JP2004182522A - Reformer for fuel cell - Google Patents

Reformer for fuel cell Download PDF

Info

Publication number
JP2004182522A
JP2004182522A JP2002350552A JP2002350552A JP2004182522A JP 2004182522 A JP2004182522 A JP 2004182522A JP 2002350552 A JP2002350552 A JP 2002350552A JP 2002350552 A JP2002350552 A JP 2002350552A JP 2004182522 A JP2004182522 A JP 2004182522A
Authority
JP
Japan
Prior art keywords
reforming
reformer
reforming catalyst
fuel cell
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002350552A
Other languages
Japanese (ja)
Other versions
JP4245340B2 (en
Inventor
Masataka Kadowaki
正天 門脇
Yukinori Akiyama
幸徳 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002350552A priority Critical patent/JP4245340B2/en
Publication of JP2004182522A publication Critical patent/JP2004182522A/en
Application granted granted Critical
Publication of JP4245340B2 publication Critical patent/JP4245340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reformer for a fuel cell in which a structure that gives high reforming efficiency responding to high temperature even when the reforming reaction is carried out at a high gas space velocity while keeping properly high temperature by adding calories necessary for the reforming reaction in the reformer to the reforming catalyst can be easily obtained at a low cost, which is excellent in long-term stability, and which can be made small in size. <P>SOLUTION: The reformer for a fuel cell is equipped with a reforming catalyst which allows a fuel containing an organic compound having hydrogen atoms in the molecule to react with water to reform the fuel into hydrogen-rich gas, and equipped with a heating means to give calories required for the reforming reaction. The ratio of [reforming catalyst amount (cm<SP>3</SP>)/heat conducting area (cm<SP>2</SP>)] is specified to 0.3 to 0.8. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用改質器に関するものであり、さらに詳しくは、都市ガスなどの原料炭化水素系燃料ガスの水蒸気改質により水素リッチガスを生成して燃料電池などに供給する家庭用の電気出力が1kw級の燃料電池システムを念頭においた燃料電池用改質器に関するものである。
【0002】
【従来の技術】
従来、都市ガスなどの原料炭化水素系燃料ガスを水蒸気改質して水素リッチガスを生成し、得られた水素リッチガスの化学エネルギーを燃料電池によって直接電気エネルギーに変換するシステムが知られている。
【0003】
燃料電池は、水素と酸素を燃料とするものであり、この水素の生成には、天然ガスなどの炭化水素成分、メタノールなどのアルコール、あるいはナフサなどの分子中に水素原子を有する有機化合物を原料とし、水蒸気で改質する方法が広く用いられている。このような水蒸気を用いた改質反応は吸熱反応である。このため、水蒸気改質を行う改質器は、改質反応に必要な熱量を改質用触媒に与えて高温に維持する必要がある。
【0004】
図4に従来の燃料電池用水素発生装置を示す(例えば、特許文献1参照)。燃料電池用水素発生装置30は、原料炭化水素系燃料ガスと水を反応させて水素リッチなガスに改質する改質用触媒31を具備した改質管32と、燃料ガスを改質管32に供給する燃料供給部33と、水を改質管32に供給する水供給部34と、燃焼管35での燃焼用燃料の燃焼により改質反応に必要な熱量を与える加熱手段36と、改質管32から流出する改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成するCO変成器37と、CO変成器37から流出する変成ガス中に含まれる一酸化炭素を空気または酸素と反応させて二酸化炭素にする選択酸化触媒を具備した図示しないCO除去器とを備えている。
図中Sは改質用触媒層断面積(例えば、管径などから誘導される改質用触媒層のガス流れ方向の断面積)、Lは改質用触媒層のガス流れ方向の長さを示す。
【0005】
原料炭化水素系燃料ガスは、水蒸気が添加された後に燃料供給部33から改質管32に送られる。水蒸気は、水蒸気発生器38によりシステム内を流れる冷却水などの水が、例えば加熱手段36で予熱され燃料電池装置の排熱と熱交換されることによって生成される。水蒸気が添加された燃料ガスは改質管32の改質用触媒31と接触して触媒反応(およそ700℃、吸熱反応)により水素に富むガス(水素リッチガス)に水蒸気改質する。生成された水素リッチガスは一酸化炭素を含んでいるため、CO変成器37にて余剰の水蒸気との反応(およそ200〜300℃、発熱反応)により一酸化炭素を二酸化炭素に変成する。CO変成器37から流出する変成ガス中に含まれる一酸化炭素を図示しないCO除去器の選択酸化触媒と接触させて空気または酸素と反応(およそ100〜200℃、発熱反応)させて二酸化炭素にして、一酸化炭素濃度の低い水素リッチガスに改質する。上記のようにして得られた水素リッチガスは、燃料電池39の水素極39aに連続的に供給されて、空気極39bに供給される空気との間で電池反応を起こして発電する。燃料ガスまたは燃料電池39から排出される未反応水素ガスなどの燃焼用燃料を燃焼するバーナ40などからなる加熱手段36を改質管32に取り付け、燃焼管35内での燃焼により改質管32における改質反応に必要な熱量を与え、改質用触媒31の温度を昇温し触媒作用を高めている。
【0006】
【特許文献1】
特開2000−281313号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、改質器で行う改質反応に必要な熱量を改質用触媒に与えて適正な高温に維持して高ガス空間速度で改質反応を行っても高温度に対応する高改質率が得られ長期安定性に優れた燃料電池用改質器を提供することである。
【0008】
【課題を解決するための手段】
前記課題を解決するための本発明の請求項1記載の燃料電池用改質器は、水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備し、前記改質反応に必要な熱量を与える加熱手段を備えた燃料電池用改質器において、
[改質用触媒量(cm )/伝熱面積(cm )]を0.3〜0.8としたことを特徴とする。
【0009】
本発明の燃料電池用改質器は、構造が簡単で安価で、小型化可能であり、[改質用触媒量(cm )/伝熱面積(cm )]を0.3〜0.8とすることにより、改質器で行う改質反応に必要な熱量を改質用触媒に与えて適正な高温に維持して高ガス空間速度で改質反応を行っても高温度に対応する高改質率が得られる。
【0010】
本発明の請求項2記載の燃料電池用改質器は、水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備し、前記改質反応に必要な熱量を与える加熱手段を備えた燃料電池用改質器において、
[改質用触媒層長さL/改質用触媒層断面積S]を7〜38としたことを特徴とする。
【0011】
燃料電池用改質器において、[改質用触媒層長さL/改質用触媒層断面積S](以下、L/Sと称すことがある)を7〜38とすることにより、改質器で行う改質反応に必要な熱量を改質用触媒に与えて適正な高温に維持して高ガス空間速度で改質反応を行っても高温度に対応する高改質率が得られる。
【0012】
本発明の請求項3記載の燃料電池用改質器は、水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備し、前記改質反応に必要な熱量を与える加熱手段を備えた燃料電池用改質器において、
[改質用触媒量(cm )/伝熱面積(cm )]を0.3〜0.8とするとともに、[改質用触媒層長さL/改質用触媒層断面積S]を7〜38としたことを特徴とする。
【0013】
燃料電池用改質器において、[改質用触媒量(cm )/伝熱面積(cm )]を0.3〜0.8とするとともに、L/Sを7〜38とすることにより、改質器で行う改質反応に必要な熱量を改質用触媒により十分に与えて適正な高温に維持して高ガス空間速度で改質反応を行っても高温度に対応する高改質率が得られる。さらに、電気出力が1kw級の家庭用燃料電池システムで要求されるコンパクトさも兼ね備えることになる。
【0014】
【発明の実施の形態】
以下、図面により本発明の実施の形態を詳細に説明する。
(1)改質率と[改質用触媒量(cm )/伝熱面積(cm )]の関係について
なお、伝熱面積とは、改質用触媒が改質管と実質的に接触している部分で、その部分を通して熱の授受を行っている部分の面積を示す。
2重円筒管構造の改質器を用いて[改質用触媒量(cm )/伝熱面積(cm )]の比を(0.3〜1.3)に変化させて下記の改質反応条件でガス空間速度(GHSV=ガス量(cm /hr)/触媒量(cm ))500hr−1、1000hr−1の場合について改質率(%)を求めた結果を図1に示す。
改質用触媒:貴金属系触媒(粒径約1.5〜2.5mmのものと粒径約2.5を超え3.5mmものを使用した。)
[改質用触媒量(cm )/伝熱面積(cm )]の比が0.3〜0.5の場合は粒径約1.5〜2.5mmのものを使用し、[改質用触媒量(cm )/伝熱面積(cm )]の比が0.5を超え1.3の場合は粒径約2.5を超え3.5mmのものを使用した。
燃料ガス:メタン
改質管内径:40mm
改質用触媒層長さ(L):18cm
[改質用触媒量(cm )/伝熱面積(cm )]:0.3〜1.3
S/C:2.5
改質器温度:700℃(改質器のガス出口温度を制御した)
ただし、改質率は改質反応後のガス組成を分析した結果を用いて下記式で計算した(上記の改質反応条件における理論改質率は94.8%である)。
【0015】
改質率(%)=[(CO +COの濃度)/(CO +CO+CH の濃度)]×100
【0016】
図1から、ガス空間速度が500hr−1では、[改質用触媒量(cm )/伝熱面積(cm )]の比が0.3から0.8の範囲でほぼ理論改質率が得られ、ガス空間速度が1000hr−1では、[改質用触媒量(cm )/伝熱面積(cm )]の比が0.3から0.7の範囲でほぼ理論改質率が得られることが判る。
以上から[改質用触媒量(cm )/伝熱面積(cm )]の比は0.3〜0.8、望ましくは0.3〜0.7の範囲が好ましいことが判る。
ここで、[改質用触媒量(cm )/伝熱面積(cm )]の比が0.3未満であると改質管の触媒層厚みが低減し、触媒粒径が1.5〜2.5mmのものを使用しても触媒充填率が低下するので好ましくない。
【0017】
(2)改質率とL/Sの関係について
2重円筒管構造の改質器を用いて改質用触媒量550cm と一定にして、L/Sを(2〜38)に変化させて下記の改質反応条件でガス空間速度500hr−1、1000hr−1の場合について改質率(%)を求めた結果を図2に示す。
改質用触媒:貴金属系触媒(粒径約1.5〜2.5mmのものと粒径約2.5を超え3.5mmものを使用した。)
[L/Sが2〜20の場合は、粒径約1.5〜2.5mmのものを使用し、L/Sが20を超え38の場合は、粒径約2.5を超え3.5mmのものを使用した。
燃料ガス:メタン
改質管内径:40mm
触媒量:550cm
L/S:2〜38
S/C:2.5
改質器温度:700℃(改質器のガス出口温度を制御した)
図2から、ガス空間速度が500hr−1では、L/Sが7から38の範囲でほぼ理論改質率が得られ、ガス空間速度が1000hr−1では、L/Sが10から38の範囲でほぼ理論改質率が得られることが判る。
ここでL/Sが38を超えると、本試験では家庭用の電気出力1kwの燃料電池システムを念頭におき、触媒量を550cm に一定にしたため、触媒層の厚みを1mm変化させただけでL/Sが大きく変化し、また、改質管触媒層長さが5cmを超えたため、コンパクト性に欠けると判断し、実際に使用可能なL/Sの上限値は38程度までである。
以上からL/Sは7〜38、望ましくは10〜38の範囲が好ましいことが判る。
【0018】
(3)改質率と[改質用触媒量(cm )/伝熱面積(cm )]およびL/Sの関係について
2重円筒管構造の改質器を用いて改質用触媒量550cm と一定にして、L/Sを(2〜38)に変化させ、[改質用触媒量(cm )/伝熱面積(cm)]を(0.4〜1.3)に変化させて下記の改質反応条件でガス空間速度1000hr−1の場合について改質率(%)を求めた結果を図3に示す。
改質用触媒:貴金属系触媒(粒径約1.5〜2.5mmのものと粒径約2.5を超え3.5mmものを使用した)
[改質用触媒量(cm )/伝熱面積(cm )]の比が0.3〜0.5の場合は粒径約1.5〜2.5mmのものを使用し、[改質用触媒量(cm )/伝熱面積(cm )]の比が0.5を超え1.3の場合は粒径約2.5を超え3.5mmのものを使用した。
[L/Sが2〜20の場合は、粒径約1.5〜2.5mmのものを使用し、L/Sが20を超え38の場合は、粒径約2.5を超え3.5mmのものを使用した。
燃料ガス:メタン
改質管内径:20、25、30、40、50、60mm
S/C:2.5
改質器温度:700℃(改質器の出口温度を制御した)
【0019】
図3において、丸、四角、三角、菱形、大きい丸、大きい四角はそれぞれ触媒管内径:20、25、30、40、50、60mmの場合の試験結果を示すものであり、黒色は理論改質率(94.8%)が得られたデータを示し、白抜きのものは理論改質率(94.8%)が得られなかったことを示す。また図中×は改質器の高さが高くなり過ぎて小型化できず、家庭用の電気出力1kwの燃料電池システムでは実用的でないと考え、設計のみで試験していないことを示す。
この試験では(改質用触媒量550cm と一定とした)、[改質用触媒量(cm )/伝熱面積(cm )]が0.4以下では改質器の高さが高くなり過ぎて小型化できず、実用的でないので、0.3の試験は行っていない。
【0020】
[改質用触媒量(cm )/伝熱面積(cm )]が0.4〜0.8の範囲でL/Sが7〜38の範囲で理論改質率が得られるが、[改質用触媒量(cm )/伝熱面積(cm )]が0.4〜0.8の範囲であっても、L/Sが38を超えると理論改質率が得られないとともに改質器の高さが高くなり過ぎて小型化できず、実用的でない。
【0021】
また、L/Dが7未満の条件でも理論改質率が得られているが、実際には触媒層長さが短くなりすぎ、少しの水蒸気量の変動やガス量の変動で改質率が変動する。さらに燃料ガスとしてメタンを用いて試験したが、実際のガス中にはイオウ成分が含まれるためイオウ被毒を考慮するとL/Dが7以上がよい。
図1〜3から、[改質用触媒量(cm )/伝熱面積(cm )]が0.3〜0.8の範囲で、かつL/Sが7〜38の範囲とすることが重要であり、それにより、構造を簡単にして小型化できるとともに、改質器で行う改質反応に必要な熱量を改質用触媒により十分に与えて適正な高温に維持して高ガス空間速度で改質反応を行っても高温度に対応する高改質率が得られる。
なお、例えば[改質用触媒量(cm )/伝熱面積(cm )]が0.3とは0.25〜0.34を示し、L/Sが38とは37.5〜38.4を示すものである。
【0022】
より長期安定性を高め、コンパクト性をよりよくするためには、[改質用触媒量(cm )/伝熱面積(cm )]が0.4〜0.7の範囲で、かつL/Sが10〜38の範囲とすることが好ましい。
【0023】
[改質用触媒量(cm )/伝熱面積(cm )]の比が0.3未満では改質管の触媒層厚みが低減し、触媒充填率が低下し、改質器の高さが高くなり過ぎて小型化できず、0.8を超えると伝熱律速となり高改質率が得られない恐れがある。
【0024】
L/Sの比が7未満では触媒層長さが短くなりすぎ、少しの水蒸気量の変動やガス量の変動で改質率が変動し、改質反応に必要な熱量を改質用触媒に十分に与えられず高改質率が得られない恐れがあり、L/Sが38を超えると、触媒層の厚みを1mm変化させただけでL/Dが大きく変化し、また改質器の高さが高くなり過ぎて小型化できない恐れがある。
【0025】
改質器の形式や材質などは特に限定されるものではなく、形式としては例えば図4に示したような2重管構造のもの、平板式構造のもの、多管式構造のものなどいずれでもよい。
改質器の材質はステンレススチールなど改質反応に支障をきたさないものであればいずれも使用できる。
加熱手段につては燃焼管での燃焼用燃料の燃焼により熱量を与える加熱手段の例を示したが、これに限定されるものではない。
【0026】
上記実施の形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮するものではない。又、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
【0027】
【発明の効果】
本発明の請求項1記載の燃料電池用改質器は、水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備し、前記改質反応に必要な熱量を与える加熱手段を備えた燃料電池用改質器において、[改質用触媒量(cm )/伝熱面積(cm )]を0.3〜0.8としたことを特徴とするものであり、構造が簡単で安価で、長期安定性に優れ、小型化可能であり、[改質用触媒量(cm )/伝熱面積(cm )]を0.3〜0.8とすることにより、改質器で行う改質反応に必要な熱量を改質用触媒に与えて適正な高温に維持して高ガス空間速度で改質反応を行っても高温度に対応する高改質率が得られるという顕著な効果を奏する。
【0028】
本発明の請求項2記載の燃料電池用改質器は、水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備し、前記改質反応に必要な熱量を与える加熱手段を備えた燃料電池用改質器において、[改質用触媒層長さL/改質用触媒層断面積S]を7〜38としたことを特徴とするものであり、構造が簡単で安価で、長期安定性に優れ、小型化可能であり、[改質用触媒層長さL/改質用触媒層断面積S]を7〜38とすることにより、改質器で行う改質反応に必要な熱量を改質用触媒に与えて適正な高温に維持して高ガス空間速度で改質反応を行っても高温度に対応する高改質率が得られるという顕著な効果を奏する。
【0029】
本発明の請求項3記載の燃料電池用改質器は、水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備し、前記改質反応に必要な熱量を与える加熱手段を備えた燃料電池用改質器において、[改質用触媒量(cm )/伝熱面積(cm )]を0.3〜0.8とするとともに、[改質用触媒層長さL/改質用触媒層断面積S]を7〜38としたことを特徴とするものであり、このようにすることにより、構造が簡単で安価で、より長期安定性に優れ、より小型化可能であり、改質器で行う改質反応に必要な熱量を改質用触媒により十分に与えて適正な高温に維持して高ガス空間速度で改質反応を行っても高温度に対応する高改質率が得られるという顕著な効果を奏する。
【図面の簡単な説明】
【図1】改質率と[改質用触媒量(cm )/伝熱面積(cm )]との関係を示すグラフである。
【図2】改質率(%)と[改質用触媒層長さL/改質用触媒層断面積S]との関係を示すグラフである。
【図3】[改質用触媒量(cm )/伝熱面積(cm )]と[改質用触媒層長さL/改質用触媒層断面積S]との関係を示すグラフである。
【図4】従来の燃料電池用水素発生装置を示す説明図である。
【符号の説明】
30 燃料電池用水素発生装置
31 改質用触媒
32 改質管
33 燃料供給部
34 水供給部
35 燃焼管
36 加熱手段
37 CO変成器
S 改質用触媒層断面積
L 改質用触媒層長さ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reformer for a fuel cell, and more particularly, to a household electric power generator for producing a hydrogen-rich gas by steam reforming of a raw hydrocarbon fuel gas such as city gas and supplying the gas to a fuel cell or the like. The present invention relates to a fuel cell reformer with a 1 kW class fuel cell system in mind.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is known a system in which a raw hydrocarbon fuel gas such as city gas is steam-reformed to generate a hydrogen-rich gas, and the chemical energy of the obtained hydrogen-rich gas is directly converted into electric energy by a fuel cell.
[0003]
Fuel cells use hydrogen and oxygen as fuels. Hydrogen is produced using hydrocarbon components such as natural gas, alcohols such as methanol, or organic compounds containing hydrogen atoms in molecules such as naphtha. The method of reforming with steam is widely used. Such a reforming reaction using steam is an endothermic reaction. For this reason, the reformer that performs steam reforming needs to provide the amount of heat required for the reforming reaction to the reforming catalyst and maintain the temperature at a high temperature.
[0004]
FIG. 4 shows a conventional hydrogen generator for a fuel cell (for example, see Patent Document 1). The fuel cell hydrogen generator 30 includes a reforming tube 32 having a reforming catalyst 31 for reacting a raw hydrocarbon fuel gas with water to reform the gas into a hydrogen-rich gas; A water supply unit 34 for supplying water to the reforming pipe 32; a heating means 36 for supplying heat required for the reforming reaction by burning combustion fuel in the combustion pipe 35; A CO converter 37 that converts carbon monoxide contained in the reformed gas flowing out of the reforming tube 32 with water to convert it into carbon dioxide, and a carbon monoxide contained in the reformed gas flowing out of the CO converter 37 A CO remover (not shown) provided with a selective oxidation catalyst that reacts with air or oxygen to form carbon dioxide.
In the figure, S is the cross-sectional area of the reforming catalyst layer (for example, the cross-sectional area in the gas flow direction of the reforming catalyst layer derived from the tube diameter or the like), and L is the length of the reforming catalyst layer in the gas flow direction. Show.
[0005]
The raw hydrocarbon fuel gas is sent from the fuel supply unit 33 to the reforming pipe 32 after the steam is added. The steam is generated by water such as cooling water flowing through the system by the steam generator 38, for example, being preheated by the heating means 36 and exchanged with the exhaust heat of the fuel cell device. The fuel gas to which the steam has been added comes into contact with the reforming catalyst 31 in the reforming tube 32 and is steam reformed into a hydrogen-rich gas (hydrogen-rich gas) by a catalytic reaction (about 700 ° C., endothermic reaction). Since the generated hydrogen-rich gas contains carbon monoxide, the CO converter 37 converts carbon monoxide into carbon dioxide by a reaction with excess water vapor (about 200 to 300 ° C., exothermic reaction). The carbon monoxide contained in the shift gas flowing out of the CO shift converter 37 is brought into contact with a selective oxidation catalyst of a CO remover (not shown) to react with air or oxygen (about 100 to 200 ° C., exothermic reaction) to form carbon dioxide. To reform into a hydrogen-rich gas having a low carbon monoxide concentration. The hydrogen-rich gas obtained as described above is continuously supplied to the hydrogen electrode 39a of the fuel cell 39, and generates a battery reaction with the air supplied to the air electrode 39b to generate power. A heating means 36 including a burner 40 for burning a fuel for combustion such as fuel gas or unreacted hydrogen gas discharged from a fuel cell 39 is attached to the reforming pipe 32. The amount of heat necessary for the reforming reaction in step (1) is given to raise the temperature of the reforming catalyst 31 to enhance the catalytic action.
[0006]
[Patent Document 1]
JP 2000-281313 A
[Problems to be solved by the invention]
An object of the present invention is to provide a reforming catalyst with an amount of heat necessary for a reforming reaction performed in a reformer to maintain a proper high temperature and perform a reforming reaction at a high gas space velocity so as to correspond to a high temperature. An object of the present invention is to provide a reformer for a fuel cell, which has a high reforming rate and is excellent in long-term stability.
[0008]
[Means for Solving the Problems]
The fuel cell reformer according to claim 1 of the present invention for solving the above-mentioned problem reforms a fuel containing an organic compound having a hydrogen atom in a molecule with water and reforms it into a hydrogen-rich gas. A fuel cell reformer comprising a reforming catalyst and a heating means for providing a calorie necessary for the reforming reaction,
[Reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is set to 0.3 to 0.8.
[0009]
The fuel cell reformer of the present invention has a simple structure, is inexpensive, can be miniaturized, and has a [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] of 0.3 to 0.1. By setting it to 8, the amount of heat required for the reforming reaction performed in the reformer is given to the reforming catalyst to maintain an appropriate high temperature, and even if the reforming reaction is performed at a high gas space velocity, it can cope with a high temperature. A high reforming rate is obtained.
[0010]
The reformer for a fuel cell according to claim 2 of the present invention includes a reforming catalyst for reforming a fuel containing an organic compound having a hydrogen atom in a molecule with water and reforming it into a hydrogen-rich gas. In a fuel cell reformer provided with a heating means for giving a calorie necessary for the reforming reaction,
[Length L of reforming catalyst layer / Section area S of reforming catalyst layer] is 7 to 38.
[0011]
In the reformer for a fuel cell, the reforming is performed by setting [length L of reforming catalyst layer / cross-sectional area S of reforming catalyst layer] (hereinafter sometimes referred to as L / S) to 7 to 38. Even if the reforming reaction is carried out at a high gas space velocity by supplying the amount of heat necessary for the reforming reaction performed in the reactor to the reforming catalyst and maintaining the temperature at an appropriate high temperature, a high reforming rate corresponding to the high temperature can be obtained.
[0012]
The fuel cell reformer according to claim 3 of the present invention includes a reforming catalyst for reforming a fuel containing an organic compound having a hydrogen atom in a molecule with water and reforming it into a hydrogen-rich gas. In a fuel cell reformer provided with a heating means for giving a calorie necessary for the reforming reaction,
[Reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is set to 0.3 to 0.8, and [reforming catalyst layer length L / reforming catalyst layer cross-sectional area S]. Is set to 7 to 38.
[0013]
In the fuel cell reformer, the [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is set to 0.3 to 0.8 and L / S is set to 7 to 38. , The amount of heat required for the reforming reaction in the reformer is sufficiently provided by the reforming catalyst to maintain a suitable high temperature, and high reforming that can handle high temperatures even when the reforming reaction is performed at a high gas space velocity Rate is obtained. Furthermore, the compactness required for a household fuel cell system having an electric output of 1 kW class is also provided.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(1) Regarding the relationship between the reforming rate and [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] The heat transfer area means that the reforming catalyst substantially contacts the reforming tube. It shows the area of the part where heat is transferred through that part.
The ratio of [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] was changed to (0.3 to 1.3) using a reformer having a double cylindrical tube structure, and the following modification was performed. gas hourly space velocity in the quality reaction conditions (GHSV = gas volume (cm 3 / hr) / catalyst weight (cm 3)) 500 hr -1, for the case of 1000 hr -1 reforming conversion ratio results was determined (%) in FIG. 1 Show.
Reforming catalyst: noble metal-based catalyst (a catalyst having a particle size of about 1.5 to 2.5 mm and a catalyst having a particle size of about 2.5 to 3.5 mm were used.)
When the ratio of [amount of reforming catalyst (cm 3 ) / heat transfer area (cm 2 )] is 0.3 to 0.5, a catalyst having a particle size of about 1.5 to 2.5 mm is used. When the ratio of the amount of catalyst for quality (cm 3 ) / heat transfer area (cm 2 )] is more than 0.5 and 1.3, the one having a particle size of more than 2.5 and 3.5 mm was used.
Fuel gas: Methane reforming tube inner diameter: 40 mm
Reforming catalyst layer length (L): 18 cm
[Amount of reforming catalyst (cm 3 ) / heat transfer area (cm 2 )]: 0.3 to 1.3
S / C: 2.5
Reformer temperature: 700 ° C (the gas outlet temperature of the reformer was controlled)
However, the reforming rate was calculated by the following equation using the result of analyzing the gas composition after the reforming reaction (the theoretical reforming rate under the above-mentioned reforming reaction conditions is 94.8%).
[0015]
Reforming rate (%) = [(CO 2 + CO concentration) / (CO 2 + CO + CH 4 concentration)] × 100
[0016]
From FIG. 1, when the gas hourly space velocity is 500 hr −1 , the ratio of [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is in the range of 0.3 to 0.8, and the theoretical reforming rate is almost equal. At a gas hourly space velocity of 1000 hr -1 , the ratio of [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is in the range of 0.3 to 0.7. Is obtained.
From the above, it can be seen that the ratio of [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is preferably 0.3 to 0.8, and more preferably 0.3 to 0.7.
Here, when the ratio of [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is less than 0.3, the catalyst layer thickness of the reforming tube is reduced, and the catalyst particle diameter is 1.5. It is not preferable to use a catalyst having a thickness of up to 2.5 mm because the catalyst filling rate is reduced.
[0017]
(2) Regarding the relationship between the reforming rate and L / S The L / S was changed to (2-38) while the reforming catalyst amount was kept constant at 550 cm 3 using a reformer having a double cylindrical tube structure. following the reforming reaction conditions gas space velocity 500 hr -1, the results obtained reforming ratio (%) for the case of 1000 hr -1 shown in Fig.
Reforming catalyst: noble metal-based catalyst (a catalyst having a particle size of about 1.5 to 2.5 mm and a catalyst having a particle size of about 2.5 to 3.5 mm were used.)
[If L / S is 2 to 20, use a particle size of about 1.5 to 2.5 mm; if L / S is more than 20 and 38, use a particle size of about 2.5 to more than 2.5. The thing of 5 mm was used.
Fuel gas: Methane reforming tube inner diameter: 40 mm
Catalyst amount: 550 cm 3
L / S: 2-38
S / C: 2.5
Reformer temperature: 700 ° C (the gas outlet temperature of the reformer was controlled)
From FIG. 2, it can be seen that when the gas hourly space velocity is 500 hr -1 , the L / S is almost in the range of 7 to 38, and when the gas hourly space velocity is 1000 hr -1 , the L / S is in the range of 10 to 38. It can be seen that almost the theoretical reforming rate can be obtained.
Here, when L / S exceeds 38, in this test, a fuel cell system having a household electric output of 1 kW was taken into consideration, and the amount of the catalyst was fixed at 550 cm 3. Therefore, the thickness of the catalyst layer was changed only by 1 mm. Since the L / S greatly changed and the length of the reforming tube catalyst layer exceeded 5 cm, it was determined that the compactness was lacking, and the upper limit of the actually usable L / S was up to about 38.
From the above, it can be seen that L / S is preferably in the range of 7 to 38, preferably 10 to 38.
[0018]
(3) Relationship between Reforming Rate, [Reforming Catalyst Amount (cm 3 ) / Heat Transfer Area (cm 2 )] and L / S Using a Double Cylindrical Tube Reformer 550 cm 3 and then fixed, by changing the L / S to (2-38), the reforming catalyst amount (cm 3) / heat transfer area (cm 2)] in (0.4 to 1.3) FIG. 3 shows the results obtained by changing the reforming rate (%) for the gas space velocity of 1000 hr -1 under the following reforming reaction conditions.
Reforming catalyst: noble metal catalyst (using a particle size of about 1.5 to 2.5 mm and a particle size of about 2.5 to 3.5 mm)
When the ratio of [amount of reforming catalyst (cm 3 ) / heat transfer area (cm 2 )] is 0.3 to 0.5, a catalyst having a particle size of about 1.5 to 2.5 mm is used. When the ratio of the amount of catalyst for quality (cm 3 ) / heat transfer area (cm 2 )] is more than 0.5 and 1.3, the one having a particle size of more than 2.5 and 3.5 mm was used.
[If L / S is 2 to 20, use a particle size of about 1.5 to 2.5 mm; if L / S is more than 20 and 38, use a particle size of about 2.5 to more than 2.5. The thing of 5 mm was used.
Fuel gas: Methane reforming tube inner diameter: 20, 25, 30, 40, 50, 60 mm
S / C: 2.5
Reformer temperature: 700 ° C (the outlet temperature of the reformer was controlled)
[0019]
In FIG. 3, circles, squares, triangles, rhombuses, large circles, and large squares indicate test results when the catalyst tube inner diameter is 20, 25, 30, 40, 50, and 60 mm, respectively, and black indicates theoretical reforming. The data at which the ratio (94.8%) was obtained are shown, and the white ones indicate that the theoretical modification ratio (94.8%) was not obtained. In the figure, x indicates that the height of the reformer was too high to be miniaturized, that it was considered impractical for a household fuel cell system with an electric output of 1 kW, and that it was not designed and tested.
In this study (and the reforming catalyst quantity 550 cm 3 constant), [reforming catalytic amount (cm 3) / heat transfer area (cm 2)] is higher height of the reformer is 0.4 or less Since it was too small to be miniaturized and not practical, the test of 0.3 was not performed.
[0020]
The theoretical reforming rate is obtained when the [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is in the range of 0.4 to 0.8 and L / S is in the range of 7 to 38. Even if the amount of reforming catalyst (cm 3 ) / heat transfer area (cm 2 ) is in the range of 0.4 to 0.8, if L / S exceeds 38, the theoretical reforming rate cannot be obtained and The height of the reformer is too high to reduce the size, and is not practical.
[0021]
Although the theoretical reforming rate is obtained even under the condition that the L / D is less than 7, the catalyst layer length is actually too short, and the reforming rate can be reduced by a slight change in the amount of water vapor or gas. fluctuate. Further, the test was conducted using methane as a fuel gas. However, since the actual gas contains a sulfur component, the L / D is preferably 7 or more in consideration of sulfur poisoning.
From FIGS. 1 to 3, [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is in the range of 0.3 to 0.8, and L / S is in the range of 7 to 38. Therefore, the structure can be simplified and the size can be reduced, and the amount of heat required for the reforming reaction in the reformer is sufficiently given to the reforming catalyst to maintain an appropriate high temperature to maintain a high gas space. Even if the reforming reaction is performed at a high speed, a high reforming rate corresponding to a high temperature can be obtained.
In addition, for example, [the amount of reforming catalyst (cm 3 ) / heat transfer area (cm 2 )] is 0.3 to indicate 0.25 to 0.34, and L / S is 38 is 37.5 to 38. .4.
[0022]
In order to enhance the long-term stability and improve the compactness, the [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is in the range of 0.4 to 0.7 and L / S is preferably in the range of 10 to 38.
[0023]
If the ratio of [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is less than 0.3, the catalyst layer thickness of the reforming tube decreases, the catalyst filling rate decreases, and the If the ratio exceeds 0.8, heat transfer is rate-determined and a high reforming rate may not be obtained.
[0024]
If the L / S ratio is less than 7, the length of the catalyst layer becomes too short, and the reforming rate fluctuates due to slight fluctuations in the amount of steam or gas, and the amount of heat required for the reforming reaction is transferred to the reforming catalyst. When the L / S exceeds 38, the L / D greatly changes only by changing the thickness of the catalyst layer by 1 mm, and the L / D of the reformer may not be obtained. The height may be too high to reduce the size.
[0025]
The type and material of the reformer are not particularly limited. For example, the type may be any of a double tube structure, a flat plate structure, and a multi-tube structure as shown in FIG. Good.
As the material of the reformer, any material such as stainless steel which does not hinder the reforming reaction can be used.
As the heating means, an example of the heating means for providing heat by burning the combustion fuel in the combustion tube has been described, but the heating means is not limited to this.
[0026]
The description of the above embodiments is for describing the present invention, and does not limit the invention described in the claims or reduce the scope thereof. Further, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.
[0027]
【The invention's effect】
The fuel cell reformer according to claim 1 of the present invention includes a reforming catalyst for reacting a fuel containing an organic compound having a hydrogen atom in a molecule with water and reforming it into a hydrogen-rich gas. In a reformer for a fuel cell provided with a heating means for providing heat required for the reforming reaction, [amount of reforming catalyst (cm 3 ) / heat transfer area (cm 2 )] is set to 0.3 to 0.1. 8, which has a simple structure, is inexpensive, has excellent long-term stability, can be miniaturized, and has a capacity of [reforming catalyst (cm 3 ) / heat transfer area (cm 2 )]. Is set to 0.3 to 0.8, the amount of heat required for the reforming reaction performed in the reformer is given to the reforming catalyst, and the reforming reaction is performed at a high gas space velocity while maintaining a proper high temperature. However, there is a remarkable effect that a high reforming rate corresponding to a high temperature can be obtained.
[0028]
The reformer for a fuel cell according to claim 2 of the present invention includes a reforming catalyst for reforming a fuel containing an organic compound having a hydrogen atom in a molecule with water and reforming it into a hydrogen-rich gas. In the reformer for a fuel cell provided with a heating means for giving a calorie necessary for the reforming reaction, [length L of reforming catalyst layer / cross-sectional area S of reforming catalyst layer] is 7 to 38. It has a simple structure, is inexpensive, has excellent long-term stability, can be miniaturized, and has a [reforming catalyst layer length L / reforming catalyst layer cross-sectional area S] of 7 to 38. By providing the amount of heat necessary for the reforming reaction performed in the reformer to the reforming catalyst and maintaining a suitable high temperature, even if the reforming reaction is performed at a high gas space velocity, a high temperature corresponding to the high temperature can be obtained. It has a remarkable effect that a reforming rate can be obtained.
[0029]
The fuel cell reformer according to claim 3 of the present invention includes a reforming catalyst for reforming a fuel containing an organic compound having a hydrogen atom in a molecule with water and reforming it into a hydrogen-rich gas. In a reformer for a fuel cell provided with a heating means for providing heat required for the reforming reaction, [amount of reforming catalyst (cm 3 ) / heat transfer area (cm 2 )] is set to 0.3 to 0.1. 8, and [the length L of the reforming catalyst layer / the cross-sectional area S of the reforming catalyst layer] is 7 to 38, whereby the structure is simplified. It is inexpensive, has better long-term stability, can be made more compact, and provides a sufficient amount of heat required for the reforming reaction performed in the reformer by the reforming catalyst to maintain an appropriate high temperature to achieve a high gas space velocity. This has a remarkable effect that a high reforming rate corresponding to a high temperature can be obtained even when the reforming reaction is performed.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a reforming rate and [amount of reforming catalyst (cm 3 ) / heat transfer area (cm 2 )].
FIG. 2 is a graph showing a relationship between a reforming rate (%) and [reforming catalyst layer length L / reforming catalyst layer cross-sectional area S].
FIG. 3 is a graph showing a relationship between [reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] and [reforming catalyst layer length L / reforming catalyst layer cross-sectional area S]. is there.
FIG. 4 is an explanatory view showing a conventional hydrogen generator for a fuel cell.
[Explanation of symbols]
Reference Signs List 30 hydrogen generator for fuel cell 31 reforming catalyst 32 reforming pipe 33 fuel supply section 34 water supply section 35 combustion pipe 36 heating means 37 CO transformer S reforming catalyst layer cross-sectional area L reforming catalyst layer length

Claims (3)

水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備し、前記改質反応に必要な熱量を与える加熱手段を備えた燃料電池用改質器において、
[改質用触媒量(cm )/伝熱面積(cm )]を0.3〜0.8としたことを特徴とする燃料電池用改質器。
A reforming catalyst for reforming a fuel containing an organic compound having a hydrogen atom in the molecule with water and reforming it into a hydrogen-rich gas; and a heating means for providing a calorie necessary for the reforming reaction. In a fuel cell reformer,
A reformer for a fuel cell, wherein [amount of reforming catalyst (cm 3 ) / heat transfer area (cm 2 )] is 0.3 to 0.8.
水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備し、前記改質反応に必要な熱量を与える加熱手段を備えた燃料電池用改質器において、
[改質用触媒層長さL/改質用触媒層断面積S]を7〜38としたことを特徴とする燃料電池用改質器。
A reforming catalyst for reforming a fuel containing an organic compound having a hydrogen atom in the molecule with water and reforming it into a hydrogen-rich gas; and a heating means for providing a calorie necessary for the reforming reaction. In a fuel cell reformer,
A reformer for a fuel cell, wherein [length L of reforming catalyst layer / cross-sectional area S of reforming catalyst layer] is 7 to 38.
水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備し、前記改質反応に必要な熱量を与える加熱手段を備えた燃料電池用改質器において、
[改質用触媒量(cm )/伝熱面積(cm )]を0.3〜0.8とするとともに、[改質用触媒層長さL/改質用触媒層断面積S]を7〜38としたことを特徴とする燃料電池用改質器。
A reforming catalyst for reforming a fuel containing an organic compound having a hydrogen atom in the molecule with water and reforming it into a hydrogen-rich gas; and a heating means for providing a calorie necessary for the reforming reaction. In a fuel cell reformer,
[Reforming catalyst amount (cm 3 ) / heat transfer area (cm 2 )] is set to 0.3 to 0.8, and [reforming catalyst layer length L / reforming catalyst layer cross-sectional area S]. Is 7 to 38. A reformer for a fuel cell.
JP2002350552A 2002-12-02 2002-12-02 Fuel cell reformer Expired - Fee Related JP4245340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350552A JP4245340B2 (en) 2002-12-02 2002-12-02 Fuel cell reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350552A JP4245340B2 (en) 2002-12-02 2002-12-02 Fuel cell reformer

Publications (2)

Publication Number Publication Date
JP2004182522A true JP2004182522A (en) 2004-07-02
JP4245340B2 JP4245340B2 (en) 2009-03-25

Family

ID=32752726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350552A Expired - Fee Related JP4245340B2 (en) 2002-12-02 2002-12-02 Fuel cell reformer

Country Status (1)

Country Link
JP (1) JP4245340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240916A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Reformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240916A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Reformer

Also Published As

Publication number Publication date
JP4245340B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
Heinzel et al. Reforming of natural gas—hydrogen generation for small scale stationary fuel cell systems
US5458857A (en) Combined reformer and shift reactor
CA2473449C (en) Solid oxide fuel cell system
US7074373B1 (en) Thermally-integrated low temperature water-gas shift reactor apparatus and process
US8211387B2 (en) Anode tailgas oxidizer
JP5400269B2 (en) Reformed gas production method and reformed gas production apparatus
JP2004520694A (en) Fuel cell system
JP4933818B2 (en) Operation method of solid oxide fuel cell system
JP2002208426A (en) Reforming device for fuel cell
JP2001080904A (en) Fuel reformer
JP2002104806A (en) Fuel reformer and fuel cell generator using it
JP5314381B2 (en) Hydrogen production equipment
JP4136624B2 (en) Liquid fuel reforming method and apparatus
JP2004299939A (en) Fuel reformer, and fuel battery generator
JP2004185942A (en) Hydrogen generating device for fuel cell
JPH06325783A (en) Internal reforming type fused carbonate type fuel cell system
JP4245340B2 (en) Fuel cell reformer
JP2004171892A (en) Hydrogen generator for fuel cell
JP2002208425A (en) Fuel reformer for fuel cell
Wang Experimental studies on hydrogen generation by methane autothermal reforming over nickel-based catalyst
JPH02188406A (en) Carbon monoxide converter
JP4687886B2 (en) Hydrogen generator for fuel cell
JP4588224B2 (en) CO converter in reforming system for fuel cell
JP2001189162A (en) Fuel cell system
JPS62246802A (en) Methanol reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees