JP2004176103A - 埋設構造物の電食対策システム及び電食対策方法 - Google Patents

埋設構造物の電食対策システム及び電食対策方法 Download PDF

Info

Publication number
JP2004176103A
JP2004176103A JP2002341916A JP2002341916A JP2004176103A JP 2004176103 A JP2004176103 A JP 2004176103A JP 2002341916 A JP2002341916 A JP 2002341916A JP 2002341916 A JP2002341916 A JP 2002341916A JP 2004176103 A JP2004176103 A JP 2004176103A
Authority
JP
Japan
Prior art keywords
buried structure
probe
electrolytic corrosion
ground potential
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002341916A
Other languages
English (en)
Other versions
JP4178021B2 (ja
Inventor
Fumio Kajiyama
文夫 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2002341916A priority Critical patent/JP4178021B2/ja
Publication of JP2004176103A publication Critical patent/JP2004176103A/ja
Application granted granted Critical
Publication of JP4178021B2 publication Critical patent/JP4178021B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

【課題】電食原因の特定を定量的に行い、また、電食原因の特定と電食状態の把握を総合的に評価することで、より適切な電食対策を講じる。
【解決手段】計測制御部20及び演算処理制御部21を備え、計測制御部20には、対象配管1の対地電位EON,プローブ電流Iが入力されると同時に、配管1の電食原因と考えられる直流電気鉄道のレール30の対地電位ER/Sが入力される。演算処理制御部21では、対地電位EON,ER/S間の相関を求める統計処理がなされると共に、プローブ電流Iを判定基準と比較する電食状態判定処理が行われる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、地中に埋設された構造物が受ける電食(電気的影響を受けて腐食する現象)に対して、主に電食原因を特定することによってリスク対策を施す電食対策システム及びそのシステムを用いた電食対策方法に関するものである。
【0002】
【従来の技術】
地中の構造物が受ける電食の主な原因は、直流電気鉄道のレールからの漏れ電流によるもの、カソード防食(電気防食)関連の電気設備に起因する直流干渉によるもの、電力の高圧架空送電線や交流電気鉄道等からの交流誘導電圧による交流干渉によるもの等を挙げることができる。これらの原因による電食の対策としては、まず、対象埋設構造物に対して対地電位の計測がなされており、その計測結果から電食リスクが高いと判定された場合に、流電陽極法,外部電源法といったカソード防食、また、選択排流法,強制排流法といった積極的な対策が採られている。
【0003】
この対地電位を計測するための従来技術(下記特許文献1参照)について、カソード防食された配管に対する計測を例にして説明すると、例えば図8に示されるように、対象となる埋設構造物である配管1に対してプローブ2(配管と同じ材料からなる所定面積の試験片)を近接させ、また、地表面には照合電極(飽和硫酸銅電極)3を設け、配管1とプローブ2間を電気的に接続する回路内に電流計5とスイッチ6を設け、プローブ2と照合電極3間を電気的に接続する回路内に電位計8を設けたシステムが用いられている。これによると、地表面に設けた照合電極3のみによる配管1の対地電位からI・R(I:プローブ電流,R:土壌抵抗)を除去した真の対地電位を計測することが可能になる。
【0004】
つまり、このシステムは、プローブ2と配管1とを接続した導線4をスイッチ6でオフにすると電位計8の値が図9に示すように変化し、スイッチ6をオフにした直後にI・Rが消失するという電気化学現象を利用しており、時刻tOFFで計測されたプローブオフ電位EOFFによって真の対地電位を計測している。そして、このプローブオフ電位EOFFとスイッチ6オン時の電流計5の出力I(プローブ電流)とを基準と照査することで、電食のリスクを評価し、これが基準を超えているような場合に前述した対策が採られている。
【0005】
また、非カソード防食の配管に対しては、プローブ2を設けない前述した照合電極3のみによる管対地電位(EP/S)が計測され、この管対地電位(EP/S)を基準と照査することで、電食のリスクを評価している。
【0006】
【特許文献1】
特開平10−185800号公報
【0007】
【発明が解決しようとする課題】
前述した照合電極3のみによって計測される配管1の管対地電位(EP/S)では、I・Rを含むため楽観的な値が出てしまうので電食の進行を見過ごしてしまう虞があるが、プローブオフ電位EOFFとプローブ電流Iを評価指標とする電食対策によると、プローブオフ電位EOFFによって前述したようにI・Rを除去した真の管対地電位を求めることができ、また、プローブ電流Iによって配管1のカソード防食状態を直接把握することが可能になるので、カソード防食された配管に対しては、非カソード防食の配管に対するより確実性の高い電食対策を行うことが可能になる。しかしながら、このような電食対策によっても以下に示すような問題がある。
【0008】
一つには、対象となる埋設構造物自身の管対地電位EP/S,プローブオフ電位EOFF,プローブ電流Iのみによる評価であるため、対象構造物に電食を生じさせている原因を究明することができず、その原因に適応した根本的な防食措置を講じることができないという問題がある。また、仮に計測データから電食原因の予想が可能であったとしても、定量的な因果関係を知ることができないため、より積極的な原因排除或いは原因に適応した対策を講じることができないという問題がある。更には、電食原因の究明と電食状態の把握(基準をクリアしているか否か)とを総合的に評価することができないので、防食の必要性を考慮に入れたより適切な対策を講じることができないという問題がある。
【0009】
本発明は、このような問題に対処するために提案されたものであって、電食原因の特定を定量的に行い、また、電食原因の特定と電食状態の把握を総合的に評価することで、より適切な電食対策を講じることを可能にする埋設構造物の電食対策システム及び電食対策方法を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
このような目的を達成するために、本発明による電食対策システム及び電食対策方法は、以下の各請求項に係る特徴を具備するものである。
【0011】
請求項1に係る発明は、埋設構造物の周辺の地表面に設けられる照合電極と、該照合電極と前記埋設構造物を電気的に接続する導線とを備え、少なくとも前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策システムであって、少なくとも、前記対地電位と同時に、前記埋設構造物の電食原因となる可能性のある対象物の対地電位を計測する計測手段と、該計測手段による計測結果が入力され、これら計測結果を演算処理する演算処理手段とを備え、該演算処理手段は、前記各対地電位の時系列変化に対する相関を求める統計処理を行うと共に、前記埋設構造物の対地電位を判定基準と比較する判定処理を行うことを特徴とする。
【0012】
請求項2に係る発明は、埋設構造物の周辺の地表面に設けられる照合電極と、該照合電極と前記埋設構造物を電気的に接続する導線とを備え、少なくとも前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策システムであって、少なくとも、前記対地電位を計測する計測手段と、該計測手段による計測結果が入力され、前記埋設構造物の電食原因となる可能性のある電気設備のオンオフ状態に基づいて、前記計測結果を演算処理する演算処理手段とを備え、該演算処理手段は、前記電気設備のオン時とオフ時における前記計測結果の比較を行うと共に、前記埋設構造物の対地電位を判定基準と比較する判定処理を行うことを特徴とする。
【0013】
請求項3に係る発明は、埋設構造物に近接して設けられるプローブと、その周辺の地表面に設けられる照合電極と、前記プローブと前記照合電極とを電気的に接続する第1の導線と、前記プローブと前記埋設構造物とを電気的に接続する第2の導線とを備え、少なくとも前記プローブを流れるプローブ電流と前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策システムであって、少なくとも、前記プローブ電流と前記対地電位とを計測すると同時に、前記埋設構造物の電食原因となる可能性のある対象物の対地電位を計測する計測手段と、該計測手段による計測結果が入力され、これら計測結果を演算処理する演算処理手段とを備え、該演算処理手段は、前記各対地電位の時系列変化に対する相関を求める統計処理を行うと共に、前記プローブ電流を判定基準と比較する判定処理を行うことを特徴とする。
【0014】
請求項4に係る発明は、請求項3に記載された埋設構造物の電食対策システムを前提として、前記計測手段は、設定時間間隔内で、前記各対地電位計測データを単位時間毎に交互に抽出し、隣接単位時間の抽出計測データを対として出力し、前記設定時間間隔内の一つの時間間隔で前記プローブ電流の計測データの抽出を行い、前記設定時間間隔を連続的に繰り返すことによって計測結果を出力することを特徴とする。
【0015】
請求項5に係る発明は、請求項3又は4に記載された埋設構造物の電食対策システムを前提として、前記プローブ電流の計測結果は、直流成分と交流成分に分離された値として出力され、前記演算処理手段では直流成分と交流成分とからなる基準合格領域との比較で判定処理がなされることを特徴とする。
【0016】
請求項6に係る発明は、請求項3〜5のいずれかに記載された埋設構造物の電食対策システムを前提として、前記設定時間間隔内に抽出計測データの演算処理時間が含まれることを特徴とする。
請求項7に係る発明は、請求項3〜6のいずれかに記載された埋設構造物の電食対策システムを前提として、前記第2の導線に該導線を開閉するスイッチ手段を設けると共に該スイッチ手段を開閉する開閉手段を設け、前記設定時間間隔を設定回数繰り返したオン時間の後に、設定されたオフ時間だけ前記第2の導線を開き、前記計測手段は当該オフ時間におけるプローブオフ電位を計測し、該計測結果が入力される前記演算処理手段では、前記プローブオフ電位を判定基準と比較する判定処理がなされることを特徴とする。
【0017】
請求項8に係る発明は、埋設構造物に近接して設けられるプローブと、その周辺の地表面に設けられる照合電極と、前記プローブと前記照合電極とを電気的に接続する第1の導線と、前記プローブと前記埋設構造物とを電気的に接続する第2の導線とを備え、少なくとも前記プローブを流れるプローブ電流と前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策システムであって、少なくとも、前記プローブ電流と前記対地電位とを計測する計測手段と、該計測手段による計測結果が入力され、前記埋設構造物の電食原因となる可能性のある電気設備のオンオフ状態に基づいて、前記計測結果を演算処理する演算処理手段とを備え、該演算処理手段は、前記電気設備のオン時とオフ時における前記計測結果の比較を行うと共に、前記プローブ電流を判定基準と比較する判定処理を行うことを特徴とする。
【0018】
請求項9に係る発明は、埋設構造物の周辺の地表面に照合電極を設け、該照合電極と前記埋設構造物を導線によって電気的に接続し、少なくとも前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策方法であって、少なくとも、前記対地電位と同時に、前記埋設構造物の電食原因となる可能性のある対象物の対地電位を計測する計測工程と、前記埋設構造物の対地電位を判定基準と比較する電食状態判定工程と、前記各対地電位の計測結果を演算処理して、各対地電位の時系列変化に対する相関を求める電食原因特定工程とを有することを特徴とする。
【0019】
請求項10に係る発明は、埋設構造物の周辺の地表面に照合電極を設け、該照合電極と前記埋設構造物を導線によって電気的に接続し、少なくとも前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策方法であって、前記埋設構造物の電食原因となる可能性のある電気設備をオンオフさせながら、少なくとも前記対地電位を計測する計測工程と、前記埋設構造物の対地電位を判定基準と比較する電食状態判定工程と、前記電気設備のオン時とオフ時における前記計測工程の結果を比較する電食原因特定工程とを有することを特徴とする。
【0020】
請求項11に係る発明は、埋設構造物に近接してプローブを設け、その周辺の地表面に照合電極を設け、前記プローブと前記照合電極とを第1の導線によって電気的に接続し、前記プローブと前記埋設構造物とを第2の導線によって電気的に接続し、少なくとも前記プローブを流れるプローブ電流と前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策方法であって、少なくとも、前記プローブ電流と前記対地電位とを計測すると同時に、前記埋設構造物の電食原因となる可能性のある対象物の対地電位を計測する計測工程と、前記プローブ電流を判定基準と比較する電食状態判定工程と、前記各対地電位の計測結果を演算処理して、各対地電位の時系列変化に対する相関を求める電食原因特定工程とを有することを特徴とする。
【0021】
請求項12に係る発明は、請求項11に記載された埋設構造物の電食対策方法を前提として、前記計測工程では、設定時間間隔内で、前記各対地電位計測データを単位時間毎に交互に抽出し、隣接単位時間の抽出計測データを対として出力し、前記設定時間間隔内の一つの時間間隔で前記プローブ電流の計測データの抽出を行い、前記設定時間間隔を連続的に繰り返すことによって計測結果を得ることを特徴とする。
【0022】
請求項13に係る発明は、請求項11又は12に記載された埋設構造物の電食対策方法を前提として、前記プローブ電流の計測結果は、直流成分と交流成分に分離された値として求められ、前記電食状態判定工程では直流成分と交流成分とからなる基準合格領域との比較で判定処理がなされることを特徴とする。
【0023】
請求項14に係る発明は、請求項11〜13のいずれかに記載された埋設構造物の電食対策方法を前提として、前記設定時間間隔内に抽出計測データの演算処理時間が含まれることを特徴とする。
請求項15に係る発明は、請求項11〜14のいずれかに記載された埋設構造物の電食対策方法を前提として、前記計測工程は、前記第2の導線を開閉することで、前記設定時間間隔を設定回数繰り返したオン時間の後に、設定されたオフ時間だけ前記第2の導線を開き、当該オフ時間におけるプローブオフ電位を計測する工程を更に有し、前記電食状態判定工程は、前記プローブオフ電位を判定基準と比較する判定処理工程を更に有することを特徴とする。
【0024】
請求項16に係る発明は、請求項12〜15のいずれかに記載された埋設構造物の電食対策方法を前提として、前記単位時間を商用交流周波数の1サイクル時間とすることを特徴とする。
【0025】
請求項17に係る発明は、埋設構造物に近接してプローブを設け、その周辺の地表面に照合電極を設け、前記プローブと前記照合電極とを第1の導線で電気的に接続し、前記プローブと前記埋設構造物とを第2の導線で電気的に接続して、少なくとも前記プローブを流れるプローブ電流と前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策方法であって、前記埋設構造物の電食原因となる可能性のある電気設備をオンオフさせながら、少なくとも前記プローブ電流と前記対地電位とを計測する計測工程と、前記プローブ電流を判定基準と比較する電食状態判定工程と、前記電気設備のオン時とオフ時における前記計測工程の結果を比較する電食原因特定工程とを有することを特徴とする。
【0026】
請求項18に係る発明は、請求項9〜17のいずれかに記載された埋設構造物の電食対策方法において、前記計測工程を実行する第1段階と、その後、前記電食状態判定工程を実行する第2段階と、前記電食状態判定工程で電食状態が不良と判定された場合に前記電食原因特定工程を実行する第3段階と、前記電食原因特定工程によって特定された電食原因に適応する防食施工を前記埋設構造物に施す第4段階と、その後前記電食状態判定工程によって前記防食施工の効果確認を行う第5段階とからなり、前記第5段階の電食状態判定工程によって電食状態が不良と判定された場合に、電食原因の対象を変えて前記第3段階に戻ることを特徴とする。
【0027】
このような各請求項に係る発明は、以下の作用を奏するものである。
【0028】
前提となるシステム構成及び対策方法は、前述した従来技術と一部共通するものであって、非カソード防食の埋設構造物の場合には、対象となる埋設構造物の周辺の地表面に設けられる照合電極と、該照合電極と前記埋設構造物を電気的に接続する導線とを備え、少なくとも対象となる埋設構造物の対地電位を求めており、また、カソード防食された埋設構造物の場合には、対象となる埋設構造物に近接してプローブを設け、その周辺の地表面に飽和硫酸銅電極等の照合電極を設け、これらを第1の導線で電気的に接続すると共にプローブと埋設構造物とを第2の導線で電気的に接続して、プローブ電流と埋設構造物の対地電位を求めている。
【0029】
そして、第1の特徴としては、計測手段或いは計測工程において、埋設構造物の対地電位に加えて、電食原因と考えられる対象物の対地電位を同時に計測し、これらの計測結果を演算処理することで、各対地電位の時系列変化に対する相関を求め(電食原因特定工程)、更には、埋設構造物の対地電位と判定基準の比較を行う(電食状態判定工程)。
【0030】
これによると、電食原因と考えられる対象物の対地電位と対象となる埋設構造物の対地電位との時系列的な相関によって、両者の因果関係を定量的に求めることが可能になる。そして、この電食原因特定と同時に対象となる埋設構造物の電食状態が基準をクリアしているか否かを埋設構造物の対地電位と基準との比較によって評価することができる。
【0031】
したがって、電食状態が基準を超えて進行している場合には、特定された電食原因に応じて適切な防食施工を施すことが可能になり、また逆に、電食原因との因果関係が認められた場合であっても、電食状態が基準を超えていない場合には、現状では積極的な防食措置を施さなくても良いという判断が可能になる。
【0032】
第2の特徴としては、埋設構造物の電食原因となる可能性のある電気設備(例えば、カソード防食関連電気設備の外部電源装置等)をオンオフさせながら、少なくとも埋設構造物の対地電位を計測し、この対地電位を判定基準と比較すると共に、前記電気設備のオン時とオフ時における計測の結果を比較するようにしたので、電気設備のオン時とオフ時の計測結果の比較で、電気設備が電食原因と考えられるか否かを判定することができ、また同時に、埋設構造物の対地電位を判定基準と比較することで、電食状態が基準内にあるか否かを評価することができる。したがって、これによっても、電食状態が基準を超えて進行している場合には、特定された電食原因に応じて適切な防食施工を施すことが可能になり、また逆に、電食原因との因果関係が認められた場合であっても、電食状態が基準を超えていない場合には、現状では積極的な防食措置を施さなくても良いという判断が可能になる。
【0033】
第3の特徴としては、計測手段或いは計測工程において、対象となる埋設構造物に対するプローブ電流と対地電位に加えて、電食原因と考えられる対象物の対地電位を同時に計測し、これらの計測結果を演算処理することで、各対地電位の時系列変化に対する相関を求め(電食原因特定工程)、更には、プローブ電流と判定基準の比較を行う(電食状態判定工程)。これによると、電食原因と考えられる対象物の対地電位と対象となる埋設構造物の対地電位との時系列的な相関によって、両者の因果関係を定量的に求めることが可能になる。そして、この電食原因特定と同時に対象となる埋設構造物の電食状態が基準をクリアしているか否かをプローブ電流と基準との比較によって評価することができる。したがって、電食状態が基準を超えて進行している場合には、特定された電食原因に応じて適切な防食施工を施すことが可能になり、また逆に、電食原因との因果関係が認められた場合であっても、電食状態が基準を超えていない場合には、現状では積極的な防食措置を施さなくても良いという判断が可能になる。
【0034】
第4の特徴としては、前記計測手段或いは前記計測工程では、設定時間間隔内で、前記各対地電位計測データを単位時間毎に交互に抽出し、隣接単位時間の抽出計測データを対として出力しているので、前記各対地電位の時系列的な相関を評価するにあたって、ほぼ同時刻に相関対象の一対の計測データを得ることができ、信頼性の高い相関結果を得ることが可能になる。
【0035】
また、前記設定時間間隔内の一つの時間間隔で前記プローブ電流の計測データの抽出を行うので、併せてプローブ電流の計測データに対しても時系列的な変化を求めることができる。そして、このような設定時間間隔を連続的に繰り返すことによって計測結果を得るので、相関評価の対象となる一対の対地電位計測データとプローブ電流計測データをセットにして逐次出力することが可能になる。
【0036】
また、前記設定時間間隔内に抽出計測データの演算処理時間が含まれるようにすることで、演算処理を設定時間間隔毎に逐次行うことが可能になり、設定時間間隔内で抽出した計測データに対して、例えば単位時間毎の最大値,最小値、或いは計測時間間隔内の時間平均値等を求める一次処理を施すことが可能になる。これによると、設定時間間隔を短時間(例えば、1秒)に設定することで、ほぼリアルタイムで電食原因の究明と電食状態の判定を行うことが可能になる。
【0037】
第5の特徴としては、前記プローブ電流の計測結果は、直流成分と交流成分に分離された値として求められ、電食状態の判定は直流成分と交流成分とからなる基準合格領域との比較でなされるので、直流電流による電食(直流電気鉄道のレール漏れ電流やカソード防食設備に起因する電食等)と交流電流による電食(電力の高圧架空送電線や交流電気鉄道等からの交流誘導電圧による交流干渉に起因する電食)とを総合的に評価した電食状態の判定が可能になる。
【0038】
第6の特徴としては、前記計測手段或いは前記計測工程は、前記第2の導線を開閉することで、前記設定時間間隔を設定回数繰り返したオン時間の後に、設定されたオフ時間だけ前記第2の導線を開き、当該オフ時間におけるプローブオフ電位を計測するようにし、このプローブオフ電位を判定基準と比較するようにしたので、前述の評価と併せて、I・Rが除去された真の対地電位を同時に計測し、これを判定基準と比較することが可能になり、更に別の角度から電食状態の把握を行うことが可能になる。
【0039】
また、前記単位時間を商用交流周波数(例えば、50Hz)の1サイクル時間(例えば、20ms)に設定することにより、商用交流の波形変化を排除して各対地電位間の時系列的な相関を求めることが可能になる。
【0040】
第7の特徴としては、埋設構造物の電食原因となる可能性のある電気設備をオンオフさせながら、少なくともプローブ電流と埋設構造物の対地電位とを計測し、前記プローブ電流を判定基準と比較すると共に、前記電気設備のオン時とオフ時における計測の結果を比較するようにしたので、電気設備のオン時とオフ時の計測結果の比較で、電気設備が電食原因と考えられるか否かを判定することができ、また同時に、プローブ電流を判定基準と比較することで、電食状態が基準内にあるか否かを評価することができる。したがって、これによっても、電食状態が基準を超えて進行している場合には、特定された電食原因に応じて適切な防食施工を施すことが可能になり、また逆に、電食原因との因果関係が認められた場合であっても、電食状態が基準を超えていない場合には、現状では積極的な防食措置を施さなくても良いという判断が可能になる。
【0041】
第8の特徴としては、第1段階で前記計測工程を実行して、各対地電位とプローブ電流を計測し、第2段階で、計測されたプローブ電流を基準と比較する電食状態判定工程を実行し、この電食状態判定工程で電食状態が不良と判定された場合に、第3段階として、前記電食原因特定工程を実行する。この際、1回の工程で電食原因を特定できない場合には、電食原因の対象を変えて繰り返し工程を実行するようにしてもよい。そして、第4段階では、特定された電食原因に適応する防食施工(排流器の設置,電気設備の出力低減等)を対象埋設構造物に施し、第5段階では、再び電食状態判定工程でプローブ電流を基準と比較し、防食施工の効果確認を行う。そして、第5段階の工程で依然電食状態が不良と判定された場合には、電食原因の対象を変えて第3段階に戻り、電食状態が良と判定されるまで以下の工程を繰り返す。これによると、電食原因を特定した上で、適切な防食施工を行うことが可能になり、しかも、その効果確認を行って良好な結果が得られるまで防食施工を行うので、より完全な電食対策を講じることが可能になる。
【0042】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。実施形態においては、電食対象の埋設構造物をカソード防食された配管として説明するが、本発明は特にこれに限定されるものではなく、電気的な影響を受けて腐食する全ての埋設構造物を対象とすることができる。また、以下の実施形態の説明では、直流電気鉄道のレールからの漏れ電流による電食或いはカソード防食関連の電気設備に起因する直流干渉による電食を例にして説明しているが、本発明はこれらの電食状況には特に限定されるものではなく、あらゆる電食状況に対応可能である。なお、以下の各例においては、同時に交流誘導電圧の影響も加わっている可能性があることを前提にしている。
【0043】
[第1実施形態:漏れ電流による電食の場合]
図1は、本発明の第1の実施形態に係る電食対策システムのシステム構成及びシステムの設置状況を示す説明図である。ここでは、レール30上を走行する直流電気鉄道31に電車線32,変電所33を装備した設備に対して、その近傍の地中にカソード防食された配管1が敷設されている状況を例にしている。
【0044】
このような状況においては、レール30を流れる電流の一部が枕木や道床を通って地中に流出して漏れ電流Iとなり、この漏れ電流Iが配管1に流入して変電所33ないしはその近傍で流出することにより腐食電流Iが生じ、この腐食電流Iの流出箇所において電食が発生することが考えられる。このような直流電気鉄道による電食は、前述した漏れ電流Iに起因するものが主であるが、直流電気鉄道が三相誘導モータを用いている場合、周辺に交流誘導電圧の影響がある場合等には、直流と交流の重畳現象として捉える必要がある。
【0045】
このような状況の配管1に対する電食対策システムとしては、まず、従来例と同様に、配管1に対して鋼製のプローブ2を近接させ、また、地表面には飽和硫酸銅電極からなる照合電極3を設け、配管1とプローブ2間を電気的に接続する導線4内に電流計5とスイッチ6を設け、プローブ2と照合電極3間を電気的に接続する導線7内に電位計8を設ける。このような配備は、例えば、配管1に沿って所定の間隔(約250m間隔)で既設されているターミナルボックス内でなされる。
【0046】
また、その周辺の地表面には、配管1の電食原因となる可能性があるレール30の対地電位を計測するための対地電位計測手段が設けられており、飽和硫酸銅電極からなる照合電極10を設けて、この照合電極10とレール30とを電気的に接続する導線11を設け、その回路内に電位計12を介在させている。そして、電流計5,電位計8,12からの計測信号が入力される計測手段を含む計測制御部20が設けられると共に、この計測制御部20に対して送受信可能に接続される演算処理制御部21が設けられている。この演算処理制御部21は、前記の計測手段による計測結果が入力されてその計測結果を演算処理する演算処理手段を含むものである。
【0047】
このような電食対策システムにおける計測制御部20及び演算処理制御部21の機能構成について説明する。
【0048】
計測制御部20は導線4をオンオフするスイッチ6を開閉制御する機能を有している。そして、この計測制御部20には、スイッチ6のオン時には、プローブ2を流れるプローブ電流Iが電流計5から入力されると共に配管1の対地電位(プローブオン電位)EONが電位計8から入力され、スイッチ6のOFF時には、電位計8から前述したプローブオフ電位EOFFが入力される。また、計測制御部20には、電位計12からレール30の対地電位(レール対地電位)ER/Sが入力される。
【0049】
このように入力されるそれぞれの計測結果は、計測制御部20において時系列的な計測データとして抽出され、演算処理制御部21に出力される。そして、演算処理制御部21では、時系列的な計測データに対して統計処理がなされ、配管1の対地電位(プローブオン電位)EONとレール30の対地電位(レール対地電位)ER/Sとの相関が求められると共に、プローブ電流Iを判定基準と比較する判定処理が行われる。また、必要に応じて、プローブオフ電位EOFFとそれに対応する基準値との比較判定処理が行われる。
【0050】
図2〜図4によって、更に具体的な計測制御部20及び演算処理制御部21の機能を説明する。
【0051】
図2(a)は、スイッチ6のオンオフタイミング信号を示すチャート図である。設定されたオン時間TONだけスイッチ6をオンしてプローブ2と配管1との電気的接続を図り、その後短いオフ時間TOFFを設け、これを一つのサイクルとして必要な計測時間だけ繰り返す。この際、オフ時間TOFFを長くし過ぎると、切り離されたプローブ2が自然腐食状態になって再びスイッチ6をオンした場合にプローブ状態が変化してしまうことが懸念されるので、オフ時間TOFFを短くし、これに対してオン時間TONは長く設定される。経験的に良好な実施例としては、オン時間TONを8.5s、オフ時間TOFFを1.5sとして合計10sを1サイクルとする。
【0052】
そして、一つのオン時間TONの中に設定時間間隔ts(例えば、1s)のサブ区間を設け、この設定時間間隔ts内で、配管1の対地電位EON,レール30の対地電位ER/S,プローブ電流Iの計測データ抽出がなされ、また、これらの計測データが演算処理制御部21に出力されて演算処理が施される。
【0053】
図2(b)は、この設定時間間隔ts内のデータ抽出・演算処理タイミングを示すチャート図である。この設定時間間隔ts(例えば、1s)内の時間配分は、各対地電位EON,ER/Sの計測データ抽出にt1(例えば、200ms)、プローブ電流Iの計測データ抽出にt2(例えば、100ms)、それらの計測データに対する演算処理にt3(例えば、700ms)の時間が割り振られている。
【0054】
ここでは、時間t1及び時間t2内で抽出された計測データがその後の時間t3における演算処理によって一次処理されることになり、これによって後述する代表値(最大値,最小値)或いは時間平均値が設定時間間隔ts内で求められることになる。ここで求められた代表値(最大値,最小値)或いは時間平均値を、その後の相関を求めるための変数値、基準と比較するための比較対象値となるので、設定時間間隔ts毎にこれらの変数値及び比較対象値が出力されることになる。
【0055】
次に、時間t1における配管1の対地電位EONとレール30の対地電位ER/Sとの計測データ抽出及びその抽出データに対する演算処理について説明する。
【0056】
まず、所定のブランクtoを挟んで単位時間tu毎に配管1の対地電位EONとレール30の対地電位ER/Sが交互に抽出され、隣接単位時間の抽出計測データを両対地電位の相関を求めるための一対のデータS1,S2,…,Snとして出力する。この単位時間tuは各単位時間で同条件のデータ抽出がなされるように適当な長さに設定される。例えば、単位時間tuを商用交流周波数(例えば、50Hz)の1サイクル時間(例えば、20ms)に設定することで、商用交流の波形変化を排除した計測データの抽出が可能になる。
【0057】
そして、各単位時間tuでは、例えばtuを20msにした場合には0.1ms毎に200個のデータが抽出され、これらは随時記憶手段に記憶されて、その後の演算処理で一次処理が施される。したがって、各単位時間tu毎に例えば、最大値EON max,最小値ER/S minといった代表値が出力されることになる。このような対地電位EONとER/Sのデータ抽出は時間t1の間に数回繰り返されることになるので、これによって、設定時間間隔ts毎に相関を求めるための数組の変数(EON max,ER/S min)が得られることになる。
【0058】
次に、時間t2内でのプローブ電流Iの計測データ抽出及びその抽出データに対する演算処理について説明する。プローブ電流Iは、時間t2の間に電流値データが抽出され、その後の演算処理で、直流成分と交流成分に分離されたプローブ電流密度(計測電流/プローブ面積:A/m)が時間t2の計測時間平均値として求められる。すなわち、設定時間間隔ts毎に一組のプローブ直流電流密度IDCとプローブ交流電流密度IACが計測時間平均値として求められることになり、それがその後の判定処理の比較対象値となる。
【0059】
図3は、演算処理制御部21における統計処理を説明する説明図である。計測時間全体のオン時間TONにおいては、多数回の設定時間間隔tsが繰り返されることになるが、前述したように、各設定時間間隔ts内では、ほぼ同時刻の配管1の対地電位とレール30の対地電位が、S1,S2,…,Sn(EON max,ER/S min)という一対のデータとしてそれぞれ数組得られることになる。演算処理制御部21では、任意の計測時間を設定して、このような2つの対地電位の各時刻毎のデータ(時系列変化)に対して統計処理を施し両者の相関を求める。図3はその統計処理の出力例を示すものである。図のように両者間に高い相関(例えば、相関係数r=−0.85)が認められる場合には、配管1の対地電位とレール30の対地電位に因果関係があることを定量的に示すことができ、これによって配管1の電食原因を定量的に特定することが可能になる。実際の電食原因の特定に際しては、統計的に有意な基準の相関係数(例えば、絶対値が0.80以上)を設定しておき、統計処理によって求めた相関係数が基準値より高い場合に関連有りとの判定がなされる。
【0060】
図4は、演算処理制御部21における電食状態の判定処理を説明する説明図である。前述したように各設定時間間隔ts毎に一組のプローブ直流電流密度IDCとプローブ交流電流密度IAC(IDCとIACを合わせてプローブ電流密度と称する。)が計測時間平均値として求められることになるが、演算処理制御部21においては、計測時間内で得られたこの(IDC,IAC)を判定基準と比較して、配管1の電食状態を把握する。ここで、プローブ直流電流密度IDCは、直流電流がプローブに流入する方向、すなわち防食方向をプラスとしている。
【0061】
交流誘導の影響を考慮する場合には、プローブ電流密度を指標とする評価が有効であるが、特に交流誘導の影響が大きい場合には、プローブ電流密度を直流成分と交流成分に分けて、直流成分と交流成分からなる基準合格領域との比較で電食状態に関する判定処理を行うことが有効である。図4に示す基準テーブルは、前述した基準合格領域の一例を示すものであって、プローブ電流密度を指標としたカソード防食管理基準を示すものである(細川裕司,梶山文夫,中村康朗:材料と環境,第51巻,第5号(2002)参照)。例えば、カソード防食された配管1に対して得られた(IDC,IAC)が計測時間内でI,IIの領域に入れば配管1はカソード防食管理基準を満足した良好な状態にある。また、IIIの領域に入ればおもに電食リスク、IVの領域に入ればおもに交流腐食リスク、Vの領域に入ればおもに過防食リスクがそれぞれ懸念される状態であると判定できる。
【0062】
また、判定処理としては、このような(IDC,IAC)を指標とするものに限らず、交流誘導の影響を考慮する必要がない場合等には、成分分離しないプローブ電流I、対地電位EON、プローブオフ電位EOFFを指標として用い、それぞれに応じた判定基準との比較で判定処理を行うことも可能である。
【0063】
次に、このようなシステムによる電食対策の方法について説明する。
【0064】
<計測工程>レール30からの漏れ電流Iを電食原因の対象とする場合には、漏れ電流Iは雨天時に大きくなるので、極力雨天時を含む24時間に亘って計測時間を設定する。また、一般に真夜中においては直流電気鉄道は運行していないので、運行していない時間帯のデータを取得することによって、このデータを漏れ電流Iの影響度を考察する際のベースにする。
【0065】
このように設定される計測時間内において、前述のようにスイッチ6を開閉動作させ(図2(a)参照)、オン時間TONにおける各設定時間間隔ts内で、前述したように配管1の対地電位EON,レール30の対地電位ER/S,プローブ電流Iの計測値を得る。また、オフ時間TOFFにおいては、プローブオフ電位EOFFの計測値を得る。
【0066】
<電食状態判定工程>計測されたプローブ電流Iの計測結果は、前述したように直流成分と交流成分に分離された値、すなわち、プローブ直流電流密度IDCとプローブ交流電流密度IACとして求められる。そして、各設定時間間隔ts毎に求められた(IDC,IAC)は、例えば、図4で示されるような直流成分と交流成分とからなる座標軸上の設定領域を判定基準合格領域として、この判定基準合格領域との比較がなされ判定処理がなされる。すなわち、求められた配管1における(IDC,IAC)が基準合格領域内にある場合には、電食リスク無しと判定し、求められた(IDC,IAC)がIIIの領域の場合には、電食リスク有りと判定する。
【0067】
また、このようなプローブ電流Iによる評価に換えて、またはプローブ電流Iによる評価と併せて、対地電位EON或いはプローブオフ電位EOFFをそれぞれ基準値と比較して電食状態の評価を行っても良い。
【0068】
<電食原因特定工程>計測された配管1の対地電位EONとレール30の対地電位ER/Sは、前述したように単位時間tu毎の最大値EON max及び最小値ER/S minとして求められ、隣接単位時間の(EON max,ER/S min)を対として、同時刻の各対地電位の抽出データとする。そして、設定された計測時間内で得られた(EON max,ER/S min)を統計処理して、(EON max,ER/S min)の時系列変化に対する相関係数を求め、これを基準値(例えば、絶対値0.80)と比較する。この比較において、求めた相関係数が統計的に有意な基準より大であれば、因果関係は高いものと判断して、レール30からの漏れ電流Iを配管1の電食原因と特定することができる。
【0069】
[第2実施形態:電気設備の直流干渉による電食の場合(その1)]
図5は、本発明の第2の実施形態に係る電食対策システムのシステム構成及びシステムの設置状況を示す説明図である。ここでは、外部電源装置50と外部電極51を防食対象配管52に対して装備したカソード防食関連の電気設備に対して、その近傍にカソード防食された配管1が敷設されている状況を例にしている。このような状況においては、防食対象配管52に対する防食電流が配管1に流入してこれが土壌に流出することにより腐食電流Iが生じ、この腐食電流Iの流出箇所において電食が発生することがある。
【0070】
このような状況の配管1に対する電食対策システムとしては、まず、配管1に対して鋼製のプローブ2を近接させ、また、地表面には飽和硫酸銅電極からなる照合電極3を設け、配管1とプローブ2間を電気的に接続する導線4内に電流計5とスイッチ6を設け、プローブ2と照合電極3間を電気的に接続する導線7内に電位計8を設けた点は前述の実施形態と同様である。
【0071】
そして、この実施形態においては、防食対象配管52の対地電位を求めるために、対地電位計測手段60を設け、飽和硫酸銅電極からなる照合電極61を設けて、この照合電極61と防食対象配管52とを電気的に接続する導線62を設け、その回路内に電位計63を介在させている。そして、電流計5,電位計8,63からの計測信号が入力される計測手段を含む計測制御部20が設けられると共に、この計測制御部20に対して送受信可能に接続される演算処理制御部21が設けられている。この演算処理制御部21は、前記の計測手段による計測結果が入力されてその計測結果を演算処理する演算処理手段を含むものである。つまり、この実施形態においては、前述した第1の実施形態においてレール30の対地電位を求めた照合電極10,導線11,電位計12に換えて、防食対象配管52の対地電位を求めるための対地電位計測手段60における照合電極61,導線62,電位計63を設けたものである。
【0072】
この実施形態の電食対策システムにおける計測制御部20及び演算処理制御部21の機能構成について説明する。
【0073】
計測制御部20は、前述した第1の実施形態と同様に、導線4をオンオフするスイッチ6を開閉制御する機能を有している。そして、この計測制御部20には、スイッチ6のオン時には、プローブ2を流れるプローブ電流Iが電流計5から入力されると共に配管1の対地電位(プローブオン電位)EONが電位計8から入力され、スイッチ6のOFF時には、電位計8からプローブオフ電位EOFFが入力される。また、計測制御部20には、電位計63から防食対象配管52の対地電位EP/Sが入力される。
【0074】
このように入力されるそれぞれの計測結果は、前述した第1の実施形態と同様に計測制御部20において時系列的な計測データとして抽出され、演算処理制御部21に出力される。そして、演算処理制御部21では、時系列的な計測データに対して統計処理がなされ、配管1の対地電位(プローブオン電位)EONと防食対象配管52の対地電位EP/Sとの相関が求められると共に、プローブ電流Iを判定基準と比較する判定処理が行われる。また、必要に応じて、プローブオフ電位EOFFとそれに対応する基準値との比較判定処理が行われる。
【0075】
更に具体的な計測制御部20及び演算制御部21の機能については、前述した第1の実施形態と同様であり、前述した第1の実施形態における対地電位「ER/S」が防食対象配管52の対地電位「EP/S」となるだけであるので、重複する説明を省略する。
【0076】
次に、このようなシステムにおける電食対策の方法について説明する。
【0077】
<計測工程>カソード防食関連の電気設備を電食原因の対象とする場合には、防食対象配管52の対地電位EP/Sを単に計測しただけではその時系列的変化を求めることができない場合が多い。したがって、例えば外部電源装置50の電源スイッチ50Aを計測時間内に任意のサイクルでオンオフさせる等して、計測対象の時系列変化を人為的に作ってやる必要がある。そして、例えば外部電源装置50の電源スイッチ50Aをオフした状態で計測したデータを、影響度を考慮する際のベースにする。
【0078】
任意に設定される計測時間内において、スイッチ6を開閉動作させ(図2(a)参照)、オン時間TONにおける各設定時間間隔ts内で、前述したように配管1の対地電位EON,防食対象配管52の対地電位EP/S,プローブ電流Iの計測値を得る点、または、オフ時間TOFFにおいて、プローブオフ電位EOFFの計測値を得る点は、第1の実施形態と同様である。
【0079】
<電食状態判定工程>第1の実施形態と同様に、計測されたプローブ電流Iからプローブ直流電流密度IDCとプローブ交流電流密度IACを求め、各設定時間間隔ts毎に求められた(IDC,IAC)を、例えば図4で示されるような直流成分と交流成分とからなる座標軸上の判定基準合格領域と比較して判定処理を行う。求められた配管1における(IDC,IAC)が基準合格領域内にある場合には、電食リスク無しと判定し、求められた(IDC,IAC)が基準合格領域外の場合には、電食リスク有りと判定する。
【0080】
配管1の敷設状況から、交流誘導電圧の影響が無いと判断できる場合には、プローブ直流電流密度IDCのみ、或いは成分分離しないプローブ電流Iの計測時間平均値でもって、電食リスクの判定を行うことも可能である。また、このようなプローブ電流Iによる評価に換えて、またはプローブ電流Iによる評価と併せて、対地電位EON或いはプローブオフ電位EOFFをそれぞれ基準値と比較して電食状態の評価を行っても良い。
【0081】
<電食原因特定工程>第1の実施形態と同様に、計測された配管1の対地電位EONと防食対象配管52の対地電位EP/Sは、単位時間tu毎の最大値EON max及び最小値EP/S minとして求められ、隣接単位時間の(EON max,EP/S min)を対として、同時刻の各対地電位の抽出データとする。そして、設定された計測時間内で得られた(EON max,EP/S min)を統計処理して、(EON max,EP/S min)の時系列変化に対する相関係数を求め、これを基準値(例えば、絶対値0.80)と比較する。この比較において、求めた相関係数が基準より大であれば、因果関係は高いものと判断して、防食対象配管52に対するカソード防食関連電気設備を配管1の電食原因と特定する。
【0082】
[第3実施形態:電気設備の直流干渉による電食の場合(その2)]
前述した第2の実施形態では、防食対象配管52の対地電位を直接計測する計測手段を設けたが、このような計測手段を設けることなく、カソード防食関連電気設備の直流干渉の影響を評価することもできる。
【0083】
図6は、そのための電食対策システムのシステム構成及びシステムの設置状態を示す説明図である。前述の実施形態と同一の構成には同一の符号を付して重複した説明は省略する。この実施形態においては、必要に応じて、電気設備である外部電源装置50における電源スイッチ50Aのオンオフ状態に関連する時系列データが計測制御部20に入力され、計測制御部20では、外部電源装置50の電源スイッチ50Aがオンの状態とオフの状態に分けて、配管1の対地電位EON,プローブ電流I等の計測結果が得られるようにしている。また、演算処理制御部21においては、外部電源装置50のオンオフ状態に基づいて、計測結果(配管1の対地電位EON,プローブ電流I)を演算処理する演算処理手段が備えられている。
【0084】
この実施形態の電食対策システムにおける計測制御部20及び演算処理制御部21の具体的機能を説明する。配管1の対地電位EON、プローブ電流I、プローブオフ電位EOFFを計測して抽出計測データを得る機能自体は、前述の各実施形態と特に変わりがない。
【0085】
すなわち、図2を参照しながら説明すると、スイッチ6のオンオフ動作によって、オン時間TON(8.5s)において配管1の対地電位EONとプローブ電流Iの計測データを得て、オフ時間TOFF(1.5s)にプローブオフ電位EOFFを得る。また、オン時間TONにおいては設定時間間隔ts毎に各データの抽出と演算処理が行われることになる。そして、設定時間間隔ts内では、単位時間tu毎に配管1の対地電位EONの計測がなされることになる(本実施形態では、相関対象の「ER/S」又は「EP/S」の計測は行われない。)。したがって、設定時間間隔ts毎に数点のEON maxと(IAC,IDC)又はIの計測時間平均値が得られることになる。
【0086】
そして、演算処理制御部21においては、外部電源装置50のオン時とオフ時における計測結果の比較が行われると共に、プローブ電流(IDC,IAC)又はIを判定基準と比較する判定処理が行われる。
【0087】
すなわち、例えば、入力される電源スイッチ50Aのオンオフ状態に関連する時系列データに従って、電源スイッチ50Aがオンの状態でのEON maxの平均値(A)を求め、また、電源スイッチ50Aがオフの状態でのEON maxの平均値(B)を求める。そして、A−Bの値が基準値(例えば、50mV)以上のとき、「干渉有り」と判定する。また、プローブ電流又はプローブオフ電位等を用いた電食状態の判定処理については、前述した各実施形態と同様であるので重複した説明は省略する。
【0088】
次に、このようなシステムにおける電食対策の方法について説明する。
【0089】
<計測工程>この実施形態は、カソード防食関連の電気設備を他の事業者が管理している等の場合であって、長時間に亘って外部電源装置50の電源を操作できない場合に有効である。この実施形態では、計測時間間隔内で少なくとも3秒間以上に亘って外部電源装置50の電源をオフするだけで、この電源がオン時の場合とオフ時の場合の計測結果を得ることが可能になる。
【0090】
任意に設定される計測時間内において、スイッチ6を開閉動作させ(図2(a)参照)、オン時間TONにおける各設定時間間隔ts内で、前述したように配管1の対地電位EON,プローブ電流Iの計測値を得る点、または、オフ時間TOFFにおいて、プローブオフ電位EOFFの計測値を得る点は、前述の実施形態と同様である。ただし、これらの計測結果は、外部電源装置50がオンの場合とオフの場合とで分けられてデータ管理されることになる。
【0091】
<電食状態判定工程>第1又は第2の実施形態と同様に、計測されたプローブ電流Iからプローブ直流電流密度IDCとプローブ交流電流密度IACを求め、各設定時間間隔ts毎に求められた(IAC,IDC)を、例えば図4で示されるような直流成分と交流成分とからなる座標軸上の判定基準合格領域と比較して判定処理を行う。求められた配管1における(IDC,IAC)が基準合格領域内にある場合には、電食リスク無しと判定し、求められた(IDC,IAC)が基準合格領域外の場合には、電食リスク有りと判定する。
【0092】
配管1の敷設状況から、交流誘導電圧の影響が無いと判断できる場合には、プローブ直流電流密度IDCのみ、或いは成分分離しないプローブ電流Iの計測時間平均値でもって、電食リスクの判定を行うことも可能である。また、このようなプローブ電流Iによる評価に換えて、またはプローブ電流Iによる評価と併せて、対地電位EON或いはプローブオフ電位EOFFをそれぞれ基準値と比較して電食状態の評価を行っても良い。
【0093】
<電食原因特定工程>計測された配管1の対地電位EONは、単位時間tu毎の最大値EON maxとして求められ、これを外部電源装置50がオンの場合とオフの場合とで分け、それぞれの場合の平均値A,Bを求める。そして、得られた平均値の差(A−B)を求めて、これを基準値(例えば、50mV)と比較し、この比較において、求めた平均値の差が基準より大であれば、因果関係は高い(「干渉有り」)ものと判定して、防食対象配管52に対するカソード防食関連電気設備を配管1の電食原因と特定する。
【0094】
[電食原因特定を行うことによる総合的な電食対策フロー]
以下、図7に従って、前述した各実施形態のシステムを採用した総合的な電食対策フローを説明する。
【0095】
第1段階(S1):先ずは、電食対策の対象となる構造物(配管1)に対して、複数の計測位置(特定ターミナルボックス)を定め、その周辺の実地調査を基にして電食原因となる可能性のある対象物を特定する。そして、前述した各実施形態に示したような計測工程を実行して、電食状態の判定及び電食原因の特定に必要な計測結果(対地電位EON,ER/S,EP/S,プローブ電流I、プローブオフ電位EOFF)を得る。このような計測工程は、電食対策の対象となる構造物に対する定期点検として行われる。
【0096】
第2段階(S2):前述した実施形態に示したような電食状態判定工程を実行して、対象構造物の現状の電食状態を判定する。例えば、計測時間内で得られたプローブ電流密度(IDC,IAC)が基準合格領域内にある場合(カソード防食管理基準(図4参照)をクリアしている場合)には、「良」と判定され、現状では積極的な電食対策を講じる必要性がないと判断できるので、現時点での対策は完了する。一方、計測時間内で得られたプローブ電流密度(IDC,IAC)が基準合格領域外にある場合(カソード防食管理基準(図4参照)をクリアしていない場合、電食リスクの懸念としてはIIIの領域)には、「不良」と判定され、次の段階の対策が必要となる。
【0097】
このように、常に現状の電食状態を基準と照らし合わせて対策を講じることで、不必要又は過度の対策を講じることを避けることができる。また、判定の指標としてプローブ直流電流密度IDC,プローブ交流電流密度IAC を用いることで、腐食電流の大きさを直接的に電食進行の判定指標とすることが可能になると共に、直流と交流の重畳現象を総合的に判断して電食状態の判定を行うことが可能になる。
【0098】
第3段階(S3):前述した実施形態に示したような電食原因特定工程を実行して、対象構造物と電食原因と仮定した対象物との関係を統計的に又は基準との比較で求め、対象構造物と仮定した電食原因との因果関係を定量的に求める。これによると説得力の高い原因特定が可能であるから、より積極的な電食対策を講じることが可能になる。
【0099】
第4段階(S4):前段階で電食の原因が特定できた場合には、その原因に応じた積極的なカソード防食施工ないしは排流器の設置等を行う。例えば、レール漏れ電流によるものと特定できた場合には、周囲の変電所等の敷設場所に合わせて排流器の設置場所を特定したり或いはカソード防食を行うための外部電源装置の設置を行い、電食状態判定工程で求めたプローブ電流密度等により、排流器や外部電源装置の適正な電気容量を決定する。カソード防食された配管1に対しての対策の一例としては、レール対地電位ER/Sが計測地点の中で最もマイナスになり、このとき配管1の対地電位EONが最もプラスよりになり、プローブ直流電流密度IDCがカソード防食管理基準をクリアぜず最も小さい地点において、排流器や外部電源装置を設置する。また、プローブ交流電流密度IACがカソード防食管理基準をクリアしなかった場合には、Mg電極の設置等の交流低減対策を講じる。
【0100】
直流干渉有りとの原因特定がなされた場合には、他の防食配管に対する外部電源装置の出力電流低減等の措置を講じる。
【0101】
第5段階(S5):このような積極的な防食施工或いは防食措置を講じた後、再び、電食状態判定工程を実行し、プローブ電流密度等の計測及び基準との比較を行って防食施工或いは防食措置の効果確認を行う。この効果確認で基準をクリアした場合(「良」と判定された場合)には対策完了とするが、基準をクリアせず「不良」と判定された場合には、再度第3段階に戻り、電食原因の仮定を変更して原因特定を行い、以下の段階を繰り返して、対象構造物の電食状態が基準をクリアするまで随時対策を講じる。
【0102】
なお、ここで示した実施形態は、プローブ2を近接させたカソード防食された配管1を例にして説明しているが、プローブ2を設けない非カソード防食の配管に対しても同様にして電食対策システム及び対策方法を得ることができる。すなわち、この場合には、カソード防食された配管1に対する対地電位(プローブオン電位)EON或いはプローブ電流Iに換えて、照合電極3のみによって得られる管対地電位(EP/S)が前述した計測制御部20に入力され、また演算処理制御部21においては、前述と同様の演算処理がなされることになる。直流電気鉄道のレール漏れ電流による電食の場合を例にすると、前述の管対地電位(EP/S)とレール対地電位(ER/S)との相関を求める演算処理がなされると共に、管対地電位(EP/S)をそれに対応した基準と比較する判定処理がなされることになる。判定基準の一例を示すと、計測された対象配管の管対地電位(EP/S)が自然電位である−500mV(飽和硫酸銅電極基準)よりもプラス側で、しかもレール対地電位(ER/S)との相関が確認できる場合に、直流鉄道の干渉を受けていると判定して、それに応じた防食施工を講じる。
【0103】
【発明の効果】
本発明に係る埋設構造物の電食対策システム及び電食対策方法によると、前述のように構成されるので、電食原因の特定を定量的に行い、また、電食原因の特定と電食状態の把握を総合的に評価することで、より適切な電食対策を講じることが可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る電食対策システムのシステム構成及びシステムの設置状況を示す説明図である。
【図2】本発明の実施形態に係る電食対策システムの計測制御部及び演算処理制御部の機能を説明する説明図である(同図(a)は、スイッチ6のオンオフタイミング信号を示すチャート図、同図(b)は、設定時間間隔ts内のデータ抽出・演算処理タイミングを示すチャート図である。)。
【図3】本発明の実施形態に係る電食対策システムの演算処理制御部における統計処理を説明する説明図である。
【図4】本発明の実施形態に係る電食対策システムの演算処理制御部における判定処理を説明する説明図である。
【図5】本発明の第2の実施形態に係る電食対策システムのシステム構成及びシステムの設置状況を示す説明図である。
【図6】本発明の第3の実施形態に係る電食対策システムのシステム構成及びシステムの設置状態を示す説明図である。
【図7】実施形態のシステムを採用した総合的な電食対策フローを示す説明図である。
【図8】従来技術の説明図である。
【図9】従来技術の説明図である。
【符号の説明】
1 配管
2 プローブ
3,10,61 照合電極(飽和硫酸銅電極)
4,7,11,62 導線
5 電流計
6 スイッチ
8,12,63 電位計
20 計測制御部
21 演算処理制御部
30 レール
31 直流電気鉄道
32 電車線
33 変電所
50:外部電源装置
50A:電源スイッチ
51:外部電極
52:防食対象配管
ts:設定時間間隔
tu:単位時間
ON:対地電位(プローブオン電位)
R/S:対地電位(レール対地電位)
P/S:管対地電位
OFF:プローブオフ電位
I:プローブ電流
DC:プローブ直流電流密度,IAC:プローブ交流電流密度
:腐食電流

Claims (18)

  1. 埋設構造物の周辺の地表面に設けられる照合電極と、該照合電極と前記埋設構造物を電気的に接続する導線とを備え、少なくとも前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策システムであって、
    少なくとも、前記対地電位と同時に、前記埋設構造物の電食原因となる可能性のある対象物の対地電位を計測する計測手段と、
    該計測手段による計測結果が入力され、これら計測結果を演算処理する演算処理手段とを備え、
    該演算処理手段は、前記各対地電位の時系列変化に対する相関を求める統計処理を行うと共に、前記埋設構造物の対地電位を判定基準と比較する判定処理を行うことを特徴とする埋設構造物の電食対策システム。
  2. 埋設構造物の周辺の地表面に設けられる照合電極と、該照合電極と前記埋設構造物を電気的に接続する導線とを備え、少なくとも前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策システムであって、
    少なくとも、前記対地電位を計測する計測手段と、
    該計測手段による計測結果が入力され、前記埋設構造物の電食原因となる可能性のある電気設備のオンオフ状態に基づいて、前記計測結果を演算処理する演算処理手段とを備え、
    該演算処理手段は、前記電気設備のオン時とオフ時における前記計測結果の比較を行うと共に、前記埋設構造物の対地電位を判定基準と比較する判定処理を行うことを特徴とする埋設構造物の電食対策システム。
  3. 埋設構造物に近接して設けられるプローブと、その周辺の地表面に設けられる照合電極と、前記プローブと前記照合電極とを電気的に接続する第1の導線と、前記プローブと前記埋設構造物とを電気的に接続する第2の導線とを備え、少なくとも前記プローブを流れるプローブ電流と前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策システムであって、
    少なくとも、前記プローブ電流と前記対地電位とを計測すると同時に、前記埋設構造物の電食原因となる可能性のある対象物の対地電位を計測する計測手段と、
    該計測手段による計測結果が入力され、これら計測結果を演算処理する演算処理手段とを備え、
    該演算処理手段は、前記各対地電位の時系列変化に対する相関を求める統計処理を行うと共に、前記プローブ電流を判定基準と比較する判定処理を行うことを特徴とする埋設構造物の電食対策システム。
  4. 前記計測手段は、設定時間間隔内で、前記各対地電位計測データを単位時間毎に交互に抽出し、隣接単位時間の抽出計測データを対として出力し、前記設定時間間隔内の一つの時間間隔で前記プローブ電流の計測データの抽出を行い、前記設定時間間隔を連続的に繰り返すことによって計測結果を出力することを特徴とする請求項3に記載された埋設構造物の電食対策システム。
  5. 前記プローブ電流の計測結果は、直流成分と交流成分に分離された値として出力され、前記演算処理手段では直流成分と交流成分とからなる基準合格領域との比較で判定処理がなされることを特徴とする請求項3又は4に記載された埋設構造物の電食対策システム。
  6. 前記設定時間間隔内に抽出計測データの演算処理時間が含まれることを特徴とする請求項3〜5のいずれかに記載された埋設構造物の電食対策システム。
  7. 前記第2の導線に該導線を開閉するスイッチ手段を設けると共に該スイッチ手段を開閉する開閉手段を設け、前記設定時間間隔を設定回数繰り返したオン時間の後に、設定されたオフ時間だけ前記第2の導線を開き、前記計測手段は当該オフ時間におけるプローブオフ電位を計測し、該計測結果が入力される前記演算処理手段では、前記プローブオフ電位を判定基準と比較する判定処理がなされることを特徴とする請求項3〜6のいずれかに記載された埋設構造物の電食対策システム。
  8. 埋設構造物に近接して設けられるプローブと、その周辺の地表面に設けられる照合電極と、前記プローブと前記照合電極とを電気的に接続する第1の導線と、前記プローブと前記埋設構造物とを電気的に接続する第2の導線とを備え、少なくとも前記プローブを流れるプローブ電流と前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策システムであって、
    少なくとも、前記プローブ電流と前記対地電位とを計測する計測手段と、
    該計測手段による計測結果が入力され、前記埋設構造物の電食原因となる可能性のある電気設備のオンオフ状態に基づいて、前記計測結果を演算処理する演算処理手段とを備え、
    該演算処理手段は、前記電気設備のオン時とオフ時における前記計測結果の比較を行うと共に、前記プローブ電流を判定基準と比較する判定処理を行うことを特徴とする埋設構造物の電食対策システム。
  9. 埋設構造物の周辺の地表面に照合電極を設け、該照合電極と前記埋設構造物を導線によって電気的に接続し、少なくとも前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策方法であって、
    少なくとも、前記対地電位と同時に、前記埋設構造物の電食原因となる可能性のある対象物の対地電位を計測する計測工程と、
    前記埋設構造物の対地電位を判定基準と比較する電食状態判定工程と、
    前記各対地電位の計測結果を演算処理して、各対地電位の時系列変化に対する相関を求める電食原因特定工程とを有することを特徴とする埋設構造物の電食対策方法。
  10. 埋設構造物の周辺の地表面に照合電極を設け、該照合電極と前記埋設構造物を導線によって電気的に接続し、少なくとも前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策方法であって、
    前記埋設構造物の電食原因となる可能性のある電気設備をオンオフさせながら、少なくとも前記対地電位を計測する計測工程と、
    前記埋設構造物の対地電位を判定基準と比較する電食状態判定工程と、
    前記電気設備のオン時とオフ時における前記計測工程の結果を比較する電食原因特定工程とを有することを特徴とする埋設構造物の電食対策方法。
  11. 埋設構造物に近接してプローブを設け、その周辺の地表面に照合電極を設け、前記プローブと前記照合電極とを第1の導線によって電気的に接続し、前記プローブと前記埋設構造物とを第2の導線によって電気的に接続し、少なくとも前記プローブを流れるプローブ電流と前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策方法であって、
    少なくとも、前記プローブ電流と前記対地電位とを計測すると同時に、前記埋設構造物の電食原因となる可能性のある対象物の対地電位を計測する計測工程と、
    前記プローブ電流を判定基準と比較する電食状態判定工程と、
    前記各対地電位の計測結果を演算処理して、各対地電位の時系列変化に対する相関を求める電食原因特定工程とを有することを特徴とする埋設構造物の電食対策方法。
  12. 前記計測工程では、設定時間間隔内で、前記各対地電位計測データを単位時間毎に交互に抽出し、隣接単位時間の抽出計測データを対として出力し、前記設定時間間隔内の一つの時間間隔で前記プローブ電流の計測データの抽出を行い、前記設定時間間隔を連続的に繰り返すことによって計測結果を得ることを特徴とする請求項11に記載された埋設構造物の電食対策方法。
  13. 前記プローブ電流の計測結果は、直流成分と交流成分に分離された値として求められ、前記電食状態判定工程では直流成分と交流成分とからなる基準合格領域との比較で判定処理がなされることを特徴とする請求項11又は12に記載された埋設構造物の電食対策方法。
  14. 前記設定時間間隔内に抽出計測データの演算処理時間が含まれることを特徴とする請求項11〜13のいずれかに記載された埋設構造物の電食対策方法。
  15. 前記計測工程は、前記第2の導線を開閉することで、前記設定時間間隔を設定回数繰り返したオン時間の後に、設定されたオフ時間だけ前記第2の導線を開き、当該オフ時間におけるプローブオフ電位を計測する工程を更に有し、前記電食状態判定工程は、前記プローブオフ電位を判定基準と比較する判定処理工程を更に有することを特徴とする請求項11〜14のいずれかに記載された埋設構造物の電食対策方法。
  16. 前記単位時間を商用交流周波数の1サイクル時間とすることを特徴とする請求項12〜15のいずれかに記載された埋設構造物の電食対策方法。
  17. 埋設構造物に近接してプローブを設け、その周辺の地表面に照合電極を設け、前記プローブと前記照合電極とを第1の導線で電気的に接続し、前記プローブと前記埋設構造物とを第2の導線で電気的に接続して、少なくとも前記プローブを流れるプローブ電流と前記埋設構造物の対地電位に基づいて、前記埋設構造物の電食評価を行う埋設構造物の電食対策方法であって、
    前記埋設構造物の電食原因となる可能性のある電気設備をオンオフさせながら、少なくとも前記プローブ電流と前記対地電位とを計測する計測工程と、
    前記プローブ電流を判定基準と比較する電食状態判定工程と、
    前記電気設備のオン時とオフ時における前記計測工程の結果を比較する電食原因特定工程とを有することを特徴とする埋設構造物の電食対策方法。
  18. 請求項9〜17のいずれかに記載された埋設構造物の電食対策方法において、
    前記計測工程を実行する第1段階と、その後、前記電食状態判定工程を実行する第2段階と、前記電食状態判定工程で電食状態が不良と判定された場合に前記電食原因特定工程を実行する第3段階と、前記電食原因特定工程によって特定された電食原因に適応する防食施工を前記埋設構造物に施す第4段階と、その後前記電食状態判定工程によって前記防食施工の効果確認を行う第5段階とからなり、
    前記第5段階の電食状態判定工程によって電食状態が不良と判定された場合に、電食原因の対象を変えて前記第3段階に戻ることを特徴とする埋設構造物の電食対策方法。
JP2002341916A 2002-11-26 2002-11-26 埋設構造物の電食対策システム及び電食対策方法 Expired - Fee Related JP4178021B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341916A JP4178021B2 (ja) 2002-11-26 2002-11-26 埋設構造物の電食対策システム及び電食対策方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341916A JP4178021B2 (ja) 2002-11-26 2002-11-26 埋設構造物の電食対策システム及び電食対策方法

Publications (2)

Publication Number Publication Date
JP2004176103A true JP2004176103A (ja) 2004-06-24
JP4178021B2 JP4178021B2 (ja) 2008-11-12

Family

ID=32704117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341916A Expired - Fee Related JP4178021B2 (ja) 2002-11-26 2002-11-26 埋設構造物の電食対策システム及び電食対策方法

Country Status (1)

Country Link
JP (1) JP4178021B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278843A (ja) * 2006-04-06 2007-10-25 Tokiko Techno Kk 地下埋設鋼構造物の腐食診断装置及び腐食診断方法
JP2007291433A (ja) * 2006-04-24 2007-11-08 Tokyo Gas Co Ltd 局所的カソード防食方法及びシステム
JP2008196947A (ja) * 2007-02-13 2008-08-28 Tokyo Gas Co Ltd 埋設金属パイプラインの異常低接地箇所検出方法及び検出システム
JP2008241583A (ja) * 2007-03-28 2008-10-09 National Institute Of Advanced Industrial & Technology 電流測定方法
JP2008281433A (ja) * 2007-05-10 2008-11-20 Tokyo Gas Co Ltd 埋設パイプラインのカソード防食状況計測評価方法及び計測評価装置
JP2009198242A (ja) * 2008-02-20 2009-09-03 Tokyo Gas Co Ltd 埋設金属パイプラインの腐食リスク計測評価方法
JP2010053423A (ja) * 2008-08-29 2010-03-11 Tokyo Gas Co Ltd パイプラインのカソード防食方法
JP2010265490A (ja) * 2009-05-12 2010-11-25 Tokyo Gas Co Ltd 選択排流器及び選択排流器の排流電流制限抵抗値決定方法
JP2015040317A (ja) * 2013-08-20 2015-03-02 東京瓦斯株式会社 埋設パイプラインのカソード防食状況計測方法
WO2019150784A1 (ja) * 2018-02-05 2019-08-08 株式会社日立製作所 金属構造物腐食評価システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278843A (ja) * 2006-04-06 2007-10-25 Tokiko Techno Kk 地下埋設鋼構造物の腐食診断装置及び腐食診断方法
JP2007291433A (ja) * 2006-04-24 2007-11-08 Tokyo Gas Co Ltd 局所的カソード防食方法及びシステム
JP2008196947A (ja) * 2007-02-13 2008-08-28 Tokyo Gas Co Ltd 埋設金属パイプラインの異常低接地箇所検出方法及び検出システム
JP2008241583A (ja) * 2007-03-28 2008-10-09 National Institute Of Advanced Industrial & Technology 電流測定方法
JP2008281433A (ja) * 2007-05-10 2008-11-20 Tokyo Gas Co Ltd 埋設パイプラインのカソード防食状況計測評価方法及び計測評価装置
JP2009198242A (ja) * 2008-02-20 2009-09-03 Tokyo Gas Co Ltd 埋設金属パイプラインの腐食リスク計測評価方法
JP2010053423A (ja) * 2008-08-29 2010-03-11 Tokyo Gas Co Ltd パイプラインのカソード防食方法
JP2010265490A (ja) * 2009-05-12 2010-11-25 Tokyo Gas Co Ltd 選択排流器及び選択排流器の排流電流制限抵抗値決定方法
JP2015040317A (ja) * 2013-08-20 2015-03-02 東京瓦斯株式会社 埋設パイプラインのカソード防食状況計測方法
WO2019150784A1 (ja) * 2018-02-05 2019-08-08 株式会社日立製作所 金属構造物腐食評価システム

Also Published As

Publication number Publication date
JP4178021B2 (ja) 2008-11-12

Similar Documents

Publication Publication Date Title
JP4343090B2 (ja) カソード防食された埋設金属体に対する迷走電流腐食リスクの計測評価方法及び装置
JP4812687B2 (ja) 埋設パイプラインのカソード防食状況計測評価方法及び計測評価装置
JP4767145B2 (ja) 流電陽極方式によるカソード防食システム及びカソード防食方法、パイプライン健全性評価システム及び健全性評価方法
CN108562782B (zh) 一种杂散电流的获取方法及杂散电流的检测系统
JP5060052B2 (ja) カソード防食された埋設金属体の防食管理方法、防食管理装置、防食管理プログラム、情報記録媒体
JP2023081545A (ja) 接地抵抗劣化位置推定装置及びその方法
JP2004176103A (ja) 埋設構造物の電食対策システム及び電食対策方法
JP2007291433A (ja) 局所的カソード防食方法及びシステム
CN110750880B (zh) 一种埋地管道地铁杂散电流腐蚀防护方法
JP4250549B2 (ja) 導管及び付帯設備の健全性評価計測方法、評価計測プログラム、評価計測装置
Gong et al. Advanced analysis of HVDC electrodes interference on neighboring pipelines
Al-Gabalawy et al. Modeling of the KOH-Polarization cells for mitigating the induced AC voltage in the metallic pipelines
JP4095937B2 (ja) 埋設構造物の保安方法及び保安装置
JP4854653B2 (ja) カソード防食状況の計測評価方法及び計測評価システム
JP2010265490A (ja) 選択排流器及び選択排流器の排流電流制限抵抗値決定方法
CN107632521A (zh) 一种基于决策树和神经网络的恒电位仪控制策略
JP5231899B2 (ja) パイプラインのカソード防食方法
JP6030518B2 (ja) 埋設パイプラインのカソード防食状況計測方法
JP6045524B2 (ja) 埋設金属体の交流腐食リスク計測評価方法及び計測評価システム
JP2004028795A (ja) カソード防食施設遠隔監視システム
CN109989066B (zh) 一种阴极保护数据的处理方法和装置
Noske et al. Off-line partial discharge measurements as a new data source about the technical condition of MV cables
Hoger et al. Influence of high voltage power lines on the propagation of stray currents from DC traction
Machczyński et al. Polarization potential along underground pipeline of complex geometry generated by stochastic stray currents from DC traction
Budnik et al. Polarization phenomenon in underground pipeline generated by stochastic stray currents from DC traction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees