JP2004199912A - 荷電粒子ビーム装置における収差補正装置 - Google Patents

荷電粒子ビーム装置における収差補正装置 Download PDF

Info

Publication number
JP2004199912A
JP2004199912A JP2002364622A JP2002364622A JP2004199912A JP 2004199912 A JP2004199912 A JP 2004199912A JP 2002364622 A JP2002364622 A JP 2002364622A JP 2002364622 A JP2002364622 A JP 2002364622A JP 2004199912 A JP2004199912 A JP 2004199912A
Authority
JP
Japan
Prior art keywords
objective lens
stage
quadrupole
change
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002364622A
Other languages
English (en)
Inventor
Shinobu Uno
忍 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2002364622A priority Critical patent/JP2004199912A/ja
Publication of JP2004199912A publication Critical patent/JP2004199912A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】僅かな作動距離の変化によっても、複雑な収差補正の再補正を行うことなく、プローブ径をほぼ一定とすることができる荷電粒子ビーム装置の収差補正装置を実現する。
【解決手段】制御部19は対物レンズ7の励磁が変化された場合には、その変化量に応じてメモリー30からその変化量に応じた、例えば補正電圧値を読み出し、この補正電圧値に基づき、対応する極子に印加される電圧を補正する。したがって、対物レンズ7の励磁が変化しても、試料面20に照射される電子ビームのプローブ径は、常に小さいプローブ径が維持されることになる。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
本発明は、走査電子顕微鏡などの電子ビーム装置やイオンマイクロプローブなどのイオンビーム装置における色収差と球面収差を補正するための荷電粒子ビーム装置における収差補正装置に関する。
【0002】
【従来の技術】
走査電子顕微鏡や透過電子顕微鏡において、高分解能の像を観察したりプローブ電流密度を上げることを目的として、電子光学系の中に収差補正装置が組み込まれている。この収差補正装置として、色収差を静電型4極子と磁場型4極子の組合せで補正し、球面収差を4段の8極子で補正する方式が提案されている。その原理については、非特許文献1〜3に詳しく紹介されている。
【0003】
ここで、上記した収差補正装置の原理の概略を、図1に基づいて説明する。図1において、対物レンズ7の前段に収差補正装置Cが配置されている。収差補正装置Cは、4段の静電型4極子1、2、3、4と、静電型4極子の2段目と3段目が作り出す電位分布と相似な磁位分布を作り出し、電界と重畳した磁界を形成する2段の磁場型4極子5、6と、4段の静電型4極子が形成する電界と重畳した電界を形成する4段の静電型8極子11,12,13,14とより構成されている。
【0004】
なお、実際の装置では、これら4極子や8極子の電界に、更に4段の2極子(軸合わせ用の偏向装置として動作する)と、4段の6極子(2次の開口収差補正用として働く)が重畳するように構成されているが、本発明とは直接の関係は小さいので、詳しくは説明しない。
【0005】
このような構成において、図の左側から入射した荷電粒子ビームは、4段の静電型4極子1、2、3、4と対物レンズ7によって、基準となる荷電粒子ビームの軌道が作られ、試料面20に荷電粒子ビームがフォーカスされる。この図1では、粒子線のX方向の軌道RxとY方向の軌道Ryを平面上にまとめて模式的に描いている。
【0006】
基準軌道とは、近軸軌道(収差がないときの軌道と考えてよい)として、4極子1によってY方向の軌道Ryが4極子2の中心を通り、4極子2によってX方向の軌道Rxが4極子3の中心を通り、最後に4極子3、4と対物レンズ7によって荷電粒子ビームが試料面20にフォーカスされる軌道をいう。実際には完全なフォーカスのために、これらの相互調整が必要になる。なお、このとき、前記の4段の2極子は、軸合わせのために用いられる。
【0007】
更に詳細に図1を説明すると、X方向の軌道Rxの荷電粒子ビームは、4極子1によって拡散(凹レンズと同様な作用)され、次いで手4極子2によって集束(凸レンズと同様な作用)されて4極4によって集束されて、対物レンズ7に向かう。一方、Y方向の軌道Ryの荷電粒子ビームは、4極子1によって集束されて4極子2の中心を通るようになされ、4極子2の中心を通過した後、4極子3によって集束され、最後に4極子4によって拡散された後、対物レンズ7に向かう。このようにX方向の軌道Rxら作用する4極子1の拡散作用と、Y方向の軌道Ryに作用する4極子4の拡散作用とを合成することによって、1個の凹レンズの如く働かせることができる。
【0008】
次に、収差補正装置Cによる色収差補正について説明する。図1に示したような系で先ず色収差を補正するには、上記の基準軌道を変えないように静電型4極子2の電位φq2[V]と磁場型4極子5の励磁J2[AT](あるいは磁位)が調整され、レンズ系全体としてX方向の色収差が0に補正される。同様に基準軌道を変えないように静電型4極子3の電位φq3[V]と磁場型4極子6の励磁J3[AT]が調整され、レンズ系全体としてY方向の色収差が0に補正される。
【0009】
次に、球面収差補正(3次の開口収差補正)について説明する。球面収差を補正する場合には、X,Y方向の色収差の補正を行った後に、静電型8極子12の電位φO2[V]によってレンズ系全体としてX方向の球面収差を0に補正し、静電型8極子13の電位φO3によってY方向の球面収差を0に補正する。
【0010】
次に、XYが合成された方向の球面型収差を静電型8極子11、14で0に補正する。実際は交互の繰返し調整が必要になる。なお、4極子や8極子の電位や励磁の重畳は、1個の12極子を用いて、12極の各極子に印加する電位や励磁を変化させ2極子、4極子、6極子、8極子などの合成が行われ、実用化されている。この方法については、例えば非特許文献4に紹介されている。
【0011】
すなわち、静電型の場合には、図2に示すように、12個の電極Un(n=1,2,3,…、12)に対して、独立に電圧を供給できる最終団電源An(n=1,2,3,…、12)が接続され、4極子場を作る場合には、理想的な4極子場に近い場が得られるように、4極子電源10からの出力電圧が各最終団電源Anに供給される。最終団電源Anの出力電圧が4極子電源10の出力電圧と比例すると仮定すると、10の出力電圧の比は、非特許文献4に示された値になる。また、この4極子場に重ねて8極子場を作る場合には、理想的な8極子場に近い場が得られるように、8極子電源18からの出力電圧が前記10の出力電圧と加算されて各最終団電源Anに供給される。以下同様の考え方で、1個の12極子で2n極子(n=1,2,3,…、12)の多極子場を重ねた場が得られる。
【0012】
次に、磁場型の場合には、図3に示すように、12個のマグネットWn(n=1,2,3,…、12)のコイルに対して、独立に励磁電流を供給できる最終段電源Bn(n=1,2,3,…、12)が接続され、磁場型4極子場を作る場合には、理想的な磁場型の4極子場に近い場が得られるように、磁場型4極子電源15からの出力電圧が、各Bnに供給される。最終段電源Bnの出力電流が、磁場型4極子電源15の出力電圧と比例すると仮定すると、この出力電圧の比は、上記の文献[4]に示されている励磁力の比になる。
【0013】
上記従来技術では、磁場型の4極子場以外の多極子場の重畳は説明されていないが、最終段電源Bnの入力電圧に多極子場の電圧を加算することによって、静電型と同様に磁場型の多極子場の重畳が可能となる。なお、ここで、図3では、各マグネットWnの外側を磁気的につなぐヨークは省略されている。
【0014】
次に、静電型と磁場型を重ねる場合には、マグネットWnが電極Unを兼ねることができるように、導電性の磁性体を用いればよい。この場合、マグネットのコイルは電極とは電気的に絶縁して配置される。
【0015】
以下の説明では、説明を簡単にするために、あたかも2n極子を互いに重ねたかのように記述しているが、実際には1つの12極子に対し、複数の多極子場の重畳は、上記のように電圧信号の加算によって行っている。
【0016】
以下の説明で、静電型の多極子で電位φ(あるいは電圧)という表現を用いた場合には、図4(a)、2(b)に示すような標準配列をした多極子の+側の値を表すものとする。同様に、磁場型の励磁Jという表現を用いた場合には、+側の励磁[AT]を表すものとする。
【0017】
【非特許文献1】
H. Rose, Optik 33, Heft1, 1 (1971)
【非特許文献2】
J. Zach, Optik 83, No1, 30 (1989)
【非特許文献3】
J. Zach and M. Haider, Nucl. Instr. and Meth. In Pyhs. Res.A 363, 316 (1995)
【非特許文献4】
M. Haider et al., Optik 63 No.1, 9-23 (1982)
【0018】
【発明が解決しようとする課題】
前記した収差補正の理論や、実際に行われた実験に基づく結果では、色収差と球面収差がほぼ完全に補正され、前記収差補正系の優秀性が認められたが、実用化の観点からは、例えば、次に示すような問題点が生じている。
【0019】
すなわち、実際の試料の表面には凹凸があったり傾斜があったりして、観察する場所によって作業距離(対物レンズと試料との間の距離)は僅かながら変化する。従って、実際の試料観察においては、この僅かな作動距離の変化に合わせるために、当然対物レンズの焦点距離(強度)を変化させなければならない。そして、対物レンズの焦点距離を変えると、それに伴って収差補正装置の各極子の印加電圧等も調整し直す必要が生じる。これに対して、従来の考え方は、補正電圧を調整しなくとも、試料上に照射される荷電粒子ビームのプローブ径の変化は僅かであるとして無視するか、あるいは、作動距離の変化の都度、プローブ径が変化しないように、あらかじめ色収差の補正がなされていた静電型4極子と磁場型4極子の組合せを再補正し、球面収差を4段の8極子で再補正することが考えられる。しかしながら、これらの補正動作は繁雑であるため、やむを得ず、僅かな作動距離変化による荷電粒子ビームのプローブ径の変化は僅かであるとして無視しているのが現状である。
【0020】
本発明は、このような点に鑑みてなされたもので、その目的は、僅かな作動距離の変化によっても、複雑な収差補正の再補正を行うことなく、プローブ径をほぼ一定とすることができる荷電粒子ビーム装置の収差補正装置を実現するにある。
【0021】
【課題を解決するための手段】
請求項1の発明に基づく荷電粒子ビーム装置における収差補正装置は、荷電粒子ビーム光学系内部に配置された収差補正装置であって、4段の静電型4極子と、4段の静電型4極子の中央の2段の静電型4極子の電位分布と相似な磁位分布を重畳させる2段の磁場型4極子と、収差補正装置の後段に設けられた対物レンズと、荷電粒子ビームの光路の一部に設けられた対物絞りと、加速電圧や作動距離を変更する操作部と、前記4段の静電4極子のそれぞれに電圧を供給する電源と、2段の磁場型4極子を励磁する電源と、対物レンズの電源と、操作部の操作または設定に基づいて前記3種類の電源を制御する制御部と、作動距離の変化に基づいて対物レンズの強度を変化させた場合、収差を補正するための対物レンズの強度の変化量に応じた各極子の電圧値を記憶したメモリーを備え、制御部は対物レンズの強度の変化に応じてメモリーから対応する各極子の補正電圧値を読み出し、この電圧値に応じて各極子の電源を制御し、作動距離の変化に伴う対物レンズの強度変化による荷電粒子ビームのプローブ径をほぼ一定に維持するようにしたことを特徴としている。
【0022】
請求項1の発明に基づく荷電粒子ビーム装置における収差補正装置は、試料面の高さ方向(作動距離)が僅かに変化して、それに伴い対物レンズの強度が変化しても、対物レンズの強度の変化に応じてメモリーから対応する各極子の補正電圧値を読み出し、この電圧値に応じて各極子の電源を制御して収差を補正し、作動距離の変化に伴う対物レンズの強度変化による荷電粒子ビームのプローブ径をほぼ一定に維持する。
【0023】
また、請求項2の発明に基づく荷電粒子ビーム装置における収差補正装置は、試料面の高さ方向(作動距離)が僅かに変化して、それに伴い対物レンズの強度が変化しても、対物レンズの強度の変化に応じてメモリーから対応する静電型8極子の補正電圧値を読み出し、この電圧値に応じて静電型8極子の電源を制御して収差を補正し、作動距離の変化に伴う対物レンズの強度変化による荷電粒子ビームのプローブ径をほぼ一定に維持する。
【0024】
また、請求項3の発明に基づく荷電粒子ビーム装置における収差補正装置は、試料面の高さ方向(作動距離)が僅かに変化して、それに伴い対物レンズの強度が変化しても、対物レンズの強度の変化に応じてメモリーから対応する静電型8極子を含む各極子の補正電圧値を読み出し、この電圧値に応じて各極子の電源を制御して収差を補正し、作動距離の変化に伴う対物レンズの強度変化による荷電粒子ビームのプローブ径をほぼ一定に維持する。
【0025】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。図5は本発明の基本構成を示しており、荷電粒子ビームの一部をプローブとして試料に照射する装置において、色収差を補正するために、4段の静電型4極子1、2、3、4と中央の2段の静電型4極子2、3の電位分布と相似な磁位分布を重畳させる2段の磁場型4極子5、6と、対物レンズ7と、光路の一部に設けられた対物絞り8と、加速電圧や作動距離を変更する操作表示部9と、4段の静電4極子1〜4に電圧を供給する電源10と、2段の磁場型4極子5、6を励磁する電源15と、対物レンズの電源17と、操作表示部9の操作または設定に基づいて前記電源10、15を制御する制御部19が備えられている。
【0026】
なお、対物レンズ7は、対物レンズ7が磁場型の場合は電源17から供給される電流を変えることによって、対物レンズ7が静電型の場合は、電源17から供給される電圧を変えることによって、あるいは、対物レンズ7が電場・磁場重畳型の場合は、電源17から供給されれる電流および電圧を調整することによって、レンズの強度(焦点距離)が調節される。更に、荷電粒子が高速のイオンの場合には、荷電粒子の質量に関係なく、同じ屈折力が得られる静電型の対物レンズ7が用いられる。
【0027】
また、球面収差を補正するために、前記した各構成要素に加えて4段の静電型4極子1、2、3、4の電位分布に8極子電位を重畳させる4段の静電型8極子11、12、13、14と、4段の静電型8極子に電圧を供給する電源18と、操作表示部9の操作または設定に基づいて前記電源18を制御する制御部19が備えられている。
【0028】
以下において、上記4段の静電型4極子1,2,3,4と2段の磁場型4極子5,6と、これに電源10,15を含めたもの、あるいは、これらに更に4段の静電型8極子11,12,13,14と電源18を含めたものを収差補正装置Cと呼ぶことにする。なお、20は荷電粒子ビームが照射される試料面である。
【0029】
このような収差補正装置Cは、例えば、図6に示す如き走査電子顕微鏡などに組み込まれる。30は内部が真空雰囲気にされた鏡筒である。鏡筒30内には、電子ビームを発生し、加速電圧によって電子にエネルギーを与える電子銃31,電子銃31で発生した電子ビームを集束し、かつ電子ビーム電流を適当な値に制限するためのコンデンサレンズ32と、対物レンズ絞り33,収差補正装置C、電子ビームを2次元的に偏向して走査するための偏向器34,電子ビームをフォーカスして試料36に照射する対物レンズ37,試料36を載置して、所望の場所が電子ビームによって走査されるように試料36を任意に駆動できる試料ステージ38,電子ビームの照射・走査に伴って試料36から発生する2次電子などの信号を検出する検出器39等が備えられている。なお、電子銃31から対物レンズ37までを電子ビームの光学系と呼ぶことがある。
【0030】
さて、上述した走査電子顕微鏡において、収差補正装置Cによって色収差と球面収差が補正され、小さいプローブ径の電子ビームが試料面20に照射されているとする。この調整された状態から試料面がZ方向に微動し、作動距離が僅かに変化した場合には、対物レンズの強度(焦点距離)を調整して、電子ビームのフォーカスが試料表面で合うようにしなければならない。以下、対物レンズの強度の調節は磁場型の対物レンズの場合で説明する。作業距離の変化に応じて対物レンズの励磁を△Iだけ変化させると、その収差補正の条件下で得られる試料面20に照射される電子ビームの最小のプローブ径は、図7の実線のように大きくなってしまう。
【0031】
一方、対物レンズ7の励磁を変えるたびにその都度色収差と球面収差の補正をやり直せば、図7の破線で示すように、プローブ径を小さい状態に維持することができる。すなわち、図7の破線の状態を維持するためには、対物レンズ7の励磁の変化ΔIに応じて、一段目の8極子11の電圧を変化させなければならない。
【0032】
この8極子11の電圧の変化分ΔVoctlをΔIに対してプロットすると、図8のようになり、ΔIが小さい範囲ではほぼ直線と見なすことができる。このような現象は、他の8極子電極12〜14,2段の磁場型4極子5,6,4段の静電型4極子1〜4の電圧や電流値を対物レンズ7の励磁の変化ΔIに応じて変化させても同様に生じる。
【0033】
したがって、対物レンズ7の励磁の変化ΔIの変化に応じた8極子や4極子の電圧や電流の傾きのデータを有していれば、このデータを用いてΔIの変化に応じて、自動的に補正電圧や電流を調整し、常に図7の破線で示すように小さいプローブ径が維持されることになる。具体的には、制御部19にメモリー30が備えられており、このメモリー30には、ΔIに応じて各極子に印加される電圧あるいは電流の補正電圧あるいは補正電流がテーブルの形式で記憶されている。
【0034】
この結果、制御部19は対物レンズ7の励磁が変化された場合には、その変化量に応じてメモリー30からその変化量に応じた、例えば補正電圧値を読み出し、この補正電圧値に基づき、対応する極子に印加される電圧を補正する。したがって、対物レンズ7の励磁が変化しても、試料面20に照射される電子ビームのプローブ径は、図7の破線で示すように常に小さいプローブ径が維持されることになる。
【0035】
なお、図7の一点鎖線は、対物レンズ7の励磁ΔIを変えるたびに、その都度球面収差だけを補正し直したときのプローブ径を示している。この図から明らかなように、球面収差が支配的であれば、ΔIの変化に応じて自動的に調節する電圧を、8極子11〜14だけに限っても、充分な効果が得られる。同様に、色収差が支配的であれば、対物レンズ7の励磁ΔIを変えるたびに、その都度色収差だけを補正し直しても、すなわち、8極子11〜14を除く、2段の磁場型4極子5,6,4段の静電型4極子1〜4の電圧や電流値を対物レンズ7の励磁の変化ΔIに応じて変化させても、充分な効果が得られる。更に、2段の磁場型4極子5,6は補正し直さなくとも、それなりの効果が得られることがあることも分っている。
【0036】
【発明の効果】
以上説明したように、請求項1の発明に基づく荷電粒子ビーム装置における収差補正装置は、荷電粒子ビーム光学系内部に配置された収差補正装置であって、4段の静電型4極子と、4段の静電型4極子の中央の2段の静電型4極子の電位分布と相似な磁位分布を重畳させる2段の磁場型4極子と、収差補正装置の後段に設けられた対物レンズと、荷電粒子ビームの光路の一部に設けられた対物絞りと、加速電圧や作動距離を変更する操作部と、前記4段の静電4極子のそれぞれに電圧を供給する電源と、2段の磁場型4極子を励磁する電源と、対物レンズの電源と、操作部の操作または設定に基づいて前記3種類の電源を制御する制御部と、作動距離の変化に基づいて対物レンズの強度を変化させた場合、収差を補正するための対物レンズの強度の変化量に応じた各極子の電圧値を記憶したメモリーを備え、制御部は対物レンズの強度の変化に応じてメモリーから対応する各極子の補正電圧値を読み出し、この電圧値に応じて各極子の電源を制御し、作動距離の変化に伴う対物レンズの強度変化による荷電粒子ビームのプローブ径をほぼ一定に維持するように構成した。
【0037】
その結果、請求項1の発明に基づく荷電粒子ビーム装置における収差補正装置は、試料面の高さ方向(作動距離)が僅かに変化して、それに伴い対物レンズの強度が変化しても、対物レンズの強度の変化に応じてメモリーから対応する各極子の補正電圧値を読み出し、この電圧値に応じて各極子の電源を制御して収差を補正し、作動距離の変化に伴う対物レンズの強度変化による荷電粒子ビームのプローブ径をほぼ一定に維持することができる。
【0038】
また、請求項2の発明に基づく荷電粒子ビーム装置における収差補正装置は、試料面の高さ方向(作動距離)が僅かに変化して、それに伴い対物レンズの強度が変化しても、対物レンズの強度の変化に応じてメモリーから対応する静電型8極子の補正電圧値を読み出し、この電圧値に応じて静電型8極子の電源を制御して収差を補正し、作動距離の変化に伴う対物レンズの強度変化による荷電粒子ビームのプローブ径をほぼ一定に維持することができる。
【0039】
また、請求項3の発明に基づく荷電粒子ビーム装置における収差補正装置は、試料面の高さ方向(作動距離)が僅かに変化して、それに伴い対物レンズの強度が変化しても、対物レンズの強度の変化に応じてメモリーから対応する静電型8極子を含む各極子の補正電圧値を読み出し、この電圧値に応じて各極子の電源を制御して収差を補正し、作動距離の変化に伴う対物レンズの強度変化による荷電粒子ビームのプローブ径をほぼ一定に維持することができる。
【図面の簡単な説明】
【図1】収差補正装置の原理の概略を説明するための図である。
【図2】静電型12極子を12以下の静電型多極子として用いる方法を示す図である。
【図3】磁場型12極子を12以下の磁場型多極子として用いる方法を示す図である。
【図4】静電型多極子の標準配列を示す図である。
【図5】本発明の基本構成を示す図である。
【図6】走査電子顕微鏡の標準的な構成を示す図である。
【図7】作動距離の変化に伴って対物レンズの励磁をΔIだけ変化させたときの最小のプローブ径の変化を示す図である。
【図8】対物レンズの励磁をΔIだけ変化させ、色収差と球面収差を補正し直したとき、1段目の8極子の電圧の変化量ΔVoctlの変化を示す図である。
【符号の説明】
1,2,3,4 静電型4極子
5,6 磁場型4極子
7 対物レンズ
8 対物絞り
9 操作表示部
10,15,18,19 電源
20 試料面
21 メモリー

Claims (3)

  1. 荷電粒子ビーム光学系内部に配置された収差補正装置であって、4段の静電型4極子と、4段の静電型4極子の中央の2段の静電型4極子の電位分布と相似な磁位分布を重畳させる2段の磁場型4極子と、収差補正装置の後段に設けられた対物レンズと、荷電粒子ビームの光路の一部に設けられた対物絞りと、加速電圧や作動距離を変更する操作部と、前記4段の静電4極子のそれぞれに電圧を供給する電源と、2段の磁場型4極子を励磁する電源と、対物レンズの電源と、操作部の操作または設定に基づいて前記3種類の電源を制御する制御部と、作動距離の変化に基づいて対物レンズの強度を変化させた場合、収差を補正するための対物レンズの強度の変化量に応じた各極子の電圧値を記憶したメモリーを備え、制御部は対物レンズの強度の変化に応じてメモリーから対応する各極子の補正電圧値を読み出し、この電圧値に応じて各極子の電源を制御し、作動距離の変化に伴う対物レンズの強度変化による荷電粒子ビームのプローブ径をほぼ一定に維持するようにしたことを特徴とする荷電粒子ビーム装置における収差補正装置。
  2. 荷電粒子ビーム光学系内部に配置された収差補正装置であって、4段の静電型4極子と、4段の静電型4極子の電位分布に8極子電位を重畳させる4段の静電型8極子と、4段の静電型4極子の中央の2段の静電型4極子の電位分布と相似な磁位分布を重畳させる2段の磁場型4極子と、収差補正装置の後段に設けられた対物レンズと、荷電粒子ビームの光路の一部に設けられた対物絞りと、加速電圧や作動距離を変更する操作部と、前記4段の静電4極子のそれぞれに電圧を供給する電源と、4段の静電型8極子に電圧を供給する電源と、2段の磁場型4極子を励磁する電源と、対物レンズの電源と、操作部の操作または設定に基づいて前記4種類の電源を制御する制御部と、作動距離の変化に基づいて対物レンズの強度を変化させた場合、収差を補正するための対物レンズの強度の変化量に応じた静電型8極子の電圧値を記憶したメモリーを備え、制御部は対物レンズの強度の変化に応じてメモリーから対応する静電型8極子の補正電圧値を読み出し、この電圧値に応じて静電型8極子の電源を制御し、作業距離の変化に伴う対物レンズの強度変化による荷電粒子ビームのプローブ径をほぼ一定に維持するようにしたことを特徴とする荷電粒子ビーム装置における収差補正装置。
  3. 荷電粒子ビーム光学系内部に配置された収差補正装置であって、4段の静電型4極子と、4段の静電型4極子の電位分布に8極子電位を重畳させる4段の静電型8極子と、4段の静電型4極子の中央の2段の静電型4極子の電位分布と相似な磁位分布を重畳させる2段の磁場型4極子と、収差補正装置の後段に設けられた対物レンズと、荷電粒子ビームの光路の一部に設けられた対物絞りと、加速電圧や作動距離を変更する操作部と、前記4段の静電4極子のそれぞれに電圧を供給する電源と、4段の静電型8極子に電圧を供給する電源と、2段の磁場型4極子を励磁する電源と、対物レンズの電源と、操作部の操作または設定に基づいて前記4種類の電源を制御する制御部と、作動距離の変化に基づいて対物レンズの強度を変化させた場合、収差を補正するための対物レンズの強度の変化量に応じた各極子の電圧値を記憶したメモリーを備え、制御部は対物レンズの強度の変化に応じてメモリーから対応する各極子の補正電圧値を読み出し、この電圧値に応じて各極子の電源を制御し、作業距離の変化に伴う対物レンズの強度変化による荷電粒子ビームのプローブ径をほぼ一定に維持するようにしたことを特徴とする荷電粒子ビーム装置における収差補正装置。
JP2002364622A 2002-12-17 2002-12-17 荷電粒子ビーム装置における収差補正装置 Pending JP2004199912A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364622A JP2004199912A (ja) 2002-12-17 2002-12-17 荷電粒子ビーム装置における収差補正装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364622A JP2004199912A (ja) 2002-12-17 2002-12-17 荷電粒子ビーム装置における収差補正装置

Publications (1)

Publication Number Publication Date
JP2004199912A true JP2004199912A (ja) 2004-07-15

Family

ID=32762386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364622A Pending JP2004199912A (ja) 2002-12-17 2002-12-17 荷電粒子ビーム装置における収差補正装置

Country Status (1)

Country Link
JP (1) JP2004199912A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287495A (ja) * 2006-04-18 2007-11-01 Jeol Ltd 2レンズ光学系走査型収差補正集束イオンビーム装置及び3レンズ光学系走査型収差補正集束イオンビーム装置及び2レンズ光学系投影型収差補正イオン・リソグラフィー装置並びに3レンズ光学系投影型収差補正イオン・リソグラフィー装置
JP2009054581A (ja) * 2007-07-31 2009-03-12 Hitachi High-Technologies Corp 荷電粒子ビーム用軌道補正器、及び、荷電粒子ビーム装置
WO2015151271A1 (ja) * 2014-04-04 2015-10-08 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び球面収差補正方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287495A (ja) * 2006-04-18 2007-11-01 Jeol Ltd 2レンズ光学系走査型収差補正集束イオンビーム装置及び3レンズ光学系走査型収差補正集束イオンビーム装置及び2レンズ光学系投影型収差補正イオン・リソグラフィー装置並びに3レンズ光学系投影型収差補正イオン・リソグラフィー装置
JP2009054581A (ja) * 2007-07-31 2009-03-12 Hitachi High-Technologies Corp 荷電粒子ビーム用軌道補正器、及び、荷電粒子ビーム装置
WO2015151271A1 (ja) * 2014-04-04 2015-10-08 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び球面収差補正方法
CN106104746A (zh) * 2014-04-04 2016-11-09 株式会社日立高新技术 带电粒子束装置及球面像差校正方法
JPWO2015151271A1 (ja) * 2014-04-04 2017-04-13 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び球面収差補正方法
US9715991B2 (en) 2014-04-04 2017-07-25 Hitachi High-Technologies Corporation Charged particle beam device and spherical aberration correction method

Similar Documents

Publication Publication Date Title
JP3985057B2 (ja) 粒子光学機器のレンズ収差補正用補正装置
US6852983B2 (en) Charged-particle beam apparatus equipped with aberration corrector
US6723997B2 (en) Aberration corrector for instrument utilizing charged-particle beam
EP0966752B1 (en) Correction device for correcting the lens defects in particle-optical apparatus
JP4988216B2 (ja) 収差補正装置を搭載した荷電粒子線装置
JP6554288B2 (ja) 荷電粒子線装置
US6924488B2 (en) Charged-particle beam apparatus equipped with aberration corrector
JP4133602B2 (ja) 荷電粒子ビーム装置における収差補正方法および荷電粒子ビーム装置
JP2004303547A (ja) 収差補正器付電子線装置
US9349565B2 (en) Multipole lens, aberration corrector, and electron microscope
EP1780763B1 (en) Charged particle beam system with higher-order aberration corrector
US9256068B2 (en) Spherical aberration corrector, method of spherical aberration correction, and charged particle beam instrument
JP4204902B2 (ja) 収差補正装置を備えた荷電粒子ビーム装置
JP3899317B2 (ja) 粒子ビーム装置のための偏向システム
JP4705812B2 (ja) 収差補正装置を備えた荷電粒子ビーム装置
JP6326380B2 (ja) 多極子レンズおよび荷電粒子ビーム装置
JP2006216299A (ja) 荷電粒子線装置及び荷電粒子線装置における収差補正器の軸合わせ方法
JP2004199912A (ja) 荷電粒子ビーム装置における収差補正装置
JP4328192B2 (ja) 荷電粒子光学系における多極場発生装置および収差補正装置
JP4063633B2 (ja) 荷電粒子ビーム装置における収差補正装置
JP3950769B2 (ja) 荷電粒子ビーム装置における収差補正装置
JP2008171610A (ja) 荷電粒子ビーム装置
JP2004355822A (ja) 荷電粒子ビーム装置における収差補正方法および荷電粒子ビーム装置
JP2003022772A (ja) 荷電粒子ビーム制御装置及びそれを用いた荷電粒子ビーム光学装置、ならびに荷電粒子ビーム欠陥検査装置
Haider Correction of aberrations of a transmission electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417