JP2004193187A - Manufacturing method of modular component - Google Patents

Manufacturing method of modular component Download PDF

Info

Publication number
JP2004193187A
JP2004193187A JP2002356407A JP2002356407A JP2004193187A JP 2004193187 A JP2004193187 A JP 2004193187A JP 2002356407 A JP2002356407 A JP 2002356407A JP 2002356407 A JP2002356407 A JP 2002356407A JP 2004193187 A JP2004193187 A JP 2004193187A
Authority
JP
Japan
Prior art keywords
circuit board
mounting
component
sealing body
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002356407A
Other languages
Japanese (ja)
Other versions
JP3966172B2 (en
Inventor
Masaaki Hayama
雅昭 葉山
Masaaki Katsumata
雅昭 勝又
喜久 ▲高▼瀬
Yoshihisa Takase
Eiji Kawamoto
英司 川本
Michio Tsuneoka
道朗 恒岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002356407A priority Critical patent/JP3966172B2/en
Publication of JP2004193187A publication Critical patent/JP2004193187A/en
Application granted granted Critical
Publication of JP3966172B2 publication Critical patent/JP3966172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a modular component capable of being lower in height and having an enough shielding effect by making use of a manufacturing method of the modular component. <P>SOLUTION: The manufacturing method of the modular component comprises a packaging process for mounting and packaging a packaging component 3 composed of an electronic component on a circuit board 1 with solder around the outermost circumference of the surface layer face of which a ground pattern 5 is formed, a washing process for washing the circuit board 1 on which the packaging component 3 is mounted, a sealing process for forming a sealant 4 by filling epoxy resin on the circuit board 1 on which the packaging component 3 is mounted, and a plating process for forming a plated layer on the whole surface of the sealant 4 and on the surface of the circuit board 1. As a result, the thinner and securely sealed modular component is provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は各種電子機器、通信機器等に用いられるモジュール部品の製造方法に関するものである。
【0002】
【従来の技術】
従来のモジュール部品は図13に示すように、少なくとも片面に1つ以上の実装部品23を搭載した回路基板21とこの回路基板21の側面に設けられた凹状のグランド電極24と、前記実装部品23を覆うように設けられた金属ケース22で構成され、前記金属ケース22の一端が前記凹状のグランド電極24に挿入され半田で接続した構成でモジュール部品の電磁シールドを行っていた。
【0003】
なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
【0004】
【特許文献1】
特開平11−330765号公報
【0005】
【発明が解決しようとする課題】
従来のモジュール部品は金属ケース22を回路基板21の側面と半田で接続するため金属ケース22が自立できる程度の回路基板21の厚みが必要である。また、回路基板21に搭載されている実装部品23に金属ケース22が当たることで電気回路がショートし回路動作の不具合が発生する。
【0006】
これを防ぐために金属ケース22の高さは実装部品23の高さより高くする必要があり、回路基板21と金属ケース22の接続には金属ケース22が回路基板21の表面に形成した回路パターンおよび実装部品23と接しないように回路基板21と金属ケース22とは隙間を設け金属ケース22に形成した端子と数箇所で回路基板21の側面端子部分と接続しているため、薄型化が困難で不十分なシールド効果しか得られなかった。
【0007】
本発明は上記問題点に鑑み、モジュール部品の低背化と充分なシールド効果を実現するモジュール部品の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
この課題を解決するために本発明は、表層面の最外周にグランドパターンを形成した回路基板に電子部品からなる実装部品を搭載し半田で実装する実装工程と、前記実装部品を搭載した回路基板を洗浄する洗浄工程と、前記実装部品を搭載した回路基板上にエポキシ樹脂を充填して封止体を形成する封止工程と、前記封止体の上から前記グランドパターンを含む回路基板の一部を切削する切削工程と、前記封止体の全表面および切削によって露出した回路基板の表面にメッキ層を形成するメッキ工程と、前記メッキ層の形成によって実装部品がシールドされた集合基板を各単一基板ごとに切削分割する分割工程からなるモジュール部品を提供することができる。
【0009】
【発明の実施の形態】
本発明の請求項1に記載の発明は、表層面の最外周にグランドパターンを形成した回路基板に電子部品からなる実装部品を搭載し半田で実装する実装工程と、前記実装部品を搭載した回路基板を洗浄する洗浄工程と、前記実装部品を搭載した回路基板上にエポキシ樹脂を充填して封止体を形成する封止工程と、前記封止体の全表面および回路基板の表面にメッキ層を形成するメッキ工程からなるモジュール部品の製造方法であり、回路基板と金属膜間の隙間を無くし確実なシールドができる。
【0010】
本発明の請求項2に記載の発明は、表層面の最外周にグランドパターンを形成した回路基板に電子部品からなる実装部品を搭載し半田で実装する実装工程と、前記実装部品を搭載した回路基板を洗浄する洗浄工程と、前記実装部品を搭載した回路基板上にエポキシ樹脂を充填して封止体を形成する封止工程と、前記封止体の上から前記グランドパターンを含む回路基板の一部を切削する切削工程と、前記封止体の全表面および切削によって露出した回路基板の表面にメッキ層を形成するメッキ工程と、前記メッキ層の形成によって実装部品がシールドされた集合基板を各単一基板ごとに切削分割する分割工程からなるモジュール部品の製造方法であり、回路基板と金属膜間の隙間を無くし確実なシールドを施したモジュール部品を一度に複数個作製することができる。
【0011】
本発明の請求項3に記載の発明は、封止工程の前に回路基板の表面に水酸基を付着させるためのプラズマ工程を付加した請求項1または請求項2に記載のモジュール部品の製造方法であり、回路基板と封止樹脂の密着強度を強くすることができる。
【0012】
本発明の請求項4に記載の発明は、封止工程として異なる温度で2段階に樹脂を硬化する請求項1または請求項2に記載のモジュール部品の製造方法であり、反りの少ないモジュール部品を提供できる。
【0013】
本発明の請求項5に記載の発明は、メッキ工程が無電解メッキ処理工程後電解メッキ工程の2段階のメッキ工程からなる請求項1または請求項2に記載のモジュール部品の製造方法であり、封止体と回路基板との境界部分のシールド特性を高めることができる。
【0014】
以下、図面を参照して本発明の実施の形態について説明する。
【0015】
(実施の形態1)
本発明の実施の形態1におけるモジュール部品は図1の斜視図で示すように多層基板で形成した回路基板1の上に金属膜2を形成している。図2は図1で示したモジュール部品の断面図を示している。断面図に示すように回路基板1の内層、外層にはグランドパターン5や配線パターン40が少なくとも2層以上の配線層にわたって形成されている。そして、この回路基板の表層の最外周部にはグランドパターン5が形成され、更に表層の配線パターン40と実装部品3が電気的に接続し、この実装部品3を覆うように封止体4を形成している。この封止体4と前記グランドパターン5を金属膜2で覆うことで実装部品3および回路基板1の配線パターン40で構成した電気回路をシールドしている。
【0016】
図3、図4でこのモジュール部品の製造工程を説明する。
【0017】
図3(a)には回路基板1上に実装部品3を実装するために設けられた電極10が形成されている。図3(b)で前記電極10とほぼ同形状の貫通パターンを設けたメタル版12を作成し、このメタル版12の貫通孔13と回路基板1上の電極10とを一致するように位置あわせを行う。メタル版としては150ミクロン以下の厚みのステンレスからなるメタル版を用いる。
【0018】
そして位置あわせを行ったメタル版12の上に、Snを90%以上含有し金属粉末とフラックス成分を混練した鉛フリー半田20を供給し、スキージ17にてメタル版12上の貫通孔13から鉛フリー半田20を押し出し回路基板1上の電極10上に鉛フリー半田20を供給する。供給後、ほぼ垂直にメタル版12を回路基板1から引き上げて回路基板1上の電極10へ鉛フリー半田20の供給が完了する。
【0019】
次に図3(c)で示すように抵抗、コンデンサ、コイル、半導体、水晶などの実装部品3を鉛フリー半田20を供給した電極10上に搭載する。実装部品3を搭載後の回路基板1をリフロー炉に入れて加熱し、鉛フリー半田20を溶融させることにより回路基板1に実装部品3を接続させる。
【0020】
リフロー後、図3(d)に示すように回路基板1の表面に残ったフラックスを洗浄する。フラックスは、超音波洗浄機26中にアルコール系又は界面活性剤を含んだ洗浄液25中に浸漬して、超音波洗浄を行う。洗浄装置としては、超音波洗浄機26に限らず、洗浄機中で洗浄液25の水流を作り、繰り返し回路基板1の実装面に洗い流す方法でも良い。続いて、純水にて十分な洗浄を行い乾燥する。この乾燥で回路基板1に吸収された水分を取り除き、次の封止工程で回路基板1の内部から放出される水蒸気により封止体4と回路基板1の表面の密着強度を劣化させないために少なくとも125℃、2時間以上の条件で乾燥させる。
【0021】
次に図3(e)に示すプラズマ発生装置27で活性化させた酸素を回路基板1の実装表面に照射し、その表面上に残渣として付着している有機物を分解することで回路基板1の表面上に水酸基(−OH)を付着させ次工程のモールド工程で形成する封止体4と回路基板1との密着強度を更に高めることができる。
【0022】
次に図4(f)に封止工程を示す。固定台18に回路基板1を置き固定枠15で固定する。そして枠体19を固定枠15に乗せ回路基板1上の実装部品3を覆うようにエポキシ系樹脂からなる封止体4をスキージ17で埋め込む。この固定枠15により回路基板1の外周に形成したグランドパターン5は封止体4に覆われておらず回路基板1の外形より小さくなるように形成している。封止体4はエポキシ樹脂と平均粒径が100μm以下のフィラーと硬化剤からなっている。フィラーとしてはシリカ、水酸化アルミ等の無機物が用いられる。硬化剤としては酸無水物、アミン系等の硬化剤を実装部品3の機械的特性に応じて選択して用いる。
【0023】
枠体19の厚みは実装部品3の全体を覆うため複数の実装部品3の中で高さが一番高い部品の高さ+0.2mm以上に設定している。これは枠体19の中に封止体4を供給した場合、枠体19に接触する周辺部より中央部の方が低くなりメニスカスの状態になるからである。
【0024】
そこで、回路基板1の中央部でも実装部品3を確実に封止するために、回路基板1からの高さが一番高い実装部品3の高さ+0.2mm以上の枠体19の設計が必要となる。
【0025】
また、通常エポキシ樹脂からなる封止体4で実装部品3を封止する場合、エポキシ樹脂を供給後平面方向にエポキシ樹脂がダレるため実装部品3全体を封止する場合にはエポキシ樹脂は500から1000Pa・sの粘度のエポキシ樹脂を使用する必要性がある。
【0026】
そしてエポキシ樹脂からなる封止体4を部品周辺へ気泡無く充填させるためにエポキシ樹脂を供給後、真空チャンバーにて脱泡を行う。脱泡は1Torr以下の真空度にすることでエポキシ樹脂の粘性によりエポキシ樹脂内部に封じ込められていた気泡を脱泡することができる。
【0027】
更に、気泡を無くすためには、エポキシ樹脂供給後に真空度を上げ脱泡するだけでなくエポキシ樹脂の供給前に真空チャンバー中で、1Torr以下の真空度にした状態でエポキシ樹脂の供給を行う。
【0028】
その後、真空度を100Torr以上に上げ、初期の真空度との差圧でペースト中の気泡を無くすことができる。このように真空度を上げたり下げたりを繰り返すことで、更に気泡を少なくすることができる。
【0029】
エポキシ樹脂の供給を終了した後、100℃の炉に1時間、更に150℃の炉に3時間放置してエポキシ樹脂からなる封止体4の硬化を行う。このように2段階硬化を行うことで封止体4の硬化を徐々に進め封止体4と回路基板1の熱膨張係数差、封止体4の硬化収縮による内部応力を緩和させている。その結果、回路基板1の反りを低減し熱サイクルなどの信頼性を向上することができる。
【0030】
更に前述した150℃の炉に3時間放置して封止体4を硬化した後、0.5℃/分以下で冷却する。このように温度を少しずつ下げることにより回路基板1の反りを更に少なくすることができる。
【0031】
次に、図4(g)に示すようにUV硬化型粘着剤を塗布したフィルム8を封止体4を形成した回路基板1の反対面に貼り付ける。UV硬化型粘着剤は紫外光を照射することで粘着性を消失することができ回路基板1とフィルム8を自在に剥離することができる。他に熱硬化型粘着剤を用いても良い。フィルム8としてはPET、PPS等を使用できる。
【0032】
そして図4(h)はメッキ工程である。回路基板1上の封止体4および露出させた回路基板1の表層の最外周の4辺に形成したグランドパターン5を含めた部分に金属膜2を形成する。
【0033】
これにより金属膜2をグランドパターン5と接地することで金属膜2によるモジュール部品のシールド効果が得られる。
【0034】
本実施の形態において金属膜2はメッキ法により形成する。
【0035】
封止体4の表面にPdによる核付けを行い無電解法により銅メッキを0.5μm形成する。更に、電解法により銅メッキを行い封止体4の表面に緻密な10μmの銅メッキの金属膜2を形成する。
【0036】
封止体4の反対面には、UV粘着剤が付いたフィルム8が貼られている。フィルム8がレジスト膜となって回路基板1の封止体4の反対面には、金属膜2が付着しない。
【0037】
無電解メッキと電解メッキの特徴は、無電解メッキでは、絶縁物上へのメッキ形成ができ、メッキ液が濡れている部分に対しては均一に膜形成できる点にある。但し、膜形成速度が遅い点と3μm以上の厚み形成が困難であり、また、膜厚を厚くすると内部応力が高くなりモールド樹脂層とメッキ層の界面が剥離しやすくなるという欠点がある。そこで、メッキ成長速度が速く厚膜形成ができる電解メッキを組み合わせることにより、低コストで高品質を確保している。
【0038】
このメッキ工法を用いて、この回路基板1の表層の最外周の4辺に形成したグランドパターン5と実装部品3を封止体4で形成し金属膜2と接続することにより図5のシールド効果を示す検討グラフによると、封止体4を形成し金属膜2を形成しない状態を基準に金属ケースを取り付けた場合と回路基板1の4つのコーナ部にグランドパターン5を設けた場合と回路基板1の最外周4辺にグランドパターン5を設けた場合を比較すると回路基板1の4辺にグランドパターン5を設けることで金属ケースを取り付けた以上のシールド効果が発揮できる。このことからグランドパターン5と数箇所で金属膜2とを接続するよりも4辺で接続することにより、確実なシールド効果を得ることができる。
【0039】
また、金属膜2の膜厚は略1ミクロン以上であれば充分なシールド効果が得られている。この金属膜2の形成は、封止体4の表面に無電解メッキで銅の金属膜2を形成後、更にその表面を電解メッキで銅の金属膜2を形成し金属膜2を更に緻密なものにすることでグランドパターン5との接続抵抗を低くし封止体4に形成した金属膜2のグランド電位を安定化することでシールド効果を高めている。
【0040】
金属材質としては、Cu,Ag等の導電率の高い材質で金属膜2の導体抵抗を下げることで、良好なシールド効果が得られる。逆に、Ni等の導電率が低い材料においては、効率的なシールド効果は得られない。
【0041】
なお封止体4の表面に金属膜を作成する方法として、メッキ法だけでなく蒸着法、スパッタリング法などの工法を用いてもよい。
【0042】
更に金属膜表面に防錆層を形成することでモジュール部品の耐環境性を高めている。防錆層としては耐熱温度が180℃以上ある樹脂コーティング材をコーティングして形成する。また、Sn,Ni等の金属層をメッキ法やスパッタリング法などで形成してもよい。
【0043】
次に、封止体4の反対面に貼り付けたフィルム8に紫外光を照射することでフィルム8に塗布したUV硬化型粘着剤を硬化させ回路基板1よりフィルム8を剥離させてモジュール部品を完成させる。
【0044】
(実施の形態2)
本発明の実施の形態2におけるモジュール部品の製造方法は実施の形態1で説明したモジュール部品を複数個を一括製作する場合について説明する。
【0045】
図6で示すように少なくとも2個以上の単一モジュール用基板を複数個連結して1つにした集合回路基板6の表面には実装部品3を実装するために設けられた電極10が形成されて個々のモジュール用基板の外周にはグランドパターン5が形成されている。
【0046】
図7は鉛フリー半田20を電極10の表面に供給した状態である。図8は実装部品3を搭載し実装した状態を示している。図6から図8に示す実装工程は実施の形態1で説明した実装工程と同じである。図9は集合回路基板6に実装した実装部品3を覆うように封止体4を形成している。図10は切削工程を行った状態を示している。
【0047】
集合回路基板6の個々の回路基板1の表層の最外周の4辺に形成したグランドパターン5上にはコーティングされたエポキシ樹脂からなる封止体4が形成されている。この封止体4を除去するためにこのグランドパターン5の周辺部分をダイシングソー11を用いて格子状に切削し、個々の回路基板1上のグランドパターン5を露出させる。グランドパターン5の露出に関しては、パターン全面を露出するだけでなく、パターンの一部を削り、側面端部だけを露出させても良い。この時、ダイシングソーだけでなくリューター、フライス盤、レーザー加工機などを用いても良い。今回はグランドパターン5が格子状であるためダイシングソーやフライス盤でも加工できるが、異型形状の回路基板1やグランドパターン5が直線でない場合はリューターやレーザー加工機が良い。
【0048】
次に図11に示すように格子状のグランドパターン5の周辺部分の一部を露出させた集合回路基板6上の封止体4および露出させた集合回路基板6の表層の最外周の4辺に格子状に形成したグランドパターン5を含めた部分に金属膜2を形成する。これにより金属膜2をグランドパターン5と接地することで金属膜2によるモジュール部品のシールド効果が得られる。
【0049】
次に図12に示すように封止体4の表面に金属膜2を形成した集合回路基板6をダイシングソー11を用いて個片のモジュール部品に分割する。この時、封止体4を切削したダイシングソーのブレード幅A以下のブレード幅Bを用いることで、図2あるいは図5で示すように金属膜2で覆われた封止体4の投影面積より回路基板1の投影面積の方が大きい構成とし封止体4と回路基板1とに段差を設ける。
【0050】
この段差を設けることで無電解メッキおよび電解メッキで形成した金属膜2の密着性を確保し封止体4およびグランドパターン5と金属膜2の剥離を防止することができる。これにより回路基板1に形成したグランドパターン5と封止体4に設けた金属膜2とを確実に接続し回路基板1の上に形成された実装部品3からなる回路を確実にシールドすることができる。
【0051】
尚、本発明において実装部分にPbフリー半田を用いたが、Agを主成分とするフィラーを混練した導電性ペーストを用いても良い。導電性ペーストを用いることでフラックスを使用せずに実装を行うことができ、洗浄を簡素化することができる。
【0052】
【発明の効果】
以上のように本発明によれば、表層面の最外周にグランドパターンを形成した回路基板に電子部品からなる実装部品を搭載し半田で実装する実装工程と、前記実装部品を搭載した回路基板を洗浄する洗浄工程と、前記実装部品を搭載した回路基板上にエポキシ樹脂を充填して封止体を形成する封止工程と、前記封止体の全表面および回路基板の表面にメッキ層を形成するメッキ工程からなるモジュール部品の製造方法により回路基板と金属膜間の隙間を無くし確実なシールドができるモジュール部品を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1のモジュール部品の斜視図
【図2】本発明の実施の形態1のモジュール部品の断面図
【図3】(a)本発明のモジュール部品の回路基板断面図
(b)本発明の回路基板へ半田供給の断面図
(c)本発明の回路基板への実装部品の搭載断面図
(d)本発明の実装部品搭載の回路基板の洗浄工程図
(e)本発明の回路基板のプラズマ洗浄工程図
【図4】(f)本発明のモジュール部品の封止工程図
(g)本発明の封止体搭載断面図
(h)本発明のモジュール部品のメッキ処理後断面図
【図5】本発明の実施の形態1のモジュール部品のシールド効果比較図
【図6】本発明の実施の形態2の複合回路基板の斜視図
【図7】本発明の実施の形態2の半田供給した複合回路基板の斜視図
【図8】本発明の実施の形態2の実装部品の搭載斜視図
【図9】本発明の実施の形態2の封止体形成した斜視図
【図10】本発明の実施の形態2の封止体をダイシングした断面図および天面図
【図11】本発明の実施の形態2の封止体にメッキ処理をした断面図および天面図
【図12】本発明の実施の形態2のフィルム側からダイシングした断面図および天面図
【図13】従来のモジュール部品の分解斜視図
【符号の説明】
1 回路基板
2 金属膜
3 実装部品
4 封止体
5 グランドパターン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a module component used for various electronic devices, communication devices, and the like.
[0002]
[Prior art]
As shown in FIG. 13, a conventional module component includes a circuit board 21 having at least one mounting component 23 mounted on at least one side, a concave ground electrode 24 provided on a side surface of the circuit board 21, And a metal case 22 provided so as to cover the module, and one end of the metal case 22 is inserted into the concave ground electrode 24 and connected by solder to perform electromagnetic shielding of the module component.
[0003]
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
[0004]
[Patent Document 1]
JP-A-11-330765
[Problems to be solved by the invention]
In the conventional module component, since the metal case 22 is connected to the side surface of the circuit board 21 by soldering, the circuit board 21 needs to have such a thickness that the metal case 22 can stand on its own. In addition, when the metal case 22 hits the mounting component 23 mounted on the circuit board 21, the electric circuit is short-circuited, and a malfunction of the circuit operation occurs.
[0006]
In order to prevent this, the height of the metal case 22 needs to be higher than the height of the mounting component 23, and the circuit pattern formed by the metal case 22 on the surface of the circuit board 21 and the mounting Since a gap is provided between the circuit board 21 and the metal case 22 so as not to come into contact with the component 23, the terminal formed on the metal case 22 is connected to the side terminal portion of the circuit board 21 at several places, making it difficult to reduce the thickness. Only a sufficient shielding effect was obtained.
[0007]
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a method for manufacturing a module component that achieves a reduction in the height of the module component and a sufficient shielding effect.
[0008]
[Means for Solving the Problems]
In order to solve this problem, the present invention relates to a mounting step of mounting a mounting component made of an electronic component on a circuit board having a ground pattern formed on the outermost surface of a surface layer and mounting the mounting component by soldering, and a circuit board mounting the mounting component. A sealing step of forming a sealing body by filling an epoxy resin on a circuit board on which the mounted components are mounted, and a circuit board including the ground pattern from above the sealing body. Cutting a portion, a plating step of forming a plating layer on the entire surface of the sealing body and the surface of the circuit board exposed by the cutting, and mounting the mounted component shielded by forming the plating layer on each of the collective substrates. It is possible to provide a module component including a dividing step of cutting and dividing each single substrate.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, there is provided a mounting step of mounting a mounting component made of an electronic component on a circuit board having a ground pattern formed on an outermost periphery of a surface layer and mounting the mounting component by soldering, and a circuit mounting the mounting component. A washing step of washing the board, a sealing step of filling a circuit board on which the mounted components are mounted with an epoxy resin to form a sealing body, and a plating layer on the entire surface of the sealing body and the surface of the circuit board. This is a method for manufacturing a module component comprising a plating step of forming a metal layer, which eliminates a gap between a circuit board and a metal film and enables reliable shielding.
[0010]
According to a second aspect of the present invention, there is provided a mounting step of mounting a mounting component made of an electronic component on a circuit board having a ground pattern formed on the outermost periphery of a surface layer and mounting the component by soldering, and a circuit mounting the mounting component. A washing step of washing the board, a sealing step of filling the epoxy resin on the circuit board on which the mounted components are mounted to form a sealing body, and a circuit board including the ground pattern from above the sealing body. A cutting step of cutting a part, a plating step of forming a plating layer on the entire surface of the sealing body and a surface of the circuit board exposed by the cutting, and an assembly board in which a mounted component is shielded by forming the plating layer. This is a method for manufacturing module parts that consists of a dividing step of cutting and dividing each single board, and eliminates gaps between the circuit board and the metal film and provides multiple modules at once. It can be produced.
[0011]
According to a third aspect of the present invention, there is provided the module component manufacturing method according to the first or second aspect, wherein a plasma step for attaching a hydroxyl group to the surface of the circuit board is added before the sealing step. In addition, the adhesive strength between the circuit board and the sealing resin can be increased.
[0012]
The invention according to claim 4 of the present invention is the method for manufacturing a module component according to claim 1 or 2, wherein the resin is cured in two stages at different temperatures as a sealing step. Can be provided.
[0013]
The invention according to claim 5 of the present invention is the method for manufacturing a module component according to claim 1 or 2, wherein the plating step comprises a two-stage plating step of an electroplating step after an electroless plating step. The shield characteristics at the boundary between the sealing body and the circuit board can be improved.
[0014]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
(Embodiment 1)
In the module component according to the first embodiment of the present invention, as shown in the perspective view of FIG. 1, a metal film 2 is formed on a circuit board 1 formed of a multilayer board. FIG. 2 shows a sectional view of the module component shown in FIG. As shown in the cross-sectional view, a ground pattern 5 and a wiring pattern 40 are formed on at least two or more wiring layers on the inner and outer layers of the circuit board 1. A ground pattern 5 is formed on the outermost peripheral portion of the surface layer of the circuit board. Further, the wiring pattern 40 on the surface layer is electrically connected to the mounted component 3, and the sealing body 4 is covered so as to cover the mounted component 3. Has formed. By covering the sealing body 4 and the ground pattern 5 with the metal film 2, an electric circuit constituted by the mounting component 3 and the wiring pattern 40 of the circuit board 1 is shielded.
[0016]
The manufacturing process of this module component will be described with reference to FIGS.
[0017]
FIG. 3A shows an electrode 10 provided for mounting the mounting component 3 on the circuit board 1. In FIG. 3B, a metal plate 12 provided with a through pattern having substantially the same shape as the electrode 10 is formed, and the through hole 13 of the metal plate 12 and the electrode 10 on the circuit board 1 are aligned so as to coincide with each other. I do. As the metal plate, a metal plate made of stainless steel having a thickness of 150 microns or less is used.
[0018]
Then, a lead-free solder 20 containing 90% or more of Sn and kneaded with a metal powder and a flux component is supplied onto the aligned metal plate 12, and lead squeegee 17 is applied to the lead through the through hole 13 on the metal plate 12. The free solder 20 is extruded and the lead-free solder 20 is supplied onto the electrodes 10 on the circuit board 1. After the supply, the metal plate 12 is pulled up substantially vertically from the circuit board 1 and the supply of the lead-free solder 20 to the electrodes 10 on the circuit board 1 is completed.
[0019]
Next, as shown in FIG. 3C, the mounting component 3 such as a resistor, a capacitor, a coil, a semiconductor, and a crystal is mounted on the electrode 10 to which the lead-free solder 20 is supplied. The circuit board 1 on which the mounted components 3 are mounted is placed in a reflow furnace and heated, and the lead-free solder 20 is melted to connect the mounted components 3 to the circuit board 1.
[0020]
After the reflow, the flux remaining on the surface of the circuit board 1 is washed as shown in FIG. The flux is immersed in a cleaning liquid 25 containing an alcohol or a surfactant in an ultrasonic cleaning machine 26 to perform ultrasonic cleaning. The cleaning device is not limited to the ultrasonic cleaning device 26, but may be a method in which a water flow of the cleaning liquid 25 is created in the cleaning device and is repeatedly washed on the mounting surface of the circuit board 1. Subsequently, the substrate is sufficiently washed with pure water and dried. In order to prevent the moisture absorbed by the circuit board 1 from being dried by this drying and to prevent the water vapor released from the inside of the circuit board 1 from deteriorating the adhesion strength between the sealing body 4 and the surface of the circuit board 1 in the next sealing step, Dry at 125 ° C. for 2 hours or more.
[0021]
Next, the activated surface of the circuit board 1 is irradiated with oxygen activated by the plasma generator 27 shown in FIG. 3 (e) to decompose organic substances adhering as residues on the surface of the circuit board 1. By attaching a hydroxyl group (-OH) on the surface, the adhesion strength between the sealing body 4 formed in the next molding step and the circuit board 1 can be further increased.
[0022]
Next, FIG. 4F shows a sealing step. The circuit board 1 is placed on the fixing base 18 and fixed with the fixing frame 15. Then, the frame body 19 is placed on the fixed frame 15, and the sealing body 4 made of epoxy resin is embedded with the squeegee 17 so as to cover the mounted components 3 on the circuit board 1. The ground pattern 5 formed on the outer periphery of the circuit board 1 by the fixing frame 15 is not covered with the sealing body 4 and is formed to be smaller than the outer shape of the circuit board 1. The sealing body 4 is made of an epoxy resin, a filler having an average particle diameter of 100 μm or less, and a curing agent. Inorganic substances such as silica and aluminum hydroxide are used as the filler. As the curing agent, a curing agent such as an acid anhydride or an amine is selected and used according to the mechanical properties of the mounted component 3.
[0023]
The thickness of the frame 19 is set to be equal to or more than the height of the component having the highest height among the plurality of mounted components 3 +0.2 mm so as to cover the entire mounted component 3. This is because, when the sealing body 4 is supplied into the frame body 19, the central part is lower than the peripheral part in contact with the frame body 19, and a meniscus state is obtained.
[0024]
Therefore, in order to securely seal the mounted component 3 even in the center portion of the circuit board 1, it is necessary to design a frame 19 that is higher than the height of the mounted component 3 that is the highest from the circuit board 1 +0.2 mm or more. It becomes.
[0025]
When the mounting component 3 is sealed with the sealing body 4 usually made of epoxy resin, the epoxy resin is supplied in the plane direction after the epoxy resin is supplied. It is necessary to use an epoxy resin having a viscosity of from 1000 Pa · s to 1000 Pa · s.
[0026]
Then, after supplying the epoxy resin in order to fill the sealing body 4 made of the epoxy resin around the components without bubbles, the defoaming is performed in a vacuum chamber. Degassing is performed at a degree of vacuum of 1 Torr or less, so that bubbles trapped inside the epoxy resin can be defoamed due to the viscosity of the epoxy resin.
[0027]
Further, in order to eliminate air bubbles, not only the degree of vacuum is increased after the supply of the epoxy resin, but also the degassing is performed, and the epoxy resin is supplied in a vacuum chamber at a vacuum of 1 Torr or less before the supply of the epoxy resin.
[0028]
Thereafter, the degree of vacuum is increased to 100 Torr or more, and bubbles in the paste can be eliminated by a pressure difference from the initial degree of vacuum. By repeatedly increasing and decreasing the degree of vacuum in this manner, the number of bubbles can be further reduced.
[0029]
After the supply of the epoxy resin is completed, the sealing body 4 made of the epoxy resin is cured by leaving it in a furnace at 100 ° C. for 1 hour and further in a furnace at 150 ° C. for 3 hours. By performing the two-stage curing as described above, the curing of the sealing body 4 is gradually progressed, and the difference in thermal expansion coefficient between the sealing body 4 and the circuit board 1 and the internal stress due to the curing shrinkage of the sealing body 4 are alleviated. As a result, it is possible to reduce the warpage of the circuit board 1 and improve the reliability such as a heat cycle.
[0030]
Further, after the sealing body 4 is cured by leaving it in the above-mentioned furnace at 150 ° C. for 3 hours, it is cooled at a rate of 0.5 ° C./min or less. By thus gradually lowering the temperature, the warpage of the circuit board 1 can be further reduced.
[0031]
Next, as shown in FIG. 4 (g), a film 8 coated with a UV-curable adhesive is attached to the opposite surface of the circuit board 1 on which the sealing body 4 is formed. The UV-curable pressure-sensitive adhesive can lose its tackiness by irradiating ultraviolet light, and the circuit board 1 and the film 8 can be peeled freely. Alternatively, a thermosetting adhesive may be used. As the film 8, PET, PPS, or the like can be used.
[0032]
FIG. 4H shows a plating step. The metal film 2 is formed on the portion including the sealing pattern 4 on the circuit board 1 and the ground pattern 5 formed on the four outermost sides of the surface layer of the exposed circuit board 1.
[0033]
Thus, the metal film 2 is grounded to the ground pattern 5, whereby a shielding effect of the module component by the metal film 2 can be obtained.
[0034]
In the present embodiment, the metal film 2 is formed by a plating method.
[0035]
The surface of the sealing body 4 is nucleated with Pd, and copper plating is formed to a thickness of 0.5 μm by an electroless method. Further, copper plating is performed by an electrolytic method to form a dense 10 μm copper-plated metal film 2 on the surface of the sealing body 4.
[0036]
A film 8 with a UV adhesive is stuck on the opposite surface of the sealing body 4. The metal film 2 does not adhere to the surface of the circuit board 1 opposite to the sealing body 4 with the film 8 serving as a resist film.
[0037]
The feature of electroless plating and electrolytic plating is that in electroless plating, plating can be formed on an insulator, and a film can be formed uniformly on a portion where a plating solution is wet. However, there is a drawback in that the film formation speed is slow and it is difficult to form a thickness of 3 μm or more, and when the film thickness is large, the internal stress increases and the interface between the mold resin layer and the plating layer is easily peeled off. Therefore, high quality is ensured at low cost by combining electrolytic plating which can form a thick film at a high plating growth rate.
[0038]
By using this plating method, a ground pattern 5 and mounting components 3 formed on the outermost four sides of the surface layer of the circuit board 1 are formed in a sealing body 4 and connected to the metal film 2 to thereby provide the shielding effect shown in FIG. According to the examination graph, the case where the metal case is attached based on the state where the sealing body 4 is formed and the metal film 2 is not formed, the case where the ground pattern 5 is provided at the four corner portions of the circuit board 1 and the circuit board Compared to the case where the ground patterns 5 are provided on the four outermost sides of the circuit board 1, the provision of the ground patterns 5 on the four sides of the circuit board 1 can provide a more effective shielding effect than when a metal case is attached. For this reason, by connecting the ground pattern 5 and the metal film 2 at four sides rather than connecting the metal pattern 2 at several places, a more reliable shielding effect can be obtained.
[0039]
If the thickness of the metal film 2 is about 1 micron or more, a sufficient shielding effect is obtained. The metal film 2 is formed by forming a copper metal film 2 on the surface of the sealing body 4 by electroless plating, and then forming a copper metal film 2 on the surface by electrolytic plating to make the metal film 2 more dense. By doing so, the connection resistance with the ground pattern 5 is reduced and the ground potential of the metal film 2 formed on the sealing body 4 is stabilized, thereby enhancing the shielding effect.
[0040]
As a metal material, a good shielding effect can be obtained by lowering the conductor resistance of the metal film 2 with a material having high conductivity such as Cu or Ag. Conversely, a material with low conductivity, such as Ni, cannot provide an efficient shielding effect.
[0041]
As a method for forming a metal film on the surface of the sealing body 4, not only a plating method but also a method such as an evaporation method or a sputtering method may be used.
[0042]
Further, by forming a rust-proof layer on the surface of the metal film, the environmental resistance of the module component is improved. The rust prevention layer is formed by coating a resin coating material having a heat resistance temperature of 180 ° C. or higher. Further, a metal layer such as Sn or Ni may be formed by a plating method, a sputtering method, or the like.
[0043]
Next, by irradiating the film 8 adhered to the opposite surface of the sealing body 4 with ultraviolet light, the UV curable adhesive applied to the film 8 is cured, and the film 8 is peeled off from the circuit board 1 to remove the module component. Finalize.
[0044]
(Embodiment 2)
The method for manufacturing a module component according to the second embodiment of the present invention will be described for a case where a plurality of the module components described in the first embodiment are collectively manufactured.
[0045]
As shown in FIG. 6, an electrode 10 provided for mounting the mounting component 3 is formed on a surface of the integrated circuit board 6 in which a plurality of at least two single module substrates are connected into one. A ground pattern 5 is formed on the outer periphery of each module substrate.
[0046]
FIG. 7 shows a state where the lead-free solder 20 is supplied to the surface of the electrode 10. FIG. 8 shows a state where the mounted component 3 is mounted and mounted. The mounting steps shown in FIGS. 6 to 8 are the same as the mounting steps described in the first embodiment. FIG. 9 shows a sealing body 4 formed so as to cover the mounted components 3 mounted on the collective circuit board 6. FIG. 10 shows a state in which the cutting step has been performed.
[0047]
A sealing body 4 made of a coated epoxy resin is formed on a ground pattern 5 formed on the outermost four sides of the surface layer of each circuit board 1 of the collective circuit board 6. In order to remove the sealing body 4, the peripheral portion of the ground pattern 5 is cut into a lattice shape using a dicing saw 11, and the ground pattern 5 on each circuit board 1 is exposed. Regarding the exposure of the ground pattern 5, not only the whole pattern is exposed, but also a part of the pattern may be shaved to expose only the side end. At this time, not only a dicing saw but also a luter, a milling machine, a laser processing machine, or the like may be used. In this case, since the ground pattern 5 has a lattice shape, it can be processed even with a dicing saw or a milling machine. However, when the circuit board 1 having an irregular shape or the ground pattern 5 is not a straight line, a luter or a laser processing machine is preferable.
[0048]
Next, as shown in FIG. 11, the sealing body 4 on the collective circuit board 6 exposing a part of the peripheral portion of the grid-like ground pattern 5 and the outermost four sides of the surface layer of the exposed collective circuit board 6 The metal film 2 is formed in a portion including the ground pattern 5 formed in a lattice shape. Thus, the metal film 2 is grounded to the ground pattern 5, whereby a shielding effect of the module component by the metal film 2 can be obtained.
[0049]
Next, as shown in FIG. 12, the assembled circuit board 6 having the metal film 2 formed on the surface of the sealing body 4 is divided into individual module parts by using a dicing saw 11. At this time, by using a blade width B that is equal to or less than the blade width A of the dicing saw obtained by cutting the sealing body 4, the projected area of the sealing body 4 covered with the metal film 2 as shown in FIG. The projection area of the circuit board 1 is set to be larger, and a step is provided between the sealing body 4 and the circuit board 1.
[0050]
By providing this step, adhesion of the metal film 2 formed by electroless plating and electrolytic plating can be ensured, and peeling of the metal film 2 from the sealing body 4 and the ground pattern 5 can be prevented. As a result, the ground pattern 5 formed on the circuit board 1 and the metal film 2 provided on the sealing body 4 are securely connected, and the circuit composed of the mounting components 3 formed on the circuit board 1 is reliably shielded. it can.
[0051]
Although the Pb-free solder is used for the mounting portion in the present invention, a conductive paste in which a filler containing Ag as a main component is kneaded may be used. By using a conductive paste, mounting can be performed without using flux, and cleaning can be simplified.
[0052]
【The invention's effect】
As described above, according to the present invention, a mounting step of mounting a mounting component made of an electronic component on a circuit board on which a ground pattern is formed on the outermost periphery of a surface layer and mounting it with solder, and a circuit board mounting the mounting component A washing step of washing, a sealing step of forming a sealing body by filling an epoxy resin on the circuit board on which the mounted components are mounted, and forming a plating layer on the entire surface of the sealing body and the surface of the circuit board. By providing a module component manufacturing method including a plating process, it is possible to provide a module component capable of eliminating a gap between a circuit board and a metal film and performing reliable shielding.
[Brief description of the drawings]
FIG. 1 is a perspective view of a module component according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of the module component according to the first embodiment of the present invention. FIG. (B) Cross-sectional view of solder supply to circuit board of the present invention (c) Cross-sectional view of mounting of mounted components on circuit board of the present invention (d) Cleaning process diagram of circuit board mounted with mounted components of the present invention (e) FIG. 4 (f) Sealing process diagram of module component of the present invention (g) Cross-sectional view of mounting of sealing body of the present invention (h) Plating treatment of module component of the present invention FIG. 5 is a cross-sectional view of the module component according to the first embodiment of the present invention. FIG. 6 is a perspective view of the composite circuit board according to the second embodiment of the present invention. FIG. 8 is a perspective view of a composite circuit board supplied with solder 2 according to a second embodiment of the present invention. FIG. 9 is a perspective view in which a sealing body is formed according to the second embodiment of the present invention. FIG. 10 is a cross-sectional view and a top view in which the sealing body according to the second embodiment of the present invention is diced. 11 is a cross-sectional view and a top view of the sealing body according to the second embodiment of the present invention after plating processing. Exploded perspective view of a conventional module part [Explanation of reference numerals]
DESCRIPTION OF SYMBOLS 1 Circuit board 2 Metal film 3 Mounting component 4 Sealing body 5 Ground pattern

Claims (5)

表層面の最外周にグランドパターンを形成した回路基板に電子部品からなる実装部品を搭載し半田で実装する実装工程と、前記実装部品を搭載した回路基板を洗浄する洗浄工程と、前記実装部品を搭載した回路基板上にエポキシ樹脂を充填して封止体を形成する封止工程と、前記封止体の全表面および回路基板の表面にメッキ層を形成するメッキ工程からなるモジュール部品の製造方法。A mounting step of mounting a mounting component made of an electronic component on a circuit board on which a ground pattern is formed on the outermost periphery of the surface layer and mounting the component with solder, a cleaning step of cleaning the circuit board mounting the mounting component, and A method for manufacturing a module component, comprising: a sealing step of forming a sealing body by filling an epoxy resin on a mounted circuit board; and a plating step of forming a plating layer on the entire surface of the sealing body and the surface of the circuit board. . 表層面の最外周にグランドパターンを形成した回路基板に電子部品からなる実装部品を搭載し半田で実装する実装工程と、前記実装部品を搭載した回路基板を洗浄する洗浄工程と、前記実装部品を搭載した回路基板上にエポキシ樹脂を充填して封止体を形成する封止工程と、前記封止体の上から前記グランドパターンを含む回路基板の一部を切削する切削工程と、前記封止体の全表面および切削によって露出した回路基板の表面にメッキ層を形成するメッキ工程と、前記メッキ層の形成によって実装部品がシールドされた集合基板を各単一基板ごとに切削分割する分割工程からなるモジュール部品の製造方法。A mounting step of mounting a mounting component made of an electronic component on a circuit board having a ground pattern formed on the outermost periphery of a surface layer and mounting the component with solder, a cleaning step of cleaning the circuit board mounting the mounting component, and A sealing step of forming a sealing body by filling an epoxy resin on a mounted circuit board; a cutting step of cutting a part of the circuit board including the ground pattern from above the sealing body; From the plating step of forming a plating layer on the entire surface of the body and the surface of the circuit board exposed by cutting, and from the dividing step of cutting and dividing the collective board in which the mounted components are shielded by forming the plating layer for each single board Manufacturing method of modular parts. 封止工程の前に回路基板の表面に水酸基を付着させるためのプラズマ工程を付加した請求項1または請求項2に記載のモジュール部品の製造方法。3. The method for manufacturing a module component according to claim 1, wherein a plasma process for attaching a hydroxyl group to a surface of the circuit board is added before the sealing process. 封止工程として異なる温度で2段階に樹脂を硬化する請求項1または請求項2に記載のモジュール部品の製造方法。The method according to claim 1 or 2, wherein the resin is cured in two stages at different temperatures as a sealing step. メッキ工程が無電解メッキ処理工程後電解メッキ工程の2段階のメッキ工程からなる請求項1または請求項2に記載のモジュール部品の製造方法。3. The method according to claim 1, wherein the plating step comprises a two-stage plating step of an electroplating step after the electroless plating step.
JP2002356407A 2002-12-09 2002-12-09 Manufacturing method of module parts Expired - Fee Related JP3966172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356407A JP3966172B2 (en) 2002-12-09 2002-12-09 Manufacturing method of module parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356407A JP3966172B2 (en) 2002-12-09 2002-12-09 Manufacturing method of module parts

Publications (2)

Publication Number Publication Date
JP2004193187A true JP2004193187A (en) 2004-07-08
JP3966172B2 JP3966172B2 (en) 2007-08-29

Family

ID=32756762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356407A Expired - Fee Related JP3966172B2 (en) 2002-12-09 2002-12-09 Manufacturing method of module parts

Country Status (1)

Country Link
JP (1) JP3966172B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009692A1 (en) 2007-06-29 2008-12-31 TDK Corporation Electronic module and fabrication method thereof
JP2012049502A (en) * 2010-08-27 2012-03-08 Powertech Technology Inc Chip package method
US8247898B2 (en) 2009-02-18 2012-08-21 Panasonic Corporation Semiconductor device and semiconductor device mounted structure
US8546960B2 (en) 2011-01-20 2013-10-01 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device, semiconductor device and mobile communication device
JP2015037195A (en) * 2013-08-16 2015-02-23 印▲鉱▼科技有限公司 Method for manufacturing electronic device, and manufacturing apparatus
US9472428B2 (en) 2013-08-26 2016-10-18 Tdk Corporation Manufacturing method of module components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173948A (en) * 1981-04-20 1982-10-26 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH02312249A (en) * 1989-05-26 1990-12-27 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH10270476A (en) * 1997-03-27 1998-10-09 Matsushita Electric Ind Co Ltd One-face molding apparatus for chip
JPH11163583A (en) * 1997-11-25 1999-06-18 Citizen Electronics Co Ltd Package for electronic parts and manufacture of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173948A (en) * 1981-04-20 1982-10-26 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH02312249A (en) * 1989-05-26 1990-12-27 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH10270476A (en) * 1997-03-27 1998-10-09 Matsushita Electric Ind Co Ltd One-face molding apparatus for chip
JPH11163583A (en) * 1997-11-25 1999-06-18 Citizen Electronics Co Ltd Package for electronic parts and manufacture of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009692A1 (en) 2007-06-29 2008-12-31 TDK Corporation Electronic module and fabrication method thereof
US8247898B2 (en) 2009-02-18 2012-08-21 Panasonic Corporation Semiconductor device and semiconductor device mounted structure
JP2012049502A (en) * 2010-08-27 2012-03-08 Powertech Technology Inc Chip package method
US8546960B2 (en) 2011-01-20 2013-10-01 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device, semiconductor device and mobile communication device
JP2015037195A (en) * 2013-08-16 2015-02-23 印▲鉱▼科技有限公司 Method for manufacturing electronic device, and manufacturing apparatus
CN104377139A (en) * 2013-08-16 2015-02-25 印鋐科技有限公司 Method and apparatus for manufacturing electronic component
US9472428B2 (en) 2013-08-26 2016-10-18 Tdk Corporation Manufacturing method of module components

Also Published As

Publication number Publication date
JP3966172B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP3619395B2 (en) Semiconductor device built-in wiring board and manufacturing method thereof
US8324740B2 (en) Semiconductor device, and method of manufacturing multilayer wiring board and semiconductor device
KR100670751B1 (en) Semiconductor device, semiconductor wafer, semiconductor module and manufacturing method of semiconductor device
CN110010587B (en) Method for manufacturing semiconductor device and semiconductor device
US20090002967A1 (en) Electronic module and fabrication method thereof
CN1146985C (en) Semiconductor device and wiring tape for semiconductor device
JP5503322B2 (en) Manufacturing method of semiconductor device
US20140162411A1 (en) Substrate for mounting semiconductor, semiconductor device and method for manufacturing semiconductor device
JP2014107372A (en) Circuit module and manufacturing method of the same
JP2007123506A (en) Method for manufacturing circuit module
JP2010087490A (en) Semiconductor device and semiconductor device manufacturing method
JP3966172B2 (en) Manufacturing method of module parts
JP3617072B2 (en) Chip carrier
JP4192772B2 (en) Semiconductor chip mounting substrate, manufacturing method thereof, and manufacturing method of semiconductor package
JPH05166985A (en) Manufacture of electronic component m0unting device
JP2005109135A (en) Method for manufacturing module with built-in electronic component
JP4605176B2 (en) Semiconductor mounting substrate, semiconductor package manufacturing method, and semiconductor package
JP2008263234A (en) Semiconductor chip mounting substrate, semiconductor package, and their manufacturing method
JP2000082760A (en) Semiconductor device
JP4103482B2 (en) Semiconductor mounting substrate, semiconductor package using the same, and manufacturing method thereof
JP6009844B2 (en) Relay board and manufacturing method thereof
JP4643055B2 (en) TAB tape carrier manufacturing method
JP4067027B2 (en) Printed wiring board and manufacturing method thereof
JP2007208164A (en) Substrate for semiconductor device, and its manufacturing method
JP2024003147A (en) Substrate for semiconductor device, method of manufacturing the same, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees