【0001】
【発明の属する技術分野】
本発明は、小型カメラモジュールに関するものである。
【0002】
【従来の技術】
近年、携帯電話、PDA等の小型携帯情報端末へのカメラモジュール搭載に伴いカメラモジュールの小型化、軽量化要求が非常に強くなっている。
【0003】
図1は従来技術によるカメラモジュール正面断面図であり、一般的でありよく知られているカメラモジュールの構成である。カメラモジュール1は、撮像素子2の電極パッド上に形成されているバンプ3と透光性基板4の下面に形成されている配線パターン5が異方導電性フィルム6を利用してフリップチップ実装され電気的に接続されている。透光性基板4の上面には光学フィルター7、レンズユニット8が搭載されている。フレキシブル配線基板9には撮像素子に与える電源に重畳されているノイズを除去するためのコンデンサ10が実装され、一端が透光性基板4に形成された配線パターン5に電気的に接続されている。
【0004】
【発明が解決しようとする課題】
小型カメラモジュールにおいては、極力撮像素子2に近い所に撮像素子に与える電源に重畳されているノイズを除去するためのキャパシタンスを実装しなければならないが、スペースの関係でフレキシブル配線基板9の撮像素子の近い所に実装していた。しかし、撮像素子の直近ではないため、大きな容量のキャパシタンスが必要であり、ノイズも効率良く除去できなかった。
【0005】
【課題を解決するための手段】
透光性基板の一方の面に配線パターンを形成し、配線パターンを形成した面と対向する向きに受光部を備える撮像素子をフリップチップ実装する小型カメラモジュールに於いて、撮像素子をフリップチップ実装する面と相対する面にも配線パターンを形成し、両配線パターンで誘電体である透光性基板に静電容量を持たせ、該静電容量は撮像素子の電源とGND間に形成する小型カメラモジュールとする。
【0006】
【発明の実施の形態】
図2は本発明に係る小型カメラモジュールの正面断面図である。カメラモジュール20は、受光部28を有する撮像素子21の電極パッド上に形成されているバンプ22と透光性基板23に形成されている配線パターン24Bが、異方導電性フィルム25を利用してフリップチップ実装され電気的に接続されている。透光性基板23の上面には光学フィルター31、レンズユニット30が搭載されている。フレキシブル配線基板13の一端は透光性基板23に形成された配線パターン24Bに電気的に接続されている。
【0007】
図3〜図6は本発明の小型カメラモジュールの製造工程を説明するための図であり、図3は本発明に係る透光性基板23の構造を示す上面図(b)と背面図(a)である。図4は透光性基板の側面断面図で有り、図5は透光性基板に撮像素子を搭載した断面図、図6はレンズユニット、フレキシブル配線基板を搭載して小型カメラモジュールが完成した正面断面図である。
【0008】
透光性基板23上の配線パターンは、透光性基板23上にスパッタリングで表裏全面の薄膜を形成し、パターニングして、通常のエッチング法で形成している。静電容量を得るためのパターンは、図3に示すように撮像素子21をフリップチップ実装した際、撮像素子21の受光部28に入射する光を遮らない様に形成する。静電容量を得るためのパターンは、回路構成上必要なキャパシタンスが得られるよう面積を決定する。キャパシタンスを決める要因としては、透光性基板23の誘電率、透光性基板23の板厚、パターン面積があり、自由に選定できる。透光性基板23への薄膜形成はスパッタリングに限らず、付着力が十分得られれば印刷法等で直接配線パターンを形成しても良い。
【0009】
金属からなる配線パターン24A、Bが、絶縁体である透光性基板23の両面に形成され、図4に示すように接続することでキャパシタンスが得られる。
【0010】
撮像素子21の電極パッド部には例えば金やアルミニウム等の材料を用いスタッドバンプでバンプ22が形成されている。バンプ22が形成されている撮像素子21と透光性基板23に形成された配線パターン24Aとが異方導電性フィルム25を介して電気的に接続されている。図5に示すように、撮像素子21に形成されている受光部28は透光性基板23側に対向して実装される。
【0011】
透光性基板23の一辺には、撮像素子21の電極パッド部と電気的接続が成されている配線パターンの24Aの一端が引き出されている。この引き出された配線パターンの端部に形成されたパッドに対応するフレキシブル配線基板13のパッドを異方導電性フィルム25にて電気的に接続する。
【0012】
図6はカメラモジュール20の構成を示している(図2と同じ)。カメラモジュールの上部にはレンズユニット30が搭載されるが、透光性基板23とレンズユニット30の間には光学フィルター31が挿入される。光学フィルタ31は、例えば赤外線を除去する赤外線カットフィルタ、水晶を用いた色偽除去フィルタ等である。
【0013】
【発明の効果】
以上、説明したように本発明によれば、カメラモジュールの小型化を大きく妨げていたキャパシタンス実装の必要がなくなる。
また、ノイズを除去する為のキャパシタンスは、撮像素子の電極に極力近い位置に実装することが、少ない容量のキャパシタンスで効率よくノイズを除去出来る。この点からも本発明によれば、小型化、軽量化を図れると同時に高性能なカメラモジュールを可能にする。
【図面の簡単な説明】
【図1】従来技術によるカメラモジュール正面断面図
【図2】本発明に係る小型カメラモジュールの正面断面図
【図3】本発明に係る透光性基板23の構造を示す上面図(b)と背面図(a)
【図4】透光性基板の側面断面図
【図5】透光性基板に撮像素子を搭載した断面図
【図6】フレキシブル配線基板を搭載して小型カメラモジュールが完成した正面断面図
【符号の説明】
1 カメラモジュール
2 撮像素子
4 透光性基板
5 配線パターン
6 異方導電性フィルム
7 光学フィルタ
8 レンズユニット
9 フレキシブル配線基板
10 キャパシタンス
13 フレキシブル基板
20 カメラモジュール
21 撮像素子
22 バンプ
23 透光性基板
24A 配線パターン
24B 配線パターン
25 異方導電性フィルム
28 受光部
30 レンズユニット
31 光学フィルタ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a small camera module.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the mounting of camera modules on small portable information terminals such as mobile phones and PDAs, demands for downsizing and weight reduction of camera modules have become extremely strong.
[0003]
FIG. 1 is a front sectional view of a camera module according to the prior art, which is a general and well-known configuration of a camera module. In the camera module 1, a bump 3 formed on an electrode pad of an image sensor 2 and a wiring pattern 5 formed on a lower surface of a light-transmitting substrate 4 are flip-chip mounted using an anisotropic conductive film 6. It is electrically connected. An optical filter 7 and a lens unit 8 are mounted on the upper surface of the translucent substrate 4. A capacitor 10 for removing noise superimposed on a power supply applied to the image sensor is mounted on the flexible wiring board 9, and one end is electrically connected to the wiring pattern 5 formed on the light transmitting substrate 4. .
[0004]
[Problems to be solved by the invention]
In the small camera module, it is necessary to mount a capacitance for removing noise superimposed on a power supply applied to the image pickup device as close to the image pickup device 2 as possible. Was implemented near However, since it is not close to the image sensor, a large capacitance is required, and noise cannot be efficiently removed.
[0005]
[Means for Solving the Problems]
In a small camera module in which a wiring pattern is formed on one surface of a light-transmitting substrate and an image pickup device having a light receiving unit in a direction opposite to the surface on which the wiring pattern is formed is flip-chip mounted, the image pickup device is flip-chip mounted A wiring pattern is also formed on the surface opposite to the surface to be formed, and the transparent substrate, which is a dielectric, is provided with capacitance by both wiring patterns, and the capacitance is formed between the power supply of the image sensor and GND. Camera module.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2 is a front sectional view of the small camera module according to the present invention. In the camera module 20, the bumps 22 formed on the electrode pads of the image sensor 21 having the light receiving section 28 and the wiring patterns 24 B formed on the translucent substrate 23 are formed by using the anisotropic conductive film 25. It is flip-chip mounted and electrically connected. An optical filter 31 and a lens unit 30 are mounted on the upper surface of the translucent substrate 23. One end of the flexible wiring board 13 is electrically connected to a wiring pattern 24B formed on the light transmitting substrate 23.
[0007]
3 to 6 are views for explaining the manufacturing process of the small camera module of the present invention, and FIG. 3 is a top view (b) and a rear view (a) showing the structure of the translucent substrate 23 according to the present invention. ). 4 is a cross-sectional side view of the light-transmitting substrate, FIG. 5 is a cross-sectional view in which an image sensor is mounted on the light-transmitting substrate, and FIG. 6 is a front view in which a lens unit and a flexible wiring substrate are mounted to complete a small camera module. It is sectional drawing.
[0008]
The wiring pattern on the light-transmitting substrate 23 is formed by forming a thin film on the entire front and back surfaces of the light-transmitting substrate 23 by sputtering, patterning the thin film, and forming the thin film by a normal etching method. The pattern for obtaining the capacitance is formed so as not to block light incident on the light receiving section 28 of the image sensor 21 when the image sensor 21 is flip-chip mounted as shown in FIG. The area of the pattern for obtaining the capacitance is determined so that the capacitance required for the circuit configuration can be obtained. Factors that determine the capacitance include the permittivity of the translucent substrate 23, the thickness of the translucent substrate 23, and the pattern area, and can be freely selected. The formation of the thin film on the translucent substrate 23 is not limited to sputtering, and a wiring pattern may be directly formed by a printing method or the like if sufficient adhesion is obtained.
[0009]
The wiring patterns 24A and 24B made of metal are formed on both surfaces of the light-transmitting substrate 23 which is an insulator, and the capacitance is obtained by connecting as shown in FIG.
[0010]
The bumps 22 are formed on the electrode pad portions of the imaging element 21 by stud bumps using a material such as gold or aluminum. The imaging element 21 on which the bumps 22 are formed and the wiring pattern 24A formed on the translucent substrate 23 are electrically connected via an anisotropic conductive film 25. As shown in FIG. 5, the light receiving section 28 formed on the image sensor 21 is mounted facing the light transmitting substrate 23 side.
[0011]
On one side of the translucent substrate 23, one end of a wiring pattern 24A that is electrically connected to the electrode pad portion of the image sensor 21 is drawn out. The pads of the flexible wiring board 13 corresponding to the pads formed at the ends of the drawn wiring patterns are electrically connected by the anisotropic conductive film 25.
[0012]
FIG. 6 shows the configuration of the camera module 20 (same as FIG. 2). A lens unit 30 is mounted on the upper part of the camera module, and an optical filter 31 is inserted between the light transmitting substrate 23 and the lens unit 30. The optical filter 31 is, for example, an infrared cut filter that removes infrared rays, a false color removal filter that uses quartz, or the like.
[0013]
【The invention's effect】
As described above, according to the present invention, it is no longer necessary to mount a capacitance, which has largely hindered miniaturization of a camera module.
In addition, when the capacitance for removing noise is mounted at a position as close as possible to the electrode of the imaging element, noise can be efficiently removed with a small capacitance. In this regard, according to the present invention, the size and weight can be reduced, and a high-performance camera module can be realized.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a camera module according to a conventional technique. FIG. 2 is a front sectional view of a small camera module according to the present invention. FIG. 3 is a top view (b) showing the structure of a translucent substrate 23 according to the present invention. Rear view (a)
FIG. 4 is a side cross-sectional view of a light-transmitting substrate. FIG. 5 is a cross-sectional view of a light-transmitting substrate mounted with an image sensor. FIG. 6 is a front cross-sectional view of a completed small camera module mounted with a flexible wiring substrate. Description]
DESCRIPTION OF SYMBOLS 1 Camera module 2 Image sensor 4 Translucent board 5 Wiring pattern 6 Anisotropic conductive film 7 Optical filter 8 Lens unit 9 Flexible wiring board 10 Capacitance 13 Flexible board 20 Camera module 21 Image sensor 22 Bump 23 Translucent board 24A Wiring Pattern 24B Wiring pattern 25 Anisotropic conductive film 28 Light receiving unit 30 Lens unit 31 Optical filter