JP4139960B2 - Electricity storage device - Google Patents
Electricity storage device Download PDFInfo
- Publication number
- JP4139960B2 JP4139960B2 JP2002368424A JP2002368424A JP4139960B2 JP 4139960 B2 JP4139960 B2 JP 4139960B2 JP 2002368424 A JP2002368424 A JP 2002368424A JP 2002368424 A JP2002368424 A JP 2002368424A JP 4139960 B2 JP4139960 B2 JP 4139960B2
- Authority
- JP
- Japan
- Prior art keywords
- storage device
- activated carbon
- pitch
- electricity storage
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高出力・高エネルギー密度の蓄電デバイスに関するものである。
【0002】
【従来の技術】
高出力電子機器、電気自動車などの市場拡大に伴い、これらに用いられる高出力の蓄電デバイスが求められている。これまで、ニッケル水素電池や鉛蓄電池、電気二重層キャパシタ等の蓄電デバイスが、高出力を必要とするバックアップ電源や高出力電子機器電源、電気自動車用電源として利用されてきた。しかし、エネルギー密度が小さいため、十分に小型軽量化することは困難であった。
【0003】
例えば特許文献1において、酸化状態にオキソアンモニウムカチオン部分構造をとり、還元状態においてニトロキシルラジカル部分構造をとるニトロキシル化合物を電極中に含有し、その2つの状態間で電子の授受を行う反応を電極反応として用いる蓄電デバイスが、高エネルギー密度の蓄電デバイスとして提案されている。このデバイスを用いると、高い出力で使用する蓄電デバイスをより小型軽量化することが可能である。
【0004】
この蓄電デバイスにおいて使用する負極として、リチウム金属やグラファイト系負極、活性炭が提案されている。特に、負極として活性炭を用いた蓄電デバイスは、高出力領域において高いエネルギー密度を示すことが期待されている。このような利点を有する一方、表面積の大きな活性炭を負極として使用した場合、活性炭表面で電解液の分解が起こり、不可逆容量が大きくなる傾向があるという点で不利であり、この点において更なる改善の余地があった。
【0005】
【特許文献1】
特開2002−304996号公報
【0006】
【発明が解決しようとする課題】
本発明は、不可逆容量の小さな高出力蓄電デバイスを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、酸化状態において式(I)で示されるN−オキソ−アンモニウムカチオン部分構造をとり、還元状態において式(II)で示されるニトロキシルラジカル部分構造をとるニトロキシル化合物を正極中に含有し、その2つの状態間で電子の授受を行う反応式(A)で示される反応を正極反応として用いる蓄電デバイスにおいて、ピッチで被覆された活性炭を含有する負極を有することを特徴とする蓄電デバイスである。
【0008】
【化2】
【0009】
前記ピッチで被覆された活性炭が、500m2/g以上3000m2/g以下の比表面積を有する活性炭がピッチで被覆されたものであることが好ましい。
【0010】
【発明の実施の形態】
本発明における蓄電デバイスは、少なくとも正極と負極、電解質を有し、化学的に蓄えられたエネルギーを電気エネルギーの形で取り出すことのできるデバイスのことである。蓄電デバイスとして、一次電池および充放電可能な二次電池、キャパシタおよびコンデンサ等の電気容量デバイス等を挙げることができる。尚、蓄電デバイスにおいて正極とは、酸化還元電位が貴な電極のことであり、負極とは逆に酸化還元電位が卑な方の電極のことである。
【0011】
活性炭は、吸着性の強い、大部分が炭素質からなる非晶質の炭である。木材、褐炭、泥炭などを塩化亜鉛、リン酸などの活性化剤で処理して乾留する、あるいは木炭などを水蒸気で活性化することによって製造される。表面積の広さを活かして、溶剤の精製、ガスの精製、脱臭、汚染物質の除去、キャパシタ用電極などとして利用されている。
【0012】
本発明における活性炭の比表面積としては、十分に大きな容量を示すために、ピッチによって被覆されていない状態で、好ましくは500m2/g以上、より好ましくは1500m2/g以上であることが望まれる。また不可逆容量を小さくし電子導電性を高める観点から、好ましくは3000m2/g以下、より好ましくは2500m2/g以下であることが望まれる。
【0013】
ピッチは、石油、石炭、木材などの有機物質の乾留によって得られるタールを蒸留したときにおける、釜残油の総称である。
【0014】
本発明における、ピッチで表面を覆った活性炭は、例えば、H.Kinoshita et.al.,The 41st Battery Symposiumin Japan,562,2000、A.Yoshino et.al.,The 43rd Battery Symposium in Japan,458,2002、H.Satake et.al.,The 43rd Battery Symposium in Japan,460,2002、Y.Okano et.al.,The 43rd Battery Symposiumin Japan,462,2002等に記載される方法に準じて作製することができる。
【0015】
本発明におけるピッチで表面を被覆した活性炭を含有する負極には、他に、負極活物質や導電性付与剤、バインダー、触媒効果を示す化合物等を含有させることができる。
【0016】
本発明における負極には、従来公知の負極活物質を含有させることができる。例えば、ピッチ処理していない活性炭やハードカーボン等の炭素材料、グラファイト、カーボンブラック、アセチレンブラック、リチウム金属またはリチウム合金等のリチウムイオン吸蔵炭素、その他各種の金属単体または合金、ポリアセチレン、ポリフェニレン、ポリアニリン、ポリピロール等の導電性高分子、硫黄、ジスルフィド化合物等が挙げられる。導電性付与剤としては、例えばカーボンブラック、アセチレンブラック等の炭素材料、金属粉などが挙げられる。バインダーとしては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド等が挙げられる。
【0017】
正極中に含有されるニトロキシル化合物は、反応式(B)で示されるように、電子の授受により式(I)〜(III)の状態を取りうる。
【0018】
【化3】
【0019】
本発明では、その中でも式(I)と(II)の間の反応を正極の電極反応として用いて、それに伴う電子の蓄積と放出により蓄電デバイスとして機能させるものである。この酸化還元反応は、有機化合物の構造変化を伴わない反応機構であるため反応速度が大きく、従って本発明の蓄電デバイスは一度に大きな電流を流すことが可能である。
【0020】
本発明におけるニトロキシル化合物は従来公知のものを用いることができる。このような化合物としては、例えばラジカル状態において、脂環式ニトロキシラジカル構造を有するものや、脂肪族ニトロキシルラジカル構造を有するものや、芳香族ニトロキシルラジカル構造を有するものが挙げられる。脂環式ニトロキシラジカル構造を有するものとしては、例えば、2,2,6,6−テトラメチルピペリジノキシラジカル構造、2,2,5,5−テトラメチルピロリジノキシラジカル構造、2,2,5,5−テトラメチルピロリノロキシラジカル構造を有するものが挙げられる。特に、前記2,2,6,6−テトラメチルピペリジノキシラジカル構造を持つものの中でも、安定性の観点から、ポリ(2,2,6,6−テトラメチルピペリジノキシラジカルメタクリレート)が好ましい。脂肪族ニトロキシルラジカル構造を有するものとしては、例えば置換もしくは無置換のジターシャリーブチルニトロキシルラジカル構造を有するものが挙げられ、芳香族ニトロキシルラジカル構造を有するものとしては、置換もしくは無置換のジフェニルニトロキシルラジカル構造、および置換もしくは無置換のターシャリーブチルフェニルニトロキシルラジカル構造を有するものが挙げられる。これらニトロキシル化合物は、例えばN.Nakahara et.al.,Chem.Phys.Lett.,359,351,2002等に準じて合成することができる。
【0021】
本発明における正極中には、さらに蓄電デバイス電極材料として従来公知の正極活物質や導電性補助剤、バインダー等を含んでもよい。従来公知の正極活物質としては、例えばLiMnO2、LiCoO2、LiNiO2、あるいはLixV2O5(0<x<2)等の金属酸化物、導電性高分子、活性炭等が挙げられる。導電補助剤として活性炭やグラファイト、カーボンブラック、アセチレンブラック等の炭素材料、ポリアセチレン、ポリフェニレン、ポリアニリン、ポリピロール等の導電性高分子が挙げられる。また、バインダーとしてポリフッ化ビニリデン、ポリテトラフルオロエチレン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド等の樹脂を挙げることができる。その他ジスルフィド化合物や触媒効果を示す化合物、イオン導電性高分子等を適宜含有しても良い。
【0022】
本発明における蓄電デバイス構造の一例を図1に示す。図に示された蓄電デバイスは負極3と正極5とを電解質を含むセパレータ4を介して重ね合わせた構成を有している。
【0023】
本発明の蓄電デバイスには、従来公知の電解質を用いることができる。例えば電解質塩を有機溶剤に溶解した電解液を利用することができる。このような溶剤としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート系溶媒、γ−ブチロラクトン等のエステル系溶媒、テトラヒドロフラン、ジオキソラン等のエーテル系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド系溶媒が挙げられる。本発明ではこれらの溶剤を単独もしくは2種類以上混合して用いることもできる。
【0024】
また、電解質塩としては、例えばリチウム塩や四級アンモニウム塩、四級ホスホニウム塩等が挙げられる。リチウム塩としては、例えばLiBr,LiCl,LiF等のハロゲン化リチウム塩、LiPF6、LiBF4等の無機ハロゲン化物リチウム塩、LiClO4等の過ハロゲン酸リチウム塩、LiN(C2F5SO2)2、LiN(CF3SO2)2等のイミドリチウム塩、LiC(CF3SO2)3等のメチドリチウム塩等が挙げられる。四級アンモニウム塩としては、テトラメチルアンモニウムテトラフルオロボレート、テトラメチルアンモニウムテトラフルオロホスフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムテトラフルオロホスフェート、テトラブチルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムテトラフルオロホスフェート等が挙げられる。四級ホスホニウム塩としては、テトラエチルホスホニウムテトラフルオロボレート等が挙げられる。
【0025】
図1に示した蓄電デバイスの構造では、セパレータ4に電解質を含ませて使用される。
【0026】
また、電解質として固体電解質を用いても良い。これら固体電解質のうち、有機固体電解質材料としては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体等のフッ化ビニリデン系重合体や、アクリロニトリル−メチルメタクリレート共重合体、アクリロニトリル−メチルアクリレート共重合体等のアクリルニトリル系重合体、さらにポリエチレンオキサイドなどが挙げられる。これらの高分子材料は、電解液を含ませてゲル状にして用いても、また高分子物質のみをそのまま用いても良い。一方、無機固体電解質としては、CaF2、AgI、LiF、βアルミナ、ガラス素材等が挙げられる。このような固体電解質を用いるときは、セパレータは使用しなくてもよい。
【0027】
負極集電体1および正極集電体6の材質としては、ニッケルやアルミニウム、銅、金、銀、チタン、アルミニウム合金、ステンレス、炭素素材等を挙げることができる。また、形状としては、箔や平板、メッシュ状のものを用いることができる。また、集電体に触媒効果を持たせたり、活物質と集電体とを化学結合させたりしてもよい。また、本発明における蓄電デバイスには、負極3および正極5の電気的接触を防ぐ目的で、多孔質フィルムからなるセパレータや不織布を用いることができる。一方、負極集電体1と正極集電体6の電気的接触を防ぐ目的で、プラスティック樹脂からなる絶縁パッキン2を用いることができる。
【0028】
本発明における蓄電デバイスの形状は、従来公知の形状を用いることができる。蓄電デバイス形状の例としては、電極の積層体あるいは巻回体を、金属ケース、樹脂ケース、あるいはラミネートフィルム等によって封止したものが挙げられる。また外観としては、円筒型、角型、コイン型、およびシート型等が挙げられる。
【0029】
【実施例】
以下、本発明を実施例により具体的に説明する。
【0030】
<ピッチ処理した活性炭負極の作製>
比表面積2200m2/gの活性炭、およびピッチを電気炉中、窒素気流下700℃で熱処理して、活性炭の表面にピッチを被覆させた。X線回折分析を行い、低結晶性のピッチ成分が活性炭の表面を被覆していることを確認した。活性炭とピッチ成分との質量比は、65対35であった。ピッチ処理した後の活性炭は、比表面積が250m2/gに減少していることを確認した。ピッチ処理した活性炭を、導電補助剤のアセチレンブラック、およびバインダーのポリフッ化ビニリデンと混合し、負極を作製した。
【0031】
<ニトロキシル化合物の合成例>
還流管を付けた100mlナスフラスコ中に、2,2,6,6−テトラメチルピペリジンメタクリレートモノマー20g(0.089mol)を入れ、乾燥テトラヒドロフラン80mlに溶解させた。そこへ、アゾビスイソブチロニトリル(AIBN)0.29g(0.00187mol)(モノマー/AIBN質量比=50/1)を加え、アルゴン雰囲気下75〜80℃で攪拌した。6時間反応後、室温まで放冷した。へキサン中でポリマーを析出させて濾別し、減圧乾燥してポリ(2,2,6,6−テトラメチルピペリジンメタクリレート)18g(収率90%)を得た。
【0032】
次に、得られたポリ(2,2,6,6−テトラメチルピペリジンメタクリレート)10gを乾操ジクロロメタン100mlに溶解させた。ここへm−クロロ過安息香酸15.2g(0.088mol)のジクロロメタン溶液100mlを室温にて攪拌しながら1時間かけて滴下した。さらに6時間攪拌後、沈殿したm−クロロ安息香酸を濾別して除き、濾液を炭酸ナトリウム水溶液および水で洗浄後、ジクロロメタンを留去した。残った固形分を粉砕し、得られた粉末をジエチルカーボネート(DEC)で洗浄し、減圧下乾燥させてポリ(2,2,6,6−テトラメチルピペリジノキシラジカルメタクリレート)(PTMA)7.2gを得た(収率68.2%、茶褐色粉末)。得られた高分子の構造はIRで確認した。また、GPCにより測定した結果、重量平均分子量Mw=89000、分散度Mw/Mn=3.30という値が得られた。
【0033】
<ニトロキシル化合物を含有する正極の作製>
合成したPTMA600mgと、カーボンブラック粉末1200mg、ポリテトラフルオロエチレン樹脂バインダー100mgを測り採り、メノウ乳鉢で混合した。10分ほど乾式混合して得られた混合体を、圧力を掛けてローラー延伸して、厚さ600μmの薄型電極板を得た。薄型電極板を、真空中80℃で一晩乾燥した後、縦52mm、横70mmの長方形に切り取り、蓄電デバイス用正極として成型した。電極の総質量は1.15gであり、これには345mg(30質量%)のPTMAが含まれる。電極の嵩密度は0.527g/cm3であった。
【0034】
<実施例1>
上記の方法で得られたピッチ処理した負極と、ニトロキシル化合物を含有する正極とを、多孔質のポリエチレンフィルムからなるセパレータを挟んで重ね合わせ電極積層体を得た。得られた電極積層体を、袋状のアルミニウムラミネートフィルム中に挿入し、そこに1モル濃度のLiPF6電解質塩を溶解させたエチレンカーボネート、ジエチルカーボネート混合溶媒(混合質量比3対7)を注入し真空含浸させた。ラミネートフィルムの注液口を真空中で封止して蓄電デバイスを得た。
【0035】
<比較例1>
活性炭をピッチで被覆しなかったこと以外は実施例1と同様に蓄電デバイスを得た。
【0036】
実施例1および比較例1で作製した蓄電デバイスの平衡電位および100mAの一定電流で充放電を行った際の初期容量、2回目以降の可逆容量、および不可逆容量を表1に示す。充電は4.2Vでカットオフ、放電は2.5Vでカットオフした。
【0037】
【表1】
その結果、ピッチ処理した活性炭負極を用いた方が、ピッチ処理しない活性負極を用いた比較例よりも不加逆容量が減少していることが分かった。
【0038】
【発明の効果】
以上のように、本発明によれば、不可逆容量の小さな高出力蓄電デバイスを提供することができる。
【図面の簡単な説明】
【図1】蓄電デバイスの構成の一例を示す概観図である。
【符号の説明】
1 負極集電体
2 絶縁パッキン
3 負極
4 セパレータ
5 正極
6 正極集電体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electricity storage device with high output and high energy density.
[0002]
[Prior art]
Along with the market expansion of high-power electronic devices, electric vehicles, etc., high-power electricity storage devices used for these are required. Up to now, power storage devices such as nickel metal hydride batteries, lead acid batteries, and electric double layer capacitors have been used as backup power supplies, high power electronic device power supplies, and electric vehicle power supplies that require high output. However, since the energy density is small, it has been difficult to reduce the size and weight sufficiently.
[0003]
For example, in Patent Document 1, the electrode contains a nitroxyl compound having an oxoammonium cation partial structure in an oxidized state and a nitroxyl radical partial structure in a reduced state, and transferring electrons between the two states. An electricity storage device used as a reaction has been proposed as an electricity storage device having a high energy density. When this device is used, it is possible to reduce the size and weight of an electricity storage device used at a high output.
[0004]
As a negative electrode used in this electricity storage device, lithium metal, graphite negative electrode, and activated carbon have been proposed. In particular, an electricity storage device using activated carbon as a negative electrode is expected to exhibit a high energy density in a high output region. On the other hand, when activated carbon with a large surface area is used as the negative electrode, it has a disadvantage in that the electrolytic solution is decomposed on the activated carbon surface and the irreversible capacity tends to increase. There was room for.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-304996
[Problems to be solved by the invention]
An object of this invention is to provide the high output electrical storage device with a small irreversible capacity | capacitance.
[0007]
[Means for Solving the Problems]
The present invention contains in a positive electrode a nitroxyl compound having an N-oxo-ammonium cation partial structure represented by formula (I) in an oxidized state and a nitroxyl radical partial structure represented by formula (II) in a reduced state. An electricity storage device using the reaction represented by the reaction formula (A) for transferring electrons between the two states as a positive electrode reaction, and having a negative electrode containing activated carbon coated with pitch, is there.
[0008]
[Chemical 2]
[0009]
The activated carbon coated with the pitch is preferably one in which the activated carbon having a specific surface area of 500 m 2 / g or more and 3000 m 2 / g or less is coated with the pitch.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The electricity storage device in the present invention is a device having at least a positive electrode, a negative electrode, and an electrolyte, and capable of taking out chemically stored energy in the form of electric energy. Examples of the power storage device include a primary battery and a chargeable / dischargeable secondary battery, a capacitance device such as a capacitor and a capacitor, and the like. Note that in the electricity storage device, the positive electrode is an electrode having a noble oxidation-reduction potential, and the negative electrode is an electrode having a lower oxidation-reduction potential.
[0011]
Activated carbon is an amorphous charcoal that is strongly adsorbed and consists mostly of carbonaceous matter. It is manufactured by treating wood, lignite, peat, etc. with an activator such as zinc chloride, phosphoric acid and so on, or activating charcoal with steam. Utilizing the wide surface area, it is used for solvent purification, gas purification, deodorization, removal of contaminants, capacitor electrodes, and the like.
[0012]
The specific surface area of the activated carbon in the present invention is preferably 500 m 2 / g or more, more preferably 1500 m 2 / g or more, in a state where it is not covered with a pitch, in order to exhibit a sufficiently large capacity. . Further, from the viewpoint of reducing the irreversible capacity and increasing the electronic conductivity, it is preferably 3000 m 2 / g or less, more preferably 2500 m 2 / g or less.
[0013]
Pitch is a general term for the residual oil in the kettle when tar obtained by dry distillation of organic substances such as petroleum, coal and wood is distilled.
[0014]
In the present invention, the activated carbon whose surface is covered with pitch is, for example, H.P. Kinoshita et. al. The 41 st Battery Symposimin Japan, 562, 2000, A .; Yoshino et. al. , The 43 rd Battery Symposium in Japan, 458, 2002, H .; Satake et. al. , The 43 rd Battery Symposium in Japan, 460, 2002; Okano et. al. , The 43 rd Battery Symposimin Japan, 462, 2002, and the like.
[0015]
In addition, the negative electrode containing activated carbon whose surface is coated with a pitch in the present invention may contain a negative electrode active material, a conductivity imparting agent, a binder, a compound exhibiting a catalytic effect, and the like.
[0016]
The negative electrode in the present invention can contain a conventionally known negative electrode active material. For example, carbon materials such as activated carbon and hard carbon that are not pitch-treated, graphite, carbon black, acetylene black, lithium ion occlusion carbon such as lithium metal or lithium alloy, other various metals alone or alloys, polyacetylene, polyphenylene, polyaniline, Examples thereof include conductive polymers such as polypyrrole, sulfur, and disulfide compounds. Examples of the conductivity imparting agent include carbon materials such as carbon black and acetylene black, and metal powder. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, and polyimide.
[0017]
The nitroxyl compound contained in the positive electrode can take the states of formulas (I) to (III) by transferring electrons as shown in the reaction formula (B).
[0018]
[Chemical 3]
[0019]
In the present invention, among these, the reaction between formulas (I) and (II) is used as the electrode reaction of the positive electrode, and functions as an electricity storage device by accumulating and releasing electrons associated therewith. Since this oxidation-reduction reaction is a reaction mechanism that does not involve a structural change of the organic compound, the reaction rate is high. Therefore, the electricity storage device of the present invention can pass a large current at a time.
[0020]
A conventionally known nitroxyl compound in the present invention can be used. Examples of such a compound include those having an alicyclic nitroxyl radical structure, those having an aliphatic nitroxyl radical structure, and those having an aromatic nitroxyl radical structure in the radical state. Examples of those having an alicyclic nitroxy radical structure include 2,2,6,6-tetramethylpiperidinoxy radical structure, 2,2,5,5-tetramethylpyrrolidinoxy radical structure, 2, Those having a 2,5,5-tetramethylpyrrolinoloxy radical structure are exemplified. Particularly, among those having the 2,2,6,6-tetramethylpiperidinoxy radical structure, poly (2,2,6,6-tetramethylpiperidinoxy radical methacrylate) is preferable from the viewpoint of stability. preferable. Examples of those having an aliphatic nitroxyl radical structure include those having a substituted or unsubstituted ditertiary butyl nitroxyl radical structure, and those having an aromatic nitroxyl radical structure include substituted or unsubstituted diphenyl Examples thereof include those having a nitroxyl radical structure and a substituted or unsubstituted tertiary butylphenyl nitroxyl radical structure. These nitroxyl compounds are exemplified by N.I. Nakahara et. al. , Chem. Phys. Lett. , 359, 351, 2002 and the like.
[0021]
The positive electrode in the present invention may further contain a conventionally known positive electrode active material, conductive auxiliary agent, binder, and the like as the electricity storage device electrode material. Examples of conventionally known positive electrode active materials include metal oxides such as LiMnO 2 , LiCoO 2 , LiNiO 2 , or Li x V 2 O 5 (0 <x <2), conductive polymers, activated carbon, and the like. Examples of the conductive auxiliary agent include carbon materials such as activated carbon, graphite, carbon black, and acetylene black, and conductive polymers such as polyacetylene, polyphenylene, polyaniline, and polypyrrole. Examples of the binder include resins such as polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, and polyimide. In addition, you may contain suitably the disulfide compound, the compound which shows a catalytic effect, an ion conductive polymer, etc.
[0022]
An example of the electricity storage device structure in the present invention is shown in FIG. The electricity storage device shown in the figure has a configuration in which a negative electrode 3 and a positive electrode 5 are superposed via a separator 4 containing an electrolyte.
[0023]
A conventionally known electrolyte can be used for the electricity storage device of the present invention. For example, an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used. Examples of such solvents include carbonate solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, ester solvents such as γ-butyrolactone, ether solvents such as tetrahydrofuran and dioxolane, dimethylformamide, Examples include amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone. In the present invention, these solvents may be used alone or in combination of two or more.
[0024]
Examples of the electrolyte salt include lithium salts, quaternary ammonium salts, and quaternary phosphonium salts. Examples of the lithium salt include lithium halide salts such as LiBr, LiCl, and LiF, inorganic halide lithium salts such as LiPF 6 and LiBF 4, lithium perhalogenates such as LiClO 4 , and LiN (C 2 F 5 SO 2 ). 2 , Imidolithium salts such as LiN (CF 3 SO 2 ) 2 , methide lithium salts such as LiC (CF 3 SO 2 ) 3, and the like. Examples of the quaternary ammonium salt include tetramethylammonium tetrafluoroborate, tetramethylammonium tetrafluorophosphate, tetraethylammonium tetrafluoroborate, tetraethylammonium tetrafluorophosphate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium tetrafluorophosphate, and the like. . Examples of the quaternary phosphonium salt include tetraethylphosphonium tetrafluoroborate.
[0025]
In the structure of the electricity storage device shown in FIG. 1, the separator 4 is used by including an electrolyte.
[0026]
A solid electrolyte may be used as the electrolyte. Among these solid electrolytes, organic solid electrolyte materials include polyvinylidene fluoride polymers such as polyvinylidene fluoride and vinylidene fluoride-hexafluoropropylene copolymers, acrylonitrile-methyl methacrylate copolymers, and acrylonitrile-methyl acrylate copolymers. Examples thereof include acrylonitrile polymers such as polymers, and polyethylene oxide. These polymer materials may be used in the form of a gel containing an electrolytic solution, or only the polymer material may be used as it is. On the other hand, examples of the inorganic solid electrolyte include CaF 2 , AgI, LiF, β-alumina, and a glass material. When such a solid electrolyte is used, the separator need not be used.
[0027]
Examples of the material of the negative electrode current collector 1 and the positive electrode current collector 6 include nickel, aluminum, copper, gold, silver, titanium, an aluminum alloy, stainless steel, and a carbon material. Moreover, as a shape, a foil, a flat plate, or a mesh shape can be used. Further, the current collector may have a catalytic effect, or the active material and the current collector may be chemically bonded. Moreover, the electrical storage device in this invention can use the separator and nonwoven fabric which consist of a porous film in order to prevent the electrical contact of the negative electrode 3 and the positive electrode 5. FIG. On the other hand, in order to prevent electrical contact between the negative electrode current collector 1 and the positive electrode current collector 6, an insulating packing 2 made of a plastic resin can be used.
[0028]
As the shape of the electricity storage device in the present invention, a conventionally known shape can be used. As an example of the shape of the electricity storage device, there may be mentioned a case where an electrode laminate or a wound body is sealed with a metal case, a resin case, a laminate film, or the like. Examples of the appearance include a cylindrical shape, a square shape, a coin shape, and a sheet shape.
[0029]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
[0030]
<Production of pitch-treated activated carbon anode>
The activated carbon having a specific surface area of 2200 m 2 / g and the pitch were heat-treated at 700 ° C. in a nitrogen stream in an electric furnace to coat the pitch on the surface of the activated carbon. X-ray diffraction analysis was performed, and it was confirmed that the low crystalline pitch component covered the surface of the activated carbon. The mass ratio between the activated carbon and the pitch component was 65:35. The activated carbon after the pitch treatment was confirmed to have a specific surface area reduced to 250 m 2 / g. The pitch-treated activated carbon was mixed with acetylene black as a conductive auxiliary agent and polyvinylidene fluoride as a binder to produce a negative electrode.
[0031]
<Synthesis example of nitroxyl compound>
In a 100 ml eggplant flask equipped with a reflux tube, 20 g (0.089 mol) of 2,2,6,6-tetramethylpiperidine methacrylate monomer was placed and dissolved in 80 ml of dry tetrahydrofuran. Thereto, 0.29 g (0.00187 mol) (monomer / AIBN mass ratio = 50/1) of azobisisobutyronitrile (AIBN) was added, and the mixture was stirred at 75 to 80 ° C. in an argon atmosphere. After reacting for 6 hours, it was allowed to cool to room temperature. The polymer was precipitated in hexane, separated by filtration, and dried under reduced pressure to obtain 18 g (yield 90%) of poly (2,2,6,6-tetramethylpiperidine methacrylate).
[0032]
Next, 10 g of the obtained poly (2,2,6,6-tetramethylpiperidine methacrylate) was dissolved in 100 ml of dry-treated dichloromethane. To this, 100 ml of a dichloromethane solution of 15.2 g (0.088 mol) of m-chloroperbenzoic acid was added dropwise over 1 hour with stirring at room temperature. After further stirring for 6 hours, the precipitated m-chlorobenzoic acid was removed by filtration, and the filtrate was washed with an aqueous sodium carbonate solution and water, and then dichloromethane was distilled off. The remaining solid was pulverized, and the resulting powder was washed with diethyl carbonate (DEC) and dried under reduced pressure to obtain poly (2,2,6,6-tetramethylpiperidinoxy radical methacrylate) (PTMA) 7 0.2 g was obtained (yield 68.2%, brown powder). The structure of the obtained polymer was confirmed by IR. Moreover, as a result of measuring by GPC, the value of weight average molecular weight Mw = 89000 and dispersion degree Mw / Mn = 3.30 was obtained.
[0033]
<Preparation of a positive electrode containing a nitroxyl compound>
600 mg of synthesized PTMA, 1200 mg of carbon black powder, and 100 mg of polytetrafluoroethylene resin binder were weighed and mixed in an agate mortar. The mixture obtained by dry-mixing for about 10 minutes was roller-stretched under pressure to obtain a thin electrode plate having a thickness of 600 μm. The thin electrode plate was dried overnight at 80 ° C. in a vacuum, then cut into a rectangle of 52 mm length and 70 mm width, and molded as a positive electrode for an electricity storage device. The total mass of the electrode is 1.15 g, which includes 345 mg (30% by mass) of PTMA. The bulk density of the electrode was 0.527 g / cm 3 .
[0034]
<Example 1>
A pitch-treated negative electrode obtained by the above method and a positive electrode containing a nitroxyl compound were overlapped with a separator made of a porous polyethylene film to obtain an electrode laminate. The obtained electrode laminate was inserted into a bag-like aluminum laminate film, and ethylene carbonate / diethyl carbonate mixed solvent (mixing mass ratio 3 to 7) in which 1 mol of LiPF 6 electrolyte salt was dissolved was injected therein. And vacuum impregnated. The injection port of the laminate film was sealed in a vacuum to obtain an electricity storage device.
[0035]
<Comparative Example 1>
An electricity storage device was obtained in the same manner as in Example 1 except that the activated carbon was not coated with pitch.
[0036]
Table 1 shows the initial capacity, the second and subsequent reversible capacities, and the irreversible capacity when charging / discharging with the equilibrium potential and a constant current of 100 mA of the electricity storage devices manufactured in Example 1 and Comparative Example 1. Charging was cut off at 4.2V, and discharging was cut off at 2.5V.
[0037]
[Table 1]
As a result, it was found that the non-reversible capacity was reduced when the pitch-treated activated carbon negative electrode was used as compared with the comparative example using the active negative electrode that was not pitch-treated.
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a high output power storage device with a small irreversible capacity.
[Brief description of the drawings]
FIG. 1 is an overview diagram showing an example of a configuration of an electricity storage device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 2 Insulation packing 3 Negative electrode 4 Separator 5 Positive electrode 6 Positive electrode collector
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002368424A JP4139960B2 (en) | 2002-12-19 | 2002-12-19 | Electricity storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002368424A JP4139960B2 (en) | 2002-12-19 | 2002-12-19 | Electricity storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004200058A JP2004200058A (en) | 2004-07-15 |
JP4139960B2 true JP4139960B2 (en) | 2008-08-27 |
Family
ID=32764999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002368424A Expired - Lifetime JP4139960B2 (en) | 2002-12-19 | 2002-12-19 | Electricity storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4139960B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150080596A (en) * | 2013-01-22 | 2015-07-09 | 아사히 가세이 가부시키가이샤 | Lithium ion capacitor |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4529683B2 (en) * | 2004-12-28 | 2010-08-25 | Tdk株式会社 | Electrochemical devices |
CN1741214A (en) * | 2005-07-15 | 2006-03-01 | 复旦大学 | Electrochemical super capacitor with organic polymer free radical/carbon composite material as anode |
JP5196365B2 (en) * | 2007-11-05 | 2013-05-15 | 東海カーボン株式会社 | Carbon particle powder for negative electrode material of lithium ion secondary battery, method for producing the same, and negative electrode material of lithium ion secondary battery |
JP2011029136A (en) * | 2009-06-30 | 2011-02-10 | Murata Mfg Co Ltd | Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery |
JP2011029135A (en) * | 2009-06-30 | 2011-02-10 | Murata Mfg Co Ltd | Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery |
US9583280B2 (en) * | 2012-07-26 | 2017-02-28 | Adeka Corporation | Electricity storage device |
-
2002
- 2002-12-19 JP JP2002368424A patent/JP4139960B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150080596A (en) * | 2013-01-22 | 2015-07-09 | 아사히 가세이 가부시키가이샤 | Lithium ion capacitor |
KR101696568B1 (en) * | 2013-01-22 | 2017-01-13 | 아사히 가세이 가부시키가이샤 | Lithium ion capacitor |
US10242807B2 (en) | 2013-01-22 | 2019-03-26 | Asahi Kasei Kabushiki Kaisha | Lithium ion capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP2004200058A (en) | 2004-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100413595B1 (en) | secondary battery | |
EP1381100B1 (en) | Electricity storage device | |
JP4202334B2 (en) | Electrochemical devices | |
US8617744B2 (en) | Electricity storage device | |
JP5228531B2 (en) | Electricity storage device | |
JP5076560B2 (en) | Electricity storage device | |
JP3687513B2 (en) | battery | |
JP5625151B2 (en) | Compound having a radical, polymer, and electricity storage device using the polymer | |
WO2006080110A1 (en) | Positive electrode material for lithium secondary cell | |
JP2005108438A (en) | Electrolyte for lithium-sulfur battery, and lithium-sulfur battery including the electrolyte for lithium-sulfur battery | |
EP2308912B1 (en) | Polymer, semiconductor film, electrode, electrode active material, electrochemical element and electricity storage device | |
JP4078542B2 (en) | Power storage device | |
JP4830207B2 (en) | battery | |
JP2002313344A (en) | Electrode binder, and electrode and battery manufactured by using it | |
JP4139960B2 (en) | Electricity storage device | |
JP2006040748A (en) | Electrochemical device | |
WO2020202661A1 (en) | Lithium ion secondary battery | |
JP4826699B2 (en) | Power storage device | |
JP2005285376A (en) | Organic/inorganic hybrid electrode, and secondary battery using the same | |
JP2004179169A (en) | Secondary battery | |
JP4737365B2 (en) | Electrode active material, battery and polymer | |
JP4314508B2 (en) | Radical battery | |
JP4955233B2 (en) | Electrode active material, battery and polymer | |
JP4752218B2 (en) | Electrode active material, battery and polyradical compound | |
JP4752217B2 (en) | Active materials, batteries and polymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040427 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20041224 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20041224 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080514 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080527 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4139960 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |