JP2004172270A - 内包フラーレンによる分子及び薄膜トランジスタ - Google Patents

内包フラーレンによる分子及び薄膜トランジスタ Download PDF

Info

Publication number
JP2004172270A
JP2004172270A JP2002334894A JP2002334894A JP2004172270A JP 2004172270 A JP2004172270 A JP 2004172270A JP 2002334894 A JP2002334894 A JP 2002334894A JP 2002334894 A JP2002334894 A JP 2002334894A JP 2004172270 A JP2004172270 A JP 2004172270A
Authority
JP
Japan
Prior art keywords
fullerene
field effect
effect transistor
endohedral
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002334894A
Other languages
English (en)
Inventor
Kokin Ko
厚金 黄
Masafumi Ata
誠文 阿多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002334894A priority Critical patent/JP2004172270A/ja
Publication of JP2004172270A publication Critical patent/JP2004172270A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7613Single electron transistors; Coulomb blockade devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】室温で稼動可能であり、しかも活性素子が制御可能なバンドギャップ及び均一な構造を有するように構成される分子トランジスタを提供する。
【解決手段】活性素子として一般式M@C(Mは、周期表のIA族,IIA族,VA族,及びIIIB族の元素群の中から選択されるフラーレンに内包される元素であり、上記xは、1≦x≦4(但し、xは内包原子の数を表す)を満足し、上記yは、36≦y≦100を満足する。)の内包フラーレンによる分子及び薄膜トランジスタを提供する。上記内包フラーレンのバンドギャップは、0.2eV以上、1.2eV以下である。また、この内包フラーレンは、単一分子、二量体、線状重合体及び薄膜の各種トランジスタに用いることができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、分子及び薄膜電界効果型トランジスタに関する。特に、本発明は、活性素子として内包フラーレン材料を用いた分子及び薄膜電界効果型トランジスタに関する。
【0002】
【従来の技術】
従来技術としては、まず最初に個別のC60分子による単一分子トランジスタの製造が実現されている。この“ナノトランジスタ”は、C60分子が電気接点間を往復移動するため、力学的挙動と電子的物性とを結びつける特有の性質を呈するものである(参照、H.Park et al.,“Nanomechanical oscillations in a single−C60 transistor”,Nature,2000,407,57)。しかしながら、この単一分子C60トランジスタは、約1.5Kといった超低温でしか稼動することができない。
【0003】
また、C60薄膜は、電界効果型トランジスタの活性電子素子としても機能することが報告されている。例えば、次の文献を参照することができる。“Fullerene Field−Effect Transistors”J.Kastner et al.,Springer Series in Solid−State Sciences,H.Kuzmany et al.,volume 113,Pages 512−513,1993.また、関連米国特許第5,693,977号の“N−channel field effecttransistor including a thin−film fulleren”も参照できる。なお、この米国特許は、Lucent Technologies,Inc.に譲渡されている。
【0004】
しかしながら、このようなC60薄膜トランジスタは、電子移動度が比較的低いという特徴がある。例えば、上記のKastner氏による文献では、上記トランジスタのフラーレン薄膜中の電子移動度は、たったの約10−4cm/V−sであると特定されている。また、譲渡先がLucentであるC60薄膜においても、その電子移動度が非常に低いため(0.08cm/V−s)、酸素効果を厳密に抑えて実質的に性能改善を図っているにもかかわらず、実用には不適当である。なお、この点については、以下を参照すると良い。R.C.Haddon et al.,“C60 thin film transistors”,Appl.Phys.Lett.,1995,67,121.
【0005】
ところで、カーボンナノチューブ(CNT)は、特有な性質を有するために、ナノ電子を含む様々な応用へと幅広い関心を集めている。Tansらは、CNTを室温でのトランジスターに利用することを最初に研究した(参照、S.J.Tans et al.,“Room−temperature transistor based on a single carbon nanotube”, Nature,1998,393,49)。このCNT電界効果型トランジスタは、2つの金属電極に接続された1つの半導性単層カーボンナノチューブからなる。そして、ゲート電極に電圧を印加することで、このナノチューブを導電状態から絶縁状態へと切り替えることができる。IBMの科学者は、ナノチューブを通る移動が正孔により支配されており、室温ではナノチューブが弾道性よりもむしろ拡散性を呈することを見出している。また、構造的に変形させた多層カーボンナノチューブについても、検出可能なゲート効果を示している(参照、Martel et al.,“Single− and multi−wall carbon nanotube field−effect transistors”,Appl.Phys.Letts.,1998,73,2447)。
【0006】
【発明が解決しようとする課題】
このように、カーボンナノチューブは、ナノ電子分野において非常に有望なものである。しかしながら、最適なCNTを適切な位置に設計し操作するのは困難であり、多くの課題が伴う。しかも、構造的に均一で欠陥の全くないCNTを得ることは非常に難しい。このため、たとえCNTがナノ電子の応用分野において一般的な対象となってきていても、これら多くの課題が解決されねばならない。
【0007】
そこで、本発明は、室温で稼動可能であり、しかも活性素子が制御可能なバンドギャップ及び均一な構造を有するように構成される分子トランジスタを提供することを目的とする。
【0008】
また、本発明は、活性素子として 内包フラーレンを用いた分子トランジスタを提供することをも目的とする。
【0009】
さらに、本発明は、活性素子として 内包フラーレンを用いた薄膜トランジスタを提供することをも目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明は、分子薄膜トランジスタの活性素子を構成するのに内包フラーレンを用いることを特徴とする。特に、本発明は、一般式M@Cの内包フラーレンを含んで構成され、ここで、上記Mが、周期表のIA族,IIA族,VA族,及びIIIB族の元素群の中から選択されるフラーレンに内包される元素であり、上記xが1≦x≦4(但し、xは内包原子の数を表す)を満足し、上記yが36≦y≦100を満足するものである。
【0011】
本発明において活性素子として内包フラーレンを用いることは、幾つかの利点がある。第一に、大抵の内包フラーレンは加工しない状態のままでも半導体である点である。そして、内包フラーレンのバンドギャップは、異なるドープ元素により変化させることができる。特に、本発明の代表的な金属内包フラーレンのバンドギャップは、0.2eV以上、1.2eV以下である。
【0012】
また、内包フラーレンの中には非常に安定なものがある。本発明の金属内包フラーレンは、構造的に均一であり、しかも大きな双極子モーメントを有するため、互いに集まりやすく、後述する幾つかの実施形態で示すように、一次元的、二次元的及び三次元的構造に重合されやすい。さらに、内包フラーレンの炭素ケージは、分子を電極や基板に取り付けるための各種官能基によって機能化することができる。
【0013】
本発明の原理は、活性素子として内包フラーレンを用いた分子電界効果型トランジスタを、真空中で蒸着技術を用いて作製したり、ナノプローブにより操作することができる点にある。また、致命的欠陥無く応用したものとしては、上記の代わりに内包フラーレンの希釈溶液を前処理後の電極上に滴下して作製することもできる。
【0014】
しかも、薄膜電界効果型トランジスタは、ラングミュア・ブロジェット技術を用いることで、空気/水、又は不活性ガス/水の境界面で作成することができる。
【0015】
【発明の実施の形態】
以下、本発明の上述した目的及びその他の目的、並びに効果について、詳細な実施形態を取り挙げて添付の図面を参照しながらより明確に説明する。
【0016】
図1は、本発明の一実施形態による単一金属内包フラーレン(Single pristine endohedral metallofullerene: SPEM)トランジスタ100を示す概略図である。SPEMトランジスタ100は、金属内包フラーレン分子110を含んでいる。この金属内包フラーレン分子は、La@C82,Ce@C82,Tb@C82等の安定した金属内包フラーレンやそのアニオンであると良い。
【0017】
金属内包フラーレン分子110は、例えば、不活性ガス中で元素ドープした炭素ロッドをアーク放電し、その後抽出及び分離することにより大規模に準備できる(例えば、本発明者らの文献で、本願にもその開示内容全体を含んでいる以下の文献を参照することができる。Houjin Huang et al.“Magnetic behavior of endohedral fullerenes with heavy lanthanide atoms(Tb,Dy,Er,Ho)inside”,J.Phys.Chem.B2000.104(7),1473−1482)。
【0018】
そして、金属内包フラーレン分子110を用意した後、2つの電極であるソース電極130及びドレイン電極140を前もって形成しておいたゲート電極120(本例では、これが基板となる)上に、この金属内包フラーレン分子110を載置する。ここで、電極130,140は、例えば、Au,Cu等から形成することができる。また、ゲート電極120(基板)には、SiO層を形成したシリコン基板を用いることができる。
【0019】
以下、発明を限定することを目的としない例を用いて説明すると、本発明のSPEMトランジスタ100を製造するには、まず、バックゲートとして用いる均一にドープされたSi基板の上面に、厚さ30nmのSiO絶縁層を熱的成長させると良い。その後、幅200nm未満、長さ約500nm、厚さ約10nmの連続金ワイヤを、例えば電子ビームリソグラフィによりSiO絶縁層上に作りこむと良い。なお、上述した基板の熱的成長工程や電子ビームリソグラフィ工程は、従来より当業者により公知な技術によれば良い。
【0020】
そして、金ワイヤの作り込まれた基板を、アセトン、塩化メチレン、酸素プラズマにより洗浄する。次に、純粋な金属内包フラーレンを含有するトルエン溶液を1滴、金ワイヤ上に滴下する。
【0021】
その後、金属内包フラーレンで被覆されたワイヤは、低温にて圧力を上げながら、トンネル信号だけ存在するような状態となるまで電流をモニターすることで、電気移動法により破壊される(参照、Park,H.,Lim,A.K.L.,Park,J.,Alivisatos,A.P.,and McEuen,P.L.,“Fabrication of metallic electrodes with nanometer separation by electromigration”,Appl.Phys.Let.,1999,75,301.)。これにより、約1nm〜2nm幅のギャップを生じ、その中を1つの金属内包フラーレンが存在するようになる。
【0022】
金属内包フラーレンの電気的性質は、ゲート電圧(Vg)を変化させながら、電流対バイアス電圧(I−V)曲線を得ることで決定できる。上記のようにして得られたナノトランジスタ装置は、単一電子トランジスタとして用いることができる。
【0023】
上記トランジスタ100、及び後述する本発明の実施形態に係るトランジスタでは、ON/OFF比が、約10以上であると良く、特に入出力信号の正確な応答を得るには、約10以上であることが好ましい。また、しきい値電圧は、約10ボルト、好ましくは5ボルト未満、より好ましくは2ボルト未満であると良く、これによりナノスケールの論理回路における熱抵抗及び放電を低減しうる。
【0024】
本発明の第2の実施形態として、図2に示すような別の単一金属内包フラーレントランジスタ200が挙げられる。この金属内包フラーレントランジスタ200は、金属内包フラーレンの誘電体により構成され、例えば、図2に示した−SH基により機能化された金属内包フラーレン210が用いられる。この他の官能基としては、例えば、−NH,−C,−SOH等の基が挙げられる。より詳しくは、図2は、内包フラーレンの炭素ケージが機能化され、電極表面に接続された後の状態のトランジスタ構造を示している。なお、電極の作製方法は、上述した第1の実施形態と同じ方法で良い。
【0025】
この第2の実施形態では、金属内包フラーレンを電極に取り付ける方法としては、第1の実施形態でのフラーレン含有溶液を電極上に滴下した方法とは異なり、例えば、金属内包フラーレン分子を含有するトルエン溶液中に電極を少なくとも1日浸すことで自己集合層を形成することによるものである。そして、この−SH基と、例えばAu電極との間には強力な相互作用があるため、結果的にこのようなフラーレン誘導体及びその製造方法によって、より安定的な単一電子トランジスタ200を作製することができる。さらに、ポルフィリンや長鎖状分子などの他の補助材料をトルエン溶液中に添加することで、接着特性及び膜特性を向上することができる。
【0026】
また、本発明の第3及び第4の実施形態では、図3及び図4に示すように、分子トランジスタ300,400の各々が、純粋な空フラーレン310,410と、金属内包フラーレン320,420との二量体に基づいて構成されている。図3及び図4に示したトランジスタ300,400は、両者がかなり類似しているが、図4のトランジスタ400がフラーレン誘電体の二量体に基づくのに対して、図3のトランジスタ300は純粋な二量体に基づいて構成される点が異なっている。
【0027】
図3及び図4に示すように、トランジスタ300,400の活性素子は、1つの空フラーレン310,410と、1つの金属内包フラーレン320,420とを含んでおり、供与体・受容体(ドナー・アクセプタ)構造を構成している。このドナー・アクセプタ構造は、半導体分野のダイオードにおけるPN接合に類似している。よって、この構造は、現時点において世界最小のダイオードとして考えられる。本発明者らは、このような実験により、直径約1nmで、長さ約2nmのダイオードを作製するに至った。
【0028】
これら第3及び第4の実施形態では、一般式Cの空フラーレンと、一般式M@Cの金属内包フラーレンとの間の相互作用は化学結合によるものである。従って、二量体トランジスタ300,400は非常に安定している。本発明の実施形態全てに共通している点は、一般式M@Cの内包フラーレンが用いられており、ここで、上記Mが周期表のIA族,IIA族,VA族,及びIIIB族の元素群の中から選択されるフラーレンに内包される元素であり、上記xが1≦x≦4(但し、xは内包原子の数を表す)を満足し、上記yが36≦y≦100を満足することである。
【0029】
一般式C―M@Cの二量体は、RFプラズマ法やイオン注入法を用いてフラーレンや金属内包フラーレンを蒸着させて作製し、高圧液体クロマトグラフィー(HPLC)にて分離することができる。なお、これらの技術は、当業者に公知な従来の技術を用いれば良い。このような二量体の生成は、原子間力顕微鏡(AFM)又は走査型トンネル顕微鏡(STM)のプローブにより観察される。また、トランジスタの電極及びその他機能部の作製は、上述した第1の実施形態と同様な方法にて作製することが可能である。
【0030】
図5及び図6は、一次元(1D)重合内包フラーレンによる分子トランジスタ500,600の各々の実施形態である。この一次元内包フラーレン構造は、図5に示すように、純粋な金属内包フラーレン510から構成することもできるし、また、図6に示すように、一部分を金属内包フラーレン610とし、他の部分を空フラーレン重合体620として構成することもできる。このような図5及び図6に示した本発明の1D金属内包フラーレントランジスタ500,600は、半導体ナノチューブによるトランジスタ(参照、S.J.Trans et al.,“Room−temperature transistor based on a single carbon nanotube”,Nature,1998,393,49.)と比較して、1Dフラーレン重合体が個々のフラーレンブロックから構成でき、そのためトランジスタ500,600の長さが調整可能とすることができる点が優れている。
【0031】
ここで、金属内包フラーレンの鎖状構造の形成は、分子間の双極子−双極子相互作用による。本発明者らは、導入金属から炭素ケージへの電子供与により金属内包フラーレンが非常に大きな双極子モーメント(>4Debye)を有することに気づいた。そのため、一端、金属内包フラーレン同士が互いに接触すると、自動的に頭―尾構造を形成する。特に、Nd@C82のような金属内包フラーレンでは、それ自身で重合化し、線状構造を形成する。図5に示した重合金属内包フラーレン電界効果型トランジスタ500では、少なくともモノマー数が2であると良い。
【0032】
本発明の最後の実施形態として、図7に、内包フラーレン710に基づく薄膜トランジスタ700の概略図を示す。本実施形態において、本発明者らは、Nd@C82のような小さなギャップの金属内包フラーレンによってトランジスタ素子を構成すると、通常膜状態の内包フラーレン710が重合化して、安定なトランジスタ700が作製されることを見出したものである。
【0033】
内包フラーレン710の薄膜は、ラングミュア・ブロジェット技術により形成することができる(例えば、本発明者らの文献で、本願にもその開示内容全体を含んでいる以下の文献を参照することができる。H.J.Huang et al.“Langmuir−Blodgett film of endohedral metallofullerenes at the air−water interface”,J.Organomet.,Chem.,2000,599,42−48)。また、この代わりに、内包フラーレン710の薄膜は、高真空下での蒸着により形成することもできる(参照、Bo−Rong Shi,Xue−sen Wang,Houjin Huang,Shihe Yang,Wener Heiland,Nelson Cue“Scanning tunnelling microscopy of endohedral metallofullerene Tb@C82 on C60 film and Si(100)2X1 surface”,J.Phys.Chem.B 2001,105,11414−11418)。(また、薄膜形成には、次の本発明者らの文献も参照できる。例えば、本願にも参考としてその開示内容を含ませたが、Houjin Haung et al.,“Film formation behavior of the endohedral metallofullerene D@C82”,Mater.Res.Soc.Proc.,2000,593,63−68。さらに、Xiaogong Li et al.,“Formation and structual characteristics of Langmui−Blodgett films of the endohedral metalofullerene D@C82 mixed with cadmium arachidate”,Thin Solid Films,2002,413,231−236)。
【0034】
内包フラーレン薄膜は、表面に絶縁層741を有するSi基板740上に堆積される。ソース電極720及びドレイン電極730は、薄膜の堆積前、または後で形成することができる。ここで、ゲート電極740は、絶縁層741下のドープしたSi面である。図8は、図7に示したトランジスタ700の実施形態における金属内包フラーレンNd@C82の単層を示す図である。図8では、個々の金属内包フラーレン及びそれらの鎖状構造が明確に示されている。
【0035】
上述したように、本発明は、室温で稼動する分子トランジスタを提供するものである。しかも、本発明の活性素子(内包フラーレン)は、均一な構造を有するとともに制御可能なバンドギャップを有することができる。
【0036】
さらに、本発明の内包フラーレンは、高い双極子モーメントを有するものであり、本発明は、電荷のトンネル過程を制御可能とする新規なドナー・アクセプタ構造を提供するものである。また、本発明は、双極子モーメントの高い分子ブロックから構成されるトランジスタ構造を提供する。特に、本発明の一実施形態では、金属内包フラーレンがトランジスタの活性素子として一次元カーボンナノ構造体を構成するのに用いられる。
【0037】
しかも、本発明は、内包フラーレンに基づく薄膜トランジスタを提供するものである。
【0038】
以上、本発明について詳細に説明してきたが、本発明は上述した特定の実施形態に限定されるものではない。よって、本発明は、特許請求の範囲にて記載した本発明の要旨及び権利範囲を逸脱しない範囲で多様な変形を施すことが可能であると考えられる。
【図面の簡単な説明】
【図1】単一分子内包フラーレントランジスタを示す概略図である。
【図2】図1に示した構造において、内包フラーレンの炭素ケージを機能化し電極表面に接続させた構造を示す概略図である。
【図3】内包フラーレン及びそのトランジスタによるドナー・アクセプタ構造を示す概略図である。
【図4】図3に示した構造において、内包フラーレンの炭素ケージを機能化し電極表面に固定させた構造を示す概略図である。
【図5】重合化された1D内包フラーレン鎖によるトランジスタを示す概略図である。
【図6】1D内包フラーレンと空フラーレンとの共重合体によるトランジスタを示す概略図である。
【図7】内包フラーレンによる薄膜トランジスタを示す概略図である。
【図8】重合化された一般式Nd@C82の内包フラーレンの単層を、高分解能透過電子顕微鏡(HRTEM)により観察した像である。
【符号の説明】
100 単一純粋金属内包フラーレン(SPEM)トランジスタ
110 金属内包フラーレン
120 ゲート電極(基板)
130 ソース電極
140 ドレイン電極
200 金属内包フラーレン誘電体による単一金属内包フラーレントランジスタ
210 −SH基を有する金属内包フラーレン
300 二量体トランジスタ
310 純粋な空フラーレン
320 金属内包フラーレン
400 誘電体による二量体トランジスタ
410 純粋な空フラーレン
420 金属内包フラーレン
500 一次元重合内包フラーレントランジスタ
510 金属内包フラーレン
600 一次元重合内包フラーレントランジスタ
610 金属内包フラーレン及び空フラーレンの共重合体
700 薄膜トランジスタ
710 金属内包フラーレン
720 ソース電極
730 ドレイン電極
740 ゲート電極
741 絶縁層

Claims (21)

  1. 少なくとも1つの一般式M@Cの内包フラーレンを含み、
    前記Mは、周期表のIA族,IIA族,VA族,及びIIIB族の元素群の中から選択されるフラーレンに内包される元素であり、前記xは、1≦x≦4(但し、xは内包原子の数を表す)を満足し、前記yは、36≦y≦100を満足すること
    を特徴とする電界効果型トランジスタ。
  2. 前記少なくとも1つの内包フラーレンは、単一元素内包フラーレンであることを特徴とする請求項1記載の電界効果型トランジスタ。
  3. 前記単一元素内包フラーレンは、バンドギャップが0.2eV以上、1.2eV以下であることを特徴とする請求項2記載の電界効果型トランジスタ。
  4. ON/OFF比が、約10以上であることを特徴とする請求項2記載の電界効果型トランジスタ。
  5. ON/OFF比が、約10以上であることを特徴とする請求項2記載の電界効果型トランジスタ。
  6. しきい値電圧が、約15ボルト未満であることを特徴とする請求項2記載の電界効果型トランジスタ。
  7. 前記トランジスタは、内包フラーレン誘導体を含むことを特徴とする請求項1記載の電界効果型トランジスタ。
  8. 化学的に結合させた一般式M@Cの内包フラーレンと一般式Cの空フラーレンとを含み、
    前記Mは、周期表のIA族,IIA族,VA族,及びIIIB族の元素群の中から選択されるフラーレンに内包される元素であり、前記xは、1≦x≦4(但し、xは内包原子の数を表す)を満足し、前記yは、36≦y≦100を満足すること
    を特徴とするフラーレン二量体電界効果型トランジスタ。
  9. ON/OFF比が、約10以上であることを特徴とする請求項8記載のフラーレン二量体電界効果型トランジスタ。
  10. ON/OFF比が、約10以上であることを特徴とする請求項8記載のフラーレン二量体電界効果型トランジスタ。
  11. しきい値電圧が、約15ボルト未満であることを特徴とする請求項8記載のフラーレン二量体電界効果型トランジスタ。
  12. 前記トランジスタは、内包フラーレン誘導体を含むことを特徴とする請求項8記載のフラーレン二量体電界効果型トランジスタ。
  13. 線状重合した一般式M@Cの内包フラーレンを含んで構成され、
    前記Mは、周期表のIA族,IIA族,VA族,及びIIIB族の元素群の中から選択されるフラーレンに内包される元素であり、前記xは、1≦x≦4(但し、xは内包原子の数を表す)を満足し、前記yは、36≦y≦100を満足すること
    を特徴とする重合分子電界効果型トランジスタ。
  14. モノマー数が、2以上であることを特徴とする請求項13記載の重合分子電界効果型トランジスタ。
  15. ON/OFF比が、約10以上であることを特徴とする請求項13記載の重合分子電界効果型トランジスタ。
  16. ON/OFF比が、約10以上であることを特徴とする請求項13記載の重合分子電界効果型トランジスタ。
  17. しきい値電圧が、約15ボルト未満であることを特徴とする請求項13記載の重合分子電界効果型トランジスタ。
  18. 一般式M@Cの内包フラーレン層を少なくとも1層備え、
    前記Mは、周期表のIA族,IIA族,VA族,及びIIIB族の元素群の中から選択されるフラーレンに内包される元素であり、前記xは、1≦x≦4(但し、xは内包原子の数を表す)を満足し、前記yは、36≦y≦100を満足すること
    を特徴とする薄膜内包フラーレン電界効果型トランジスタ。
  19. ON/OFF比が、約10以上であることを特徴とする請求項18記載の薄膜内包フラーレン電界効果型トランジスタ。
  20. ON/OFF比が、約10以上であることを特徴とする請求項18記載の薄膜内包フラーレン電界効果型トランジスタ。
  21. しきい値電圧が、約15ボルト未満であることを特徴とする請求項18記載の薄膜内包フラーレン電界効果型トランジスタ。
JP2002334894A 2002-11-19 2002-11-19 内包フラーレンによる分子及び薄膜トランジスタ Pending JP2004172270A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334894A JP2004172270A (ja) 2002-11-19 2002-11-19 内包フラーレンによる分子及び薄膜トランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334894A JP2004172270A (ja) 2002-11-19 2002-11-19 内包フラーレンによる分子及び薄膜トランジスタ

Publications (1)

Publication Number Publication Date
JP2004172270A true JP2004172270A (ja) 2004-06-17

Family

ID=32699163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334894A Pending JP2004172270A (ja) 2002-11-19 2002-11-19 内包フラーレンによる分子及び薄膜トランジスタ

Country Status (1)

Country Link
JP (1) JP2004172270A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288171A (ja) * 2006-03-20 2007-11-01 National Institute For Materials Science 固体素子構造とそれを使用した電気・電子素子及び電気・電子機器
JP2008153245A (ja) * 2006-12-13 2008-07-03 Japan Science & Technology Agency 分子素子
JP2008193009A (ja) * 2007-02-08 2008-08-21 Sony Corp 半導体装置及びその製造方法
JP2010245268A (ja) * 2009-04-06 2010-10-28 Nec Corp 電界効果トランジスタ及び電界効果トランジスタの製造方法
WO2013129535A1 (ja) * 2012-02-28 2013-09-06 独立行政法人科学技術振興機構 ナノデバイス及びその製造方法
EP2780702A1 (en) * 2011-11-18 2014-09-24 Klaus Leifer Molecular junction platform and method of fabricating such a platform
CN116699914A (zh) * 2023-08-07 2023-09-05 惠科股份有限公司 阵列基板、显示面板及显示装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288171A (ja) * 2006-03-20 2007-11-01 National Institute For Materials Science 固体素子構造とそれを使用した電気・電子素子及び電気・電子機器
JP2008153245A (ja) * 2006-12-13 2008-07-03 Japan Science & Technology Agency 分子素子
JP2008193009A (ja) * 2007-02-08 2008-08-21 Sony Corp 半導体装置及びその製造方法
JP2010245268A (ja) * 2009-04-06 2010-10-28 Nec Corp 電界効果トランジスタ及び電界効果トランジスタの製造方法
EP2780702A1 (en) * 2011-11-18 2014-09-24 Klaus Leifer Molecular junction platform and method of fabricating such a platform
EP2780702A4 (en) * 2011-11-18 2015-09-09 Leifer Klaus MOLECULAR CONNECTING PLATFORM AND METHOD FOR PRODUCING SUCH A PLATFORM
WO2013129535A1 (ja) * 2012-02-28 2013-09-06 独立行政法人科学技術振興機構 ナノデバイス及びその製造方法
KR20140138787A (ko) * 2012-02-28 2014-12-04 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 나노 디바이스 및 그 제조 방법
KR101985347B1 (ko) * 2012-02-28 2019-06-03 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 나노 디바이스 및 그 제조 방법
CN116699914A (zh) * 2023-08-07 2023-09-05 惠科股份有限公司 阵列基板、显示面板及显示装置
CN116699914B (zh) * 2023-08-07 2023-11-17 惠科股份有限公司 阵列基板、显示面板及显示装置

Similar Documents

Publication Publication Date Title
Avouris et al. Carbon nanotube electronics
Franklin et al. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems
Kong et al. Chemical profiling of single nanotubes: Intramolecular p–n–p junctions and on-tube single-electron transistors
Dujardin et al. Self-assembled switches based on electroactuated multiwalled nanotubes
Shimada et al. Ambipolar field-effect transistor behavior of Gd@ C 82 metallofullerene peapods
Jang et al. Nanoelectromechanical switches with vertically aligned carbon nanotubes
US8951609B2 (en) CNT devices, low-temperature fabrication of CNT and CNT photo-resists
Burghard et al. Carbon‐based field‐effect transistors for nanoelectronics
Avouris et al. Nanotube electronics and optoelectronics
Avouris et al. Carbon nanotube transistors and logic circuits
Lu et al. Memory effects of carbon nanotubes as charge storage nodes for floating gate memory applications
Maslov Concept of nonvolatile memory based on multiwall carbon nanotubes
Jensen et al. Hybrid devices from single wall carbon nanotubes epitaxially grown into a semiconductor heterostructure
Hu et al. Self-assembled rigid conjugated polymer nanojunction and its nonlinear current–voltage characteristics at room temperature
JP4501339B2 (ja) pn接合素子の製造方法
JP2004172270A (ja) 内包フラーレンによる分子及び薄膜トランジスタ
Kanbara et al. Contact resistance modulation in carbon nanotube devices investigated by four-probe experiments
Schönenberger Charge and spin transport in carbon nanotubes
Zhang et al. Carbon nanotubes: from growth, placement and assembly control to 60mV/decade and sub-60 mV/decade tunnel transistors
Kaur et al. Nano electronics: a new era of devices
Nam et al. Modulation of semiconducting behavior in carbon nanotube Langmuir-Blodgett film based devices by controlling the effective channel dimension
US20100068828A1 (en) Method of forming a structure having a giant resistance anisotropy or low-k dielectric
Park et al. Formation of a quantum dot in a single-walled carbon nanotube using the Al top-gates
KR100466159B1 (ko) 탄소 나노튜브의 밴드 갭 변형방법과 이를 이용한 나노양자소자 및 그의 제조방법
JP2006294667A (ja) 電界効果型トランジスタ