JP2004197675A - 内燃機関のバルブタイミング制御装置 - Google Patents
内燃機関のバルブタイミング制御装置 Download PDFInfo
- Publication number
- JP2004197675A JP2004197675A JP2002368343A JP2002368343A JP2004197675A JP 2004197675 A JP2004197675 A JP 2004197675A JP 2002368343 A JP2002368343 A JP 2002368343A JP 2002368343 A JP2002368343 A JP 2002368343A JP 2004197675 A JP2004197675 A JP 2004197675A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- valve timing
- phase
- timing phase
- seating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
【課題】各運転条件下においてもより正確なバルブタイミング位相制御を実現できる内燃機関のバルブタイミング制御装置を提供する。
【解決手段】吸気バルブ又は排気バルブの少なくとも一方の開閉タイミングを連続可変で調整する手段と、前記バルブを駆動させるカムのカム位相に基づいて推定バルブタイミング位相を算出する手段と、前記バルブの閉弁着座振動を検出できるとき、該着座振動の検出によるバルブ着座時期に基づいて実バルブタイミング位相を算出する手段と、前記実バルブタイミング位相に基づいて前記推定バルブタイミング位相を補正すべく、補正バルブタイミング位相を算出する手段(S410)と、を備え、前記開閉タイミングを連続可変で調整する手段は、前記補正バルブタイミング位相を内燃機関の運転条件で決定される目標バルブタイミング位相とすべく、前記開閉タイミングを調整するよう構成する。
【選択図】 図5
【解決手段】吸気バルブ又は排気バルブの少なくとも一方の開閉タイミングを連続可変で調整する手段と、前記バルブを駆動させるカムのカム位相に基づいて推定バルブタイミング位相を算出する手段と、前記バルブの閉弁着座振動を検出できるとき、該着座振動の検出によるバルブ着座時期に基づいて実バルブタイミング位相を算出する手段と、前記実バルブタイミング位相に基づいて前記推定バルブタイミング位相を補正すべく、補正バルブタイミング位相を算出する手段(S410)と、を備え、前記開閉タイミングを連続可変で調整する手段は、前記補正バルブタイミング位相を内燃機関の運転条件で決定される目標バルブタイミング位相とすべく、前記開閉タイミングを調整するよう構成する。
【選択図】 図5
Description
【0001】
【発明の属する技術分野】
本発明は、内燃機関のバルブタイミング制御装置に係り、詳しくは、各運転条件下においてもより正確なバルブタイミング位相制御を実現させる内燃機関のバルブタイミング制御装置に関する。
【0002】
【従来の技術】
一般に、吸排気バルブの開閉タイミングを連続的に可変とする技術には、例えば、エンジン回転に応じて回転するカムシャフトとカムスプロケットとの結合位相(VVT位相)を所定範囲内で可変とした可変バルブタイミング(VVT)機構が実用化されている。
【0003】
VVT機構は、カムスプロケット内に進角用油圧室及び遅角用油圧室を設け、両油圧室に生ずる油圧を制御して前記結合位相を進角又は遅角させることで、吸気バルブのみ、若しくは排気バルブのみ、又は吸気バルブ及び排気バルブ両方の開閉タイミングを変更している。これにより、内燃機関の各運転条件に応じて異なるバルブタイミングを実現でき、エンジン性能等の向上に効果を発揮する。具体的には、運転条件毎に最適なバルブタイミングを設定できることは、エンジン性能、排ガス特性、並びに燃焼安定性等に与える影響が大きいものである。よって、バルブタイミングを可変とする場合には、その進遅位相を可能な限り正確に目標値(目標バルブタイミング位相)に制御する必要がある。
【0004】
上述のVVT機構における進遅位相は、機械的にそれ以上進角しないとの最進角状態、又は機械的にそれ以上遅角しないとの最遅角状態を除き、油圧のバランスで決定され、VVT機構に対するバルブタイミング位相制御は、オープンループ制御ではなくフィードバック制御で行われている。
このフィードバック制御によるバルブタイミング位相制御において、バルブタイミング位相をクランク角に対するカム角の位相から推定する方法がある。この方法では、具体的には、VVT位相が、クランクシャフトの回転位置を検出するクランク角センサと、カムシャフトの回転位置を検出するカム角センサとの位相差から検出されることから、クランク角センサの基準パルスとカム角センサのパルスとを時間軸上で比較し、クランク角に対するカム角の位相を求め、これをバルブタイミング位相(推定バルブタイミング位相)として推定するようにしている。これにより、内燃機関の各運転条件でも、カム位相の検出を正確に行うことができる。
【0005】
しかし、このカム位相によるバルブタイミング位相の推定では、仮にカム角センサの取り付けに対する誤差が存在する場合には、カム位相に誤差が含まれるので、推定されたバルブタイミング位相にも誤差が含まれるとの問題が生ずる。
そこで、この問題を解決すべく、前記位相制御の制御量には、バルブの閉弁着座時期を検出し、バルブタイミング位相として実際に検出する方法があり、これに関するバルブタイミング検出装置の技術が提案されている(例えば、特許文献1参照)。
【0006】
当該検出装置では、バルブタイミング位相(実バルブタイミング位相)が、クランク角に対するバルブの閉弁着座時期の位相によって直接的に検出され、バルブタイミングを正確に検出する。
【0007】
【特許文献1】
特開平04−076207号公報(第2頁右上欄第12行〜右下欄第20行、図3等)
【0008】
【発明が解決しようとする課題】
ところで、内燃機関の運転中には他の機械の作動振動が当然に発生している。
よって、バルブの着座振動の信号には、しばしばノイズが伴うものである。つまり、バルブの着座振動の検出による閉弁着座時期は、内燃機関の運転条件によっては、検出値が不正確、又は検出不可能になる。換言すれば、前記従来技術の如くの閉弁着座時期の実際の検出によるバルブタイミング位相制御には検出時に対する制約があり、各運転条件下でより正確なバルブタイミング位相制御を実現することができないとの問題がある。
【0009】
一方、上述のバルブタイミング位相の推定によるバルブタイミング位相制御では、当該位相制御の問題点たるカム角センサの上記取り付け誤差を補正すべく、機械的にそれ以上遅角しない最遅角制御時のカム位相を求め、このカム位相を最遅角時の正しいカム位相とみなして学習することが考えられる。
しかし、この取り付け誤差の補正では、仮に最遅角のバルブタイミング自体が、タイミングチェーン若しくはタイミングベルトの伸び等によって、ずれを有している場合には、上記の学習を行っても設計上のバルブタイミングを実現することができないことになる。すなわち、カムシャフトを駆動させるタイミングベルトの伸び等によって、カムスプロケットを駆動させるタイミングのずれ分を逆に誤補正するおそれがあり、推定によるバルブタイミング位相制御においても、より正確なバルブタイミング位相制御を実現できない場合があるという問題がある。
【0010】
本発明は、このような課題に鑑みてなされたもので、各運転条件下においてもより正確なバルブタイミング位相制御を実現できる内燃機関のバルブタイミング制御装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の目的を達成するべく、請求項1記載の本発明の内燃機関のバルブタイミング制御装置は、吸気バルブ又は排気バルブの少なくとも一方の開閉タイミングを連続可変で調整する手段と、前記バルブを駆動させるカムのカム位相に基づいて推定バルブタイミング位相を算出する手段と、前記バルブの閉弁着座振動を検出できるとき、該着座振動の検出によるバルブ着座時期に基づいて実バルブタイミング位相を算出する手段と、前記実バルブタイミング位相に基づいて前記推定バルブタイミング位相を補正すべく、補正バルブタイミング位相を算出する手段と、を備え、前記開閉タイミングを連続可変で調整する手段は、前記補正バルブタイミング位相を内燃機関の運転条件で決定される目標バルブタイミング位相とすべく、前記開閉タイミングを調整することを特徴としている。
【0012】
すなわち、フィードバック制御に用いられるバルブタイミング位相は補正バルブタイミング位相である。カム位相に基づいて算出される推定バルブタイミング位相は常時算出可能であるが、誤差を含む可能性があるという問題がある。他方、バルブの閉弁着座振動からの実バルブタイミング位相は正確な位相であるが、検出可能な運転条件が制限される。よって、請求項1記載の発明では、バルブの閉弁着座振動を検出できる時に算出した実バルブタイミング位相に基づいて、常時算出可能である推定バルブタイミング位相を補正して補正バルブタイミング位相を算出する。したがって、常時正確な補正バルブタイミング位相が得られ、この位相がフィードバック制御に用いられるので、バルブの着座振動信号に対するノイズの他、センサの取り付け誤差、並びにタイミングチェーンのばらつきや伸び等の構造の経年変化にも影響されることなく、常により正確なバルブタイミング位相に基づいて目標バルブタイミング位相への調整が行え、エンジン性能、排ガス特性、並びに燃焼安定性が向上し、燃費やドライバビリティの悪化が防止される。
【0013】
このように、請求項1記載の内燃機関のバルブタイミング制御装置は、推定値を用いたバルブタイミング位相制御と、実際の検出値を用いたバルブタイミング位相制御との双方の問題の解決を図り、常により正確なバルブタイミング位相制御を実現すべく構成されている。
なお、バルブの閉弁着座振動の検出には、着座振動検出用の振動センサの他、ノックセンサによることも可能であり、この場合にはノックの検出と着座振動の検出とを一つのセンサで行える。
【0014】
また、請求項2記載の発明では、前記実バルブタイミング位相を算出する手段は、前記目標バルブタイミング位相へのフィードバック制御が行われていないときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴としている。
このように、バルブタイミング位相へのフィードバック制御が行われていないときには、一般に目標バルブタイミング位相が最遅角側に固定され、位相が一定にされていることから、実バルブタイミング位相に過渡的要素が含まれず、バルブタイミング位相制御の信頼性が向上する。
【0015】
さらに、請求項3記載の発明では、前記実バルブタイミング位相を算出する手段は、前記閉弁着座振動のパルスにノイズがのり難いときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴としている。
このように、閉弁着座振動のパルスにノイズがのり難いときには、着座の検知が安定するので、実バルブタイミング位相も安定し、この場合にもバルブタイミング位相制御の信頼性が向上する。
【0016】
さらに、請求項4記載の発明では、前記閉弁着座振動のパルスにノイズがのり難いときとは、前記内燃機関が低負荷のときであることを特徴としている。これにより、ノッキングが発生しないような低負荷のときに着座を検知し、着座の検知の安定化を図り、バルブタイミング位相制御の信頼性が一層向上する。
なお、閉弁着座振動のパルスにノイズがのり難いときは、ノッキングが発生しない場合として、内燃機関が低負荷かつ低回転のときが好ましい。
【0017】
さらに、請求項5記載の発明では、前記閉弁着座振動のパルスにノイズがのり難いときとは、前記内燃機関の燃料カット運転のときであることを特徴としている。これにより、インジェクタノイズ及びノッキングの影響をともに受けることなく、着座の検知の安定化を図り、バルブタイミング位相制御の信頼性が一層向上する。
【0018】
なお、閉弁着座振動のパルスにノイズがのり難いときとしては、内燃機関のアイドル運転のときも好ましい。
さらに、請求項6記載の発明では、前記実バルブタイミング位相を算出する手段は、前記内燃機関が低回転速度のときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴としている。
【0019】
このように、内燃機関が低回転速度のときには、閉弁着座振動のパルス間隔が長くなり、閉弁着座振動の時間分解能が良好になって高精度の実バルブタイミング位相を求めることができ、この場合にもバルブタイミング位相制御の信頼性が向上する。
さらに、請求項7記載の発明では、前記実バルブタイミング位相を算出する手段は、一のバルブのバルブ着座時期と該一のバルブとは異なる他のバルブのバルブ着座時期とが重ならないときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴としている。
【0020】
このように、一のバルブのバルブ着座時期と該一のバルブとは異なる他のバルブのバルブ着座時期とが重ならないときには、着座振動信号に対するノイズの影響を確実に無くして高精度の実バルブタイミング位相を求めることができ、この場合にもバルブタイミング位相制御の信頼性が向上する。
【0021】
【発明の実施の形態】
以下、図面により本発明の実施形態について説明する。
図1を参照すると、本発明の一実施形態に係る内燃機関のバルブタイミング制御装置に適用されるシステム構成図が示されており、以下図1に基づき本発明に係る内燃機関のバルブタイミング制御装置の構成を説明する。
【0022】
内燃機関1は、図示しない燃焼室内に燃料を直接噴射する火花点火式の筒内噴射エンジンとして構成される。すなわち、エンジン1のシリンダヘッドには、ピストンの往復運動によって区画される燃焼室内に臨んで、インジェクタや点火プラグ(ともに図示せず)が配設されているとともに、吸気通路2及び排気通路3が接続されている。なお、点火プラグには点火コイルが接続されている。
【0023】
吸気通路2には、上流側から順にエアクリーナ4及びスロットル弁5が設けられており、さらに下流にはサージタンク6が設けられている。
これにより、外部からの空気は、エアクリーナ4を通過し、スロットル弁5、サージタンク6及び吸気通路2を経て燃焼室内に流入される。この際、吸入空気量がエアフローセンサ7で検出される。また、スロットルポジションセンサ(TPS)8が設けられており、TPS8では、スロットル弁5の開度(スロットル開度)が検出される。なお、スロットル弁5は、図示しないアクセルペダルに対して電気的に接続された、いわゆるドライブバイワイヤ式のスロットル弁(ETV)であり、ドライバのアクセル踏み込み量以外にもエンジン運転状態に応じてその開度が変更される。
【0024】
吸気通路2は、吸気マニホールド及び吸気ポートから構成され、この吸気ポートは、気筒毎にシリンダヘッド内に略直立方向に形成される。吸気ポートの燃焼室側には、吸気ポートと燃焼室との連通及び遮断を行う吸気バルブ12が設けられている。また、排気通路3は、排気ポート及び排気マニホールドから構成され、この排気ポートは、気筒毎にシリンダヘッド内に略水平方向に形成される。排気ポートの燃焼室側には、排気ポートと燃焼室との連通及び遮断を行う排気バルブ13が設けられている。
【0025】
吸気バルブ12には、開閉時期が油圧調整によって可変にする可変バルブタイミング機構が接続されている。可変バルブタイミング機構は、カムシャフトとカムスプロケットとの結合位相(VVT位相)を所定範囲内で可変とした所謂VVTとして実用化されており、結合位相を進角或いは遅角操作することで、吸気バルブ12の開閉タイミングを変更できる。例えば、可変バルブタイミング機構によるバルブオーバラップ量の拡大によって、内部EGR量がレスポンス良く増加する。なお、本実施形態では吸気バルブ12のみの開閉タイミングの変更を行っているが、吸気バルブ12のみの他、排気バルブ13のみ、又は吸気バルブ12及び排気バルブ13両方の開閉タイミングを変更できる。
【0026】
また、入出力装置、メモリ(ROM、RAM、不揮発性RAM等)、カウンタ、CPU等を備えたECU(電子コントロールユニット)10が設けられており、ECU10により、バルブタイミング制御を含めたエンジン1の総合的な制御が行われる。
ECU10の入力側には、上述したエアフローセンサ7、TPS8の他、クランクシャフトの回転位置を検出し、該クランク角信号に基づきエンジン回転速度Neを検出するクランク角センサ9、吸気バルブ12を作動させるカムシャフトの回転位置を検出するカム角センサ12a、ドライバのアクセル踏み込み量から要求トルクを検出するアクセル開度センサ(図示せず)等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力される。そして、これら各センサ出力からエンジン1の運転状態を得て、吸入空気量、燃料噴射量、燃料噴射時期、並びに点火時期等のエンジン1の主要な操作量が最適に演算される。
【0027】
また、本実施形態においては、吸気バルブ12の閉弁着座信号を検出する振動センサ14が吸気バルブ12付近に配設されており、この振動センサ14もまた、ECU10の入力側に接続されている。
一方、ECU10の出力側には、上述のインジェクタや点火プラグの他、可変バルブタイミング機構等の各種出力デバイス類が接続されており、ECU10内で演算された燃料噴射量が開弁パルス信号に変換されてインジェクタに送られ、また、演算された点火時期に基づいて点火プラグ駆動信号が点火コイルに送られる。すなわち、インジェクタから噴射された燃料は、吸気通路2からの調整された空気と混合されて燃焼室内にて混合気を形成し、該混合気は、所定の点火時期で点火プラグから発生される火花により爆発し、その燃焼圧によってエンジン1が駆動される。爆発後の排気は、排気通路3を経て排気浄化用触媒コンバータ(図示せず)側に送られる。
【0028】
なお、エンジン1は、少なくとも、主として圧縮行程で燃料噴射を行い理論空燃比よりも希薄な空燃比領域で希薄成層燃焼運転を行うリーン運転モードと、主として吸気行程で燃料噴射を行い理論空燃比近傍でストイキオフィードバック燃焼運転を行うストイキオ運転モードとを有しており、これらの運転モードが切り替え可能に構成されている。そして、当該エンジン1では、上述した種々のセンサ等からの入力データに基づいてECU10で運転モードの切り替え制御や各種の制御が行われる。
【0029】
特に、本実施形態のECU10には、推定値を用いたバルブタイミング位相制御と、実際の着座振動の検出値を用いたバルブタイミング位相制御との双方の問題の解決を図り、常により正確なバルブタイミング位相制御を実現する機能を備えている。具体的には、ECU10は、バルブタイミング制御部10Aを備え、このバルブタイミング制御部10Aは、推定バルブタイミング位相算出手段と、実バルブタイミング位相算出手段と、バルブタイミング補正手段と、バルブタイミング変更調整手段とを備えている。
【0030】
推定バルブタイミング位相算出手段(推定バルブタイミング位相を算出する手段)は、可変バルブタイミング機構によって可変にされた吸気バルブ12を駆動させるカムの位相情報からカム位相を求め、該カム位相に基づいてバルブタイミング位相を推定し、フィードバック位相制御の制御量を求めている。
実バルブタイミング位相算出手段(実バルブタイミング位相を算出する手段)は、吸気バルブ12の閉弁着座振動が検出できるときには、該着座振動の検出によるバルブ着座時期を求め、該バルブ着座時期に基づいて実バルブタイミング位相を直接的に検出し、フィードバック位相制御の制御量を求めている。
【0031】
バルブタイミング補正手段(補正バルブタイミング位相を算出する手段)は、実バルブタイミング位相に基づいて推定バルブタイミング位相を補正する、換言すれば、カム角センサ12aの取り付け誤差やベルトの伸び等の誤差を除くために補正バルブタイミング位相を算出している。
そして、バルブタイミング変更調整手段(開閉タイミングを連続可変で調整する手段)は、補正バルブタイミング位相を算出した後、補正バルブタイミング位相を目標バルブタイミング位相とすべく吸気バルブ12の開閉タイミングを調整している。なお、目標バルブタイミング位相は、最適に実現したいタイミングをいい、エンジン回転速度及びエンジン負荷等のエンジン1の運転条件に基づいてECU10内のマップ等から決定される。
【0032】
以下、上記のように構成されたバルブタイミング制御装置の本発明に係る作用について説明する。
図2を参照すると、バルブタイミング制御部10Aの推定バルブタイミング位相算出手段により実施されるフローチャートが示されている。
同図のステップS201では、クランク角センサ9の基準パルスの立ち下がり位置Aを通過したか否かを判別し、立ち下がり位置Aを通過したと判定された場合、すなわちYESのときには、ステップS202に進み、フリーランニングカウンタで立ち下がり位置Aの通過時刻FRC(A)を記憶し、ステップS203で後述するカム位相検出済フラグをクリアし、ステップS204でカム位相検出期間タイマTM1をセットしてステップS205に進む。一方、ステップS201にて立ち下がり位置Aを通過していないと判定された場合には、そのままステップS205に進む。
【0033】
ステップS205では、カム位相検出期間タイマTM1が0よりも大きいか否かを判別し、TM1が0よりも大きいと判定された場合、すなわちYESのときにはステップS206に進んでカウンタを1減算してステップS207に進む。
ステップS207では、カム位相検出済フラグをセットしているか否かを判別し、カム位相検出済フラグをセットしていないと判定された場合、つまりNOのときには、ステップS208に進んでカム角センサ12aの基準パルスの立ち下がり位置Cを通過したか否かを判別し、立ち下がり位置Cを通過したと判定された場合、すなわちYESのときには、ステップS209に進み、フリーランニングカウンタで立ち下がり位置Cの通過時刻FRC(C)を記憶し、ステップS210でカム位相検出済フラグをセットして、このルーチンを抜ける。一方、ステップS207にて、カム位相検出済フラグをセットしていると判定された場合、又はステップS208でカム角センサ12aの基準パルスの立ち下がり位置Cを通過していないと判定された場合にも、このルーチンを抜ける。
【0034】
ここで、ステップS205にて、カム位相検出期間タイマTM1が0以下と判定された場合には、ステップS211に進み、カム位相検出済フラグをセットしているか否かを判別し、カム位相検出済フラグをセットしていると判定された場合、すなわちYESのときにはステップS212に進み、推定位相瞬時値Tを図示の式から算出してステップS213に進む。推定位相瞬時値Tは、クランク角に対するカム角の位相に基づき推定された推定バルブタイミング位相に相当する。そして、ステップS213では、推定位相検知フラグをセットしてこのルーチンを抜ける。なお、ステップS211でカム位相検出済フラグをセットしていないと判定された場合には、推定位相瞬時値Tを算出することなく、このルーチンを抜ける。
【0035】
なお、タイマTM1は、クランク角センサ基準パルス立ち下がりからカム角センサ基準パルス立ち下がりまでの、可能性のある最大時間に若干の余裕を加えた時間である。このタイマ時間内にカム角センサ基準パルス立ち下がり位置が通過しなかった場合には、何らかの原因で当該立ち下がり位置検出に失敗したと判断してルーチンを抜けるようにしている。
【0036】
図3及び図4を参照すると、バルブタイミング制御部10Aの実バルブタイミング位相算出手段により実施されるフローチャートが示されている。
同図のステップS301では、エンジン1がアイドル運転であるか否かを判別し、アイドル運転であると判定された場合、すなわちYESのときにはステップS302に進み、目標バルブタイミング位相へのフィードバック制御を行っているか否かを判別する。
【0037】
具体的には、目標バルブタイミング位相が最遅角側にあるか否かを判別し、最遅角にある場合、すなわちYESで目標バルブタイミング位相へのフィードバック制御を行っていないときにはステップS303に進み、クランク角センサ9の基準パルスの立ち下がり位置Bを通過したか否かを判別し、この立ち下がり位置Bを通過していると判定された場合、すなわちYESのときにはステップS304に進んで、フリーランニングカウンタで立ち下がり位置Bの通過時刻FRC(B)を記憶し、ステップS305で後述する振動センサ検出済フラグをクリアし、ステップS306でバルブ着座信号検出期間タイマTM2をセットしてステップS307に進む。一方、ステップS303にて立ち下がり位置Bを通過していないと判定された場合には、そのままステップS307に進む。
【0038】
ステップS307では、バルブ着座信号検出期間タイマTM2が0よりも大きいか否かを判別し、TM2が0よりも大きいと判定された場合、すなわちYESのときにはステップS308に進んでカウンタを1減算してステップS309に進む。なお、ステップS307でTM2が0以下と判定されたときには、後述するステップS315に進む。
【0039】
ステップS309では、振動センサ検出済フラグを既にセットしているか否かを判別し、振動センサ検出済フラグを既にセットしていないと判定された場合、つまりNOのときにはステップS310に進み、振動センサ14の値SSを取り込み、ステップS311では、そのピークをみるべくdSSを算出し、ステップS312に進む。
【0040】
ステップS312では、dSSが所定値よりも大きいか否かを判別し、dSSが所定値よりも大きいと判定された場合、すなわちYESのときにはステップS313に進んでフリーランニングカウンタで振動センサ14の検出時Dの時刻FRC(D)を記憶してステップS314に進み、振動センサ検出済フラグをセットしてこのルーチンを抜ける。
【0041】
ステップS315では、振動センサ検出済フラグをセットしているか否かを判別し、振動センサ検出済フラグをセットしている場合、すなわちYESのときにはステップS316に進み、実位相瞬時値S1を図示の式から算出してステップS317に進む。
ステップS317では、推定バルブタイミング位相との比較にあたり、基準位置を同じにすべく実位相瞬時値S1に所定補正量を加味することによって、クランク角センサの立ち下がり位置Bに対する吸気バルブ12の閉弁時期Dに基づき、実際に検出された実バルブタイミング位相Sを求める。そして、ステップS318では、実位相検知フラグをセットしてこのルーチンを抜ける。
【0042】
なお、ステップS301でアイドル運転ではないと判定された場合、ステップS302でVVT位相が最遅角ではないと判定された場合、ステップS309で振動センサ検出済フラグを既にセットしている場合、ステップS312でdSSが所定値よりも小さいと判定された場合又はステップS315で振動センサ検出済フラグをセットしていないと判定された場合にも、実位相瞬時値S1を算出することなくこのルーチンを抜ける。
【0043】
ここで、上記ステップS310における振動センサ14によるセンサ値SSの取り込みは、吸気バルブ12の閉弁着座振動のパルスにノイズがのり難い特定条件として、ステップS301の如くエンジン1のアイドル運転時とし、この特定条件においてステップS302の如くVVT最遅角状態で行われ、位相を一定にして実バルブタイミング位相に過渡的要素が含まれないようにされている。
【0044】
なお、バルブ着座信号検出期間タイマTM2は、クランク角センサ基準パルス立ち下がりからバルブ閉弁着座までの、可能性のある最大時間に若干の余裕を加えた時間である。このタイマ時間内に閉弁着座信号を検出しなかった場合には、何らかの原因で当該信号検出に失敗したと判断してルーチンを抜けるようにしている。すなわち、推定バルブタイミング位相算出におけるタイマTM1と類似の機能を果たしている。
【0045】
また、振動センサ14によるセンサ値SSの取り込み時期としては、上記の他、エンジン1が低回転速度のときの如く、計測精度の向上を図ることができる場合であっても良い。
さらに、吸気バルブ12の閉弁着座振動のパルスにノイズがのり難い特定条件としては、上記の他、エンジン1が低負荷のとき、若しくは低負荷かつ低回転速度のとき、又はエンジン1の燃料カット運転のときであっても良い。
【0046】
図5を参照すると、バルブタイミング制御部10Aのバルブタイミング補正手段により実施されるフローチャートが示されている。
同図のステップS401では、推定位相検知フラグをセットしているか否かを判別し、推定位相検知フラグをセットしていると判定された場合、すなわちYESのときにはステップS402に進み、実位相検知フラグをセットしているか否かを判別し、実位相検知フラグをセットしている場合、すなわちYESのときにはステップS403に進む。
【0047】
ステップS403では、実バルブタイミング位相に基づいて推定バルブタイミング位相を補正すべく、実バルブタイミング位相Sと推定バルブタイミング位相Tとから補正量瞬時値H1、つまり、カム角センサ12aの取り付け等の誤差を算出し、ステップS404では、補正量瞬時値H1をフィルタ処理して補正量H2nを求めてステップS405に進む。
【0048】
ステップS405では、補正量H2カウンタをインクリメントし、ステップS406では、推定位相検知フラグ及び実位相検知フラグをともにクリアにしてステップS407に進む。
ステップS407では、補正量H2カウンタが所定値よりも大きいか否か判別し、補正量H2カウンタが所定値よりも大きいと判定された場合、すなわちYESのときにはステップS408に進んで補正量H2の更新をし、ステップS409で補正量H2のカウンタをリセットしてステップS410に進む。
【0049】
一方、ステップS401で推定位相検知フラグをセットしていないと判定された場合、若しくはステップS402で実位相検知フラグをセットしていないと判定された場合、又はステップS407で補正量H2カウンタが所定値よりも小さいと判定された場合には、ステップS411に進み、補正量H2を前回の補正量のままで更新せずにステップS410に進む。
【0050】
ステップS410では、推定バルブタイミング位相Tと上記いずれかの補正量H2とから補正位相瞬時値Hを算出する。この補正位相瞬時値Hは、実バルブタイミング位相に基づいて推定バルブタイミング位相を補正するための補正バルブタイミング位相に相当し、これにより、カム角センサ12aの取り付け等の誤差が除かれる。
【0051】
このように、補正量H2は、バルブ閉弁着座振動が検出可能な時には最新値に逐次更新され、当該検出ができない場合には前回の値が用いられる。つまり、制御に用いられるバルブタイミング位相は常に補正量H2により正確に補正される。
なお、本実施形態では、複数回算出した補正量瞬時値H1をフィルタ処理して一つの補正量H2を求めている。補正量H2カウンタは、一つの補正量H2を求めるための補正量瞬時値H1の算出回数に相当する。
【0052】
図6を参照すると、バルブタイミング制御部10Aのバルブタイミング変更調整手段により実施されるフローチャートが示されている。
同図のステップS501では、エンジン1の回転速度及び負荷等を読み込み、ステップS502にて目標バルブタイミング位相に相当する目標位相値Mを算出し、ステップS503に進む。
【0053】
ステップS503では、補正バルブタイミング位相Hと目標バルブタイミング位相Mとの差が不感帯幅よりも遅角側にあるか否かを判定し、例えば+0.3度等の如くの第一の所定値(所定値1)よりも大きい場合には、ステップS505に進んで進角側に油圧制御してこのルーチンを抜ける。
一方、ステップS503で補正バルブタイミング位相Hと目標バルブタイミング位相Mとの差が第一の所定値以下のときには、ステップS504に進み、補正バルブタイミング位相Hと目標バルブタイミング位相Mとの差が所定値よりも小さいか否かを判定し、例えば−0.3度等の如くの第二の所定値(所定値2)よりも小さい場合には、ステップS506に進んで遅角側に油圧制御してこのルーチンを抜ける。
【0054】
なお、ステップS504で第二の所定値以上のときには、油圧制御は前回の制御のままでこのルーチンを抜ける。
以上説明した本実施形態の図2乃至図6のフローチャートは、バルブタイミング制御部10Aのメインルーチン(演算周期)毎に実施される。
図7は、バルブタイミング制御(ステップS212、ステップS316等)のタイムチャートである。
【0055】
本実施形態のエンジン1は、直列4気筒のものであり、#1気筒、#3気筒、#4気筒、#2気筒の順に点火され、図示のように、#1気筒のオーバラップ上死点におけるクランク角を0度として設計している。
ここで、まずは設計値にて考えると、クランク角センサ9の基準パルスの立ち下がりは、各気筒のオーバラップ上死点前5度にて発生している。したがって図中のクランク角センサの基準パルス立ち下がり時点Aは−5度になる。なお、各気筒の排気バルブ13は、図中点線で示すように、−210〜+30度の間に固定されて開弁する。これに対し、吸気バルブ12は、図中実線で示すように、最遅角時には+10〜+250度の間で開弁する。また、吸気バルブ12は、開弁期間及びバルブリフトを一定にしたまま40度の範囲で進角側に位相を変更することができる。すなわち、図中一点鎖線で示すように、最進角時には−30〜+210度の間で開弁する。
【0056】
次に、カム角センサ12aの基準パルス立ち下がりは、吸気バルブ12の最遅角時では図中Crで示すように+55度に発生する(最進角時では図中Caで示すように+15度に発生する)。したがって、本実施形態では、クランク角センサ基準パルスに対するカム角センサ基準パルスの期間Tr(A〜Cr)が+60度(Ta(A〜Ca)が+20度)となり、これが設計上の推定バルブタイミング位相に相当する。なお、本実施形態の位相は+20〜+60度であるが、位相とは相対量であり、例えば、+100〜+140度の如くでも構わない。
【0057】
さらに、クランク角センサ9の基準パルスの立ち下がりは、各気筒のオーバラップ上死点前5度でも発生しているので、クランク角センサ9の次の基準パルス立ち下がり位置Bでは+175度になる。そして、#1気筒の吸気バルブ12の閉弁着座振動は、最遅角時には、図中Drで示すように+250度に発生する(最進角時には、図中Daで示すように+210度に発生する)。したがって、本実施形態では、クランク角センサ基準パルスに対する振動センサ値の取り込みの期間Sr(B〜Dr)が+75度(Sa(B〜Da)が+35度)となり、これが設計上の実バルブタイミング位相に相当する。
【0058】
そして、このように実バルブタイミング位相の検出が可能な場合には、設計上の推定バルブタイミング位相と設計上の実バルブタイミング位相との差による所定補正量(本実施形態では−15度)を求め、図4のステップS317の如く、該補正量に実位相瞬時値S1を加えることで実バルブタイミング位相Sが求まる。
【0059】
次に、カム角センサ12aの取り付け誤差及びベルト等の伸びに対する本実施形態のバルブタイミング制御部10Aの作用を説明する。
まず、カム角センサ12aの取り付け誤差によって2度遅れた信号が発生され、さらに、ベルト等の伸びによって5度遅れたカムスプロケットの駆動信号が発生されていると仮定する。
【0060】
ここで、カム角センサ12aの取り付け誤差による2度は信号が遅れるだけである。これに対し、ベルト等の伸びによる5度は実際の位相、信号共に遅れることになる。
したがって、カム位相から単に推定バルブタイミング位相を求めただけの場合には、実際の位相は+65度、推定バルブタイミング位相は+67度となる。つまり、推定バルブタイミング位相が実際の位相よりも2度分遅れた位相を示すことになる。また、カム角センサ12aの取り付け誤差の補正を行うべく、目標バルブタイミング位相を強制的に最遅角側にした際の推定バルブタイミング位相を設計上の最遅角値(+60度)と読み替えることも考えられる。この場合、実際の位相は+65度、推定バルブタイミング位相は+60度となる。すなわち、推定バルブタイミング位相は、この取り付け誤差分(+2度)については正しく補正するものの、逆にベルト等の伸び分(+5度)を誤補正し、前記実際の位相よりも5度分進んだ位相を示すことになる。つまり、いずれの場合でも、双方の誤差を除くことができない。
【0061】
そこで、本実施形態のバルブタイミング制御部10Aは、これらを解消すべく、実バルブタイミング位相が検出できるときには、この検出値に基づいて推定バルブタイミング位相を補正している。
具体的には、図示のように、まず、目標バルブタイミング位相が+60度とされるのに対して、推定バルブタイミング位相が+67度として求められる。次に、#1気筒の吸気バルブ12は設計上+250度で着座するものであるが、上記のベルトの伸び等によって+255度で着座することになり、このときの実位相瞬時値S1もまた+5度分増えて+80度と検出される。
【0062】
しかし、本実施形態では、図4のステップS317にて示したように、設計上の推定バルブタイミング位相と設計上の実バルブタイミング位相との差による所定補正量が予め算出されていることから、実位相位相瞬時値S1(+80度)にこの所定補正量(−15度)を加味した実バルブタイミング位相S(+65度)が求められる。
【0063】
そして、実バルブタイミング位相S(+65度)と推定バルブタイミング位相T(+67度)との差である補正量瞬時値H1(−2度)が求まり、これが更新されると、推定バルブタイミング位相T(+67度)に補正量瞬時値H1(−2度)が加味されて補正バルブタイミング位相H(+65度)になり、補正バルブタイミング位相は実際の位相に合致する。よって、カム角センサ12aの取り付け誤差やベルト等の伸びによる誤差が除かれる。
【0064】
すなわち、バルブタイミング制御部10Aは、推定バルブタイミング位相のみからフィードバック位相制御の制御量を求めるのではなく、実バルブタイミング位相をも用いた制御量を求めることにより、正しいバルブタイミング位相を求めることができる。そして、前記補正バルブタイミング位相と目標バルブタイミング位相とから位相制御のより正確なフィードバック制御を行うことができる。
【0065】
ところで、図中に一点鎖線で示すように、最進角時における#1気筒の吸気バルブ12の閉弁着座時期Daは、図中に点線で示すように、#3気筒の排気バルブ13の閉弁着座時期に重なっていることが分かる。この場合には、本実施形態のバルブタイミング制御部10Aは、#1気筒の吸気バルブ12の閉弁着座振動にはノイズの影響があり得ることを考慮して、実バルブタイミング位相の検出を行わないこととしている。
【0066】
以上のように、本発明のバルブタイミング制御装置は、バルブタイミング位相制御において、推定バルブタイミング位相算出手段によるカム位相に基づいて算出される推定バルブタイミング位相(常時検出可)を算出するとともに、実バルブタイミング位相算出手段によるバルブ閉弁着座振動からの実バルブタイミング位相(正確)を用いて推定バルブタイミング位相の補正を行っているので、センサの取り付け誤差、タイミングチェーンのばらつきや伸び等の構造の経年変化による影響が包含されたままの制御量の算出を防ぐことができ、カム位相による推定値を用いたバルブタイミング位相制御と、着座振動による検出値を用いたバルブタイミング位相制御との双方の問題の解決を図り、常により正確なバルブタイミング位相制御を実現することができる。これにより、エンジン性能、排ガス特性、並びに燃焼安定性の向上を図り、燃費やドライバビリティの悪化を防止することができる。
【0067】
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では、吸気バルブ12の閉弁時期を検出する構成として振動センサ14を用いているが、この構成に限定されるものではなく、例えば、ノッキングを検出するノックセンサを利用することもできる。この場合には、上記と同様の効果の他、製造コストの抑制を図ることができる。なお、ノッキングが検出されているときには、バルブ着座振動の検出は禁止される。
【0068】
また、上記実施形態のカム角センサ12aは回転位相を検出するタイプであり、カム位相はカムの位相情報に基づいて求められることになるが、このタイプの他、いわゆる立体カム式であっても良く、この場合のカム位相は、カムの位置情報に基づいて求められることになる。
【0069】
【発明の効果】
以上の説明から理解できるように、請求項1記載の本発明の内燃機関のバルブタイミング制御装置によれば、バルブの閉弁着座振動を検出できる時に算出した正確である実バルブタイミング位相に基づいて更新された或いは以前の補正量によって、常時算出可能である推定バルブタイミング位相を補正し、補正された推定バルブタイミング位相として補正バルブタイミング位相を算出し、常時正確な補正バルブタイミング位相を用いてフィードバック制御を行うので、センサの取り付け誤差、タイミングチェーンのばらつきや伸び等の構造の経年変化、並びにバルブの着座振動信号に対するノイズに影響されることなく、常により正確なバルブタイミング位相に基づいて目標値への調整を行うことができ、エンジン性能、排ガス特性、並びに燃焼安定性の向上を図り、燃費やドライバビリティの悪化を防止することができる。
【0070】
また、請求項2記載の発明によれば、バルブタイミング位相へのフィードバック制御が行われていないときの実バルブタイミング位相の算出には、一般に目標バルブタイミング位相が最遅角側に固定され、位相が一定にされていることから、実バルブタイミング位相に過渡的要素が含まれず、バルブタイミング位相制御の信頼性を向上させることができる。
【0071】
さらに、請求項3記載の発明によれば、閉弁着座振動のパルスにノイズがのり難いときには、着座の検知が安定するので、実バルブタイミング位相も安定し、この場合にもバルブタイミング位相制御の信頼性を向上させることができる。
さらにまた、請求項4記載の発明によれば、ノッキングが発生しないときに着座を検知して着座の検知の安定化を図り、バルブタイミング位相制御の信頼性を一層向上させることができる。
【0072】
また、請求項5記載の発明によれば、インジェクタノイズ及びノッキングの影響をともに受けることなく、着座の検知の安定化を図り、バルブタイミング位相制御の信頼性を一層向上させることができる。
さらに、請求項6記載の発明によれば、内燃機関が低回転速度のときには、閉弁着座振動のパルス間隔が長くなり、閉弁着座振動の時間分解能が良好になって高精度の実バルブタイミング位相を求めることができ、この場合にもバルブタイミング位相制御の信頼性を向上させることができる。
【0073】
また、請求項7記載の発明によれば、一のバルブのバルブ着座時期と該一のバルブとは異なる他のバルブのバルブ着座時期とが重ならないときには、着座振動信号に対するノイズの影響を確実に無くして高精度の実バルブタイミング位相を求めることができ、この場合にもバルブタイミング位相制御の信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る内燃機関のバルブタイミング制御装置に適用されるシステム構成図である。
【図2】図1のバルブタイミング制御部における推定バルブタイミング位相算出手段のルーチンを示すフローチャートである。
【図3】図1のバルブタイミング制御部における実バルブタイミング位相算出手段のルーチンを示すフローチャートである。
【図4】図1のバルブタイミング制御部における実バルブタイミング位相算出手段のルーチンを示すフローチャートである。
【図5】図1のバルブタイミング制御部におけるバルブタイミング補正手段のルーチンを示すフローチャートである。
【図6】図1のバルブタイミング制御部におけるバルブタイミング変更調整手段のルーチンを示すフローチャートである。
【図7】バルブタイミング制御のタイムチャートである。
【符号の説明】
1 内燃機関
7 エアフローセンサ
8 スロットルポジションセンサ
9 クランク角センサ
10 ECU(電子コントロールユニット)
10A バルブタイミング制御部
12 吸気バルブ
12a カム角センサ
13 排気バルブ
14 振動センサ
【発明の属する技術分野】
本発明は、内燃機関のバルブタイミング制御装置に係り、詳しくは、各運転条件下においてもより正確なバルブタイミング位相制御を実現させる内燃機関のバルブタイミング制御装置に関する。
【0002】
【従来の技術】
一般に、吸排気バルブの開閉タイミングを連続的に可変とする技術には、例えば、エンジン回転に応じて回転するカムシャフトとカムスプロケットとの結合位相(VVT位相)を所定範囲内で可変とした可変バルブタイミング(VVT)機構が実用化されている。
【0003】
VVT機構は、カムスプロケット内に進角用油圧室及び遅角用油圧室を設け、両油圧室に生ずる油圧を制御して前記結合位相を進角又は遅角させることで、吸気バルブのみ、若しくは排気バルブのみ、又は吸気バルブ及び排気バルブ両方の開閉タイミングを変更している。これにより、内燃機関の各運転条件に応じて異なるバルブタイミングを実現でき、エンジン性能等の向上に効果を発揮する。具体的には、運転条件毎に最適なバルブタイミングを設定できることは、エンジン性能、排ガス特性、並びに燃焼安定性等に与える影響が大きいものである。よって、バルブタイミングを可変とする場合には、その進遅位相を可能な限り正確に目標値(目標バルブタイミング位相)に制御する必要がある。
【0004】
上述のVVT機構における進遅位相は、機械的にそれ以上進角しないとの最進角状態、又は機械的にそれ以上遅角しないとの最遅角状態を除き、油圧のバランスで決定され、VVT機構に対するバルブタイミング位相制御は、オープンループ制御ではなくフィードバック制御で行われている。
このフィードバック制御によるバルブタイミング位相制御において、バルブタイミング位相をクランク角に対するカム角の位相から推定する方法がある。この方法では、具体的には、VVT位相が、クランクシャフトの回転位置を検出するクランク角センサと、カムシャフトの回転位置を検出するカム角センサとの位相差から検出されることから、クランク角センサの基準パルスとカム角センサのパルスとを時間軸上で比較し、クランク角に対するカム角の位相を求め、これをバルブタイミング位相(推定バルブタイミング位相)として推定するようにしている。これにより、内燃機関の各運転条件でも、カム位相の検出を正確に行うことができる。
【0005】
しかし、このカム位相によるバルブタイミング位相の推定では、仮にカム角センサの取り付けに対する誤差が存在する場合には、カム位相に誤差が含まれるので、推定されたバルブタイミング位相にも誤差が含まれるとの問題が生ずる。
そこで、この問題を解決すべく、前記位相制御の制御量には、バルブの閉弁着座時期を検出し、バルブタイミング位相として実際に検出する方法があり、これに関するバルブタイミング検出装置の技術が提案されている(例えば、特許文献1参照)。
【0006】
当該検出装置では、バルブタイミング位相(実バルブタイミング位相)が、クランク角に対するバルブの閉弁着座時期の位相によって直接的に検出され、バルブタイミングを正確に検出する。
【0007】
【特許文献1】
特開平04−076207号公報(第2頁右上欄第12行〜右下欄第20行、図3等)
【0008】
【発明が解決しようとする課題】
ところで、内燃機関の運転中には他の機械の作動振動が当然に発生している。
よって、バルブの着座振動の信号には、しばしばノイズが伴うものである。つまり、バルブの着座振動の検出による閉弁着座時期は、内燃機関の運転条件によっては、検出値が不正確、又は検出不可能になる。換言すれば、前記従来技術の如くの閉弁着座時期の実際の検出によるバルブタイミング位相制御には検出時に対する制約があり、各運転条件下でより正確なバルブタイミング位相制御を実現することができないとの問題がある。
【0009】
一方、上述のバルブタイミング位相の推定によるバルブタイミング位相制御では、当該位相制御の問題点たるカム角センサの上記取り付け誤差を補正すべく、機械的にそれ以上遅角しない最遅角制御時のカム位相を求め、このカム位相を最遅角時の正しいカム位相とみなして学習することが考えられる。
しかし、この取り付け誤差の補正では、仮に最遅角のバルブタイミング自体が、タイミングチェーン若しくはタイミングベルトの伸び等によって、ずれを有している場合には、上記の学習を行っても設計上のバルブタイミングを実現することができないことになる。すなわち、カムシャフトを駆動させるタイミングベルトの伸び等によって、カムスプロケットを駆動させるタイミングのずれ分を逆に誤補正するおそれがあり、推定によるバルブタイミング位相制御においても、より正確なバルブタイミング位相制御を実現できない場合があるという問題がある。
【0010】
本発明は、このような課題に鑑みてなされたもので、各運転条件下においてもより正確なバルブタイミング位相制御を実現できる内燃機関のバルブタイミング制御装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の目的を達成するべく、請求項1記載の本発明の内燃機関のバルブタイミング制御装置は、吸気バルブ又は排気バルブの少なくとも一方の開閉タイミングを連続可変で調整する手段と、前記バルブを駆動させるカムのカム位相に基づいて推定バルブタイミング位相を算出する手段と、前記バルブの閉弁着座振動を検出できるとき、該着座振動の検出によるバルブ着座時期に基づいて実バルブタイミング位相を算出する手段と、前記実バルブタイミング位相に基づいて前記推定バルブタイミング位相を補正すべく、補正バルブタイミング位相を算出する手段と、を備え、前記開閉タイミングを連続可変で調整する手段は、前記補正バルブタイミング位相を内燃機関の運転条件で決定される目標バルブタイミング位相とすべく、前記開閉タイミングを調整することを特徴としている。
【0012】
すなわち、フィードバック制御に用いられるバルブタイミング位相は補正バルブタイミング位相である。カム位相に基づいて算出される推定バルブタイミング位相は常時算出可能であるが、誤差を含む可能性があるという問題がある。他方、バルブの閉弁着座振動からの実バルブタイミング位相は正確な位相であるが、検出可能な運転条件が制限される。よって、請求項1記載の発明では、バルブの閉弁着座振動を検出できる時に算出した実バルブタイミング位相に基づいて、常時算出可能である推定バルブタイミング位相を補正して補正バルブタイミング位相を算出する。したがって、常時正確な補正バルブタイミング位相が得られ、この位相がフィードバック制御に用いられるので、バルブの着座振動信号に対するノイズの他、センサの取り付け誤差、並びにタイミングチェーンのばらつきや伸び等の構造の経年変化にも影響されることなく、常により正確なバルブタイミング位相に基づいて目標バルブタイミング位相への調整が行え、エンジン性能、排ガス特性、並びに燃焼安定性が向上し、燃費やドライバビリティの悪化が防止される。
【0013】
このように、請求項1記載の内燃機関のバルブタイミング制御装置は、推定値を用いたバルブタイミング位相制御と、実際の検出値を用いたバルブタイミング位相制御との双方の問題の解決を図り、常により正確なバルブタイミング位相制御を実現すべく構成されている。
なお、バルブの閉弁着座振動の検出には、着座振動検出用の振動センサの他、ノックセンサによることも可能であり、この場合にはノックの検出と着座振動の検出とを一つのセンサで行える。
【0014】
また、請求項2記載の発明では、前記実バルブタイミング位相を算出する手段は、前記目標バルブタイミング位相へのフィードバック制御が行われていないときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴としている。
このように、バルブタイミング位相へのフィードバック制御が行われていないときには、一般に目標バルブタイミング位相が最遅角側に固定され、位相が一定にされていることから、実バルブタイミング位相に過渡的要素が含まれず、バルブタイミング位相制御の信頼性が向上する。
【0015】
さらに、請求項3記載の発明では、前記実バルブタイミング位相を算出する手段は、前記閉弁着座振動のパルスにノイズがのり難いときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴としている。
このように、閉弁着座振動のパルスにノイズがのり難いときには、着座の検知が安定するので、実バルブタイミング位相も安定し、この場合にもバルブタイミング位相制御の信頼性が向上する。
【0016】
さらに、請求項4記載の発明では、前記閉弁着座振動のパルスにノイズがのり難いときとは、前記内燃機関が低負荷のときであることを特徴としている。これにより、ノッキングが発生しないような低負荷のときに着座を検知し、着座の検知の安定化を図り、バルブタイミング位相制御の信頼性が一層向上する。
なお、閉弁着座振動のパルスにノイズがのり難いときは、ノッキングが発生しない場合として、内燃機関が低負荷かつ低回転のときが好ましい。
【0017】
さらに、請求項5記載の発明では、前記閉弁着座振動のパルスにノイズがのり難いときとは、前記内燃機関の燃料カット運転のときであることを特徴としている。これにより、インジェクタノイズ及びノッキングの影響をともに受けることなく、着座の検知の安定化を図り、バルブタイミング位相制御の信頼性が一層向上する。
【0018】
なお、閉弁着座振動のパルスにノイズがのり難いときとしては、内燃機関のアイドル運転のときも好ましい。
さらに、請求項6記載の発明では、前記実バルブタイミング位相を算出する手段は、前記内燃機関が低回転速度のときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴としている。
【0019】
このように、内燃機関が低回転速度のときには、閉弁着座振動のパルス間隔が長くなり、閉弁着座振動の時間分解能が良好になって高精度の実バルブタイミング位相を求めることができ、この場合にもバルブタイミング位相制御の信頼性が向上する。
さらに、請求項7記載の発明では、前記実バルブタイミング位相を算出する手段は、一のバルブのバルブ着座時期と該一のバルブとは異なる他のバルブのバルブ着座時期とが重ならないときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴としている。
【0020】
このように、一のバルブのバルブ着座時期と該一のバルブとは異なる他のバルブのバルブ着座時期とが重ならないときには、着座振動信号に対するノイズの影響を確実に無くして高精度の実バルブタイミング位相を求めることができ、この場合にもバルブタイミング位相制御の信頼性が向上する。
【0021】
【発明の実施の形態】
以下、図面により本発明の実施形態について説明する。
図1を参照すると、本発明の一実施形態に係る内燃機関のバルブタイミング制御装置に適用されるシステム構成図が示されており、以下図1に基づき本発明に係る内燃機関のバルブタイミング制御装置の構成を説明する。
【0022】
内燃機関1は、図示しない燃焼室内に燃料を直接噴射する火花点火式の筒内噴射エンジンとして構成される。すなわち、エンジン1のシリンダヘッドには、ピストンの往復運動によって区画される燃焼室内に臨んで、インジェクタや点火プラグ(ともに図示せず)が配設されているとともに、吸気通路2及び排気通路3が接続されている。なお、点火プラグには点火コイルが接続されている。
【0023】
吸気通路2には、上流側から順にエアクリーナ4及びスロットル弁5が設けられており、さらに下流にはサージタンク6が設けられている。
これにより、外部からの空気は、エアクリーナ4を通過し、スロットル弁5、サージタンク6及び吸気通路2を経て燃焼室内に流入される。この際、吸入空気量がエアフローセンサ7で検出される。また、スロットルポジションセンサ(TPS)8が設けられており、TPS8では、スロットル弁5の開度(スロットル開度)が検出される。なお、スロットル弁5は、図示しないアクセルペダルに対して電気的に接続された、いわゆるドライブバイワイヤ式のスロットル弁(ETV)であり、ドライバのアクセル踏み込み量以外にもエンジン運転状態に応じてその開度が変更される。
【0024】
吸気通路2は、吸気マニホールド及び吸気ポートから構成され、この吸気ポートは、気筒毎にシリンダヘッド内に略直立方向に形成される。吸気ポートの燃焼室側には、吸気ポートと燃焼室との連通及び遮断を行う吸気バルブ12が設けられている。また、排気通路3は、排気ポート及び排気マニホールドから構成され、この排気ポートは、気筒毎にシリンダヘッド内に略水平方向に形成される。排気ポートの燃焼室側には、排気ポートと燃焼室との連通及び遮断を行う排気バルブ13が設けられている。
【0025】
吸気バルブ12には、開閉時期が油圧調整によって可変にする可変バルブタイミング機構が接続されている。可変バルブタイミング機構は、カムシャフトとカムスプロケットとの結合位相(VVT位相)を所定範囲内で可変とした所謂VVTとして実用化されており、結合位相を進角或いは遅角操作することで、吸気バルブ12の開閉タイミングを変更できる。例えば、可変バルブタイミング機構によるバルブオーバラップ量の拡大によって、内部EGR量がレスポンス良く増加する。なお、本実施形態では吸気バルブ12のみの開閉タイミングの変更を行っているが、吸気バルブ12のみの他、排気バルブ13のみ、又は吸気バルブ12及び排気バルブ13両方の開閉タイミングを変更できる。
【0026】
また、入出力装置、メモリ(ROM、RAM、不揮発性RAM等)、カウンタ、CPU等を備えたECU(電子コントロールユニット)10が設けられており、ECU10により、バルブタイミング制御を含めたエンジン1の総合的な制御が行われる。
ECU10の入力側には、上述したエアフローセンサ7、TPS8の他、クランクシャフトの回転位置を検出し、該クランク角信号に基づきエンジン回転速度Neを検出するクランク角センサ9、吸気バルブ12を作動させるカムシャフトの回転位置を検出するカム角センサ12a、ドライバのアクセル踏み込み量から要求トルクを検出するアクセル開度センサ(図示せず)等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力される。そして、これら各センサ出力からエンジン1の運転状態を得て、吸入空気量、燃料噴射量、燃料噴射時期、並びに点火時期等のエンジン1の主要な操作量が最適に演算される。
【0027】
また、本実施形態においては、吸気バルブ12の閉弁着座信号を検出する振動センサ14が吸気バルブ12付近に配設されており、この振動センサ14もまた、ECU10の入力側に接続されている。
一方、ECU10の出力側には、上述のインジェクタや点火プラグの他、可変バルブタイミング機構等の各種出力デバイス類が接続されており、ECU10内で演算された燃料噴射量が開弁パルス信号に変換されてインジェクタに送られ、また、演算された点火時期に基づいて点火プラグ駆動信号が点火コイルに送られる。すなわち、インジェクタから噴射された燃料は、吸気通路2からの調整された空気と混合されて燃焼室内にて混合気を形成し、該混合気は、所定の点火時期で点火プラグから発生される火花により爆発し、その燃焼圧によってエンジン1が駆動される。爆発後の排気は、排気通路3を経て排気浄化用触媒コンバータ(図示せず)側に送られる。
【0028】
なお、エンジン1は、少なくとも、主として圧縮行程で燃料噴射を行い理論空燃比よりも希薄な空燃比領域で希薄成層燃焼運転を行うリーン運転モードと、主として吸気行程で燃料噴射を行い理論空燃比近傍でストイキオフィードバック燃焼運転を行うストイキオ運転モードとを有しており、これらの運転モードが切り替え可能に構成されている。そして、当該エンジン1では、上述した種々のセンサ等からの入力データに基づいてECU10で運転モードの切り替え制御や各種の制御が行われる。
【0029】
特に、本実施形態のECU10には、推定値を用いたバルブタイミング位相制御と、実際の着座振動の検出値を用いたバルブタイミング位相制御との双方の問題の解決を図り、常により正確なバルブタイミング位相制御を実現する機能を備えている。具体的には、ECU10は、バルブタイミング制御部10Aを備え、このバルブタイミング制御部10Aは、推定バルブタイミング位相算出手段と、実バルブタイミング位相算出手段と、バルブタイミング補正手段と、バルブタイミング変更調整手段とを備えている。
【0030】
推定バルブタイミング位相算出手段(推定バルブタイミング位相を算出する手段)は、可変バルブタイミング機構によって可変にされた吸気バルブ12を駆動させるカムの位相情報からカム位相を求め、該カム位相に基づいてバルブタイミング位相を推定し、フィードバック位相制御の制御量を求めている。
実バルブタイミング位相算出手段(実バルブタイミング位相を算出する手段)は、吸気バルブ12の閉弁着座振動が検出できるときには、該着座振動の検出によるバルブ着座時期を求め、該バルブ着座時期に基づいて実バルブタイミング位相を直接的に検出し、フィードバック位相制御の制御量を求めている。
【0031】
バルブタイミング補正手段(補正バルブタイミング位相を算出する手段)は、実バルブタイミング位相に基づいて推定バルブタイミング位相を補正する、換言すれば、カム角センサ12aの取り付け誤差やベルトの伸び等の誤差を除くために補正バルブタイミング位相を算出している。
そして、バルブタイミング変更調整手段(開閉タイミングを連続可変で調整する手段)は、補正バルブタイミング位相を算出した後、補正バルブタイミング位相を目標バルブタイミング位相とすべく吸気バルブ12の開閉タイミングを調整している。なお、目標バルブタイミング位相は、最適に実現したいタイミングをいい、エンジン回転速度及びエンジン負荷等のエンジン1の運転条件に基づいてECU10内のマップ等から決定される。
【0032】
以下、上記のように構成されたバルブタイミング制御装置の本発明に係る作用について説明する。
図2を参照すると、バルブタイミング制御部10Aの推定バルブタイミング位相算出手段により実施されるフローチャートが示されている。
同図のステップS201では、クランク角センサ9の基準パルスの立ち下がり位置Aを通過したか否かを判別し、立ち下がり位置Aを通過したと判定された場合、すなわちYESのときには、ステップS202に進み、フリーランニングカウンタで立ち下がり位置Aの通過時刻FRC(A)を記憶し、ステップS203で後述するカム位相検出済フラグをクリアし、ステップS204でカム位相検出期間タイマTM1をセットしてステップS205に進む。一方、ステップS201にて立ち下がり位置Aを通過していないと判定された場合には、そのままステップS205に進む。
【0033】
ステップS205では、カム位相検出期間タイマTM1が0よりも大きいか否かを判別し、TM1が0よりも大きいと判定された場合、すなわちYESのときにはステップS206に進んでカウンタを1減算してステップS207に進む。
ステップS207では、カム位相検出済フラグをセットしているか否かを判別し、カム位相検出済フラグをセットしていないと判定された場合、つまりNOのときには、ステップS208に進んでカム角センサ12aの基準パルスの立ち下がり位置Cを通過したか否かを判別し、立ち下がり位置Cを通過したと判定された場合、すなわちYESのときには、ステップS209に進み、フリーランニングカウンタで立ち下がり位置Cの通過時刻FRC(C)を記憶し、ステップS210でカム位相検出済フラグをセットして、このルーチンを抜ける。一方、ステップS207にて、カム位相検出済フラグをセットしていると判定された場合、又はステップS208でカム角センサ12aの基準パルスの立ち下がり位置Cを通過していないと判定された場合にも、このルーチンを抜ける。
【0034】
ここで、ステップS205にて、カム位相検出期間タイマTM1が0以下と判定された場合には、ステップS211に進み、カム位相検出済フラグをセットしているか否かを判別し、カム位相検出済フラグをセットしていると判定された場合、すなわちYESのときにはステップS212に進み、推定位相瞬時値Tを図示の式から算出してステップS213に進む。推定位相瞬時値Tは、クランク角に対するカム角の位相に基づき推定された推定バルブタイミング位相に相当する。そして、ステップS213では、推定位相検知フラグをセットしてこのルーチンを抜ける。なお、ステップS211でカム位相検出済フラグをセットしていないと判定された場合には、推定位相瞬時値Tを算出することなく、このルーチンを抜ける。
【0035】
なお、タイマTM1は、クランク角センサ基準パルス立ち下がりからカム角センサ基準パルス立ち下がりまでの、可能性のある最大時間に若干の余裕を加えた時間である。このタイマ時間内にカム角センサ基準パルス立ち下がり位置が通過しなかった場合には、何らかの原因で当該立ち下がり位置検出に失敗したと判断してルーチンを抜けるようにしている。
【0036】
図3及び図4を参照すると、バルブタイミング制御部10Aの実バルブタイミング位相算出手段により実施されるフローチャートが示されている。
同図のステップS301では、エンジン1がアイドル運転であるか否かを判別し、アイドル運転であると判定された場合、すなわちYESのときにはステップS302に進み、目標バルブタイミング位相へのフィードバック制御を行っているか否かを判別する。
【0037】
具体的には、目標バルブタイミング位相が最遅角側にあるか否かを判別し、最遅角にある場合、すなわちYESで目標バルブタイミング位相へのフィードバック制御を行っていないときにはステップS303に進み、クランク角センサ9の基準パルスの立ち下がり位置Bを通過したか否かを判別し、この立ち下がり位置Bを通過していると判定された場合、すなわちYESのときにはステップS304に進んで、フリーランニングカウンタで立ち下がり位置Bの通過時刻FRC(B)を記憶し、ステップS305で後述する振動センサ検出済フラグをクリアし、ステップS306でバルブ着座信号検出期間タイマTM2をセットしてステップS307に進む。一方、ステップS303にて立ち下がり位置Bを通過していないと判定された場合には、そのままステップS307に進む。
【0038】
ステップS307では、バルブ着座信号検出期間タイマTM2が0よりも大きいか否かを判別し、TM2が0よりも大きいと判定された場合、すなわちYESのときにはステップS308に進んでカウンタを1減算してステップS309に進む。なお、ステップS307でTM2が0以下と判定されたときには、後述するステップS315に進む。
【0039】
ステップS309では、振動センサ検出済フラグを既にセットしているか否かを判別し、振動センサ検出済フラグを既にセットしていないと判定された場合、つまりNOのときにはステップS310に進み、振動センサ14の値SSを取り込み、ステップS311では、そのピークをみるべくdSSを算出し、ステップS312に進む。
【0040】
ステップS312では、dSSが所定値よりも大きいか否かを判別し、dSSが所定値よりも大きいと判定された場合、すなわちYESのときにはステップS313に進んでフリーランニングカウンタで振動センサ14の検出時Dの時刻FRC(D)を記憶してステップS314に進み、振動センサ検出済フラグをセットしてこのルーチンを抜ける。
【0041】
ステップS315では、振動センサ検出済フラグをセットしているか否かを判別し、振動センサ検出済フラグをセットしている場合、すなわちYESのときにはステップS316に進み、実位相瞬時値S1を図示の式から算出してステップS317に進む。
ステップS317では、推定バルブタイミング位相との比較にあたり、基準位置を同じにすべく実位相瞬時値S1に所定補正量を加味することによって、クランク角センサの立ち下がり位置Bに対する吸気バルブ12の閉弁時期Dに基づき、実際に検出された実バルブタイミング位相Sを求める。そして、ステップS318では、実位相検知フラグをセットしてこのルーチンを抜ける。
【0042】
なお、ステップS301でアイドル運転ではないと判定された場合、ステップS302でVVT位相が最遅角ではないと判定された場合、ステップS309で振動センサ検出済フラグを既にセットしている場合、ステップS312でdSSが所定値よりも小さいと判定された場合又はステップS315で振動センサ検出済フラグをセットしていないと判定された場合にも、実位相瞬時値S1を算出することなくこのルーチンを抜ける。
【0043】
ここで、上記ステップS310における振動センサ14によるセンサ値SSの取り込みは、吸気バルブ12の閉弁着座振動のパルスにノイズがのり難い特定条件として、ステップS301の如くエンジン1のアイドル運転時とし、この特定条件においてステップS302の如くVVT最遅角状態で行われ、位相を一定にして実バルブタイミング位相に過渡的要素が含まれないようにされている。
【0044】
なお、バルブ着座信号検出期間タイマTM2は、クランク角センサ基準パルス立ち下がりからバルブ閉弁着座までの、可能性のある最大時間に若干の余裕を加えた時間である。このタイマ時間内に閉弁着座信号を検出しなかった場合には、何らかの原因で当該信号検出に失敗したと判断してルーチンを抜けるようにしている。すなわち、推定バルブタイミング位相算出におけるタイマTM1と類似の機能を果たしている。
【0045】
また、振動センサ14によるセンサ値SSの取り込み時期としては、上記の他、エンジン1が低回転速度のときの如く、計測精度の向上を図ることができる場合であっても良い。
さらに、吸気バルブ12の閉弁着座振動のパルスにノイズがのり難い特定条件としては、上記の他、エンジン1が低負荷のとき、若しくは低負荷かつ低回転速度のとき、又はエンジン1の燃料カット運転のときであっても良い。
【0046】
図5を参照すると、バルブタイミング制御部10Aのバルブタイミング補正手段により実施されるフローチャートが示されている。
同図のステップS401では、推定位相検知フラグをセットしているか否かを判別し、推定位相検知フラグをセットしていると判定された場合、すなわちYESのときにはステップS402に進み、実位相検知フラグをセットしているか否かを判別し、実位相検知フラグをセットしている場合、すなわちYESのときにはステップS403に進む。
【0047】
ステップS403では、実バルブタイミング位相に基づいて推定バルブタイミング位相を補正すべく、実バルブタイミング位相Sと推定バルブタイミング位相Tとから補正量瞬時値H1、つまり、カム角センサ12aの取り付け等の誤差を算出し、ステップS404では、補正量瞬時値H1をフィルタ処理して補正量H2nを求めてステップS405に進む。
【0048】
ステップS405では、補正量H2カウンタをインクリメントし、ステップS406では、推定位相検知フラグ及び実位相検知フラグをともにクリアにしてステップS407に進む。
ステップS407では、補正量H2カウンタが所定値よりも大きいか否か判別し、補正量H2カウンタが所定値よりも大きいと判定された場合、すなわちYESのときにはステップS408に進んで補正量H2の更新をし、ステップS409で補正量H2のカウンタをリセットしてステップS410に進む。
【0049】
一方、ステップS401で推定位相検知フラグをセットしていないと判定された場合、若しくはステップS402で実位相検知フラグをセットしていないと判定された場合、又はステップS407で補正量H2カウンタが所定値よりも小さいと判定された場合には、ステップS411に進み、補正量H2を前回の補正量のままで更新せずにステップS410に進む。
【0050】
ステップS410では、推定バルブタイミング位相Tと上記いずれかの補正量H2とから補正位相瞬時値Hを算出する。この補正位相瞬時値Hは、実バルブタイミング位相に基づいて推定バルブタイミング位相を補正するための補正バルブタイミング位相に相当し、これにより、カム角センサ12aの取り付け等の誤差が除かれる。
【0051】
このように、補正量H2は、バルブ閉弁着座振動が検出可能な時には最新値に逐次更新され、当該検出ができない場合には前回の値が用いられる。つまり、制御に用いられるバルブタイミング位相は常に補正量H2により正確に補正される。
なお、本実施形態では、複数回算出した補正量瞬時値H1をフィルタ処理して一つの補正量H2を求めている。補正量H2カウンタは、一つの補正量H2を求めるための補正量瞬時値H1の算出回数に相当する。
【0052】
図6を参照すると、バルブタイミング制御部10Aのバルブタイミング変更調整手段により実施されるフローチャートが示されている。
同図のステップS501では、エンジン1の回転速度及び負荷等を読み込み、ステップS502にて目標バルブタイミング位相に相当する目標位相値Mを算出し、ステップS503に進む。
【0053】
ステップS503では、補正バルブタイミング位相Hと目標バルブタイミング位相Mとの差が不感帯幅よりも遅角側にあるか否かを判定し、例えば+0.3度等の如くの第一の所定値(所定値1)よりも大きい場合には、ステップS505に進んで進角側に油圧制御してこのルーチンを抜ける。
一方、ステップS503で補正バルブタイミング位相Hと目標バルブタイミング位相Mとの差が第一の所定値以下のときには、ステップS504に進み、補正バルブタイミング位相Hと目標バルブタイミング位相Mとの差が所定値よりも小さいか否かを判定し、例えば−0.3度等の如くの第二の所定値(所定値2)よりも小さい場合には、ステップS506に進んで遅角側に油圧制御してこのルーチンを抜ける。
【0054】
なお、ステップS504で第二の所定値以上のときには、油圧制御は前回の制御のままでこのルーチンを抜ける。
以上説明した本実施形態の図2乃至図6のフローチャートは、バルブタイミング制御部10Aのメインルーチン(演算周期)毎に実施される。
図7は、バルブタイミング制御(ステップS212、ステップS316等)のタイムチャートである。
【0055】
本実施形態のエンジン1は、直列4気筒のものであり、#1気筒、#3気筒、#4気筒、#2気筒の順に点火され、図示のように、#1気筒のオーバラップ上死点におけるクランク角を0度として設計している。
ここで、まずは設計値にて考えると、クランク角センサ9の基準パルスの立ち下がりは、各気筒のオーバラップ上死点前5度にて発生している。したがって図中のクランク角センサの基準パルス立ち下がり時点Aは−5度になる。なお、各気筒の排気バルブ13は、図中点線で示すように、−210〜+30度の間に固定されて開弁する。これに対し、吸気バルブ12は、図中実線で示すように、最遅角時には+10〜+250度の間で開弁する。また、吸気バルブ12は、開弁期間及びバルブリフトを一定にしたまま40度の範囲で進角側に位相を変更することができる。すなわち、図中一点鎖線で示すように、最進角時には−30〜+210度の間で開弁する。
【0056】
次に、カム角センサ12aの基準パルス立ち下がりは、吸気バルブ12の最遅角時では図中Crで示すように+55度に発生する(最進角時では図中Caで示すように+15度に発生する)。したがって、本実施形態では、クランク角センサ基準パルスに対するカム角センサ基準パルスの期間Tr(A〜Cr)が+60度(Ta(A〜Ca)が+20度)となり、これが設計上の推定バルブタイミング位相に相当する。なお、本実施形態の位相は+20〜+60度であるが、位相とは相対量であり、例えば、+100〜+140度の如くでも構わない。
【0057】
さらに、クランク角センサ9の基準パルスの立ち下がりは、各気筒のオーバラップ上死点前5度でも発生しているので、クランク角センサ9の次の基準パルス立ち下がり位置Bでは+175度になる。そして、#1気筒の吸気バルブ12の閉弁着座振動は、最遅角時には、図中Drで示すように+250度に発生する(最進角時には、図中Daで示すように+210度に発生する)。したがって、本実施形態では、クランク角センサ基準パルスに対する振動センサ値の取り込みの期間Sr(B〜Dr)が+75度(Sa(B〜Da)が+35度)となり、これが設計上の実バルブタイミング位相に相当する。
【0058】
そして、このように実バルブタイミング位相の検出が可能な場合には、設計上の推定バルブタイミング位相と設計上の実バルブタイミング位相との差による所定補正量(本実施形態では−15度)を求め、図4のステップS317の如く、該補正量に実位相瞬時値S1を加えることで実バルブタイミング位相Sが求まる。
【0059】
次に、カム角センサ12aの取り付け誤差及びベルト等の伸びに対する本実施形態のバルブタイミング制御部10Aの作用を説明する。
まず、カム角センサ12aの取り付け誤差によって2度遅れた信号が発生され、さらに、ベルト等の伸びによって5度遅れたカムスプロケットの駆動信号が発生されていると仮定する。
【0060】
ここで、カム角センサ12aの取り付け誤差による2度は信号が遅れるだけである。これに対し、ベルト等の伸びによる5度は実際の位相、信号共に遅れることになる。
したがって、カム位相から単に推定バルブタイミング位相を求めただけの場合には、実際の位相は+65度、推定バルブタイミング位相は+67度となる。つまり、推定バルブタイミング位相が実際の位相よりも2度分遅れた位相を示すことになる。また、カム角センサ12aの取り付け誤差の補正を行うべく、目標バルブタイミング位相を強制的に最遅角側にした際の推定バルブタイミング位相を設計上の最遅角値(+60度)と読み替えることも考えられる。この場合、実際の位相は+65度、推定バルブタイミング位相は+60度となる。すなわち、推定バルブタイミング位相は、この取り付け誤差分(+2度)については正しく補正するものの、逆にベルト等の伸び分(+5度)を誤補正し、前記実際の位相よりも5度分進んだ位相を示すことになる。つまり、いずれの場合でも、双方の誤差を除くことができない。
【0061】
そこで、本実施形態のバルブタイミング制御部10Aは、これらを解消すべく、実バルブタイミング位相が検出できるときには、この検出値に基づいて推定バルブタイミング位相を補正している。
具体的には、図示のように、まず、目標バルブタイミング位相が+60度とされるのに対して、推定バルブタイミング位相が+67度として求められる。次に、#1気筒の吸気バルブ12は設計上+250度で着座するものであるが、上記のベルトの伸び等によって+255度で着座することになり、このときの実位相瞬時値S1もまた+5度分増えて+80度と検出される。
【0062】
しかし、本実施形態では、図4のステップS317にて示したように、設計上の推定バルブタイミング位相と設計上の実バルブタイミング位相との差による所定補正量が予め算出されていることから、実位相位相瞬時値S1(+80度)にこの所定補正量(−15度)を加味した実バルブタイミング位相S(+65度)が求められる。
【0063】
そして、実バルブタイミング位相S(+65度)と推定バルブタイミング位相T(+67度)との差である補正量瞬時値H1(−2度)が求まり、これが更新されると、推定バルブタイミング位相T(+67度)に補正量瞬時値H1(−2度)が加味されて補正バルブタイミング位相H(+65度)になり、補正バルブタイミング位相は実際の位相に合致する。よって、カム角センサ12aの取り付け誤差やベルト等の伸びによる誤差が除かれる。
【0064】
すなわち、バルブタイミング制御部10Aは、推定バルブタイミング位相のみからフィードバック位相制御の制御量を求めるのではなく、実バルブタイミング位相をも用いた制御量を求めることにより、正しいバルブタイミング位相を求めることができる。そして、前記補正バルブタイミング位相と目標バルブタイミング位相とから位相制御のより正確なフィードバック制御を行うことができる。
【0065】
ところで、図中に一点鎖線で示すように、最進角時における#1気筒の吸気バルブ12の閉弁着座時期Daは、図中に点線で示すように、#3気筒の排気バルブ13の閉弁着座時期に重なっていることが分かる。この場合には、本実施形態のバルブタイミング制御部10Aは、#1気筒の吸気バルブ12の閉弁着座振動にはノイズの影響があり得ることを考慮して、実バルブタイミング位相の検出を行わないこととしている。
【0066】
以上のように、本発明のバルブタイミング制御装置は、バルブタイミング位相制御において、推定バルブタイミング位相算出手段によるカム位相に基づいて算出される推定バルブタイミング位相(常時検出可)を算出するとともに、実バルブタイミング位相算出手段によるバルブ閉弁着座振動からの実バルブタイミング位相(正確)を用いて推定バルブタイミング位相の補正を行っているので、センサの取り付け誤差、タイミングチェーンのばらつきや伸び等の構造の経年変化による影響が包含されたままの制御量の算出を防ぐことができ、カム位相による推定値を用いたバルブタイミング位相制御と、着座振動による検出値を用いたバルブタイミング位相制御との双方の問題の解決を図り、常により正確なバルブタイミング位相制御を実現することができる。これにより、エンジン性能、排ガス特性、並びに燃焼安定性の向上を図り、燃費やドライバビリティの悪化を防止することができる。
【0067】
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では、吸気バルブ12の閉弁時期を検出する構成として振動センサ14を用いているが、この構成に限定されるものではなく、例えば、ノッキングを検出するノックセンサを利用することもできる。この場合には、上記と同様の効果の他、製造コストの抑制を図ることができる。なお、ノッキングが検出されているときには、バルブ着座振動の検出は禁止される。
【0068】
また、上記実施形態のカム角センサ12aは回転位相を検出するタイプであり、カム位相はカムの位相情報に基づいて求められることになるが、このタイプの他、いわゆる立体カム式であっても良く、この場合のカム位相は、カムの位置情報に基づいて求められることになる。
【0069】
【発明の効果】
以上の説明から理解できるように、請求項1記載の本発明の内燃機関のバルブタイミング制御装置によれば、バルブの閉弁着座振動を検出できる時に算出した正確である実バルブタイミング位相に基づいて更新された或いは以前の補正量によって、常時算出可能である推定バルブタイミング位相を補正し、補正された推定バルブタイミング位相として補正バルブタイミング位相を算出し、常時正確な補正バルブタイミング位相を用いてフィードバック制御を行うので、センサの取り付け誤差、タイミングチェーンのばらつきや伸び等の構造の経年変化、並びにバルブの着座振動信号に対するノイズに影響されることなく、常により正確なバルブタイミング位相に基づいて目標値への調整を行うことができ、エンジン性能、排ガス特性、並びに燃焼安定性の向上を図り、燃費やドライバビリティの悪化を防止することができる。
【0070】
また、請求項2記載の発明によれば、バルブタイミング位相へのフィードバック制御が行われていないときの実バルブタイミング位相の算出には、一般に目標バルブタイミング位相が最遅角側に固定され、位相が一定にされていることから、実バルブタイミング位相に過渡的要素が含まれず、バルブタイミング位相制御の信頼性を向上させることができる。
【0071】
さらに、請求項3記載の発明によれば、閉弁着座振動のパルスにノイズがのり難いときには、着座の検知が安定するので、実バルブタイミング位相も安定し、この場合にもバルブタイミング位相制御の信頼性を向上させることができる。
さらにまた、請求項4記載の発明によれば、ノッキングが発生しないときに着座を検知して着座の検知の安定化を図り、バルブタイミング位相制御の信頼性を一層向上させることができる。
【0072】
また、請求項5記載の発明によれば、インジェクタノイズ及びノッキングの影響をともに受けることなく、着座の検知の安定化を図り、バルブタイミング位相制御の信頼性を一層向上させることができる。
さらに、請求項6記載の発明によれば、内燃機関が低回転速度のときには、閉弁着座振動のパルス間隔が長くなり、閉弁着座振動の時間分解能が良好になって高精度の実バルブタイミング位相を求めることができ、この場合にもバルブタイミング位相制御の信頼性を向上させることができる。
【0073】
また、請求項7記載の発明によれば、一のバルブのバルブ着座時期と該一のバルブとは異なる他のバルブのバルブ着座時期とが重ならないときには、着座振動信号に対するノイズの影響を確実に無くして高精度の実バルブタイミング位相を求めることができ、この場合にもバルブタイミング位相制御の信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る内燃機関のバルブタイミング制御装置に適用されるシステム構成図である。
【図2】図1のバルブタイミング制御部における推定バルブタイミング位相算出手段のルーチンを示すフローチャートである。
【図3】図1のバルブタイミング制御部における実バルブタイミング位相算出手段のルーチンを示すフローチャートである。
【図4】図1のバルブタイミング制御部における実バルブタイミング位相算出手段のルーチンを示すフローチャートである。
【図5】図1のバルブタイミング制御部におけるバルブタイミング補正手段のルーチンを示すフローチャートである。
【図6】図1のバルブタイミング制御部におけるバルブタイミング変更調整手段のルーチンを示すフローチャートである。
【図7】バルブタイミング制御のタイムチャートである。
【符号の説明】
1 内燃機関
7 エアフローセンサ
8 スロットルポジションセンサ
9 クランク角センサ
10 ECU(電子コントロールユニット)
10A バルブタイミング制御部
12 吸気バルブ
12a カム角センサ
13 排気バルブ
14 振動センサ
Claims (7)
- 吸気バルブ又は排気バルブの少なくとも一方の開閉タイミングを連続可変で調整する手段と、
前記バルブを駆動させるカムのカム位相に基づいて推定バルブタイミング位相を算出する手段と、
前記バルブの閉弁着座振動を検出できるとき、該着座振動の検出によるバルブ着座時期に基づいて実バルブタイミング位相を算出する手段と、
前記実バルブタイミング位相に基づいて前記推定バルブタイミング位相を補正すべく、補正バルブタイミング位相を算出する手段と、を備え、
前記開閉タイミングを連続可変で調整する手段は、前記補正バルブタイミング位相を内燃機関の運転条件で決定される目標バルブタイミング位相とすべく、前記開閉タイミングを調整することを特徴とする内燃機関のバルブタイミング制御装置。 - 前記実バルブタイミング位相を算出する手段は、前記目標バルブタイミング位相へのフィードバック制御が行われていないときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴とする請求項1記載の内燃機関のバルブタイミング制御装置。
- 前記実バルブタイミング位相を算出する手段は、前記閉弁着座振動のパルスにノイズがのり難いときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴とする請求項1又は2記載の内燃機関のバルブタイミング制御装置。
- 前記閉弁着座振動のパルスにノイズがのり難いときとは、前記内燃機関が低負荷のときであることを特徴とする請求項3記載の内燃機関のバルブタイミング制御装置。
- 前記閉弁着座振動のパルスにノイズがのり難いときとは、前記内燃機関の燃料カット運転のときであることを特徴とする請求項3記載の内燃機関のバルブタイミング制御装置。
- 前記実バルブタイミング位相を算出する手段は、前記内燃機関が低回転速度のときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴とする請求項1又は2記載の内燃機関のバルブタイミング制御装置。
- 前記実バルブタイミング位相を算出する手段は、一のバルブのバルブ着座時期と該一のバルブとは異なる他のバルブのバルブ着座時期とが重ならないときに前記閉弁着座振動を検出し、前記バルブ着座時期に基づいて実バルブタイミング位相を算出することを特徴とする請求項1又は2記載の内燃機関のバルブタイミング制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002368343A JP2004197675A (ja) | 2002-12-19 | 2002-12-19 | 内燃機関のバルブタイミング制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002368343A JP2004197675A (ja) | 2002-12-19 | 2002-12-19 | 内燃機関のバルブタイミング制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004197675A true JP2004197675A (ja) | 2004-07-15 |
Family
ID=32764940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002368343A Withdrawn JP2004197675A (ja) | 2002-12-19 | 2002-12-19 | 内燃機関のバルブタイミング制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004197675A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007292038A (ja) * | 2006-03-27 | 2007-11-08 | Toyota Motor Corp | 可変バルブタイミング装置 |
-
2002
- 2002-12-19 JP JP2002368343A patent/JP2004197675A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007292038A (ja) * | 2006-03-27 | 2007-11-08 | Toyota Motor Corp | 可変バルブタイミング装置 |
JP4699310B2 (ja) * | 2006-03-27 | 2011-06-08 | トヨタ自動車株式会社 | 可変バルブタイミング装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8573184B2 (en) | Control apparatus for controlling intake air flow, fuel injection amount, and ignition timing at each cylinder of a multi-cylinder engine | |
EP0893596B1 (en) | In-cylinder injection spark-ignition internal combustion engine | |
US7377273B2 (en) | Air-fuel ratio control apparatus for internal combustion engine | |
JP3011070B2 (ja) | バルブタイミング連続可変機構付き内燃機関における吸入空気量検出装置 | |
EP2514952A1 (en) | Control device for internal-combustion engine | |
EP2256323B1 (en) | Engine control device | |
US7213569B2 (en) | Valve characteristic estimation device and controller for internal combustion engine | |
JP2004060455A (ja) | 内燃機関のバルブタイミング補正制御装置 | |
JP4655980B2 (ja) | 内燃機関の制御装置及び制御方法 | |
JP2004052620A (ja) | 内燃機関の制御装置 | |
US20100036581A1 (en) | Internal Combustion Engine Control Device | |
US7178494B2 (en) | Variable valve timing controller for internal combustion engine | |
JPWO2003038262A1 (ja) | 4ストロークエンジンの大気圧検出装置及び方法 | |
WO2009107378A1 (ja) | 内燃機関の制御装置 | |
US9002618B2 (en) | Variable valve timing control apparatus for engine | |
JP4729588B2 (ja) | 内燃機関の制御装置 | |
JP2008095503A (ja) | 内燃機関 | |
JP2004197675A (ja) | 内燃機関のバルブタイミング制御装置 | |
JP4155036B2 (ja) | 内燃機関の内部egr量推定装置 | |
JP4345660B2 (ja) | 内燃機関制御装置 | |
JP4957594B2 (ja) | 内燃機関の騒音低減装置 | |
JP4133288B2 (ja) | 内燃機関の可変バルブタイミング制御方法 | |
JP3680505B2 (ja) | 直噴火花点火式内燃機関の燃料噴射制御装置 | |
JP2004332600A (ja) | 内燃機関の可変バルブ制御装置 | |
JP4033028B2 (ja) | 内燃機関の可変バルブ制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050325 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20061020 |