JP2004172457A - Power module and substrate therefor - Google Patents

Power module and substrate therefor Download PDF

Info

Publication number
JP2004172457A
JP2004172457A JP2002338085A JP2002338085A JP2004172457A JP 2004172457 A JP2004172457 A JP 2004172457A JP 2002338085 A JP2002338085 A JP 2002338085A JP 2002338085 A JP2002338085 A JP 2002338085A JP 2004172457 A JP2004172457 A JP 2004172457A
Authority
JP
Japan
Prior art keywords
radiator
power module
substrate
thermal expansion
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002338085A
Other languages
Japanese (ja)
Other versions
JP4019914B2 (en
Inventor
Takeshi Negishi
健 根岸
Yoshiyuki Nagatomo
義幸 長友
Toshiyuki Nagase
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002338085A priority Critical patent/JP4019914B2/en
Publication of JP2004172457A publication Critical patent/JP2004172457A/en
Application granted granted Critical
Publication of JP4019914B2 publication Critical patent/JP4019914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for power module that can suppress warping regardless of the difference between the coefficients of thermal expansion of an insulating substrate and a heat sink and, at the same time, can prevent the falling of its coefficient of thermal conductivity, and to provide a power module. <P>SOLUTION: The substrate 10 for power module is provided with the insulating substrate 11 and heat sink 16 provided on one surface of the substrate 11. The heat sink 16 is provided with a main body 17, a low thermally expandable material 18 having a lower coefficient of thermal expansion than the main body 17 has, and fins 19 installed to the main body 17. The main body 17 and the fins 19 are composed of an integrally molded cast material. The fins 19 are arranged in the direction connecting one end sections C and D holding flexural rigidity lower than that held between the other ends A and B between them of the facing ends A, B, C, and D of the peripheral edge of the heat sink 16. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、大電圧・大電流を制御する半導体装置に用いられるパワーモジュール用基板に係り、特に半導体チップ等の発熱体から発生する熱を放散させる放熱体を有するパワーモジュール用基板及びパワーモジュールに関する。
【0002】
【従来の技術】
この種のパワーモジュール用基板にあっては、セラミックス材料からなる絶縁基板(セラミックス基板)の一方の面側に回路層を、他方の面側に高熱伝導材である純アルミニウム又はアルミニウム合金からなる放熱体を各々備え、この放熱体の絶縁基板形成面と対向する面に、冷却液等の冷却手段を備えた冷却シンク部を備えた構成のもの又は,フィンを備えた構成のものが一般的である(例えば、特許文献1参照)。ここで、半導体装置としてのパワーモジュールにおいては、一般に、回路層上に半導体チップが搭載されており、この半導体チップからの発熱は、絶縁基板,放熱体及び,冷却シンク部又はフィンを介してパワーモジュールの外部へ放熱される構成となっている。
【0003】
ここで、絶縁基板(セラミックス基板)の前記他方の面上には、金属薄板が直接積層されており、この金属薄板に可塑性多孔質金属層を介して、前記放熱体が積層接合されている。可塑性多孔質金属層は、気孔率20〜50%のCuの多孔質焼結体であって、絶縁基板が前記半導体チップからの熱を受けたとき、その熱変形を吸収する応力緩和層をなしている。
【0004】
【特許文献1】
特開平08−335652号公報
【0005】
【発明が解決しようとする課題】
ところで、前記従来では、パワーモジュール用基板に設けられた可塑性多孔質金属層が、絶縁基板や放熱体の熱変形を吸収するので、絶縁基板と放熱体との熱膨張係数が異なっても、絶縁基板,放熱体に反りや割れが起こることを防止できるようにしているものの、絶縁基板と放熱体との間に可塑性多孔質金属層が介在しているので、その分だけ熱抵抗が上昇して熱伝導率が低下してしまい、そのため、放熱体の放熱効果低下を招いていた。
【0006】
この発明は、このような事情を考慮してなされたもので、その目的は、絶縁基板及び放熱体の双方の熱膨張係数差があっても、これに拘わることなく反りを抑制することができると共に、熱伝導率が低下することを抑制できるパワーモジュール用基板及びパワーモジュールを提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するために、この発明は以下の手段を提案している。
請求項1に係る発明は、絶縁基板と、該絶縁基板の一方の面側に設けられた放熱体とを備えたパワーモジュール用基板であって、前記放熱体は、放熱体本体と、該放熱体本体の熱膨張係数より低い材質からなる低熱膨張材と、前記放熱体本体に設けられたフィンとを備え、前記放熱体本体と前記フィンとは一体成形された鋳造体よりなり、前記低熱膨張材は一方の面と他方の面とに亘る厚み方向と連絡し、かつ該厚み方向と交差方向で互いに連なる連絡開口部を有して設けられ、かつ該連絡開口部を介して前記放熱体本体に鋳ぐまれる構成としたことを特徴とする。
【0008】
また、請求項2に係る発明は、請求項1に記載のパワーモジュール用基板において、前記低熱膨張材は、帯状の単位板状体を同列位置で互いに組付けて前記連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けると共に、互いに隣接する列毎に前記連絡開口部の位置をずらして配設することを特徴とする。
【0009】
これらの発明に係るパワーモジュール用基板によれば、放熱体に低熱膨張材が設けられているとともに、低熱膨張材に前記連絡開口部を設け、この連絡開口部を介して放熱体本体を充填し、低熱膨張材が放熱体本体に鋳ぐまれる構成としたので、放熱体全体としての熱膨張係数を確実に下げることになるとともに、熱伝導率の低下を確実に抑制することになる。また、放熱体はフィンを備えているため、放熱体全体の放熱効果を向上させることになり、さらに、放熱体本体とフィンとは一体成形された鋳造体からなるので、この放熱体を容易に形成できることになる。従って、絶縁基板と放熱体とをはんだ等によって接合した場合でも、放熱体に絶縁基板に向かう反りが発生することを確実に抑制することになるとともに、パワーモジュール用基板全体としての熱伝導率が低下することも抑制することになり、これらの作用を奏するパワーモジュール用基板を確実に形成できることになる。
【0010】
請求項3に係る発明は、請求項1又は2に記載のパワーモジュール用基板において、前記フィンは、前記放熱体本体の板面に沿う方向において、前記放熱体の周縁部における対向する端部間の曲げ剛性が、他の端部間の曲げ剛性より低い一の端部間方向に位置させて配置されていることを特徴とする。
【0011】
この発明に係るパワーモジュール用基板によれば、フィンは、放熱体本体の板面に沿う方向において、放熱体の周縁部における対向する端部間の曲げ剛性が、他の端部間の曲げ剛性より低い一の端部間方向に位置させて配置されているので、絶縁基板と放熱体とをはんだ等によって接合した際、放熱体に、絶縁基板へ向かう反りを発生させる力が作用して、放熱体の前記一の端部間方向に曲げが発生することを抑制することになる。すなわち、フィンが、放熱体の前記一の端部間方向に発生する曲げに対して抗することになる。
【0012】
請求項4に係る発明は、請求項1から3のいずれかに記載のパワーモジュール用基板上にチップを搭載してなることを特徴とする。
【0013】
この発明に係るパワーモジュールによれば、絶縁基板と放熱体との熱膨張係数の差に拘わることなく、両者の反りを可及的に抑えつつ良好な熱伝導率を有するパワーモジュールが得られる。
【0014】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。図1はこの発明の一実施形態に係るパワーモジュール用基板を適用したパワーモジュールを示す全体図である。
本実施形態のパワーモジュールPにおいて、パワーモジュール用基板10は、大別すると図1に示すように、絶縁基板11と放熱体16とを備える。
【0015】
絶縁基板11は、例えばAlN,Al,Si,SiC等により所望の大きさに形成され、その上面に回路層12が,下面に金属層13が各々積層接合される。回路層12及び金属層13は、純Al,Al合金,Cu等により形成されている。
絶縁基板11の回路層12上にはんだ14によって半導体チップ30が搭載される一方、絶縁基板11の下面側,すなわち金属層13の下面にはんだ15によって、或いはろう付けや拡散接合等によって放熱体16が接合され、放熱体16に伝達される熱が外部に放熱されることで、パワーモジュールPが構成されている。
【0016】
ここで、放熱体16は、放熱体本体17と、放熱体本体17の熱膨張係数より低い材質からなる低熱膨張材18と、放熱体本体17の下面に突出して設けられたフィン19とを備え、放熱体本体17とフィン19とは一体成形された鋳造体より形成されている。これら放熱体本体17とフィン19とは、例えば純Al,Al合金,Cu,Cu合金等,好ましくは純度99.5%以上のAl合金のような熱伝導性の良好な材質,いわゆる高熱伝導材によって形成されている。高熱伝導材としては、熱伝導率が例えば、100W/m・K以上,好ましくは150W/m・K以上のものである。
【0017】
一方、低熱膨張材18は、放熱体本体17の熱膨張係数より低い熱膨張係数の材質からなっており、後述するように放熱体本体17の内部に埋設することで、放熱体16全体の熱膨張係数と絶縁基板11の熱膨張係数との差を可及的に近づけさせるためのものであり、Fe―Ni系合金,例えばインバー合金からなり、熱膨張係数がおよそ5×10−6/℃以下である。
ここで、インバー合金とは、室温付近でほとんど熱膨張が生じない合金であって、Feが64.6mol%で、Niが35.4mol%の組成率となっている。但し、Fe中には、それ以外の不可避不純物が含まれたものもインバー合金と呼ばれている。
【0018】
このような材質からなる低熱膨張材18は、図2,図3に示すように、低熱膨張材18が、絶縁基板11側の放熱体本体17と接合される一方の面と、フィン19側の放熱体本体17と接合される他方の面とに亘る厚み方向に連絡すると共に、該厚み方向と交差方向で互いに連なる開口空間部40を有して設けられ、かつ該開口空間部40に放熱体本体17が充填されることで、図2に示すように、放熱体本体17に鋳ぐまれる構成となっている。
【0019】
具体的に述べると、低熱膨張材18は、図3に示すように、例えば二枚からなる帯状の単位板状体41,42を前記厚み方向に沿って組付けることで連絡開口部40を連続的に有する連鎖状体43が形成される。ここで、連絡開口部40は、平坦壁41c,41d,42c,42dと、斜面壁41a,41b,42a,42bとで形成された空間となっている。そして、これら連鎖状体43が同一平面上で複数列設けられると共に、連絡開口部40を互いに隣接する列毎に互い違いに配列して形成される。
【0020】
このように形成された低熱膨張材18は、放熱体16の形成時、放熱体本体17の材料が注入されると、その材料が連絡開口部40内に側方から充填される。そして、この低熱膨張材18は、側面から見たとき、図2に示すように、絶縁基板11側である上層の放熱体本体17と、フィン19が形成されている下層の放熱体本体17との間に埋設されることになる。
【0021】
ここで、低熱膨張材18は前述したように構成されているため、図3において、低熱膨張材18の周縁部における対向する端部A,B、C,D間の低熱膨張材18の曲げ剛性が、他の端部A,B間の曲げ剛性より低い一の端部C,D間を有する,すなわち異方性を有することになる。
【0022】
具体的に述べると、図3において、低熱膨張材18(放熱体16)の端部A,Bを把持してこれを曲げた際、平坦壁41c,41d,42c,42dには面外変形させようとする力が作用することになり、比較的容易に曲がることになるが、斜面壁41a,41b,42a,42bには若干の面外変形させようとする力が作用するものの、主に面内変形させようとする力が作用することになり、この斜面壁41a,41b,42a,42bが前記曲げに対してはリブとして作用することになり前記曲げに対する剛性を高める構成となっている。
これに対し、低熱膨張材18(放熱体16)の端部C,Dを把持してこれを曲げた際、平坦壁41c,41d,42c,42d及び斜面壁41a,41b,42a,42bには共に、面外変形させようとする力が主に作用することになる。
【0023】
以上により、図3に示す低熱膨張材18(放熱体16)においては、端部A,Bを把持してこれを曲げたときの剛性より、端部C,Dを把持したときの曲げ剛性の方が低いことになる。
このように構成された低熱膨張材18を有する放熱体16に、図4に示すように、フィン19が、放熱体本体17の板面に沿った方向において、低熱膨張材18の端部C,D間方向と対応した方向に連続して設けられると共に、端部A,B間方向と対応した方向に所定の間隙を有し複数列設けられている。
【0024】
以上説明したように本実施形態によるパワーモジュール用基板によれば、放熱体16に低熱膨張材18が設けられているとともに、低熱膨張材18に連絡開口部40が設けられ、この連絡開口部40を介して放熱体本体17を充填し、低熱膨張材18が放熱体本体17に鋳ぐまれる構成としたので、放熱体16全体としての熱膨張係数を確実に下げることができるとともに、絶縁基板11側の上層の放熱体本体17とフィン19が設けられている下層の放熱体本体17とを完全に分離することを回避可能な構成を実現でき、パワーモジュール用基板10全体としての熱伝導率の低下を確実に抑制することができる。
【0025】
また、放熱体16はフィン19を備えているため、放熱体16全体の放熱効果を向上させることができ、さらに、放熱体本体17とフィン19とは一体成形された鋳造体からなるので、この放熱体16を備えたパワーモジュール用基板10を容易に形成することができる。従って、絶縁基板11と放熱体16とをはんだ等によって接合した場合でも、放熱体16に絶縁基板11に向かう反りが発生することを確実に抑制することができるとともに、パワーモジュール用基板10全体としての熱伝導率が低下することも抑制することができる放熱体16を容易に形成することができる。
【0026】
ここで、低熱膨張材18は前述したように、放熱体本体17に鋳ぐるみ易い前述した構成であるため前記効果を奏することができる反面、低熱膨張材18の端部C,D間の曲げ剛性が、端部A,B間の曲げ剛性より低くなり、結果これを有する放熱体16においても同様に曲げ剛性についての異方性を有することになる。しかし、フィン19を放熱体本体17の板面に沿った方向において、低熱膨張材18の端部C,D間方向と対応させた方向に連続して設けると共に、端部A,B間方向と対応させた方向に所定の間隙を有し複数列設けた構成としたので、放熱体16全体としての曲げ剛性の低下を確実に抑制することができる。
【0027】
すなわち、絶縁基板11と放熱体16とをはんだ等によって接合した際、放熱体16が絶縁基板11に向かう反りを発生させる力が作用し、この際、放熱体16においては、低熱膨張材18の端部C,D間方向と対応した方向に曲げが発生し易いことになるが、前述のようにフィン19を放熱体本体17に設けることにより、このフィン19が前記曲げ発生に対して抗することができる。これにより、放熱体16の反り発生抑制を確実に実現することができる。
【0028】
さらにまた、低熱膨張材18が金属であってかつ相応の熱伝導率を有しているので、絶縁基板11上の半導体チップ30からの発熱が、回路層12,絶縁基板11,金属層13,はんだ15及び放熱体16を介して外部に良好に放熱されることになる。すなわち、パワーモジュールP全体としての熱伝導率が低下することを抑制することができ、パワーモジュールP全体としての温度上昇を抑制することができる。この結果、絶縁基板11と放熱体16との熱膨張係数に差があっても、放熱体16の温度上昇を抑制することができるため、放熱体16の反り発生抑制効果を備えた,良好なパワーモジュールPを得ることができる。
【0029】
なお、前述の実施形態では、放熱体本体17に積層された低熱膨張材18として、Fe―Ni系合金を用いた例を示したが、他の低熱膨張材、例えば高炭素鋼(Fe−C)、42合金、モリブデン(Mo)、タングステン(W)等で構成しても、同様の作用効果が得られる。
また、放熱体16が取り付けられる絶縁基板11として、放熱体16側の面に金属層13が設けられた例を示したが、金属層13を設けず絶縁基板11をはんだ15を介して放熱体16に直接接合しても、同様の作用効果が得られる。
さらに、前述した低熱膨張材18に替えて、いわゆるコルゲートルーバ,前述した斜面壁のみにより断面矩形に形成された連絡開口部40を有するエキスパンド構造,若しくは前記実施形態のいわゆる,ハニカム構造を一層設けたもの,又は前記構造のうちの一つを複数積層させた構成としてもよい。
【0030】
【発明の効果】
以上の説明から明らかなように、本発明に係るパワーモジュール用基板によれば、放熱体本体に低熱膨張材が鋳ぐまれる構成としたので、放熱体全体としての熱膨張係数を確実に下げることができるとともに、パワーモジュール用基板全体としての熱伝導率の低下を確実に抑制することができる。
また、放熱体はフィンを備えているため、パワーモジュール用基板全体の放熱効果を向上させることができ、さらに、放熱体本体とフィンとは一体成形された鋳造体からなるので、この放熱体を備えたパワーモジュール用基板を容易に形成することができる。
【0031】
また、低熱膨張材を放熱体本体に鋳ぐるみ易い構成としたために、放熱体が曲げ剛性に対して異方性を有した場合でも、フィンが放熱体本体の板面に沿った方向に対して、前記一の端部間方向に位置させて配置されているので、放熱体の前記一の端部間方向に発生する曲げを抑制することができる。
【0032】
本発明に係るパワーモジュールによれば、絶縁基板と放熱体との熱膨張係数の差に拘わることなく、両者の反りを可及的に抑えつつ良好な熱伝導率を有するパワーモジュールが得られる。
【図面の簡単な説明】
【図1】この発明の一実施形態に係るパワーモジュール用基板及びパワーモジュールを示す全体図である。
【図2】図1に示すパワーモジュールの拡大断面側面図である。
【図3】図1,図2に示す低熱膨張材の要部を示す拡大斜視図である。
【図4】図1に示す低熱膨張材の曲げ剛性に対する異方性と、フィンの配設位置との関係を説明図である。
【符号の説明】
P パワーモジュール
10 パワーモジュール用基板
11 絶縁基板
16 放熱体
17 放熱体本体(高熱伝導材)
18 低熱膨張材
19 フィン
30 半導体チップ(チップ)
40 連絡開口部
41,42 板状体
43 連鎖状体
A,B 低熱膨張材(放熱体)の他の端部
C,D 低熱膨張材の(放熱体)の一の端部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power module substrate used in a semiconductor device for controlling a large voltage and a large current, and more particularly to a power module substrate and a power module having a radiator for dissipating heat generated from a heating element such as a semiconductor chip. .
[0002]
[Prior art]
In this type of power module substrate, a circuit layer is formed on one surface of an insulating substrate (ceramic substrate) made of a ceramic material, and a heat radiation made of pure aluminum or an aluminum alloy, which is a high thermal conductive material, on the other surface. In general, the heat sink has a configuration in which a cooling sink portion provided with a cooling means such as a cooling liquid or a fin is provided on a surface facing the insulating substrate forming surface of the heat radiator. (For example, see Patent Document 1). Here, in a power module as a semiconductor device, generally, a semiconductor chip is mounted on a circuit layer, and heat generated from the semiconductor chip is supplied to a power module via an insulating substrate, a radiator, and a cooling sink or a fin. Heat is radiated to the outside of the module.
[0003]
Here, a thin metal plate is directly laminated on the other surface of the insulating substrate (ceramic substrate), and the radiator is laminated and joined to the thin metal plate via a plastic porous metal layer. The plastic porous metal layer is a porous sintered body of Cu having a porosity of 20 to 50%, and forms a stress relaxation layer that absorbs thermal deformation of the insulating substrate when the insulating substrate receives heat from the semiconductor chip. ing.
[0004]
[Patent Document 1]
JP-A-08-335652
[Problems to be solved by the invention]
By the way, in the related art, since the plastic porous metal layer provided on the power module substrate absorbs the thermal deformation of the insulating substrate and the radiator, the insulating substrate and the radiator have different thermal expansion coefficients. Although the board and radiator can be prevented from warping or cracking, the thermal resistance rises by that much because the plastic porous metal layer is interposed between the insulating substrate and the radiator. The thermal conductivity has decreased, and this has led to a decrease in the heat radiation effect of the radiator.
[0006]
The present invention has been made in view of such circumstances, and an object of the present invention is to suppress warpage regardless of a difference in thermal expansion coefficient between an insulating substrate and a radiator. It is another object of the present invention to provide a power module substrate and a power module that can suppress a decrease in thermal conductivity.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes the following means.
The invention according to claim 1 is a power module substrate including an insulating substrate and a radiator provided on one surface side of the insulating substrate, wherein the radiator includes a radiator main body and the radiator. A fin provided on the radiator body; and a fin provided on the radiator body, wherein the radiator body and the fin are formed as a single-piece molded body, The material is provided so as to have a communication opening communicating with a thickness direction across one surface and the other surface, and continuous with each other in a direction crossing the thickness direction, and the radiator body is provided through the communication opening. It is characterized in that it has a configuration in which it is cast.
[0008]
According to a second aspect of the present invention, in the power module substrate according to the first aspect, the low-thermal-expansion material is formed by assembling strip-shaped unit plate members together at the same row position to continuously connect the communication openings. A plurality of rows on the same plane, and the connecting openings are displaced from each other in adjacent rows.
[0009]
According to the power module substrate according to the present invention, the radiator is provided with the low thermal expansion material, the low thermal expansion material is provided with the communication opening, and the radiator body is filled through the communication opening. In addition, since the low-thermal-expansion material is cast into the radiator body, the thermal expansion coefficient of the radiator as a whole can be reliably reduced, and a decrease in thermal conductivity can be reliably suppressed. In addition, since the radiator has fins, the heat radiation effect of the entire radiator is improved. Further, since the radiator body and the fin are formed as a single-piece molded body, the radiator can be easily formed. It can be formed. Therefore, even when the insulating substrate and the radiator are joined by solder or the like, it is possible to reliably suppress the occurrence of warpage of the radiator toward the insulating substrate, and to reduce the thermal conductivity of the entire power module substrate. The reduction is also suppressed, and the power module substrate having these functions can be reliably formed.
[0010]
According to a third aspect of the present invention, in the power module substrate according to the first or second aspect, the fin is located between opposed ends of a peripheral portion of the radiator in a direction along a plate surface of the radiator main body. Is characterized in that it is disposed so as to be located in one end-to-end direction in which the flexural rigidity is lower than the flexural rigidity between the other ends.
[0011]
According to the power module substrate according to the present invention, the fin has a flexural rigidity between opposing ends at a peripheral portion of the radiator in a direction along the plate surface of the radiator main body. Since it is arranged to be positioned in the lower one end direction, when the insulating substrate and the radiator are joined by solder or the like, a force acting on the radiator to generate a warp toward the insulating substrate acts, Bending in the direction between the one end portions of the radiator is suppressed. That is, the fins resist bending generated in the direction between the one end portions of the heat radiator.
[0012]
A fourth aspect of the present invention is characterized in that a chip is mounted on the power module substrate according to any one of the first to third aspects.
[0013]
ADVANTAGE OF THE INVENTION According to the power module which concerns on this invention, the power module which has favorable thermal conductivity, suppressing the curvature of both as much as possible, regardless of the difference of the thermal expansion coefficient of an insulating substrate and a heat sink.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall view showing a power module to which a power module substrate according to an embodiment of the present invention is applied.
In the power module P of the present embodiment, the power module substrate 10 includes an insulating substrate 11 and a radiator 16 as roughly shown in FIG.
[0015]
The insulating substrate 11 is formed in a desired size by using, for example, AlN, Al 2 O 3 , Si 3 N 4 , SiC or the like, and a circuit layer 12 is laminated on the upper surface and a metal layer 13 is laminated on the lower surface. The circuit layer 12 and the metal layer 13 are formed of pure Al, an Al alloy, Cu, or the like.
The semiconductor chip 30 is mounted on the circuit layer 12 of the insulating substrate 11 by the solder 14, while the radiator 16 is soldered on the lower surface side of the insulating substrate 11, that is, the lower surface of the metal layer 13, or by brazing or diffusion bonding. Are joined, and the heat transmitted to the radiator 16 is radiated to the outside, whereby the power module P is configured.
[0016]
Here, the heat radiator 16 includes a heat radiator body 17, a low thermal expansion material 18 made of a material having a lower thermal expansion coefficient than the heat radiator body 17, and fins 19 protruding from the lower surface of the heat radiator body 17. The radiator body 17 and the fins 19 are formed from a single-piece molded body. The radiator body 17 and the fins 19 are made of a material having good heat conductivity such as pure Al, Al alloy, Cu, Cu alloy or the like, preferably an Al alloy having a purity of 99.5% or more, a so-called high heat conductive material. Is formed by The high thermal conductive material has a thermal conductivity of, for example, 100 W / m · K or more, preferably 150 W / m · K or more.
[0017]
On the other hand, the low thermal expansion material 18 is made of a material having a thermal expansion coefficient lower than the thermal expansion coefficient of the radiator main body 17. This is for making the difference between the expansion coefficient and the thermal expansion coefficient of the insulating substrate 11 as close as possible, and is made of an Fe—Ni-based alloy, for example, an invar alloy, and has a thermal expansion coefficient of about 5 × 10 −6 / ° C. It is as follows.
Here, the invar alloy is an alloy that hardly undergoes thermal expansion near room temperature, and has a composition ratio of 64.6 mol% of Fe and 35.4 mol% of Ni. However, Fe containing other unavoidable impurities is also called an Invar alloy.
[0018]
As shown in FIG. 2 and FIG. 3, the low thermal expansion material 18 made of such a material includes the low thermal expansion material 18 on one side joined to the radiator body 17 on the insulating substrate 11 side and the fin 19 side. It is provided to have an opening space 40 communicating with the thickness direction across the other surface to be joined to the radiator body 17 and being connected to each other in a direction crossing the thickness direction. When the main body 17 is filled, as shown in FIG. 2, the heat radiator main body 17 is cast.
[0019]
More specifically, as shown in FIG. 3, the low thermal expansion material 18 continuously connects the communication openings 40 by assembling, for example, two strip-shaped unit plate-like bodies 41 and 42 along the thickness direction. Thus, a chain 43 is formed. Here, the communication opening 40 is a space formed by the flat walls 41c, 41d, 42c, 42d and the slope walls 41a, 41b, 42a, 42b. In addition, a plurality of these chain-like bodies 43 are provided on the same plane, and the communication openings 40 are alternately arranged in adjacent rows.
[0020]
When the material of the heat radiator body 17 is injected into the heat radiator 16 during the formation of the heat radiator 16, the low thermal expansion material 18 thus formed fills the communication opening 40 from the side. When viewed from the side, the low-thermal-expansion material 18 includes, as shown in FIG. 2, an upper radiator body 17 on the insulating substrate 11 side and a lower radiator body 17 on which the fins 19 are formed. It will be buried between.
[0021]
Here, since the low thermal expansion material 18 is configured as described above, in FIG. 3, the bending rigidity of the low thermal expansion material 18 between opposing ends A, B, C, and D in the peripheral portion of the low thermal expansion material 18. Has one end C and D lower than the bending rigidity between the other ends A and B, that is, has anisotropy.
[0022]
Specifically, in FIG. 3, when the ends A and B of the low thermal expansion material 18 (radiator 16) are gripped and bent, the flat walls 41c, 41d, 42c and 42d are deformed out of plane. This causes a relatively easy bend, and the bend is relatively easy. However, although a slight out-of-plane force acts on the slope walls 41a, 41b, 42a, and 42b, mainly A force for inward deformation acts, and the slope walls 41a, 41b, 42a, 42b act as ribs for the bending, thereby increasing the rigidity against the bending.
On the other hand, when the ends C and D of the low thermal expansion material 18 (radiator 16) are gripped and bent, the flat walls 41c, 41d, 42c, and 42d and the slope walls 41a, 41b, 42a, and 42b are attached. In both cases, a force for causing out-of-plane deformation mainly acts.
[0023]
As described above, in the low thermal expansion material 18 (radiator 16) shown in FIG. 3, the bending stiffness when the ends C and D are gripped is smaller than the rigidity when the ends A and B are gripped and bent. Will be lower.
As shown in FIG. 4, fins 19 are provided on the heat radiator 16 having the low thermal expansion material 18 configured as described above, and the fins 19 are arranged along the plate surface of the heat radiator body 17 at the ends C and C of the low thermal expansion material 18. A plurality of rows are provided continuously in a direction corresponding to the direction between the ends D and with a predetermined gap in a direction corresponding to the direction between the ends A and B.
[0024]
As described above, according to the power module substrate of the present embodiment, the heat radiator 16 is provided with the low thermal expansion material 18 and the low thermal expansion material 18 is provided with the communication opening 40. The heat radiator main body 17 is filled through the heat sink and the low thermal expansion material 18 is cast into the heat radiator main body 17, so that the thermal expansion coefficient of the heat radiator 16 as a whole can be surely reduced, and the insulating substrate 11 And a lower heat sink body 17 provided with the fins 19 can be prevented from being completely separated from each other, and the heat conductivity of the power module substrate 10 as a whole can be reduced. The decrease can be reliably suppressed.
[0025]
Further, since the heat radiator 16 is provided with the fins 19, the heat radiating effect of the entire heat radiator 16 can be improved. Further, since the heat radiator body 17 and the fins 19 are formed as a single-piece molded body, The power module substrate 10 including the radiator 16 can be easily formed. Therefore, even when the insulating substrate 11 and the heat radiator 16 are joined by solder or the like, it is possible to reliably suppress the heat radiator 16 from being warped toward the insulating substrate 11 and to as a whole the power module substrate 10. The heat radiator 16 that can also suppress a decrease in the thermal conductivity of the radiator can be easily formed.
[0026]
Here, as described above, since the low thermal expansion material 18 has the above-described configuration that is easily cast into the radiator main body 17, the above-described effect can be obtained, but the bending rigidity between the ends C and D of the low thermal expansion material 18. However, the bending stiffness between the ends A and B is lower, and as a result, the radiator 16 having the same also has anisotropy in bending stiffness. However, the fins 19 are provided continuously in the direction along the plate surface of the radiator body 17 in the direction corresponding to the direction between the ends C and D of the low thermal expansion material 18, and in the direction between the ends A and B. Since a plurality of rows are provided with predetermined gaps in the corresponding directions, a decrease in bending rigidity of the heat radiator 16 as a whole can be reliably suppressed.
[0027]
That is, when the insulating substrate 11 and the heat radiator 16 are joined by solder or the like, a force that causes the heat radiator 16 to warp toward the insulating substrate 11 acts. Bending is likely to occur in the direction corresponding to the direction between the ends C and D. However, by providing the fins 19 on the radiator body 17 as described above, the fins 19 resist the occurrence of the bending. be able to. This makes it possible to reliably suppress the warpage of the radiator 16.
[0028]
Furthermore, since the low thermal expansion material 18 is metal and has a corresponding thermal conductivity, heat generated from the semiconductor chip 30 on the insulating substrate 11 is generated by the circuit layer 12, the insulating substrate 11, the metal layer 13, Good heat is radiated to the outside via the solder 15 and the heat radiator 16. That is, it is possible to suppress a decrease in the thermal conductivity of the power module P as a whole, and to suppress a temperature rise of the power module P as a whole. As a result, even if there is a difference in the coefficient of thermal expansion between the insulating substrate 11 and the heat radiator 16, the temperature rise of the heat radiator 16 can be suppressed. A power module P can be obtained.
[0029]
In the above-described embodiment, the example in which the Fe—Ni-based alloy is used as the low thermal expansion material 18 laminated on the radiator body 17 has been described. However, other low thermal expansion materials, for example, high carbon steel (Fe—C ), 42 alloy, molybdenum (Mo), tungsten (W), etc., the same function and effect can be obtained.
Further, as the insulating substrate 11 to which the heat radiator 16 is attached, the example in which the metal layer 13 is provided on the surface on the heat radiator 16 side is shown. The same operation and effect can be obtained by directly joining to the base member 16.
Further, in place of the low thermal expansion material 18 described above, a so-called corrugated louver, an expanded structure having a communication opening 40 formed in a rectangular cross section only by the above-described slope wall, or a so-called honeycomb structure of the above-described embodiment is further provided. Or a configuration in which one of the above structures is stacked in plurality.
[0030]
【The invention's effect】
As is apparent from the above description, the power module substrate according to the present invention has a configuration in which the low-thermal-expansion material is cast into the radiator body, so that the thermal expansion coefficient of the entire radiator can be reliably reduced. And a decrease in the thermal conductivity of the entire power module substrate can be reliably suppressed.
In addition, since the heat radiator is provided with the fin, the heat radiating effect of the entire power module substrate can be improved. Further, since the heat radiator body and the fin are formed as a single-piece molded body, The provided power module substrate can be easily formed.
[0031]
In addition, since the low-thermal-expansion material is easily inserted into the radiator main body, even when the radiator has anisotropy with respect to bending rigidity, the fins can be oriented in the direction along the plate surface of the radiator main body. Since it is arranged so as to be located in the direction between the one end portions, it is possible to suppress the bending of the heat radiator that occurs in the direction between the one end portions.
[0032]
ADVANTAGE OF THE INVENTION According to the power module which concerns on this invention, the power module which has favorable thermal conductivity, suppressing the curvature of both as much as possible, regardless of the difference of the thermal expansion coefficient of an insulating board and a radiator, is obtained.
[Brief description of the drawings]
FIG. 1 is an overall view showing a power module substrate and a power module according to an embodiment of the present invention.
FIG. 2 is an enlarged sectional side view of the power module shown in FIG.
FIG. 3 is an enlarged perspective view showing a main part of the low thermal expansion material shown in FIGS. 1 and 2;
FIG. 4 is an explanatory diagram showing the relationship between the anisotropy with respect to the bending rigidity of the low thermal expansion material shown in FIG. 1 and the arrangement positions of the fins.
[Explanation of symbols]
P Power module 10 Power module substrate 11 Insulating substrate 16 Heat radiator 17 Heat radiator body (high thermal conductive material)
18 Low thermal expansion material 19 Fin 30 Semiconductor chip (chip)
40 communication openings 41, 42 plate-like body 43 chain-like body A, B other end C, D of low thermal expansion material (radiator) One end of (heat radiator) of low thermal expansion material

Claims (4)

絶縁基板と、該絶縁基板の一方の面側に設けられた放熱体とを備えたパワーモジュール用基板であって、
前記放熱体は、放熱体本体と、該放熱体本体の熱膨張係数より低い材質からなる低熱膨張材と、前記放熱体本体に設けられたフィンとを備え、
前記放熱体本体と前記フィンとは一体成形された鋳造体よりなり、
前記低熱膨張材は、一方の面と他方の面とに亘る厚み方向と連絡し、かつ該厚み方向と交差方向で互いに連なる連絡開口部を有して設けられ、かつ該連絡開口部を介して前記放熱体本体に鋳ぐまれる構成としたことを特徴とするパワーモジュール用基板。
An insulating substrate, a power module substrate including a radiator provided on one surface side of the insulating substrate,
The radiator includes a radiator main body, a low thermal expansion material made of a material having a lower thermal expansion coefficient than the radiator main body, and a fin provided on the radiator main body.
The radiator body and the fins are formed of an integrally molded casting,
The low thermal expansion material is provided with a communication opening communicating with the thickness direction across one surface and the other surface, and continuous with each other in a direction crossing the thickness direction, and via the communication opening. A substrate for a power module, wherein the substrate is cast into the radiator body.
請求項1に記載のパワーモジュール用基板において、
前記低熱膨張材は、帯状の単位板状体を同列位置で互いに組付けて前記連絡開口部を連続的に有する連鎖状体に形成し、該連鎖状体を同一平面上で複数列設けると共に、互いに隣接する列毎に前記連絡開口部の位置をずらして配設することを特徴とする放熱体。
The power module substrate according to claim 1,
The low-thermal-expansion material is formed into a chain-like body having the communication openings continuously by assembling the band-like unit plate-like bodies at the same row position, and providing the chain-like body in a plurality of rows on the same plane, A heat radiator wherein the positions of the communication openings are shifted from each other in adjacent rows.
請求項1又は2に記載のパワーモジュール用基板において、
前記フィンは、前記放熱体本体の板面に沿う方向において、前記放熱体の周縁部における対向する端部間の曲げ剛性が、他の端部間の曲げ剛性より低い一の端部間方向に位置させて配置されていることを特徴とするパワーモジュール用基板。
The power module substrate according to claim 1 or 2,
In the direction along the plate surface of the radiator main body, the fin has a bending rigidity between opposing ends in a peripheral portion of the radiator, and is one end-to-end direction lower than the bending rigidity between the other ends. A power module substrate, wherein the substrate is arranged to be positioned.
請求項1から3のいずれかに記載のパワーモジュール用基板上にチップを搭載してなることを特徴とするパワーモジュール。A power module comprising a chip mounted on the power module substrate according to claim 1.
JP2002338085A 2002-11-21 2002-11-21 Power module substrate and power module Expired - Lifetime JP4019914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002338085A JP4019914B2 (en) 2002-11-21 2002-11-21 Power module substrate and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002338085A JP4019914B2 (en) 2002-11-21 2002-11-21 Power module substrate and power module

Publications (2)

Publication Number Publication Date
JP2004172457A true JP2004172457A (en) 2004-06-17
JP4019914B2 JP4019914B2 (en) 2007-12-12

Family

ID=32701407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338085A Expired - Lifetime JP4019914B2 (en) 2002-11-21 2002-11-21 Power module substrate and power module

Country Status (1)

Country Link
JP (1) JP4019914B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11116282B2 (en) 2017-06-14 2021-09-14 W. L. Gore & Associates, Inc. Waterproof breathable footwear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11116282B2 (en) 2017-06-14 2021-09-14 W. L. Gore & Associates, Inc. Waterproof breathable footwear

Also Published As

Publication number Publication date
JP4019914B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP5120284B2 (en) Semiconductor device
KR101017452B1 (en) Semiconductor package
JP2009043851A (en) Semiconductor package
JP2004153075A (en) Substrate for power module and power module
JP2008198908A (en) Substrate for power module with heat sink and power module
JP4605009B2 (en) Power module manufacturing method
JP6738193B2 (en) Heat transfer structure, insulating laminated material, insulating circuit board and power module base
JP4019914B2 (en) Power module substrate and power module
JP2004172379A (en) Heat sink
JP3912255B2 (en) Power module substrate and power module
JP3901078B2 (en) Power module substrate and power module
JP3873870B2 (en) Radiator
JP3960192B2 (en) Radiator
JP2017183533A (en) Heat sink with circuit board and manufacturing method therefor
JP3975910B2 (en) Radiator
CN111164748B (en) Semiconductor cooling device
JP7064989B2 (en) Semiconductor cooling device
JP3901109B2 (en) Manufacturing method of heat radiator, heat radiator, power module substrate and power module using the heat radiator
JP3933031B2 (en) Radiator
JP2004200369A (en) Power module and substrate therefor
JP4179055B2 (en) Power module substrate, radiator and method of manufacturing the radiator
JP2008270296A (en) Semiconductor device
JP2004207619A (en) Power module and substrate therefor
JP2004266059A (en) Process for producing heat sink, heat sink, substrate for power modules employing the heat sink and power module
JP2004152969A (en) Power module substrate and power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4019914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

EXPY Cancellation because of completion of term