JP2002104806A - Fuel reformer and fuel cell generator using it - Google Patents

Fuel reformer and fuel cell generator using it

Info

Publication number
JP2002104806A
JP2002104806A JP2000309075A JP2000309075A JP2002104806A JP 2002104806 A JP2002104806 A JP 2002104806A JP 2000309075 A JP2000309075 A JP 2000309075A JP 2000309075 A JP2000309075 A JP 2000309075A JP 2002104806 A JP2002104806 A JP 2002104806A
Authority
JP
Japan
Prior art keywords
fuel
reforming
cylinder
gas
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000309075A
Other languages
Japanese (ja)
Other versions
JP3903710B2 (en
Inventor
Toru Kiyota
透 清田
Shunsuke Oga
俊輔 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000309075A priority Critical patent/JP3903710B2/en
Publication of JP2002104806A publication Critical patent/JP2002104806A/en
Application granted granted Critical
Publication of JP3903710B2 publication Critical patent/JP3903710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel reformer by which both steam reforming of the fuel as a raw material and steam generation for the reforming are carried out simply and efficiently. SOLUTION: The raw material gas is reformed by heating the catalyst 6 which is filled between a first cylinder 2 and a second cylinder 3 with a combustion gas flowing in the first cylinder 2. The pipe line is arranged between the second cylinder 3 and the third cylinder 4 in which the high-temperature reforming gas flows and heats water for reforming in the pipe. The heated water for reforming is introduced to the manifold 9 arranged around the third cylinder 4, passed through the first cylinder 2, then heated to form 100% steam for reforming.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子膜を電
解質として用い、電気化学反応により電気エネルギーを
得る固体高分子型燃料電池装置に係わり、特に、燃料電
池本体に供給する改質ガスを生成する燃料改質器の構成
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell device which uses a solid polymer membrane as an electrolyte to obtain electric energy by an electrochemical reaction, and more particularly to a reformed gas supplied to a fuel cell body. The present invention relates to a configuration of a fuel reformer to be generated.

【0002】[0002]

【従来の技術】燃料電池は、燃料の有する化学エネルギ
ーを機械エネルギーや熱エネルギーを経由することなく
直接電気エネルギーに変換する装置であり、高いエネル
ギー効率が実現可能である。良く知られた燃料電池の形
態は、電解質層を挟んで一対の電極を配置し、一方のア
ノード側電極に水素を含有する燃料ガスを供給し、もう
一方のカソード側電極に酸素を含有する酸化剤ガスを供
給するものであり、これによって両極間で起きる電気化
学反応を利用して起電力を得る。すなわち、このように
反応ガスを供給すると、アノード側電極では次式(1)
の反応が、またカソード側電極では次式(2)の反応が
生じ、燃料電池全体では次式(3)の反応が進行する。
2. Description of the Related Art A fuel cell is a device that directly converts chemical energy of a fuel into electric energy without passing through mechanical energy or heat energy, and can realize high energy efficiency. In a well-known fuel cell configuration, a pair of electrodes are arranged with an electrolyte layer interposed therebetween, a fuel gas containing hydrogen is supplied to one anode side electrode, and an oxidation containing oxygen is supplied to the other cathode side electrode. This supplies an agent gas, whereby an electromotive force is obtained by utilizing an electrochemical reaction occurring between the two electrodes. That is, when the reaction gas is supplied in this way, the following equation (1)
The reaction of the following formula (2) occurs at the cathode-side electrode, and the reaction of the following formula (3) proceeds in the whole fuel cell.

【0003】[0003]

【化1】 H2 →2H+ +2e- (1) (1/2)O2 +2H+ +2e- →H2 O (2) H2 + (1/2)O2 →H2 O (3) 燃料電池は使用する電解質の種類によって分類される
が、固体高分子型燃料電池、リン酸型燃料電池、溶融炭
酸塩型燃料電池等においては、その電解質の性質から、
二酸化炭素を含んだ酸化剤ガスを使用することが可能で
ある。したがって、固体高分子型燃料電池においても、
通常、空気を酸化剤ガスとして用い、メタノールや天然
ガス等の炭化水素系の原燃料ガスを水蒸気改質して生成
した水素に富むガスを燃料ガスとして用いている。この
ため、固体高分子型燃料電池システムには改質器および
CO変成器が組み込まれており、この改質器およびCO
変成器において原燃料ガスの改質を行い、燃料ガスを生
成している。式(4)は、改質器におけるメタンの改質
反応を示したものである。式に見られるように、メタン
の改質反応は吸熱反応であるため、粒状改質触媒を熱媒
体によって 600〜700 ℃に加熱し、水蒸気を添加したメ
タンを流すことによって改質反応が行われる。
Embedded image H 2 → 2H + + 2e (1) (1/2) O 2 + 2H + + 2e → H 2 O (2) H 2 + (1/2) O 2 → H 2 O (3) Fuel Batteries are classified according to the type of electrolyte used.In solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, etc.
It is possible to use an oxidizing gas containing carbon dioxide. Therefore, even in a polymer electrolyte fuel cell,
Usually, air is used as an oxidizing gas, and a hydrogen-rich gas generated by steam reforming a hydrocarbon-based raw fuel gas such as methanol or natural gas is used as a fuel gas. For this reason, a reformer and a CO shift converter are incorporated in the polymer electrolyte fuel cell system.
The reformer reforms the raw fuel gas to generate a fuel gas. Equation (4) shows the methane reforming reaction in the reformer. As can be seen from the equation, since the methane reforming reaction is an endothermic reaction, the reforming reaction is performed by heating the granular reforming catalyst to 600 to 700 ° C with a heating medium and flowing methane with added steam. .

【0004】[0004]

【化2】 CH4 +H2 O→CO+3H2 −206.14 kJ/mol (4) 式(5)は、CO変成器におけるCOの変成反応を示し
たものである。式に見られるように、COの変成反応は
発熱反応であるので、改質器より取出された高温の改質
ガスを冷却して 180〜300 ℃程度のCO変成反応温度に
保持して、COの変成反応が行われる。
Embedded image CH 4 + H 2 O → CO + 3H 2 −206.14 kJ / mol (4) Equation (5) shows a CO shift reaction in the CO shift converter. As seen from the equation, since the CO conversion reaction is an exothermic reaction, the high-temperature reformed gas taken out of the reformer is cooled and maintained at a CO conversion reaction temperature of about 180 to 300 ° C. Is carried out.

【0005】[0005]

【化3】 CO+H2 O→CO2 +H2 +41.17 kJ/mol (5) 図4は、この種の固体高分子型燃料電池装置の反応ガス
供給系、水供給系の基本構成を示すフロー図である。
[Image Omitted] CO + H 2 O → CO 2 + H 2 +41.17 kJ / mol (5) FIG. 4 is a flow chart showing a basic configuration of a reaction gas supply system and a water supply system of this type of polymer electrolyte fuel cell device. FIG.

【0006】本装置では、燃料改質ガスの生成は以下の
ごとく行われる。原料として取込まれた天然ガス、都市
ガス等の原燃料ガスは、まず脱硫器11へと送られ、含
まれる硫黄成分が除去される。硫黄成分が除去された原
燃料ガスは、触媒燃焼器22により加熱された蒸発器2
3より送られた改質用蒸気と混合したのち、燃料改質器
12へと送られる。燃料改質器12には水蒸気改質用の
触媒として貴金属系触媒またはニッケル系触媒が充填さ
れており、改質用蒸気を含んだ原燃料ガスは、燃料改質
器バーナー13により加熱され、触媒の作用によって水
蒸気改質されて水素に富んだ改質ガスが生成される。燃
料改質器12より取出された改質ガスは、CO変成器1
4へ送られる。CO変成器14にはCO変成用触媒、例
えば銅―亜鉛系触媒が充填されており、燃料改質器12
より取出された高温の改質ガスによって 180〜300 ℃程
度の温度に保持されて運転される。この間、水蒸気によ
る改質ガス中のCOの酸化(シフト反応)が起こり、改
質ガス中のCOの濃度は約1%程度へと低減される。C
O変成器14を出た改質ガスは引き続いてCO除去器1
5へと送られる。CO除去器15は、電池冷却水の一部
を温度調節弁20を介して取込み温度制御を行う冷却構
造を備えており、改質ガス中のCOは、空気ブロア17
によって取込まれた空気の一部と混合されて選択酸化さ
れ、CO除去器15を通流後の改質ガス中のCOの濃度
は 10 ppm 程度に低減される。CO除去器15を通流し
た改質ガスは燃料電池本体16のアノード側電極、すな
わち燃料極へと供給されて電気化学反応に寄与する。電
気化学反応に寄与しないで未反応のまま燃料極より排出
された燃料極排ガスは、燃料改質器バーナー13へと送
られ、空気ブロア17によって取込まれた空気の一部と
混合されて燃焼され、燃料改質器12の水蒸気改質用触
媒の加熱に利用されている。
[0006] In the present apparatus, generation of the fuel reformed gas is performed as follows. Raw fuel gas such as natural gas or city gas taken as a raw material is first sent to the desulfurizer 11 to remove the contained sulfur component. The raw fuel gas from which the sulfur component has been removed is supplied to the evaporator 2 heated by the catalytic combustor 22.
After being mixed with the reforming steam sent from 3, it is sent to the fuel reformer 12. The fuel reformer 12 is filled with a noble metal catalyst or a nickel catalyst as a steam reforming catalyst, and the raw fuel gas containing the reforming steam is heated by the fuel reformer burner 13 to form a catalyst. Produces a reformed gas rich in hydrogen. The reformed gas extracted from the fuel reformer 12 is supplied to the CO converter 1
Sent to 4. The CO converter 14 is filled with a catalyst for CO conversion, for example, a copper-zinc catalyst.
It is operated at a temperature of about 180 to 300 ° C by the high temperature reformed gas taken out. During this time, CO in the reformed gas is oxidized by water vapor (shift reaction), and the concentration of CO in the reformed gas is reduced to about 1%. C
The reformed gas exiting the O-transformer 14 is subsequently supplied to the CO remover 1
Sent to 5. The CO remover 15 has a cooling structure for taking in a part of the battery cooling water through the temperature control valve 20 and controlling the temperature. CO in the reformed gas is removed by the air blower 17.
The mixed gas is selectively oxidized by mixing with a part of the air taken in, and the concentration of CO in the reformed gas after flowing through the CO remover 15 is reduced to about 10 ppm. The reformed gas flowing through the CO remover 15 is supplied to the anode electrode of the fuel cell main body 16, that is, the fuel electrode, and contributes to the electrochemical reaction. The anode exhaust gas, which has not been reacted and is discharged from the anode without contributing to the electrochemical reaction, is sent to the fuel reformer burner 13 and mixed with a part of the air taken in by the air blower 17 to be burned. The fuel is used for heating the steam reforming catalyst of the fuel reformer 12.

【0007】一方、改質用蒸気を得るための改質用水
は、流量調節弁21で制御されてCO変成器14へと送
られ、改質ガス中のCOの酸化反応で発生した熱を回収
したのち、燃料改質器12へと送られる。燃料改質器1
2で予備加熱された改質用水は蒸発器23へと送られ、
触媒燃焼器22により所定の温度まで加熱されて 100%
蒸気として、燃料改質器12に供給される原燃料ガスと
混合される。
On the other hand, the reforming water for obtaining the reforming steam is sent to the CO converter 14 under the control of the flow control valve 21 to recover the heat generated by the oxidation reaction of CO in the reformed gas. After that, it is sent to the fuel reformer 12. Fuel reformer 1
The reforming water preheated in 2 is sent to the evaporator 23,
100% heated to a predetermined temperature by the catalytic combustor 22
It is mixed with the raw fuel gas supplied to the fuel reformer 12 as steam.

【0008】なお、リン酸型燃料電池等の運転温度がよ
り高い燃料電池では、燃料電池の排熱を有効活用して改
質用蒸気を得るよう装置が構成されているが、固体高分
子型燃料電池では運転温度が 70 〜 80 ℃と低いので、
燃料電池の排熱により改質用蒸気を得ることは不可能で
あり、図4に示したごとく専用の蒸発器23と触媒燃焼
器22を組み込んで燃料電池発電装置が構成されてい
る。
In a fuel cell such as a phosphoric acid type fuel cell having a higher operating temperature, an apparatus is configured to effectively utilize the exhaust heat of the fuel cell to obtain reforming steam. Since the operating temperature of fuel cells is as low as 70 to 80 ° C,
It is impossible to obtain reforming steam by the exhaust heat of the fuel cell. As shown in FIG. 4, a fuel cell power generator is constructed by incorporating a dedicated evaporator 23 and a catalytic combustor 22.

【0009】[0009]

【発明が解決しようとする課題】上記のように、固体高
分子型燃料電池装置においては、リン酸型燃料電池等の
ように改質用蒸気を燃料電池の排熱を用いて得ることが
できないため、相対的に温度の低いCO除去器15から
温度の高いCO変成器14へ、さらにより温度の高い燃
料改質器12へと改質用水を流して温度を上げ、最終的
に蒸発器23により加熱して改質用蒸気を得ているのが
一般的である。しかしながら、このように蒸発器23な
らびにその加熱源である触媒燃焼器22あるいはバーナ
ーやヒーターを組み込むこととすれば、燃料電池装置全
体としての所要スペースが増大し、コストも高くなる。
As described above, in the polymer electrolyte fuel cell device, the reforming steam cannot be obtained by using the exhaust heat of the fuel cell unlike the phosphoric acid fuel cell and the like. Therefore, the reforming water flows from the CO remover 15 having a relatively low temperature to the CO converter 14 having a relatively high temperature and further to the fuel reformer 12 having a higher temperature to raise the temperature. To obtain the reforming steam. However, if the evaporator 23 and the catalytic combustor 22 as its heating source or the burner or the heater are incorporated as described above, the required space as the whole fuel cell device increases, and the cost also increases.

【0010】この難点を解消するため、上記の蒸発器2
3の機能を最も温度の高い燃料改質器に組み込む試みが
なされている。例えば、特開平 11 −106204号公報に開
示されている水素製造装置においては、水蒸気改質を行
う装置の内部に水を導入し、空気と混合させた原燃料に
導入した水を混合させ、原燃料の部分酸化反応による発
熱を用いて水蒸気を生成する方法を用いている。このよ
うに構成すれば図4に組み込まれたごとき蒸発器23や
触媒燃焼器22は不要となる。しかしながら、この方式
の装置では原燃料に部分酸化反応用の空気と水蒸気発生
用の水を混合して運転するので、原燃料、空気、水のそ
れぞれの流量を精度よく制御する必要があり、また起動
後装置が所定温度に温度上昇するまでの間は別途バーナ
ー等の加熱源を用いる必要がある。さらに本装置では運
転温度の高い触媒層が装置の外面に配置されているの
で、外面から多大の熱が放散されることとなり、熱的効
率が必ずしも良くないという難点がある。
In order to solve this difficulty, the above evaporator 2
Attempts have been made to incorporate the third function into the hottest fuel reformer. For example, in a hydrogen production apparatus disclosed in Japanese Patent Application Laid-Open No. H11-106204, water is introduced into an apparatus for performing steam reforming, and the introduced water is mixed with a raw fuel mixed with air to produce a raw fuel. A method of generating steam using heat generated by a partial oxidation reaction of a fuel is used. With this configuration, the evaporator 23 and the catalytic combustor 22 as shown in FIG. 4 are not required. However, in this type of apparatus, since the raw fuel is operated by mixing air for partial oxidation reaction and water for generating steam, it is necessary to precisely control the flow rates of the raw fuel, air, and water, and It is necessary to use a separate heating source such as a burner until the temperature of the device rises to a predetermined temperature after startup. Furthermore, in the present apparatus, since the catalyst layer having a high operating temperature is arranged on the outer surface of the apparatus, a large amount of heat is dissipated from the outer surface, and the thermal efficiency is not always good.

【0011】本発明は、上記のごとき技術の現状を考慮
してなされたもので、本発明の目的は、専用の蒸発器や
燃焼器を付設しなくとも原燃料の水蒸気改質ならびにそ
れに用いられる水蒸気の発生が簡単かつ効果的に行われ
る燃料改質器を提供し、さらにはこの燃料改質器を組み
込むことによって効果的に構成される固体高分子型燃料
電池発電装置を提供することにある。
The present invention has been made in view of the state of the art as described above, and an object of the present invention is to use steam reforming of raw fuel and its use without a dedicated evaporator or combustor. It is an object of the present invention to provide a fuel reformer in which steam is easily and effectively generated, and to further provide a polymer electrolyte fuel cell power generator which is effectively constructed by incorporating the fuel reformer. .

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、 (1)原燃料ガスを熱媒体により加熱された燃料改質用
触媒によって水素濃度の高い改質ガスへと改質する燃料
改質手段を内部に備え、この燃料改質手段の外側に、導
入した改質用水を加熱して改質用蒸気を発生する改質用
蒸気発生手段を備えて燃料改質器を構成することとす
る。
In order to achieve the above object, the present invention provides: (1) converting a raw fuel gas into a reformed gas having a high hydrogen concentration by a fuel reforming catalyst heated by a heat medium; A fuel reforming means for reforming the fuel, and a reforming steam generating means for heating the introduced reforming water to generate reforming steam outside the fuel reforming means. The container is composed.

【0013】(2)さらに(1)において、改質用蒸気
発生手段の改質用水の加熱を、燃料改質用触媒によって
改質された改質ガスと燃料改質用触媒の加熱に使用後の
熱媒体とにより行うこととし、例えば、(3)最内層に
配された第1の円筒、第1の円筒の外側に配された第2
の円筒、第2の円筒の外側に配された第3の円筒、第3
の円筒の外側に配された第4の円筒の4重円筒を備えて
構成し、第1の円筒の内側に形成される第1の空間に、
加熱された熱媒体を通流し、第1の円筒と第2の円筒と
の間に形成される第2の空間に、燃料改質用触媒を充填
し、かつ一端に原燃料ガスを導入するためのガス導入口
を配し、第2の円筒と第3の円筒との間に形成される第
3の空間に、一端に第2の空間に連通する連通部を配
し、また他端に得られた改質ガスを外部へ取出すガス取
出口を配し、かつ、改質用水を通流させて周囲を流れる
改質ガスによって加熱する、例えばラセン状に巻回され
た第1の配管を配し、第3の円筒と第4の円筒との間に
形成される第4の空間に、上部に第3の空間の第1の配
管に連通する連通部を配し、また下部に改質用蒸気を外
部に取出す蒸気取出口を配し、かつ、第1の空間を通流
後の熱媒体を通流させて周囲を流れる改質用蒸気を加熱
する、例えばラセン状に巻回された第2の配管を配し
て、燃料改質器を構成することとする。
(2) The method according to (1), wherein the heating of the reforming water of the reforming steam generating means is used for heating the reformed gas reformed by the fuel reforming catalyst and the fuel reforming catalyst. For example, (3) the first cylinder disposed in the innermost layer and the second cylinder disposed outside the first cylinder
Cylinder, a third cylinder disposed outside the second cylinder, a third cylinder
A fourth cylinder arranged outside the cylinder of the fourth cylinder, a first cylinder formed inside the first cylinder,
To flow a heated heat medium, fill a second space formed between the first cylinder and the second cylinder with a fuel reforming catalyst, and introduce raw fuel gas into one end. And a communication part communicating with the second space is provided at one end in a third space formed between the second cylinder and the third cylinder, and is provided at the other end. A gas outlet for taking out the reformed gas taken out is provided, and a first pipe wound, for example, in a helical shape, is heated by the reforming gas flowing therethrough through the reforming water. In a fourth space formed between the third cylinder and the fourth cylinder, a communication portion communicating with the first pipe of the third space is disposed at an upper portion, and a reforming portion is provided at a lower portion. A steam outlet for extracting steam is provided, and a heating medium after flowing through the first space is passed through to heat the reforming steam flowing around the space. By disposing the second pipe that is wound around, and to a fuel reformer.

【0014】(4)さらに、(1)、(2)、(3)の
ごとく構成した燃料改質器を組み込んで固体高分子型燃
料電池発電装置を構成することとする。 (5)さらに、また、(1)、(2)、(3)のごとく
構成した燃料改質器の外周にCO変成器を備えた燃料改
質システムを組み込んで固体高分子型燃料電池発電装置
を構成することとする。
(4) Further, a fuel cell power generator is constructed by incorporating a fuel reformer configured as described in (1), (2), and (3). (5) In addition, a fuel cell power generation device incorporating a fuel reforming system having a CO reformer on the outer periphery of the fuel reformer configured as described in (1), (2), (3). Shall be configured.

【0015】(6)さらに、(5)のごとく構成した固
体高分子型燃料電池発電装置において、燃料改質器とC
O変成器の間に断熱層を設けることとする。上記(1)
のごとく、内部に高温での運転が必要な燃料改質手段を
配し、その外側に運転温度が相対的に低い改質用蒸気発
生手段を備えれば、同一の装置で改質用蒸気が得られる
ばかりでなく、装置の外側の温度の低い装置が構成され
るので放熱量が低減され熱効率の高い燃料改質器が得ら
れる。特に上記(2)のように改質用水の加熱に、燃料
改質用触媒によって改質された高温の改質ガスならびに
燃料改質用触媒の加熱に使用された熱媒体を用いれば、
熱が効果的に改質用水の加熱に使用されるので、高い熱
効率が得られる。本構成の燃料改質器は、例えば上記
(3)のごとくに構成することによって具現化される。
(6) Further, in the polymer electrolyte fuel cell power generator constructed as in (5), the fuel reformer and the C
A heat insulating layer is provided between the O transformers. The above (1)
As described above, if the fuel reforming means that needs to be operated at a high temperature is arranged inside and the reforming steam generating means whose operating temperature is relatively low is provided outside, the reforming steam can be generated by the same device. In addition to this, a low-temperature device outside the device is configured, so that the amount of heat radiation is reduced and a fuel reformer with high thermal efficiency is obtained. In particular, if the high-temperature reformed gas reformed by the fuel reforming catalyst and the heat medium used for heating the fuel reforming catalyst are used for heating the reforming water as in (2) above,
Since heat is effectively used for heating the reforming water, high thermal efficiency is obtained. The fuel reformer of this configuration is embodied by, for example, configuring as described in (3) above.

【0016】また、このように構成した燃料改質器を用
いて固体高分子型燃料電池発電装置を構成することとす
れば、改質用蒸気を発生させるための専用の蒸発器や燃
焼器を組み込む必要がなくなるので、装置全体をコンパ
クトに構成することが可能となり、かつ熱効率の向上も
期待される。また、このように構成した燃料改質器の外
周にCO変成器を備えた燃料改質システムを組み込んで
固体高分子型燃料電池発電装置を構成することとすれ
ば、装置全体をよりコンパクトに構成することが可能と
なる。
Further, if a polymer electrolyte fuel cell power generator is constituted by using the fuel reformer thus constituted, a dedicated evaporator or combustor for generating reforming steam is provided. Since there is no need to incorporate them, it is possible to make the entire device compact, and it is expected that thermal efficiency will be improved. In addition, if a solid polymer electrolyte fuel cell power generator is configured by incorporating a fuel reforming system having a CO converter on the outer periphery of the fuel reformer configured as described above, the entire device can be configured more compactly. It is possible to do.

【0017】[0017]

【発明の実施の形態】<実施例1>図1は、本発明の燃
料改質器の第1の実施例の基本構成を示す縦断面図であ
る。図に見られるように本実施例の燃料改質器は4重円
筒構造よりなる。最内層に配された第1の円筒2の内部
に形成された第1の空間の下部にはバーナー1が設置さ
れており、燃料電池本体の燃料極より排出された水素を
含む燃料極排ガスが空気とともに導入され、燃焼され
る。燃焼ガスは原燃料ガス加熱用の熱媒体として第1の
空間を下部より上部へ向かって流れる。
<First Embodiment> FIG. 1 is a longitudinal sectional view showing a basic structure of a first embodiment of a fuel reformer according to the present invention. As shown in the figure, the fuel reformer of the present embodiment has a quadruple cylindrical structure. A burner 1 is provided below a first space formed inside a first cylinder 2 disposed in the innermost layer, and a fuel electrode exhaust gas including hydrogen discharged from a fuel electrode of a fuel cell body is provided. It is introduced with air and burned. The combustion gas flows from the lower part to the upper part in the first space as a heat medium for heating the raw fuel gas.

【0018】第1の円筒2とその外側に配された第2の
円筒3との間に形成された第2の空間には燃料改質用の
触媒6が充填されており、内側の空間を流れる燃焼ガ
ス、すなわち原燃料ガス加熱用の熱媒体により加熱され
る。原燃料ガスは、外部で混合された改質用水蒸気とと
もに上部のガス導入口より触媒層内へと供給され、水素
濃度の高いガスへと改質される。
A second space formed between the first cylinder 2 and a second cylinder 3 disposed outside the first cylinder 2 is filled with a catalyst 6 for fuel reforming. The fuel gas is heated by the flowing combustion gas, that is, the heat medium for heating the raw fuel gas. The raw fuel gas is supplied into the catalyst layer from the upper gas inlet together with the reforming steam mixed outside, and is reformed into a gas having a high hydrogen concentration.

【0019】触媒層で改質され高温となった改質ガス
は、第2の円筒3とその外側の第3の円筒4とで形成さ
れる第3の空間へ下端部より入り、上方へと流れて上部
のガス取出口より取出される。この第3の空間の内部に
は改質用水配管7がラセン状に巻回されており、下部の
水導入口より導入された改質用水はこの改質用水配管7
の中を下部から上部へと流れる間に、高温の改質ガスか
ら熱を受けて温度上昇し、一部は蒸気となり2相流とな
る。これに伴って改質ガスは温度が下降し、十分低い温
度となって取出される。
The reformed gas which has been reformed in the catalyst layer and has a high temperature enters the third space formed by the second cylinder 3 and the third cylinder 4 outside the second cylinder 3 from the lower end portion, and moves upward. It flows and is taken out from the upper gas outlet. A reforming water pipe 7 is spirally wound inside the third space, and the reforming water introduced from a lower water inlet is supplied to the reforming water pipe 7.
While flowing from the lower part to the upper part in the inside, the temperature rises by receiving heat from the high-temperature reformed gas, and part of the gas becomes steam to form a two-phase flow. As a result, the temperature of the reformed gas decreases, and is taken out at a sufficiently low temperature.

【0020】2相流となった改質用水は、第3の円筒4
と最外層の第4の円筒5とで形成される第4の空間の上
部のマニホールド9へと導かれ、マニホールド下板10
に開けられた複数の小さなピンホールを通って、周上均
等に振り分けられ第4の空間の下部へと落下していく。
この下部空間には、第1の空間を熱媒体として流れた燃
焼ガスを通流させる燃焼ガス配管8がラセン状に巻回さ
れており、この空間に落下した改質用水はこの燃焼ガス
配管8と熱接触することによって、燃焼ガスと熱交換し
て加熱され、100%蒸気の状態となって蒸気取出口より
取出される。なお、この燃焼ガス配管は、第3の円筒4
を介しての改質ガスの加熱、ならびに第4の円筒5の温
度上昇を回避するために、第3の円筒4および第4の円
筒5に直接熱接触しないよう空間内に配されている。
The reforming water in the two-phase flow is supplied to the third cylinder 4
And the fourth cylinder 5 of the outermost layer is guided to the upper manifold 9 of the fourth space formed by the lower cylinder 10.
Through a plurality of small pinholes, which are evenly distributed around the circumference, and fall to the lower portion of the fourth space.
In this lower space, a combustion gas pipe 8 for passing the combustion gas flowing through the first space as a heat medium is spirally wound, and the reforming water dropped in this space is filled with the combustion gas pipe 8. As a result of the heat contact with the combustion gas, the heat is exchanged with the combustion gas and the mixture is heated and turned into a 100% steam state, which is taken out from the steam outlet. The combustion gas pipe is connected to the third cylinder 4
In order to avoid the heating of the reformed gas via the first cylinder and the temperature rise of the fourth cylinder 5, the third cylinder 4 and the fourth cylinder 5 are arranged in a space so as not to make direct thermal contact.

【0021】本実施例の構成の燃料改質器においては、
改質ガスと同時に改質用蒸気が得られるばかりでなく、
改質用蒸気の生成に高温の改質ガスならびに燃焼ガスが
効果的に利用されるので熱効率の優れた運転が可能とな
る。図2は、図1に示した第1の実施例の燃料改質器を
組み込んで構成された固体高分子型燃料電池発電装置の
反応ガス供給系、水供給系の基本構成を示すフロー図で
ある。本図において、図4に示した従来例の構成に用い
られているものと同一の機能を有する構成部品には同一
符号が付されている。
In the fuel reformer of this embodiment,
Not only can reforming steam be obtained at the same time as reforming gas,
Since the high-temperature reformed gas and the combustion gas are effectively used for generating the reforming steam, an operation with excellent thermal efficiency can be performed. FIG. 2 is a flow chart showing a basic configuration of a reaction gas supply system and a water supply system of a polymer electrolyte fuel cell power generator constructed by incorporating the fuel reformer of the first embodiment shown in FIG. is there. In this figure, components having the same functions as those used in the configuration of the conventional example shown in FIG. 4 are denoted by the same reference numerals.

【0022】本構成例と従来の構成例との相違点は、従
来例の燃料改質器12、蒸発器23および触媒燃焼器2
2に替わって、新たに本発明の燃料改質器12Aを組み
込んだ点にある。本発明の燃料改質器12Aは改質用蒸
気発生手段を備えているので、温度の低いCO除去器1
5から相対的に温度の高いCO変成器14を経て供給さ
れた改質用水を燃料改質器12Aの内部で改質用蒸気と
することが可能であり、従来のごとき改質用蒸気専用の
蒸発器23および触媒燃焼器22を組み込む必要はな
く、固体高分子型燃料電池発電装置の設置スペースが低
減され、コストダウンが可能となる。
The difference between the present configuration example and the conventional configuration example is that the fuel reformer 12, the evaporator 23 and the catalytic combustor 2 of the conventional example are different.
2 in that a fuel reformer 12A of the present invention is newly incorporated. Since the fuel reformer 12A of the present invention includes the reforming steam generating means, the low temperature CO remover 1
5 can be used as the reforming steam inside the fuel reformer 12A through the CO converter 14 having a relatively high temperature. It is not necessary to incorporate the evaporator 23 and the catalytic combustor 22, so that the installation space of the polymer electrolyte fuel cell power generator can be reduced, and the cost can be reduced.

【0023】<実施例2>図3は、本発明の燃料改質器
の第2の実施例を組み込んだ燃料改質システムの基本構
成を示す縦断面図である。図に見られるように、本燃料
改質システムは、原燃料ガスを水素濃度の高い改質ガス
へと改質する燃料改質手段の外側に改質用水を加熱して
改質用蒸気を発生する改質用蒸気発生手段を備えた燃料
改質器12Bと、その外周に断熱層41を介して配され
たCO変成器14Aとから構成されている。
<Embodiment 2> FIG. 3 is a longitudinal sectional view showing a basic structure of a fuel reforming system incorporating a second embodiment of the fuel reformer of the present invention. As shown in the figure, this fuel reforming system generates reforming steam by heating the reforming water outside the fuel reforming means that reforms the raw fuel gas into a reformed gas with a high hydrogen concentration. The fuel reformer 12B is provided with a reforming steam generating means, and a CO converter 14A disposed on the outer periphery thereof with a heat insulating layer 41 interposed therebetween.

【0024】すなわち、燃料改質器12Bは、基本的
に、内側円筒、中間円筒および外側円筒よりなる三重円
筒構造である。内側円筒の内部の空間の下部にはバーナ
ー1が設置されており、燃料電池本体の燃料極より排出
された水素を含む燃料極排ガスが空気とともに導入さ
れ、燃焼される。燃焼ガスは原燃料ガス加熱用の熱媒体
として最内部空間を下部より上部へと流れ、上端より排
出される。この最内部空間の外側に隣接する内側円筒と
中間円筒とで形成される空間には燃料改質用の触媒6が
充填されており、最内部空間を流れる燃焼ガスにより加
熱されて所定の温度に保持される。原燃料ガスは上部に
設けられた導入口より触媒6の内部へと導かれ、下部へ
流れるに従って加熱され、同時に水素濃度の高い改質ガ
スへと改質される。得られた高温の改質ガスは、下端に
おいて中間円筒と外側円筒により形成される外側空間へ
と導かれ、上方へと流れた後、燃料改質器12Bより排
出される。燃料改質器12Bの外側円筒の外周には、改
質用水を加熱して改質用蒸気を発生するための改質用水
配管7が螺旋状に巻回されており、内側の空間を流れる
高温の改質ガスの熱を有効に利用して改質用蒸気を発生
している。得られた改質用蒸気は、燃料改質器12Bよ
り取出され、外部より送られる原燃料と混合されて改質
触媒層へと導かれる。なお、図に見られるように、改質
用水を改質用水配管7の上部から供給して下方へと送る
構成とし、改質用水の突沸による蒸気の脈動の発生を未
然に防止している。
That is, the fuel reformer 12B basically has a triple cylinder structure including an inner cylinder, an intermediate cylinder, and an outer cylinder. A burner 1 is provided in a lower portion of the space inside the inner cylinder, and a fuel electrode exhaust gas including hydrogen discharged from a fuel electrode of the fuel cell body is introduced together with air and burned. The combustion gas flows through the innermost space from the lower part to the upper part as a heat medium for heating the raw fuel gas, and is discharged from the upper end. The space formed by the inner cylinder and the intermediate cylinder adjacent to the outside of the innermost space is filled with a fuel reforming catalyst 6, and is heated by the combustion gas flowing through the innermost space to a predetermined temperature. Will be retained. The raw fuel gas is guided into the inside of the catalyst 6 from an inlet provided at an upper portion, and is heated as it flows to a lower portion, and is simultaneously reformed into a reformed gas having a high hydrogen concentration. The obtained high-temperature reformed gas is guided to the outer space formed by the intermediate cylinder and the outer cylinder at the lower end, flows upward, and is discharged from the fuel reformer 12B. A reforming water pipe 7 for heating the reforming water to generate the reforming steam is spirally wound around the outer periphery of the outer cylinder of the fuel reformer 12B. The heat of the reformed gas is effectively used to generate reforming steam. The obtained reforming steam is taken out from the fuel reformer 12B, mixed with raw fuel sent from the outside, and guided to the reforming catalyst layer. As shown in the figure, the reforming water is supplied from the upper portion of the reforming water pipe 7 and sent downward, thereby preventing the generation of steam pulsation due to the bumping of the reforming water.

【0025】このように構成された燃料改質器12Bの
外周には、変成触媒42を充填した円筒状のCO変成器
14Aが断熱層41を介して配されている。この断熱層
41は、燃料改質器12Bの熱の外部への放熱を抑えて
有効に改質蒸気発生に利用するのに寄与する。燃料改質
器12Bで改質され、外側空間の上部の排出口より排出
された改質ガスは、図に見られるように、下端の導入口
よりCO変成器14Aの内部へと導かれ、変成触媒42
中を流れたのち上端の排出口より排出される。この間、
変成触媒42の作用によってCOが変成され、CO濃度
の低下した改質ガスが得られる。
On the outer periphery of the fuel reformer 12B thus configured, a cylindrical CO converter 14A filled with a shift catalyst 42 is disposed via a heat insulating layer 41. The heat insulation layer 41 contributes to suppressing the heat radiation of the heat of the fuel reformer 12B to the outside and effectively utilizing the heat for reforming steam generation. The reformed gas reformed in the fuel reformer 12B and discharged from the upper outlet of the outer space is guided to the inside of the CO converter 14A from the inlet at the lower end as shown in FIG. Catalyst 42
After flowing through the inside, it is discharged from the upper outlet. During this time,
CO is converted by the action of the shift catalyst 42, and a reformed gas having a reduced CO concentration is obtained.

【0026】本実施例では、上記のように、改質用水配
管7には上部より改質用水を導入し、下部より高温の改
質用蒸気を取出す方式を採っているが、これに対応し
て、改質用水配管7を加熱する高温の改質ガスを下部よ
り上部へと流して効率的な熱交換が行われるよう配慮し
ている。また、CO変成器は入口側を高温にして反応速
度を上げて多くのCOを処理するとともに、出口打輪を
低温にして平衡反応に従ってCO濃度を低下させること
が必要なために、燃料改質器12Bで改質ガスの温度が
高い下部側にCO変成器14Aの上流側が配置されるよ
う配慮されている。
In this embodiment, as described above, the reforming water pipe 7 has a system in which reforming water is introduced from the upper portion and high-temperature reforming steam is extracted from the lower portion. Thus, a high-temperature reformed gas for heating the reforming water pipe 7 flows from the lower part to the upper part so that efficient heat exchange is performed. In addition, the CO converter requires a high temperature on the inlet side to increase the reaction rate to process a large amount of CO, and also requires a low temperature at the outlet ring to lower the CO concentration according to the equilibrium reaction. Care is taken that the upstream side of the CO converter 14A is arranged on the lower side where the temperature of the reformed gas is high in the converter 12B.

【0027】また、本実施例においては、実施例1に示
した燃料改質器と異なる構成の燃料改質器12Bの外周
に断熱層41を介してCO変成器14Aを配して燃料改
質システムを構成しているが、この燃料改質器12Bに
替わって実施例1に示した燃料改質器を用い、その外周
にCO変成器14Aを配して燃料改質システムを構成し
てもよい。
In the present embodiment, a CO reformer 14A is disposed on the outer periphery of a fuel reformer 12B having a configuration different from that of the fuel reformer shown in the first embodiment via a heat insulating layer 41 to perform fuel reforming. Although the system is configured, the fuel reformer shown in the first embodiment may be used instead of the fuel reformer 12B, and the CO reformer 14A may be arranged around the fuel reformer 12B to form a fuel reforming system. Good.

【0028】なお、特開平 11 −106204号公報に記載の
水素製造装置においても、改質器を中心に置き、CO変
成器を周設する構成としているが、本装置では原燃料と
改質用蒸気との混合物が流れる配管を改質触媒層内に配
置しており、本発明のごとく、燃料改質手段の外側に改
質用水を加熱して改質用蒸気を発生する改質用蒸気発生
手段を備えた、熱効率の高い構成ではない。
The hydrogen production apparatus described in Japanese Patent Application Laid-Open No. H11-106204 also has a configuration in which a reformer is placed at the center and a CO converter is provided around the apparatus. A pipe through which a mixture with steam flows is disposed in the reforming catalyst layer, and as in the present invention, reforming steam is generated outside the fuel reforming means by heating the reforming water to generate reforming steam. It is not a highly efficient configuration with means.

【0029】[0029]

【発明の効果】上述のごとく、本発明においては、燃料
改質器、特に固体高分子型燃料電池発電装置に組み込ん
で用いられる燃料改質器を、請求項1に記載のごとく、
燃料改質手段の外側に改質用蒸気発生手段を備えるもの
としたので、同一の装置で改質用蒸気が得られるばかり
でなく、装置からの放熱量が低減され、熱効率の高い燃
料改質器が得られることとなった。
As described above, according to the present invention, a fuel reformer, in particular, a fuel reformer used by being incorporated in a polymer electrolyte fuel cell power generator, is defined as follows.
Since the reforming steam generation means is provided outside the fuel reforming means, not only the reforming steam can be obtained with the same device, but also the amount of heat radiated from the device is reduced, and the fuel reforming with high thermal efficiency is achieved. Vessel was obtained.

【0030】さらに、請求項2のごとく、燃料改質用触
媒によって改質された高温の改質ガスならびに燃料改質
用触媒の加熱に使用された熱媒体を改質用水の加熱に用
いることとし、例えば請求項3,4のごとく構成すれ
ば、専用の蒸発器や燃焼器を付設しなくとも原燃料の水
蒸気改質ならびにそれに用いられる水蒸気の発生が簡単
かつ効果的に行われる燃料改質器が得られる。
Furthermore, the high-temperature reformed gas reformed by the fuel reforming catalyst and the heat medium used for heating the fuel reforming catalyst are used for heating the reforming water. For example, if the fuel reformer is configured as in claims 3 and 4, the steam reforming of the raw fuel and the generation of steam used for the same can be performed simply and effectively without providing a dedicated evaporator or combustor. Is obtained.

【0031】また、これらの燃料改質器、さらにはこれ
らの燃料改質器の外周にCO変成器を配した燃料改質シ
ステムを組み込んで固体高分子型燃料電池発電装置を構
成すれば、所要スペースが小さく、熱効率の良い装置が
得られる。
Further, if a polymer electrolyte fuel cell power generator is constructed by incorporating these fuel reformers, and furthermore, a fuel reforming system in which a CO converter is arranged on the outer periphery of these fuel reformers, A device with small space and high thermal efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料改質器の第1の実施例の基本構成
を示す縦断面図
FIG. 1 is a longitudinal sectional view showing a basic configuration of a first embodiment of a fuel reformer of the present invention.

【図2】図1に示した第1の実施例の燃料改質器を組み
込んで構成された固体高分子型燃料電池発電装置の反応
ガス供給系、水供給系の基本構成を示すフロー図
FIG. 2 is a flowchart showing a basic configuration of a reaction gas supply system and a water supply system of a polymer electrolyte fuel cell power generator constructed by incorporating the fuel reformer of the first embodiment shown in FIG.

【図3】本発明の燃料改質器の第2の実施例を組み込ん
だ燃料改質システムの基本構成を示す縦断面図
FIG. 3 is a longitudinal sectional view showing a basic configuration of a fuel reforming system incorporating a second embodiment of the fuel reformer of the present invention.

【図4】従来の固体高分子型燃料電池装置の反応ガス供
給系、水供給系の基本構成を示すフロー図
FIG. 4 is a flowchart showing a basic configuration of a reaction gas supply system and a water supply system of a conventional polymer electrolyte fuel cell device.

【符号の説明】[Explanation of symbols]

1 バーナー 2 第1の円筒 3 第2の円筒 4 第3の円筒 5 第4の円筒 6 触媒 7 改質用水配管 8 燃焼ガス配管 9 マニホールド 10 マニホールド下板 11 脱硫器 12A,12B 燃料改質器 13 バーナー 14,14A CO変成器 15 CO除去器 16 燃料電池本体 41 断熱層 42 変成触媒 Reference Signs List 1 burner 2 first cylinder 3 second cylinder 4 third cylinder 5 fourth cylinder 6 catalyst 7 reforming water pipe 8 combustion gas pipe 9 manifold 10 manifold lower plate 11 desulfurizer 12A, 12B fuel reformer 13 Burner 14, 14A CO converter 15 CO remover 16 Fuel cell main body 41 Heat insulation layer 42 Metamorphic catalyst

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EA03 EA06 EB04 EB14 EB24 4G140 EA03 EA06 EB04 EB14 EB24 5H026 AA06 5H027 AA06 BA01 BA09 BA17  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G040 EA03 EA06 EB04 EB14 EB24 4G140 EA03 EA06 EB04 EB14 EB24 5H026 AA06 5H027 AA06 BA01 BA09 BA17

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】導入した原燃料ガスを熱媒体により加熱し
て燃料改質用触媒によって水素濃度の高い改質ガスへと
改質する燃料改質手段を内部に備え、かつ、導入した改
質用水を加熱して改質用蒸気を発生する改質用蒸気発生
手段を前記燃料改質手段の外側に備えた燃料改質器。
1. A fuel reforming means for heating an introduced raw fuel gas by a heat medium and reforming the raw fuel gas into a reformed gas having a high hydrogen concentration by a fuel reforming catalyst. A fuel reformer including a reforming steam generating means for generating reforming steam by heating service water outside the fuel reforming means.
【請求項2】改質用蒸気発生手段の改質用水の加熱が、
燃料改質用触媒によって改質された改質ガスと燃料改質
用触媒の加熱に使用後の熱媒体とにより行われているこ
とを特徴とする請求項1に記載の燃料改質器。
2. The heating of the reforming water by the reforming steam generating means,
The fuel reformer according to claim 1, wherein the reforming is performed by using a reformed gas reformed by the fuel reforming catalyst and a heat medium used for heating the fuel reforming catalyst.
【請求項3】最内層に配された第1の円筒、第1の円筒
の外側に配された第2の円筒、第2の円筒の外側に配さ
れた第3の円筒、第3の円筒の外側に配された第4の円
筒の4重円筒を備えて構成され、 第1の円筒の内側に形成される第1の空間には、加熱さ
れた熱媒体が通流され、 第1の円筒と第2の円筒との間に形成される第2の空間
には、燃料改質用触媒が充填され、かつ一端に原燃料ガ
スを導入するためのガス導入口が配され、 第2の円筒と第3の円筒との間に形成される第3の空間
には、一端に第2の空間に連通する連通部が配され、ま
た他端に得られた改質ガスを外部へ取出すガス取出口が
配され、かつ、改質用水を通流させて周囲を流れる改質
ガスによって加熱する第1の配管が配され、 第3の円筒と第4の円筒との間に形成される第4の空間
には、上部に第3の空間の第1の配管に連通する連通部
が配され、また下部に改質用蒸気を外部に取出す蒸気取
出口が配され、かつ、第1の空間を通流後の熱媒体を通
流させて周囲を流れる改質用蒸気を加熱する第2の配管
が配されていることを特徴とする請求項1または2に記
載の燃料改質器。
3. A first cylinder disposed on the innermost layer, a second cylinder disposed outside the first cylinder, a third cylinder disposed outside the second cylinder, and a third cylinder. And a fourth space formed outside the first cylinder. The first space formed inside the first cylinder allows a heated heat medium to flow therethrough. A second space formed between the cylinder and the second cylinder is filled with a fuel reforming catalyst, and a gas inlet for introducing a raw fuel gas is provided at one end. In a third space formed between the cylinder and the third cylinder, a communication portion communicating with the second space is disposed at one end, and a gas for taking out the obtained reformed gas to the outside is provided at the other end. An outlet is provided, and a first pipe for heating by the reforming gas flowing therethrough through the reforming water is provided, and formed between the third cylinder and the fourth cylinder. In the fourth space to be provided, a communication portion communicating with the first pipe of the third space is provided in an upper portion, and a steam outlet for taking out reforming steam to the outside is provided in a lower portion, and 3. The fuel reformer according to claim 1, further comprising a second pipe configured to heat the reforming steam flowing through the heat medium after flowing through the first space. vessel.
【請求項4】燃料改質器の第3の空間に配された第1の
配管と第4の空間に配された第2の配管が、いずれもラ
セン状に巻回されていることを特徴とする請求項3に記
載の燃料改質器。
4. The fuel reformer according to claim 1, wherein the first pipe disposed in the third space and the second pipe disposed in the fourth space are spirally wound. The fuel reformer according to claim 3, wherein
【請求項5】請求項1乃至4のいずれかに記載の燃料改
質器を組み込んで構成された固体高分子型燃料電池発電
装置。
5. A polymer electrolyte fuel cell power generator incorporating the fuel reformer according to any one of claims 1 to 4.
【請求項6】請求項1乃至4のいずれかに記載の燃料改
質器の外周にCO変成器を備えた燃料改質システムを組
み込んで構成された固体高分子型燃料電池発電装置。
6. A polymer electrolyte fuel cell power generator comprising a fuel reforming system comprising a CO reformer on the outer periphery of the fuel reformer according to any one of claims 1 to 4.
【請求項7】請求項6に記載の固体高分子型燃料電池発
電装置において、燃料改質システムを構成する燃料改質
器とCO変成器の間に断熱層が備えられていることを特
徴とする固体高分子型燃料電池発電装置。
7. The polymer electrolyte fuel cell power generator according to claim 6, wherein a heat insulating layer is provided between the fuel reformer and the CO converter constituting the fuel reforming system. Polymer electrolyte fuel cell power generator.
JP2000309075A 2000-07-25 2000-10-10 Fuel reformer and polymer electrolyte fuel cell power generator using the same Expired - Fee Related JP3903710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000309075A JP3903710B2 (en) 2000-07-25 2000-10-10 Fuel reformer and polymer electrolyte fuel cell power generator using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-223800 2000-07-25
JP2000223800 2000-07-25
JP2000309075A JP3903710B2 (en) 2000-07-25 2000-10-10 Fuel reformer and polymer electrolyte fuel cell power generator using the same

Publications (2)

Publication Number Publication Date
JP2002104806A true JP2002104806A (en) 2002-04-10
JP3903710B2 JP3903710B2 (en) 2007-04-11

Family

ID=26596621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000309075A Expired - Fee Related JP3903710B2 (en) 2000-07-25 2000-10-10 Fuel reformer and polymer electrolyte fuel cell power generator using the same

Country Status (1)

Country Link
JP (1) JP3903710B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288434A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
JP2006059549A (en) * 2004-08-17 2006-03-02 Mitsubishi Materials Corp Fuel cell power generator
JP2006514411A (en) * 2003-02-19 2006-04-27 モーディーン・マニュファクチャリング・カンパニー Three-fluid evaporative heat exchanger
JP2006514416A (en) * 2003-02-28 2006-04-27 モーディーン・マニュファクチャリング・カンパニー Reformate cooling system and method in a fuel processing subsystem
JP2006248864A (en) * 2005-03-11 2006-09-21 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
JP2006302899A (en) * 2005-04-22 2006-11-02 Samsung Sdi Co Ltd Reformer for fuel cell system
WO2007053261A2 (en) * 2005-11-01 2007-05-10 Celanese International Corporation Steam generation apparatus and method
JP2007527842A (en) * 2004-03-06 2007-10-04 ヴェーエス リフォーマー ゲーエムベーハー Compact steam reformer
JP2008243709A (en) * 2007-03-28 2008-10-09 Aisin Seiki Co Ltd Reforming device for fuel cell
JPWO2015002182A1 (en) * 2013-07-01 2017-02-23 住友精密工業株式会社 Evaporating apparatus and fuel cell system using the same
JP2017143077A (en) * 2017-04-10 2017-08-17 ダイニチ工業株式会社 Fuel cell device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514411A (en) * 2003-02-19 2006-04-27 モーディーン・マニュファクチャリング・カンパニー Three-fluid evaporative heat exchanger
JP2006514416A (en) * 2003-02-28 2006-04-27 モーディーン・マニュファクチャリング・カンパニー Reformate cooling system and method in a fuel processing subsystem
JP4738816B2 (en) * 2003-02-28 2011-08-03 モーディーン・マニュファクチャリング・カンパニー Reformate cooling system and method in a fuel processing subsystem
JP4520100B2 (en) * 2003-03-20 2010-08-04 新日本石油株式会社 Hydrogen production apparatus and fuel cell system
JP2004288434A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
JP4857258B2 (en) * 2004-03-06 2012-01-18 ヴェーエス リフォーマー ゲーエムベーハー Compact steam reformer
JP2007527842A (en) * 2004-03-06 2007-10-04 ヴェーエス リフォーマー ゲーエムベーハー Compact steam reformer
JP2006059549A (en) * 2004-08-17 2006-03-02 Mitsubishi Materials Corp Fuel cell power generator
JP4696495B2 (en) * 2004-08-17 2011-06-08 三菱マテリアル株式会社 Fuel cell power generator
JP2006248864A (en) * 2005-03-11 2006-09-21 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
US7842109B2 (en) 2005-04-22 2010-11-30 Samsung Sdi Co., Ltd. Reformer for fuel cell system having increased heat transfer efficiency
JP2006302899A (en) * 2005-04-22 2006-11-02 Samsung Sdi Co Ltd Reformer for fuel cell system
JP2009513481A (en) * 2005-11-01 2009-04-02 セラニーズ・インターナショナル・コーポレーション Steam generating apparatus and method
WO2007053261A3 (en) * 2005-11-01 2007-11-22 Celanese Int Corp Steam generation apparatus and method
WO2007053261A2 (en) * 2005-11-01 2007-05-10 Celanese International Corporation Steam generation apparatus and method
JP2008243709A (en) * 2007-03-28 2008-10-09 Aisin Seiki Co Ltd Reforming device for fuel cell
JPWO2015002182A1 (en) * 2013-07-01 2017-02-23 住友精密工業株式会社 Evaporating apparatus and fuel cell system using the same
JP2017143077A (en) * 2017-04-10 2017-08-17 ダイニチ工業株式会社 Fuel cell device

Also Published As

Publication number Publication date
JP3903710B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
KR100762685B1 (en) reformer and fuel cell system using the same
JP4674099B2 (en) Fuel cell system reformer and fuel cell system including the same
JPH10330101A (en) Hydrogen-manufacturing apparatus and method therefor
JP3903710B2 (en) Fuel reformer and polymer electrolyte fuel cell power generator using the same
JP4953231B2 (en) Hydrogen generator and fuel cell power generator using the same
KR100599735B1 (en) Fuel cell system and reformer
JP4484767B2 (en) Reforming apparatus and fuel cell system
JP2000203802A (en) Reformer
JP4013692B2 (en) Reformer steam generator for fuel cell generator
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP2003187849A (en) Solid polymer fuel cell power generator
JP4210912B2 (en) Fuel reformer and fuel cell power generator
JP2000281311A (en) Reforming device for fuel cell
JP3697955B2 (en) Catalytic combustor and method for raising temperature
JP2004247234A (en) Solid polymer type fuel cell generator and its operating method
JP2004185942A (en) Hydrogen generating device for fuel cell
JP2001143731A (en) Fuel cell system
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP2001146405A (en) Apparatus for reforming fuel and method for operating the same
JP4288581B2 (en) Fuel reformer
JP2002050386A (en) Hydrogen producing device for fuel cell
JP2008204662A (en) Fuel cell power generation system
KR20120074401A (en) Fuel processor of fuel cell
JP2001089106A (en) Method for starting fuel reformer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees