따라 제조될 수 있으며, 이의 일 실시예를 들면 음극과 양극 사이에 분리막을 개재(介在)시켜 조립한 후 본 발명에 따라 제조된 전해액을 주입함으로써 제조될 수 있다.The secondary battery according to the present invention may be manufactured according to a conventional method known in the art, for example, an electrolyte prepared according to the present invention after assembling a separator between an anode and a cathode. It can be prepared by injecting.

본 발명에 따른 이차 전지의 외형은 제한이 없으나, 캔으로 된 원통형, 코인형, 각형 또는 파우치(pouch)형이 가능하다.The appearance of the secondary battery according to the present invention is not limited, but can be cylindrical, coin-shaped, square or pouch (pouch) of the can.

본 발명에서는 kinetic상 종래보다 SEI막의 형성이 유리하므로, 전지의 초기 용량 감소가 최소화될 수 있다. 또한, 본 발명은 음극 표면상에 보다 안정한 SEI막을 형성함으로써, 전지의 방전 용량 보존 특성 및 수명 특성을 향상시킬 수 있다.In the present invention, since the formation of the SEI film is advantageous in kinetic manner, the initial capacity reduction of the battery can be minimized. In addition, the present invention can improve the discharge capacity storage characteristics and the life characteristics of the battery by forming a more stable SEI film on the negative electrode surface.

청구범위에 기술된 본 발명의 정신 및 범위를 벗어나지 아니하는 범위 내에서 다양한 보완이 행해질 수 있다.Various modifications may be made without departing from the spirit and scope of the invention as set forth in the claims.

이하, 실시예 및 비교예를 통하여 본 발명을 더욱 상세하게 설명한다. 다만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 이들에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the following examples are for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예 1Example 1

실시예 1-1. 전해액의 제조Example 1-1. Preparation of Electrolyte

에틸렌 카보네이트, 프로필렌 카보네이트, 디에틸 카보네이트 1:1:2 부피비의 1M LiPF6 용액에 2-메틸-2-부텐설톤(2-methyl-2-butensultone)을 2 중량부 첨가하여 전해액을 제조하였다.2 parts by weight of 2-methyl-2-butenesultone was added to a 1M LiPF 6 solution of ethylene carbonate, propylene carbonate, and diethyl carbonate in a 1: 1: 2 volume ratio to prepare an electrolyte solution.

실시예 1-2. 전지의 제조Example 1-2. Manufacture of batteries

음극은 흑연화 탄소 활물질 93중량부와 폴리비닐리덴 디플루오라이드(PVDF) 7중량부를 용매인 N-메틸-2-피롤리돈(N-methyl-2-pyrolidone)을 넣어 혼합기에서 2시간 혼합 후 구리 호일 집전체에 코팅하고 130℃에서 건조하여 제조하였다. 양극은 LiCoO2 91중량부, PVDF 3중량부 및 도전성 탄소 6 중량부 조성으로 용매인 N-메틸-2-피롤리돈을 사용하여 혼합기에서 2시간 혼합 후 알루미늄 호일 집전체에 코팅하고 130℃에서 건조하고 제조하였다. 양극을 원형으로 절단한 후 코인(coin)형 캔에 넣고 분리막(celgard 2400)을 배치하고 원형으로 절단된 음극을 놓았다. 이를 상기 실시예 1-1에서 제조된 전해액으로 충분히 함침시킨 후 코인형 cap을 덮고 프레스 하여 코인형 전지를 제조하였다. The negative electrode was mixed with 93 parts by weight of a graphitized carbon active material and 7 parts by weight of polyvinylidene difluoride (PVDF) as a solvent, N-methyl-2-pyrrolidone, and mixed in a mixer for 2 hours. It was prepared by coating a copper foil current collector and drying at 130 ° C. The positive electrode was coated with an aluminum foil current collector after mixing for 2 hours in a mixer using N-methyl-2-pyrrolidone as a solvent with 91 parts by weight of LiCoO 2 , 3 parts by weight of PVDF, and 6 parts by weight of conductive carbon, and at 130 ° C. Dried and prepared. The anode was cut in a circular shape, placed in a coin-shaped can, a separator (celgard 2400) was placed, and the cathode cut in a circular shape was placed. This was sufficiently impregnated with the electrolyte prepared in Example 1-1, and then a coin-type cap was prepared by covering and pressing a coin-type cap.

실시예 2 Example 2

2-메틸-2-부텐설톤을 2중량부 대신 1중량부 첨가하여 전해액을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액; 및 이차 전지를 제조하였다.Electrolyte solution in the same manner as in Example 1 except that 1 part by weight of 2-methyl-2-butenesultone was added instead of 2 parts by weight to prepare an electrolyte solution; And a secondary battery.

실시예 3 Example 3

2-메틸-2-부텐설톤을 2중량부 대신 3중량부 첨가하여 전해액을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액; 및 이차 전지를 제조하였다.Electrolyte solution in the same manner as in Example 1 except that 3 parts by weight of 2-methyl-2-butenesultone was added instead of 2 parts by weight to prepare an electrolyte solution; And a secondary battery.

실시예 4 Example 4

2-메틸-2-부텐설톤을 2중량부 대신 5중량부 첨가하여 전해액을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액; 및 이차 전지를 제조하였다.Electrolyte solution in the same manner as in Example 1 except that 5 parts by weight of 2-methyl-2-butenesultone was added instead of 2 parts by weight to prepare an electrolyte solution; And a secondary battery.

실시예Example 5  5

2-메틸-2-부텐설톤을 2중량부 대신 10중량부 첨가하여 전해액을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액; 및 이차 전지를 제조하였다.Electrolyte solution in the same manner as in Example 1 except that 10 parts by weight of 2-methyl-2-butenesultone was added instead of 2 parts by weight to prepare an electrolyte solution; And a secondary battery.

실시예 6 Example 6

2-메틸-2-부텐설톤 대신 2,3-디메틸-2-부텐설톤을 2중량부 첨가하여 전해액을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액; 및 이차 전지를 제조하였다.Electrolyte solution in the same manner as in Example 1 except that 2 parts by weight of 2,3-dimethyl-2-butenesultone was added instead of 2-methyl-2-butenesultone to prepare an electrolyte solution; And a secondary battery.

실시예 7Example 7

2-메틸-2-부텐설톤 대신 2-플루오로-2-부텐설톤을 2중량부 첨가하여 전해액 을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액; 및 이차 전지를 제조하였다.Electrolyte solution in the same manner as in Example 1 except that 2 parts by weight of 2-fluoro-2-butenesultone was added instead of 2-methyl-2-butenesultone to prepare an electrolyte solution; And a secondary battery.

비교예 1Comparative Example 1

LiPF6 용액에 어떤 화합물도 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액; 및 이차 전지를 제조하였다.Electrolyte solution in the same manner as in Example 1 except that no compound was added to the LiPF 6 solution; And a secondary battery.

비교예 2 Comparative Example 2

2-메틸-2-부텐설톤을 대신 1,3-프로판 설톤을 2중량부 첨가하여 전해액을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액; 및 이차 전지를 제조하였다.An electrolyte solution in the same manner as in Example 1 except that 2 parts by weight of 1,3-propane sultone was added instead of 2-methyl-2-butenesultone to prepare an electrolyte solution; And a secondary battery.

비교예 3 Comparative Example 3

2-메틸-2-부텐설톤을 대신 1,3-프로펜 설톤을 2중량부 첨가하여 전해액을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액; 및 이차 전지를 제조하였다.Electrolyte solution in the same manner as in Example 1 except that 2 parts by weight of 1,3-propene sultone was added instead of 2-methyl-2-butenesultone to prepare an electrolyte solution; And a secondary battery.

실험예 1. 전해액 첨가제의 환원 전압 측정Experimental Example 1. Measurement of the reduction voltage of the electrolyte additive

본 발명의 불포화 설톤 화합물과 종래 설톤계 전해액 첨가제의 환원 전위를 하기와 같이 측정하였다. The reduction potential of the unsaturated sultone compound of the present invention and the conventional sultone electrolyte additive was measured as follows.

상기 실시예 1 및 비교예 1~3의 전해액과, 양극으로 인조 흑연, 음극으로 리튬 foil 을 사용하여 통상적인 방법으로 코인 형태의 반쪽 전지를 제조하였다. 제조된 코인 반쪽 전지 각각에 대하여, 1.5 V 와 1 mV 사이를 0.1 mV/sec 주사속도로 cyclic voltammetry를 수행하고, 이로부터 측정된 환원 peak 전압을 표 1에 나타내었다. 참고로, full cell을 기준으로 하는 경우, 환원 전위의 값은 하기 실험 결과와 역순으로 나타난다. Coin-shaped half cells were prepared in a conventional manner using the electrolyte solutions of Examples 1 and Comparative Examples 1 to 3, artificial graphite as a positive electrode, and lithium foil as a negative electrode. For each of the manufactured coin half cells, cyclic voltammetry was performed at a rate of 0.1 mV / sec between 1.5 V and 1 mV, and the reduced peak voltages measured therefrom are shown in Table 1. For reference, when the full cell is a reference, the value of the reduction potential is shown in the reverse order with the following experimental results.

[표 1]TABLE 1

전해액 첨가제Electrolyte additives 환원 peak 전압 (V vs Li)Reduced peak voltage (V vs Li) 실시예 1Example 1 2-메틸-2 부텐설톤2-methyl-2 butenesultone 1.2V1.2 V 비교예 1Comparative Example 1 -- 0.6V0.6 V 비교예 2Comparative Example 2 1,3-프로판 설톤1,3-propane sultone 1.0V1.0 V 비교예 3Comparative Example 3 1,3-프로펜 설톤1,3-propene sultone 1.1V1.1 V

실험 결과, 반쪽 전지에서 설톤계 화합물을 포함하는 실시예 1, 및 비교예 2, 3의 전해액은 어떠한 화합물도 첨가하지 않은 비교예 1의 전해액과 상이한 환원 전압을 나타내었다. 이로부터, 상기 실시예 1, 및 비교예 2, 3의 실험 결과값은 첨가한 설톤계 화합물 각각의 환원 전위임을 추측할 수 있다. As a result, the electrolyte solution of Example 1 and Comparative Examples 2 and 3 containing a sultone compound in the half cell showed a different reduction voltage from that of Comparative Example 1 in which no compound was added. From this, it can be inferred that the experimental results of Example 1 and Comparative Examples 2 and 3 are the reduction potentials of the added sultone compounds.

특히, 본 발명의 불포화 설톤 화합물(2-메틸-2 부텐설톤)은 환원 전압이 통상적인 전해액(비교예 1)보다 높으므로, full-cell인 이차 전지 내에서 전해액보다 먼저 환원되어 음극 표면상에 SEI막을 형성할 수 있음을 예측할 수 있다.In particular, since the unsaturated sultone compound (2-methyl-2 butenesultone) of the present invention has a reduction voltage higher than that of a conventional electrolyte solution (Comparative Example 1), it is reduced before the electrolyte solution in a full-cell secondary battery and thus on the surface of the negative electrode. It can be predicted that an SEI film can be formed.

실험예Experimental Example 2. 리튬 이차 전지의 성능 평가 2. Performance Evaluation of Lithium Secondary Battery

상기 실시예 1 ~ 7 및 비교예 1 ~ 3에서 제조된 이차 전지를 25℃에서 4.2 V까지 0.5C의 속도로 충전하고 4.2 V에서 전류가 0.05mA이하가 될 때까지 충전하며, 3V까지 0.5C의 속도로 방전하여 충전 및 방전 실험을 하였다. 방전용량 유지율(%)은 50사이클 후 방전용량과 초기 방전 용량의 비를 백분율화하여 표현하였다. 결과를 표 2에 나타내었다. The secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 3 were charged at 25 ° C. to 4.2 V at a rate of 0.5 C, and charged at 4.2 V until the current became 0.05 mA or less, and 0.5 C to 3 V. Charge and discharge experiments were performed by discharging at a rate of. The discharge capacity retention rate (%) was expressed as a percentage of the ratio of the discharge capacity to the initial discharge capacity after 50 cycles. The results are shown in Table 2.

[표 2]TABLE 2

전해액 첨가제Electrolyte additives 첨가량
(중량부)
Addition amount
(Parts by weight)
전해액 조성
(부피비)
Electrolyte composition
(Volume ratio)
초기방전용량
(mAh)
Initial discharge capacity
(mAh)
방전용량
유지율(%)
Discharge capacity
% Retention
실시예 1Example 1 2-메틸-2-부텐설톤2-methyl-2-butenesultone 22 1M LiPF6
EC:PC:DEC=1:1:2
1M LiPF 6
EC: PC: DEC = 1: 1: 2

4.38

4.38
84.884.8
실시예 2Example 2 2-메틸-2-부텐설톤2-methyl-2-butenesultone 1.01.0 1M LiPF6
EC:PC:DEC=1:1:2
1M LiPF 6
EC: PC: DEC = 1: 1: 2

4.45

4.45
82.882.8
실시예 3Example 3 2-메틸-2-부텐설톤2-methyl-2-butenesultone 3.03.0 1M LiPF6
EC:PC:DEC=1:1:2
1M LiPF 6
EC: PC: DEC = 1: 1: 2

4.24

4.24
84.384.3
실시예 4Example 4 2-메틸-2-부텐설톤2-methyl-2-butenesultone 5.05.0 1M LiPF6
EC:PC:DEC=1:1:2
1M LiPF 6
EC: PC: DEC = 1: 1: 2

4.17

4.17
83.683.6
실시예 5Example 5 2-메틸-2-부텐설톤2-methyl-2-butenesultone 1010 1M LiPF6
EC:PC:DEC=1:1:2
1M LiPF 6
EC: PC: DEC = 1: 1: 2

4.43

4.43
90.590.5
실시예 6Example 6 2,3-디메틸-2-부텐설톤2,3-dimethyl-2-butenesultone 22 1M LiPF6
EC:PC:DEC=1:1:2
1M LiPF 6
EC: PC: DEC = 1: 1: 2

4.24

4.24
85.385.3
실시예 7Example 7 2-플루오로-2-부텐설톤2-fluoro-2-butenesultone 22 1M LiPF6
EC:PC:DEC=1:1:2
1M LiPF 6
EC: PC: DEC = 1: 1: 2

4.37

4.37
87.187.1
비교예 1Comparative Example 1 -- -- 1M LiPF6
EC:PC:DEC=1:1:2
1M LiPF 6
EC: PC: DEC = 1: 1: 2

4.19

4.19
57.357.3
비교예 2Comparative Example 2 1,3-프로판설톤1,3-propanesultone 22 1M LiPF6
EC:PC:DEC=1:1:2
1M LiPF 6
EC: PC: DEC = 1: 1: 2

4.04

4.04
82.282.2
비교예 3Comparative Example 3 1,3-프로펜설톤1,3-propenesultone 22 1M LiPF6
EC:PC:DEC=1:1:2
1M LiPF 6
EC: PC: DEC = 1: 1: 2

3.94

3.94
83.583.5

실험 결과, 종래 설톤계 전해액 첨가제를 사용하는 비교예 2, 3의 전지는 어떠한 화합물도 첨가하지 않은 전해액을 사용한 비교예 1에 비해, 초기 용량이 0.15 ~ 0.25 mAh 감소된 결과를 보였다. 반면, 본 발명의 불포화 설톤 화합물을 전해액 첨가제로 사용한 실시예 1 ~ 7의 전지는 비교예 1과 대등하거나, 오히려 증가된 초기 용량값을 나타내었다. As a result, the batteries of Comparative Examples 2 and 3 using the conventional sultone-based electrolyte additives showed an initial capacity of 0.15 to 0.25 mAh reduced compared to Comparative Example 1 using the electrolyte without any compound. On the other hand, the batteries of Examples 1 to 7 using the unsaturated sultone compound of the present invention as an electrolyte additive showed a similar or rather increased initial capacity value.

이로부터, 본 발명의 불포화 설톤 화합물을 전해액 첨가제로 사용하는 경우, 종래 전해액 첨가제보다 전지의 초기 용량 감소를 최소화하여, 전지의 용량 확보에 탁월한 효과를 발휘함을 알 수 있었다. From this, when the unsaturated sultone compound of the present invention is used as an electrolyte additive, it was found that the initial capacity reduction of the battery is minimized than the conventional electrolyte additive, thereby exhibiting an excellent effect on securing the capacity of the battery.

또한, 표 2에서, 본 발명의 불포화 설톤 화합물을 전해액 첨가제로 사용한 경우, 어떠한 화합물도 첨가하지 않은 전해액을 사용하거나 종래 설톤계 전해액 첨 가제를 사용한 경우에 비해 더 높은 방전 용량 유지율을 보였다. 상기로부터 본 발명의 불포화 설톤 화합물을 전해액 첨가제로 사용하는 경우 음극 표면상에 보다 안정한 SEI막을 형성함으로써 전지의 방전 용량 보존 특성 및 수명 특성을 향상시킬 수 있음을 알 수 있었다.In addition, in Table 2, when the unsaturated sultone compound of the present invention is used as an electrolyte additive, it showed a higher discharge capacity retention rate compared to the case of using an electrolyte solution without adding any compound or a conventional sultone-based electrolyte additive. It can be seen from the above that when the unsaturated sultone compound of the present invention is used as an electrolyte additive, a more stable SEI film is formed on the surface of the negative electrode, thereby improving discharge capacity storage characteristics and lifetime characteristics of the battery.

실험예Experimental Example 3. 음극 표면  3. Cathode surface SEISEI 막 형성 확인 실험 Membrane Formation Confirmation Experiment

본 발명의 불포화 설톤 화합물에 의한 음극 표면상의 SEI 피막 형성 여부를 확인하기 위하여 하기와 같은 실험을 실시하였다.In order to confirm the formation of the SEI film on the surface of the negative electrode by the unsaturated sultone compound of the present invention was carried out as follows.

상기 실시예 1, 비교예1, 및 비교예 3에서 각각 제조된 전지들을 25℃에서 0.2C로 충방전 3회 실시한 후, 방전 상태에서 전지를 분해하여 음극을 채취하였다. 이후 채취된 음극에 대하여 DSC (Differential Scanning Calorimetry) 분석을 실시하였으며 그 결과를 도 1에 표시하였다. 이때 발열 peak 온도는 일반적으로 음극 표면에 형성된 SEI 막의 열적 붕괴에 의한 것으로 추정된다.The batteries prepared in Example 1, Comparative Example 1, and Comparative Example 3 were charged and discharged three times at 0.2 ° C. at 25 ° C. three times, and the negative electrode was collected by disassembling the batteries in a discharged state. Then, DSC (Differential Scanning Calorimetry) analysis was performed on the collected negative electrode and the results are shown in FIG. 1. At this time, the exothermic peak temperature is generally due to the thermal collapse of the SEI film formed on the surface of the cathode.

실험 결과, 음극의 발열반응 양상은 실시예 1, 및 비교예 1, 3에서 사용된 전해액에 따라 서로 상이하게 나타났다. 이로부터, 본 발명의 불포화 설톤 화합물이 음극 표면의 SEI막 형성에 관여한다는 것을 알 수 있었다. As a result, the exothermic reaction pattern of the negative electrode was different from each other depending on the electrolyte solution used in Example 1, and Comparative Examples 1 and 3. From this, it was found that the unsaturated sultone compound of the present invention is involved in the formation of the SEI film on the surface of the negative electrode.

또한, 본 발명의 불포화 설톤 화합물을 포함하는 전해액을 사용한 실시예 1 전지의 음극은 어떠한 화합물도 첨가하지 않은 전해액을 사용한 비교예 1 전지의 음극, 및 종래 불포화 설톤계 전해액 첨가제를 사용한 비교예 3의 전지의 음극에 비하여 발열 피크 온도도 높고, 발열량도 더 적었다. 일반적으로 DSC 분석 결과에서 발열 피크 온도가 높을수록, 발열량이 더 적을수록, 음극 표면상의 SEI막의 열 적 안정성이 우수한 것으로 추정된다. 이로부터, 본 발명의 불포화 설톤 화합물을 포함하는 전해액을 사용하는 경우, 음극 표면상에 보다 안정한 SEI막이 형성됨을 알 수 있었다.In addition, the negative electrode of the Example 1 battery using the electrolyte solution containing the unsaturated sultone compound of the present invention Comparative Example 1 using the electrolyte solution without adding any compound of Comparative Example 3 using the negative electrode of the battery, and the conventional unsaturated sultone electrolyte additive Compared with the negative electrode of the battery, the exothermic peak temperature was higher and the calorific value was smaller. In general, the DSC analysis results indicate that the higher the exothermic peak temperature and the smaller the calorific value, the better the thermal stability of the SEI film on the cathode surface. From this, it was found that when the electrolyte solution containing the unsaturated sultone compound of the present invention was used, a more stable SEI film was formed on the surface of the negative electrode.

도 1은 실험예 3에 따른 DSC(differential scanning calorimetry) 분석 결과를 나타내는 그래프이다.1 is a graph showing the results of differential scanning calorimetry (DSC) analysis according to Experimental Example 3. FIG.

Claims (8)

전해질염 및 전해액 용매를 포함하는 전해액에 있어서, 상기 전해액은 하기 화학식 1의 화합물을 포함하는 전해액.An electrolyte solution comprising an electrolyte salt and an electrolyte solvent, wherein the electrolyte solution includes a compound represented by Chemical Formula 1 below. [화학식 1][Formula 1]
Figure 112008002150415-pat00006
Figure 112008002150415-pat00006
상기 화학식 1에서 R1, R2, R3 및 R4는 각각 독립적으로 수소, 불소, C1~C6의 알킬기, 탄소수 3~8의 고리형 알킬(cyclic alkyl)기, C2~C6의 알케닐기, 페닐(phenyl)기, 벤질(benzyl)기, 및 이들의 할로겐 유도체로 이루어진 군으로부터 선택되며, n은 0에서 2인 정수이다.In Formula 1, R 1 , R 2 , R 3, and R 4 are each independently hydrogen, fluorine, an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, and a C 2 to C 6 group. Is selected from the group consisting of an alkenyl group, a phenyl group, a benzyl group, and a halogen derivative thereof, n is an integer of 0 to 2.
제1항에 있어서, 상기 화합물은 전기적 환원시, 개환되어 공명 구조의 환원체를 형성할 수 있는 것이 특징인 전해액.The electrolyte of claim 1, wherein the compound is ring-opened upon electrical reduction to form a reducing body having a resonance structure. 제1항에 있어서, 상기 화합물은 2-부텐설톤(2-butensultone), 2-메틸-2-부텐설톤(2-methyl-2-butensultone), 2-에틸-2-부텐설톤(2-ethyl-2-butensultone), 2-프로필-2-부텐설톤(2-propyl-2-butensultone), 3-메틸-2-부텐설톤(3-methyl-2- butensultone), 3-에틸-2-부텐설톤(3-ethyl-2-butensultone), 3-프로필-2-부텐설톤(3-propyl-2-butensultone), 2,3-디메틸-2-부텐설톤(2,3-dimethyl-2-butensultone), 2,3-디에틸-2-부텐설톤(2,3-diethyl-2-butensultone), 2,3-디프로필-2-부텐설톤(2,3-dipropyl-2-butensultone), 2-플루오로-2-부텐설톤(2-fluoro-2-butensultone), 3-플루오로-2-부텐설톤(3-fluoro-2-butensultone), 2,3-디플루오로-2-부텐설톤(2,3-difluoro-2-butensultone), 2-페닐-2-부텐설톤(2-phenyl-2-butensultone), 2-벤질-2-부텐설톤(2-benzyl-2-butensultone), 2-알릴-2-부텐설톤(2-allyl-2-butensultone), 2-시클로펜틸-2-부텐설톤(2-cyclopentyl-2-butensultone), 2-시클로헥실-2-부텐설톤(2-cyclohexyl-2-butensultone), 2,4-디메틸-2-부텐설톤(2,4-dimethyl-2-butensultone), 2,4-디플푸오로-2-부텐설톤(2,4-difluoro-2-butensultone), 2,3,4-트리메틸-2-부텐설톤(2,3,4-trimethyl-2-butensultone), 2,3,4,4-테트라메틸-2-부텐설톤(2,3,4,4-tetramethyl-2-butensultone), 2,3,4-트리플루오로-2-부텐설톤(2,3,4-trifluoro-2-butensultone), 2,3,4,4-테트라플루오로-2-부텐설톤(2,3,4,4-tetrafluoro-2-butensultone), 2-메틸-2-펜텐설톤(2-methyl-2-pentensultone), 2-에틸-2-펜텐설톤(2-ethyl-2-pentensultone), 2-프로필-2-펜텐설톤(2-propyl-2-pentensultone), 3-메틸-2-펜텐설톤(3-methyl-2-pentensultone), 3-에틸-2-펜텐설톤(3-ethyl-2-pentensultone), 3-프로필-2-펜텐설톤(3-propyl-2-pentensultone), 2,3-디메틸-2-펜텐설톤(2,3-dimethyl-2-pentensultone), 2,3-디에틸-2-펜텐설톤(2,3-diethyl-2-pentensultone), 2,3-디프로필-2-펜텐설톤(2,3-dipropyl-2-pentensultone), 2-플루 오로-2-펜텐설톤(2-fluoro-2-pentensultone), 3-플루오로-2-펜텐설톤(3-fluoro-2-pentensultone), 2,3-디플루오로-2-펜텐설톤(2,3-difluoro-2-pentensultone), 2-페닐-2-펜텐설톤(2-phenyl-2-pentensultone), 2-벤질-2-펜텐설톤(2-benzyl-2-pentensultone), 2-알릴-2-부텐설톤(2-allyl-2-pentensultone), 2-시클로펜틸-2-펜텐설톤(2-cyclopentyl-2-pentensultone), 2-시클로헥실-2-펜텐설톤(2-cyclohexyl-2-pentensultone), 2,4-디메틸-2-펜텐설톤(2,4-dimethyl-2-pentensultone), 2,4-디플푸오로-2-펜텐설톤(2,4-difluoro-2-pentensultone), 2,3,4-트리메틸-2-펜텐설톤(2,3,4-trimethyl-2-pentensultone), 2,3,4,4-테트라메틸-2-펜텐설톤(2,3,4,4-tetramethyl-2-pentensultone), 2,3,4,5-테트라메틸-2-펜텐설톤(2,3,4,5-tetramethyl-2-pentensultone), 2,3,4-트리플루오로-2-펜텐설톤(2,3,4-trifluoro-2-pentensultone), 2,3,4,4-테트라플루오로-2-펜텐설톤(2,3,4,4-tetrafluoro-2-pentensultone), 및 2,3,4,5-테트라플루오로-2-펜텐설톤(2,3,4,5-tetrafluoro-2-pentensultone)으로 구성된 군으로부터 선택된 것이 특징인 전해액.The compound of claim 1, wherein the compound is 2-butenesultone, 2-methyl-2-butenesultone, 2-ethyl-2-butenesultone 2-butensultone), 2-propyl-2-butenesultone, 3-methyl-2-butenesultone, 3-ethyl-2-butenesultone 3-ethyl-2-butensultone), 3-propyl-2-butenesultone, 2,3-dimethyl-2-butenesultone, 2,3-dimethyl-2-butensultone, 2 , 3-diethyl-2-butenesultone, 2,3-dipropyl-2-butenesultone, 2-fluoro- 2-butenesultone (2-fluoro-2-butensultone), 3-fluoro-2-butenesultone (3-fluoro-2-butensultone), 2,3-difluoro-2-butenesultone (2,3- difluoro-2-butensultone), 2-phenyl-2-butenesultone, 2-benzyl-2-butenesultone, 2-allyl-2-butene 2-allyl-2-butensultone, 2-cyclopentyl-2-butensultone, 2-cyclohexyl-2-butenesultone nsultone), 2,4-dimethyl-2-butenesultone, 2,4-difluoro-2-butenesultone, 2 , 3,4-trimethyl-2-butenesultone (2,3,4-trimethyl-2-butensultone), 2,3,4,4-tetramethyl-2-butenesultone (2,3,4,4-tetramethyl -2-butensultone), 2,3,4-trifluoro-2-butenesultone (2,3,4-trifluoro-2-butensultone), 2,3,4,4-tetrafluoro-2-butenesultone (2,3,4,4-tetrafluoro-2-butensultone), 2-methyl-2-pentenesultone, 2-ethyl-2-pentenesultone ), 2-propyl-2-pentenesultone, 3-methyl-2-pentenesultone, 3-ethyl-2-pentenesultone -2-pentensultone), 3-propyl-2-pentensultone, 2,3-dimethyl-2-pentenesultone, 2,3- 2,3-diethyl-2-pentensultone, 2,3-dipropyl-2-pentensultone, 2-fluoro-2-pentene 2-fluoro-2-pentensultone, 3-fluoro-2- 3-fluoro-2-pentensultone, 2,3-difluoro-2-pentensultone, 2-phenyl-2-pentenesultone -pentensultone, 2-benzyl-2-pentensultone, 2-allyl-2-buttensultone, 2-cyclopentyl-2-pentenesultone 2-cyclopentyl-2-pentensultone, 2-cyclohexyl-2-pentensultone, 2,4-dimethyl-2-pentenesultone, 2,4-dimethyl-2-pentensultone, 2,4-difluoro-2-pentensultone, 2,3,4-trimethyl-2-pentenesultone, 2,3,4-trimethyl-2-pentensultone, 2,3,4,4-tetramethyl-2-pentenesultone (2,3,4,4-tetramethyl-2-pentensultone), 2,3,4,5-tetramethyl-2-pentenesultone (2,3 , 4,5-tetramethyl-2-pentensultone), 2,3,4-trifluoro-2-pentenesultone (2,3,4-trifluoro-2-pentensultone), 2,3,4,4-tetrafluoro Rho-2-pentenesultone (2,3,4,4-tetrafluoro-2-pentensultone), and 2,3,4,5-tetrafluoro-2-pentenesultone (2,3,4,5-tetrafluoro- 2-pentensultone) Electrolyte solution characterized in that selected from. 제 1 항에 있어서, 상기 화합물의 함량이 전해액 100 중량부 당 0.1 내지 20 중량부인 것이 특징인 전해액.The electrolyte of claim 1, wherein the amount of the compound is 0.1 to 20 parts by weight per 100 parts by weight of the electrolyte. 하기 화학식 1의 화합물의 화학반응 결과물을 포함하는 고체 전해질 계면(SEI)막이 표면의 일부 또는 전부에 형성된 전극:An electrode on which a solid electrolyte interface (SEI) film including a chemical reaction product of the compound of Formula 1 is formed on part or all of a surface thereof: [화학식 1][Formula 1]
Figure 112008002150415-pat00007
Figure 112008002150415-pat00007
상기 화학식 1에서 R1, R2, R3 및 R4는 각각 독립적으로 수소, 불소, C1~C6의 알킬기, 탄소수 3~8의 고리형 알킬(cyclic alkyl)기, C2~C6의 알케닐기, 페닐(phenyl)기, 벤질(benzyl)기, 및 이들의 할로겐 유도체로 이루어진 군으로부터 선택되며, n은 0에서 2인 정수이다.In Formula 1, R 1 , R 2 , R 3, and R 4 are each independently hydrogen, fluorine, an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, and a C 2 to C 6 group. Is selected from the group consisting of an alkenyl group, a phenyl group, a benzyl group, and a halogen derivative thereof, n is an integer of 0 to 2.
제5항에 있어서, 상기 화합물은 2-부텐설톤(2-butensultone), 2-메틸-2-부텐설톤(2-methyl-2-butensultone), 2-에틸-2-부텐설톤(2-ethyl-2-butensultone), 2-프로필-2-부텐설톤(2-propyl-2-butensultone), 3-메틸-2-부텐설톤(3-methyl-2-butensultone), 3-에틸-2-부텐설톤(3-ethyl-2-butensultone), 3-프로필-2-부텐설톤(3-propyl-2-butensultone), 2,3-디메틸-2-부텐설톤(2,3-dimethyl-2-butensultone), 2,3-디에틸-2-부텐설톤(2,3-diethyl-2-butensultone), 2,3-디프로필-2-부텐설톤(2,3-dipropyl-2-butensultone), 2-플루오로-2-부텐설톤(2-fluoro-2-butensultone), 3-플루오로-2-부텐설톤(3-fluoro-2-butensultone), 2,3-디플루오로-2-부텐설톤(2,3-difluoro-2-butensultone), 2-페닐-2-부텐설톤(2-phenyl-2-butensultone), 2-벤질-2-부텐설톤(2-benzyl-2-butensultone), 2-알릴-2-부텐설 톤(2-allyl-2-butensultone), 2-시클로펜틸-2-부텐설톤(2-cyclopentyl-2-butensultone), 2-시클로헥실-2-부텐설톤(2-cyclohexyl-2-butensultone), 2,4-디메틸-2-부텐설톤(2,4-dimethyl-2-butensultone), 2,4-디플푸오로-2-부텐설톤(2,4-difluoro-2-butensultone), 2,3,4-트리메틸-2-부텐설톤(2,3,4-trimethyl-2-butensultone), 2,3,4,4-테트라메틸-2-부텐설톤(2,3,4,4-tetramethyl-2-butensultone), 2,3,4-트리플루오로-2-부텐설톤(2,3,4-trifluoro-2-butensultone), 2,3,4,4-테트라플루오로-2-부텐설톤(2,3,4,4-tetrafluoro-2-butensultone), 2-메틸-2-펜텐설톤(2-methyl-2-pentensultone), 2-에틸-2-펜텐설톤(2-ethyl-2-pentensultone), 2-프로필-2-펜텐설톤(2-propyl-2-pentensultone), 3-메틸-2-펜텐설톤(3-methyl-2-pentensultone), 3-에틸-2-펜텐설톤(3-ethyl-2-pentensultone), 3-프로필-2-펜텐설톤(3-propyl-2-pentensultone), 2,3-디메틸-2-펜텐설톤(2,3-dimethyl-2-pentensultone), 2,3-디에틸-2-펜텐설톤(2,3-diethyl-2-pentensultone), 2,3-디프로필-2-펜텐설톤(2,3-dipropyl-2-pentensultone), 2-플루오로-2-펜텐설톤(2-fluoro-2-pentensultone), 3-플루오로-2-펜텐설톤(3-fluoro-2-pentensultone), 2,3-디플루오로-2-펜텐설톤(2,3-difluoro-2-pentensultone), 2-페닐-2-펜텐설톤(2-phenyl-2-pentensultone), 2-벤질-2-펜텐설톤(2-benzyl-2-pentensultone), 2-알릴-2-부텐설톤(2-allyl-2-pentensultone), 2-시클로펜틸-2-펜텐설톤(2-cyclopentyl-2-pentensultone), 2-시클로헥실-2-펜텐설톤(2-cyclohexyl-2-pentensultone), 2,4-디메틸-2-펜텐설톤(2,4-dimethyl-2-pentensultone), 2,4-디플푸오로-2-펜텐설톤(2,4-difluoro-2-pentensultone), 2,3,4-트리메틸-2-펜텐설 톤(2,3,4-trimethyl-2-pentensultone), 2,3,4,4-테트라메틸-2-펜텐설톤(2,3,4,4-tetramethyl-2-pentensultone), 2,3,4,5-테트라메틸-2-펜텐설톤(2,3,4,5-tetramethyl-2-pentensultone), 2,3,4-트리플루오로-2-펜텐설톤(2,3,4-trifluoro-2-pentensultone), 2,3,4,4-테트라플루오로-2-펜텐설톤(2,3,4,4-tetrafluoro-2-pentensultone), 및 2,3,4,5-테트라플루오로-2-펜텐설톤(2,3,4,5-tetrafluoro-2-pentensultone)으로 구성된 군으로부터 선택된 것이 특징인 전극.The compound according to claim 5, wherein the compound is 2-butenesultone, 2-methyl-2-butenesultone, 2-ethyl-2-butenesultone 2-butensultone), 2-propyl-2-butenesultone, 2-methyl-2-butenesultone, 3-methyl-2-butenesultone, 3-ethyl-2-butenesultone ( 3-ethyl-2-butensultone), 3-propyl-2-butenesultone, 2,3-dimethyl-2-butenesultone, 2,3-dimethyl-2-butensultone, 2 , 3-diethyl-2-butenesultone, 2,3-dipropyl-2-butenesultone, 2-fluoro- 2-butenesultone (2-fluoro-2-butensultone), 3-fluoro-2-butenesultone (3-fluoro-2-butensultone), 2,3-difluoro-2-butenesultone (2,3- difluoro-2-butensultone), 2-phenyl-2-butenesultone, 2-benzyl-2-butenesultone, 2-allyl-2-part 2-allyl-2-butensultone, 2-cyclopentyl-2-butensultone, 2-cyclohexyl-2-butenesultone nsultone), 2,4-dimethyl-2-butenesultone, 2,4-difluoro-2-butenesultone, 2 , 3,4-trimethyl-2-butenesultone (2,3,4-trimethyl-2-butensultone), 2,3,4,4-tetramethyl-2-butenesultone (2,3,4,4-tetramethyl -2-butensultone), 2,3,4-trifluoro-2-butenesultone (2,3,4-trifluoro-2-butensultone), 2,3,4,4-tetrafluoro-2-butenesultone (2,3,4,4-tetrafluoro-2-butensultone), 2-methyl-2-pentenesultone, 2-ethyl-2-pentenesultone ), 2-propyl-2-pentenesultone, 3-methyl-2-pentenesultone, 3-ethyl-2-pentenesultone -2-pentensultone), 3-propyl-2-pentensultone, 2,3-dimethyl-2-pentenesultone, 2,3- 2,3-diethyl-2-pentensultone, 2,3-dipropyl-2-pentensultone, 2-fluoro-2-pentene 2-fluoro-2-pentensultone, 3-fluoro-2- 3-fluoro-2-pentensultone, 2,3-difluoro-2-pentensultone, 2-phenyl-2-pentenesultone -pentensultone, 2-benzyl-2-pentensultone, 2-allyl-2-buttensultone, 2-cyclopentyl-2-pentenesultone 2-cyclopentyl-2-pentensultone, 2-cyclohexyl-2-pentensultone, 2,4-dimethyl-2-pentenesultone, 2,4-dimethyl-2-pentensultone, 2,4-difluoro-2-pentenesultone, 2,3,4-trimethyl-2-pentenesultone (2,3,4-trimethyl-2-pentensultone) , 2,3,4,4-tetramethyl-2-pentenesultone (2,3,4,4-tetramethyl-2-pentensultone), 2,3,4,5-tetramethyl-2-pentenesultone (2, 3,4,5-tetramethyl-2-pentensultone), 2,3,4-trifluoro-2-pentenesultone (2,3,4-trifluoro-2-pentensultone), 2,3,4,4-tetra Fluoro-2-pentenesultone (2,3,4,4-tetrafluoro-2-pentensultone), and 2,3,4,5-tetrafluoro-2-pentenesultone (2,3,4,5-tetrafluoro -2-pentensultone) An electrode characterized in that it is selected from. 양극, 음극 및 전해액을 포함하는 이차 전지에 있어서, 상기 이차 전지는 전해액이 상기 제1항 내지 제4항 중 어느 한 항의 전해액을 포함하는 것이 특징인 이차 전지.A secondary battery comprising a positive electrode, a negative electrode, and an electrolyte solution, wherein the secondary battery is characterized in that the electrolyte solution includes the electrolyte solution of any one of claims 1 to 4. 양극, 음극 및 전해액을 포함하는 이차 전지에 있어서, 상기 이차 전지는 양극 또는 음극이 상기 제5항 내지 제6항 중 어느 한 항의 전극을 포함하는 것이 특징인 이차 전지.A secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the secondary battery has a positive electrode or a negative electrode including the electrode of any one of claims 5 to 6.
KR1020080003036A 2007-01-17 2008-01-10 Non-aqueous electrolyte and secondary battery comprising the same KR101018142B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070005332 2007-01-17
KR20070005332 2007-01-17

Publications (2)

Publication Number Publication Date
KR20080067964A KR20080067964A (en) 2008-07-22
KR101018142B1 true KR101018142B1 (en) 2011-02-25

Family

ID=39822007

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080003036A KR101018142B1 (en) 2007-01-17 2008-01-10 Non-aqueous electrolyte and secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR101018142B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105981A1 (en) * 2018-11-23 2020-05-28 주식회사 엘지화학 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
EP3780233A4 (en) 2018-11-23 2021-06-23 Lg Chem, Ltd. Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329528A (en) 2001-03-01 2002-11-15 Mitsui Chemicals Inc Nonaqueous electrolyte, secondary battery using it and additive for electrolyte
US20030118914A1 (en) * 2001-11-01 2003-06-26 Sumio Mori Nonaqueous electrolyte secondary battery
KR20040006994A (en) * 2002-07-16 2004-01-24 미쯔이가가꾸가부시끼가이샤 Electrolyte Additive, Non-aqueous Electrolyte Comprising the Additive, And Secondary Battery Comprising the Electrolyte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329528A (en) 2001-03-01 2002-11-15 Mitsui Chemicals Inc Nonaqueous electrolyte, secondary battery using it and additive for electrolyte
US20030118914A1 (en) * 2001-11-01 2003-06-26 Sumio Mori Nonaqueous electrolyte secondary battery
KR20040006994A (en) * 2002-07-16 2004-01-24 미쯔이가가꾸가부시끼가이샤 Electrolyte Additive, Non-aqueous Electrolyte Comprising the Additive, And Secondary Battery Comprising the Electrolyte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Russian Chemical Bulletin, 1978

Also Published As

Publication number Publication date
KR20080067964A (en) 2008-07-22

Similar Documents

Publication Publication Date Title
KR100867535B1 (en) Additive for non-aqueous electrolyte and secondary battery using the same
KR100977973B1 (en) Non-aqueous electrolyte and secondary battery comprising the same
KR100939896B1 (en) Non-aqueous electrolyte and secondary battery using the same
KR100898857B1 (en) Non-aqueous electrolyte and secondary battery using the same
EP2168199B1 (en) Non-aqueous electrolyte and electrochemical device comprising the same
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
KR20080109644A (en) Non-aqueous electrolyte and secondary battery using the same
KR100725704B1 (en) Additive for nonaqueous electrolyte and secondary battery using the same
KR20080110160A (en) Additive for non-aqueous electrolyte and secondary battery using the same
KR20130098704A (en) Non aqueous electrolyte and secondary battery comprising the same
KR20070031584A (en) Additives for nonaqueous electrolyte and secondary battery using the same
KR101069471B1 (en) Non-aqueous electrolyte and secondary battery using the same
KR101018142B1 (en) Non-aqueous electrolyte and secondary battery comprising the same
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
KR101023374B1 (en) Additive for non-aqueous electrolyte and secondary battery using the same
US8372541B2 (en) Non-aqueous electrolyte secondary battery
KR101069511B1 (en) Non-aqueous electrolyte and secondary battery comprising the same
KR20170120897A (en) Organic electrolytic solution and Lithium battery comprising organic electrolyte solution
KR101264446B1 (en) Non-aqueous electrolytes and secondary battery using the same
JP2009283473A5 (en)
KR101137139B1 (en) Non-aqueous electrolyte and secondary battery comprising the same
KR20140087771A (en) Electrolyte for secondary battery and secondary battery comprising the same
JP4432397B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2019102183A (en) Nonaqueous electrolyte solution for battery, and lithium secondary battery
KR102199250B1 (en) Electrolyte additives for secondary battery, electrolyte comprising the same and lithiumsecondary battery comprising the electrolyte

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160216

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 9