JP2004170920A - 電気光学装置及び電子機器 - Google Patents

電気光学装置及び電子機器 Download PDF

Info

Publication number
JP2004170920A
JP2004170920A JP2003321792A JP2003321792A JP2004170920A JP 2004170920 A JP2004170920 A JP 2004170920A JP 2003321792 A JP2003321792 A JP 2003321792A JP 2003321792 A JP2003321792 A JP 2003321792A JP 2004170920 A JP2004170920 A JP 2004170920A
Authority
JP
Japan
Prior art keywords
electro
electrode
optical device
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003321792A
Other languages
English (en)
Inventor
Takusoku Iki
拓則 壹岐
Yoshifumi Tsunekawa
吉文 恒川
Tomohiko Hayashi
朋彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003321792A priority Critical patent/JP2004170920A/ja
Publication of JP2004170920A publication Critical patent/JP2004170920A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 電気光学装置において、高開口率を維持したまま蓄積容量を増大し、表示ムラやちらつき等のない高品質な画像を表示することの可能とする。
【解決手段】 TFTアレイ基板上に、画素電極、これに接続された半導体層(1a)を含むTFT、該TFTに接続された走査線及びデータ線、そして、誘電体膜を挟持してなる上部電極(300)及び下部電極(71)からなり、該上部電極及び該下部電極の一方が前記画素電極に接続されてなる蓄積容量(70)を備えてなり、前記蓄積容量の断面形状は、凸形状を含んでいる。これにより、図示する立体的部分がないとした場合における蓄積容量よりも、その面積を概ね2HLだけ増大させることができる。
【選択図】 図8

Description

本発明は、電気光学装置及び電子機器の技術分野に属し、特に、画素電極の電位保持特性を向上させる蓄積容量を備えた電気光学装置及び該電気光学装置を具備してなる電子機器の技術分野に属する。また、本発明は電子ペーパ等の電気泳動装置やEL(エレクトロルミネッセンス)装置や電子放出素子を用いた装置(Field Emission Display 及び Surface-Conduction Electron-Emitter Display)等の技術分野にも属する。
マトリクス状に配列された画素電極及び該電極の各々に接続された薄膜トランジスタ(Thin Film Transistor;以下適宜、「TFT」という。)、該TFTの各々に接続され、行及び列方向のそれぞれに平行に設けられた走査線及びデータ線等を備えることによって、いわゆるアクティブマトリクス駆動が可能な電気光学装置が知られている。このような電気光学装置では更に、上述の画素電極、TFT等が形成されたTFTアレイ基板、これに対向配置される対向電極が形成された対向基板、及び両基板に挟持される液晶等の電気光学物質等を備えることで、画像を表示することが可能である。すなわち、前記アクティブマトリクス駆動によって、前記画素電極に対し所定の画像信号を書き込むことで、画素毎に、前記電気光学物質に該画像信号に対応した電界を印加してその状態を変更し、光の透過率を変更させるのである。例えば特許文献1参照。
この場合、例えば、前記走査線が複数設けられている場合では、一の走査線に連なるTFTをONとした状態から、次に、当該TFTがONとされる状態までには、複数の走査線すべてに対する選択が完了するまで、一定の時間が必要である。そして、画素電極ないし液晶等の電気光学物質に対して印加された電圧は、一般に、該一定の時間に減衰することになるから、そのままの状態では画像上に影響が及んでしまうことになる。
そこで、従来の電気光学装置では、上述のような構成のほか、TFTアレイ基板上に蓄積容量が備えられることがあった。これは、誘電体膜を挟持してなる一対の基板からなり、画素電極に画像信号が印加され液晶等の電気光学物質に対して所定の電界が印加されると同時に、同じ電界がかけられるようにされたコンデンサである。このような蓄積容量を利用することによって、前述のような全選択期間の間、典型的には例えば、1フィールド期間、液晶等の電気光学物質に対する電界を、当初印加されたとおりに維持することが可能となるから、高品質な画像を表示することが可能となる。
特開2002−156652号公報
しかしながら、従来における電気光学装置においては、上述した蓄積容量を十分には大きくとれないという問題点があった。蓄積容量を十分に大きくとれなければ、液晶等の電気光学物質に対して印加された電界の維持を、前記全選択期間中、十分に行うことができず、画像上に表示ムラやちらつき等を発生させることとなる。
このような問題に対処するため、蓄積容量を大きくすることが望まれるが、今日、電気光学装置の小型化、高精細化、あるいは高開口率化が進行するにつれて、その要求を満たすことが困難となってきている。例えば、蓄積容量の増大化を単純に実現しようとすれば、該蓄積容量を構成する上部電極及び下部電極等を大面積化するという試みが考えられるが、これでは開口率の減少は必須であり、明るい画像を表示するという電気光学装置にとって根本的な要請に応えることが不可能となる。
また、蓄積容量の増大化を図るためには、上部電極及び下部電極間の間隔を狭めること、すなわち誘電体膜の薄膜化という試みも考えられるが、現状においてさえ、既に誘電体膜の厚さはかなりの薄膜化が進行していることからして、このような試みはもはや限界に達している。
本発明は、上記問題点に鑑みてなされたものであり、高開口率を維持したまま蓄積容量を増大し、表示ムラやちらつき等のない高品質な画像を表示することの可能な電気光学装置及びそのような電気光学装置を具備してなる電子機器を提供することを課題とする。
本発明の第1の電気光学装置は、上記課題を解決するため、基板上に、第1方向に延在するデータ線及び該データ線に交差する第2方向に延在する走査線、並びに、前記データ線及び前記走査線の交差領域に対応するように配置された画素電極及び薄膜トランジスタが積層構造の一部をなして備えられた電気光学装置であって、前記基板上には更に、前記薄膜トランジスタ及び前記画素電極に電気的に接続された蓄積容量と、前記データ線及び前記画素電極間に配置されたシールド層とが、前記積層構造の一部をなして備えられてなり、前記蓄積容量を構成する誘電体膜を挟持してなる上部電極及び下部電極は、前記基板の表面に平行な面に沿って積層された第1部分と、前記基板の表面に対して立ち上がった平面に沿って積層された第2部分とを含むことにより、その断面形状が凸形状を含む。
本発明の第1電気光学装置によれば、まず、走査線及びデータ線並びに画素電極及び薄膜トランジスタが備えられていることにより、アクティブマトリクス駆動可能である。また、当該電気光学装置では、前記の各種構成要素が積層構造の一部をなしていることにより、装置全体の小型化等を達成することができ、また、各種構成要素の適当な配置を実現することにより、画素開口率の向上を図ることもできる。また、シールド層が、データ線及び画素電極間に備えられていることにより、両者間で容量カップリングが生じることを未然に防止することが可能となる。すなわち、データ線の通電によって、画素電極における電位変動等が生じる可能性を低減することが可能となり、より高品質な画像を表示することが可能となる。また、本発明では、誘電体膜を挟持してなる上部電極及び下部電極からなり、該上部電極及び該下部電極の一方が前記画素電極に接続されてなる蓄積容量が備えられている。これにより、画素電極に前記画像信号に対応する電界が印加されると、それと同じ電界が該蓄積容量にも蓄えられることになる。したがって、液晶に対して印加された電界を、所定の期間にわたって維持することができるから、本発明によれば、フリッカ等のない高品質な画像を表示することが可能となる。
ここで特に、本発明においては、前記蓄積容量は、前記上部電極及び前記下部電極が前記誘電体膜を挟んで、前記基板の表面に平行な面に沿って積層された第1部分と、前記基板の表面に対して立ち上がった平面に沿って積層された第2部分とを含むことにより、その断面形状が凸形状を含んでいる。すなわち例えば、下部電極それ自体が基板に対して凸状の部分を含むように形成されているか、あるいは該下部電極の下の所定の箇所に凸状部材が形成されているか等に応じて、その上層に位置する誘電体膜及び上部電極は、断面視して屈曲した形状を有することになる。そして、この場合、従来の平面的な蓄積容量に比べて、基板の表面に沿って立ち上がった平面に沿って、上部電極、誘電体膜及び下部電極が積層されてなる第2部分における面積部分だけ、換言すれば、凸形状の側壁の面積部分だけ、容量増大の作用効果が見込めることになるのである。
したがって、本発明においては、蓄積容量を構成する上部電極及び下部電極の面積を平面的に増大させることなく、その容量を増大させることが可能となるから、高開口率を維持したまま、蓄積容量の増大を実現することが可能となり、これをもって表示ムラ、ちらつき等のない高品質な画像を表示することができる。
さらには、本発明は、前記誘電体膜が、相異なる材料を含む複数の層からなるとともに、そのうちの一の層は他の層に比べて高誘電率材料からなる層を含む積層体を構成するとよい。これにより、当該蓄積容量の電荷蓄積特性は更に向上する。
この点も、本発明に係る電気光学装置における高品質な画像表示に大きく貢献することになる。
なお、蓄積容量の断面形状が凸形状を含むという形態は、上述したように、下部電極それ自体が凸状の部分を含むようにこれを形成したり、下部電極下に凸状部材を形成する等という手段によって実現されうるが、本発明においては、その他の手段ないし方法によって、これを実現するような形態としてもよい。例えば、下部電極の下層に何らかの配線、回路素子等が形成され、かつ、これらの上に層間絶縁膜が形成される場合において、該層間絶縁膜の表面に、前記配線、前記回路素子等が有する高さに応じて段差が生じる場合においては、この段差を前記第2部分ないし前記凸形状の基礎となるように利用する場合等が考えられる。すなわち、この場合には、前記段差上に下部電極、誘電体膜及び上部電極を順次形成すれば、自然に凸形状を断面形状として含む蓄積容量を構成することが可能となるのである。
また、場合によっては、例えば、基板上の層間絶縁膜において凹部を形成し、該凹部を覆うように下部電極及び誘電体膜を形成するとともに、その上に、該凹部を埋め尽くし、かつ、前記層間絶縁膜の表面を覆うようにして、上部電極を形成するような形態としてもよい。
さらに、本発明においては、蓄積容量を構成する上部電極及び下部電極の一方は、画素電極に接続されることで、それと同じ電位を有することになるが、その場合、画素電極に接続されない他方の電極については、固定電位とするのが好ましい。ちなみに、この場合、画素電極に接続されることとなる上部電極又は下部電極については、一般にこれを「画素電位側容量電極」と呼ぶことが可能であり、前記他方の電極については、これを「固定電位側容量電極」と呼ぶことが可能である。ここで、画素電極に接続される電極は、上部であっても下部であってもよいことから、より実際的な蓄積容量の構成としては、基板上、下から順に、画素電位側容量電極、誘電体膜及び固定電位側容量電極という積層構造としても、その逆としてもよい。
なお、これに関連して、上述の固定電位側容量電極は、走査線の延在する方向に沿って形成される容量線の一部として構成されていてもよい。このようにすれば、製造上の手間ないしコストを削減することが可能である。というのも、固定電位側容量電極を別々に、あるいは、基板上に島状に形成すると、これらに対して個別に配線等を設ける必要があるが、該固定電位側容量電極は、要は固定電位でさえあればよいのであるから、これを容量「線」の一部として形成すれば、該容量線につき一の配線を設ければよく、その相応分、製造コストを削減することが可能となるからである。
加えて、上述した上部電極及び下部電極を構成する材料としては、基本的にどのようなものを選択してもよいが、好ましくは例えば、上部電極及び下部電極の少なくとも一方について、これを遮光性材料で構成するような形態とするとよい。これにより、薄膜トランジスタのチャネル領域に対する光入射を未然に防止する遮光層としての役割を、上部電極又は下部電極に担わせることが可能となるから、前記チャネル領域における光リーク電流の発生が抑制されることにより、これに起因するフリッカ等が発生しない高品質な画像を表示することが可能となる。
更に加えて、本発明にいう「高誘電率材料」としては、後述する窒化シリコンの他、TaOx(酸化タンタル)、BST(チタン酸ストロンチウムバリウム)、PZT(チタン酸ジルコン酸塩)、TiO2(酸化チタン)、ZiO2(酸化ジルコニウム)、HfO2(酸化ハフニウム)及びSiON(酸窒化シリコン)及びSiN(窒化シリコン)のうち少なくとも一つを含んでなる絶縁材料等を挙げることができる。特に、TaOx、BST、PZT、TiO2、ZiO2及びHfO2といった高誘電率材料を使用すれば、限られた基板上領域で容量値を増大できる。あるいは、SiO2(酸化シリコン)、SiON(酸窒化シリコン)及びSiNといったシリコンを含む材料を使用すれば、層間絶縁膜等におけるストレス発生を低減できる。
本発明の第2の電気光学装置は、上記課題を解決するために、基板上に、第1方向に延在するデータ線及び該データ線に交差する第2方向に延在する走査線、並びに、前記データ線及び前記走査線の交差領域に対応するように配置された画素電極及び薄膜トランジスタが積層構造の一部をなして備えられた電気光学装置であって、前記基板上には更に、前記薄膜トランジスタ及び前記画素電極に電気的に接続された蓄積容量と、前記データ線及び前記画素電極間に配置された遮光膜とが、前記積層構造の一部をなして備えられてなり、前記蓄積容量を構成する誘電体膜を挟持してなる上部電極及び下部電極は、前記基板の表面に平行な面に沿って積層された第1部分と、前記基板の表面に対して立ち上がった平面に沿って積層された第2部分とを含むことにより、その断面形状が凸形状を含む。
本発明の第2の電気光学装置によれば、前述の第1の電気光学装置におけるシールド層に代えて、遮光膜が設けられたような形となっている。これによれば、該遮光膜の存在により、薄膜トランジスタの遮光性が高められることにより、いわゆる光リーク電流の発生の抑制、ひいてはこれに起因する画像上のフリッカ等の発生を抑制することができる。
また、該遮光膜により規定される遮光領域内に、蓄積容量が閉じ込められるように形成されるのであれば、開口率を高いところで維持することが可能となる。
しかも、本態様によれば、このように高い開口率を維持しえるにもかかわらず、蓄積容量の断面形状が凸形状を含むことから、その容量をも大きくとることが可能となるのである。
なお、本発明における遮光膜と、前述のシールド層とが並存する形態、或いは両者の機能を兼ね備えた部材、即ち、遮光膜兼シールド層が設けられる形態等であってもよい。
本発明の第1の電気光学装置の一態様では、前記シールド層は、前記蓄積容量の上部電極と電気的に接続されている。
この態様によれば、シールド層及び蓄積容量の上部電極は同電位となる。より具体的には、両者を同一の固定電位に維持することが可能となる。そして、これによれば、いずれか一方を固定電位を供給する電源に接続すれば、他方を同時に固定電位とすることができることから、装置構成の簡略化等を実現することができる。また、積層構造の最適化も図れる。
本発明の第1電気光学装置の他の態様又は第2の電気光学装置の一態様では、前記凸形状は、前記下部電極が前記基板に対して凸状の部分を含むように形成されることにより、形作られている。
この態様によれば、下部電極それ自体が凸状の部分を含むように形成されることにより、比較的容易に本発明に係る凸形状を含む蓄積容量を形成することが可能となる。すなわち、この場合においては、下部電極の形成過程中、前記凸状の部分を含むように、それと一体的に該下部電極を形成すること、すなわち、下部電極と同一の膜として凸状の部分を形成することが可能であるから、製造工程の簡略化が図れることになるのである。
より具体的には、将来、下部電極となるべき元の膜を形成した後、該元の膜中、凸状として残すべき部分の上にのみレジスト膜を形成し、これに対してエッチングを実施する、等のような手段によって、凸状を含む下部電極の形成が可能である。
本発明の第1又は第2の電気光学装置の他の態様では、前記凸形状は、前記下部電極下に凸状部材が形成されることにより、形作られている。
この態様によれば、上述のように、下部電極が凸状の部分を含むように形成されるのではなくて、下部電極の下に、これと別体となる凸状部材が形成されることにより、前記凸形状が形作られている。したがって、この場合においては、下部電極を構成する材料と凸状部材を構成する材料とは異ならしめるというような形態をとることが可能である。
また、本発明の第1又は第2の電気光学装置の他の態様では、前記下部電極は、光吸収性の導電材料でなるとよい。
この態様によれば、膜厚である下部電極により、光吸収効果を増大することができる。
本発明の第1又は第2の電気光学装置の他の態様では、前記凸形状は、テーパ形状を含む。
この態様によれば、下部電極上に形成される誘電体膜及び上部電極を好適に形成することが可能である。すなわち、前記凸形状がテーパ形状を含むことによれば、例えば垂直な側壁部を含む凸形状との対比から明らかなように、該凸形状の角部はなめらかなものとなるから、テーパ形状を含む凸形状の上に、誘電体膜及び上部電極を形成する際においては、そのカバーレッジの悪化等について懸念する必要が殆どなくなる。したがって、本態様によれば、好適に、誘電体膜及び上部電極を形成することが可能となるのである。
また、垂直な側壁部を含む凸形状と、本態様に係るテーパ形状を含む凸形状とを比べた場合、両者の高さを同じとし、かつ、両者間で該凸形状の上面の面積を同一とする仮定をおくならば、一般に前者よりも後者の方が、側壁部の面積をより大きくとれることになるから、蓄積容量の増大という観点からは好ましいということがいえる。
本発明の第1又は第2の電気光学装置の他の態様では、前記凸形状の高さは、50〜1000nmである。
この態様によれば、誘電体膜を如何なる材料で構成するか等、種々の条件により異なるものの、従来の平面的な蓄積容量を基準として、その容量を概ね1.5倍程度以上にすることが可能となる。したがって、本態様によれば、その分だけ、電位保持特性を向上させることが可能となり、画像上の表示ムラ、ちらつき等の発生を低減することが可能となる。
本発明の電気光学装置の他の態様では、前記画素電極はマトリクス状に配列されてなり、前記走査線及び前記データ線は、前記マトリクス状に対応した遮光領域に形成されており、前記蓄積容量は前記遮光領域内に形成されている。
この態様によれば、蓄積容量は、遮光領域に形成されていることから、開口率は高いところで維持することが可能となる。しかも、本態様によれば、このように高い開口率を維持しえるにもかかわらず、蓄積容量の断面形状が凸形状を含むことから、その容量をも大きくとることが可能となるのである。
したがって、本態様によれば、明るい画像の表示が可能であり、かつ、表示ムラ、ちらつき等のない高品質な画像を表示することが可能となるのである。
なお、遮光領域とは、画像表示に寄与する光が遮られる領域をいい、その具体的形状は、上述の「マトリクス状」なる形状が如何なる形状を有するかによって異なり得る。例えば、マトリクス状というのが、画素電極が縦横それぞれに直線的に配列されているという場合を指すならば、遮光領域の具体的形状は格子状ということになるし、これとは別に、画素電極が縦横それぞれに千鳥足状に配列されているという場合においては、遮光領域の具体的形状は該画素電極の縁部に沿って屈曲した曲線が縦横それぞれに並列された形状等ということになる。
本発明の第1又は第2の電気光学装置の他の態様では、前記蓄積容量の前記凸形状は、前記走査線及び前記データ線の少なくとも一方に沿って形成されている。
この態様によれば、前記凸形状の上に層間絶縁膜等を積層していくと、該凸形状の上には凸部が形成されることから、走査線及びデータ線の少なくとも一方に沿って凸部が延在する形態が現出されることになる。したがって、この場合、該凸部が、相隣接する画素電極間に存在する形態が現出されることとなる。これにより、本態様に係る電気光学装置を、1H反転駆動方式、1S反転駆動方式又はドット反転駆動方式で駆動する場合において、相隣接する画素電極間に生じる横電界に起因した、画像に対する悪影響を低減することが可能となり、より高品質な画像を表示することができることになる。以下、その事情を詳しく説明する。
まず、1H反転駆動方式とは、例えば、正方形状に配列された画素電極を想定した場合、ある一のフレームないしフィールドにおいては、その奇数行に配列された画素電極を共通電極の電位を基準として正極性の電位で駆動するとともに、偶数行に配列された画素電極を負極性の電位で駆動し、これに続く次のフレームないしフィールドにおいては、最前とは逆に、奇数行は負極性で、偶数行は正極性で駆動する、という状態を連続して行う駆動方式である。一方、1S反転駆動方式とは、いま述べた、1H反転駆動方式に関する説明中、奇数行を「奇数列」に、偶数行を「偶数列」に、それぞれ置き換えて把握される駆動方式である。さらに、ドット反転駆動方式とは、列方向及び行方向の両方向に相隣接する画素電極間で、各画素電極に印加される電圧極性を反転させる駆動方式である。これらの駆動方式を採ることにより、直流電圧成分の印加による液晶等の電気光学物質の劣化、あるいは画像上のクロストークやフリッカの発生を抑制することが可能となる。
しかしながら、このような反転駆動方式にあっては、異なる極性の電圧が印加された画素電極が相隣接することとなるため、いわゆる「横電界」が発生することとなる。例えば1H反転駆動方式では、ある行に位置する画素電極と、これに相隣接する行に位置する画素電極との間で、横電界が発生することになる。このような横電界が発生すると、基板上の画素電極及び対向基板上の共通電極間の電位差(以下、「縦電界」という。)に乱れを生じさせて液晶の配向不良を引き起こし、当該部分における光抜け等が発生して、コントラスト比の低下などという画質の劣化をもたらすこととなるのである。
しかるに、本態様においては、上述したように、蓄積容量の前記凸形状が、走査線及びデータ線の少なくとも一方に沿って形成されているため、前記横電界の発生を抑制することが可能となるのである。
これは第一に、前記凸部の縁に画素電極の縁が乗るように形成すれば、画素電極及び共通電極間の距離を狭めることが可能となるから、従前に比して縦電界を強めることが可能であることによる。また第二に、画素電極の縁が凸部の上に存在するか否かにかかわらず、該凸部が有する誘電率の如何によって横電界自体を弱め得ることによる。さらに第三に、前記凸部と共通電極間の間隙の容積、すなわち該間隙内に位置する液晶の体積を減少させることが可能であるから、液晶に与える横電界の影響を相対的に小さくすることが可能であることによる。
ちなみに、1H反転駆動方式の場合には、凸形状ないし凸部を、走査線に沿うように形成することが好ましく、1S反転駆動方式の場合には、データ線に沿うように形成することが好ましいことは言うまでもない。また、ドット反転駆動方式においては、凸形状ないし凸部を、走査線及びデータ線の双方に沿って形成することが好ましい。
以上により、本態様によれば、液晶に対する縦電界の印加を好適に実現することが可能となるから、所期したとおりの画像を表示することが可能となるのである。
本発明の第1又は第2の電気光学装置の他の態様では、前記誘電体膜は、酸化シリコン膜及び窒化シリコン膜からなる。
この態様によれば、誘電体膜には、比較的高誘電率の窒化シリコン膜が含まれることになり、蓄積容量の面積、すなわち該蓄積容量を構成する一対の電極の面積を多少犠牲にしたとしても、高い電荷蓄積特性を享受することが可能となる。
これにより、画素電極における電位保持特性は格段に向上し、より高品質な画像を表示することが可能となる。また、平面的に見た場合の、蓄積容量の更なる小面積化が可能となるから、画素開口率の更なる向上を図ることもできる。
また、窒化シリコン膜は水分の浸入ないし拡散を、せき止める作用に優れているから、薄膜トランジスタを構成する半導体層に対する水分の浸入を未然に防止することが可能となる。この点、もし半導体層、あるいはゲート絶縁膜等に水分が浸入すると、半導体層及びゲート絶縁膜間の界面に正電荷が発生し、スレッショルド電圧を次第に高めていくという悪影響がでる。本態様では、上述のように、半導体層に対する水分浸入を効果的に防止することが可能であるから、該薄膜トランジスタのスレッショルド電圧が上昇するという不具合の発生を極力防止することが可能となる。
さらに、当該誘電体膜には、前記の窒化シリコン膜に加えて、酸化シリコン膜が含まれていることにより、蓄積容量の耐圧性を低下せしめるようなことがない。
以上のように、本態様に係る誘電体膜によれば、複合的な作用効果を同時に享受することが可能となる。
なお、本態様は、誘電体膜が、酸化シリコン膜及び窒化シリコン膜の二層構造となる場合を含むのは勿論、場合によっては、例えば、酸化シリコン膜、窒化シリコン膜及び酸化シリコン膜というような三層構造となるような場合、あるいはそれ以上の積層構造をとるような場合を含む。
本発明の電気光学装置の他の態様では、前記積層構造の一部として、前記画素電極の下地として配置された層間絶縁膜が更に備えられており、前記層間絶縁膜の表面は平坦化処理が施されている。
この態様によれば、液晶等の電気光学物質の配向状態に乱れを生じさせる可能性を低減することができ、もってより高品質な画像を表示することが可能となる。
本発明の電子機器は、上述した本発明の電気光学装置を具備してなる。ただし、その各種態様を含む。
本発明の電子機器によれば、上述の本発明の電気光学装置、すなわち高開口率を保ちながら蓄積容量が増大された電気光学装置を具備してなるから、明るい画像が表示が可能であるとともに、表示ムラ、ちらつき等のない高品質な画像を表示することが可能な、投射型表示装置、液晶テレビ、携帯電話、電子手帳、ワードプロセッサ、ビューファインダ型又はモニタ直視型のビデオテープレコーダ、ワークステーション、テレビ電話、POS端末、タッチパネルなどの各種電子機器を実現できる。
本発明のこのような作用及び他の利得は次に説明する実施の形態から明らかにされる。
以下では、本発明の実施の形態について図を参照しつつ説明する。以下の実施形態は、本発明の電気光学装置を液晶装置に適用したものである。
(画素部における構成)
まず、本発明の第1実施形態における電気光学装置の画素部における構成について、図1から図4を参照して説明する。
図1は、電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路である。図2は、データ線、走査線、画素電極等が形成されたTFTアレイ基板の相隣接する複数の画素群の平面図である。図3は、図2のA−A´断面図であり、図4は、図2のB−B´断面図である。なお、図3及び図4においては、各層・各部材を図面上で認識可能な程度の大きさとするため、該各層・各部材ごとに縮尺を異ならしめてある。
図1において、本実施形態における電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素には、それぞれ、画素電極9aと当該画素電極9aをスイッチング制御するためのTFT30とが形成されており、画像信号が供給されるデータ線6aが当該TFT30のソースに電気的に接続されている。データ線6aに書き込む画像信号S1、S2、…、Snは、この順に線順次に供給しても構わないし、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしてもよい。
また、TFT30のゲートに走査線3aが電気的に接続されており、所定のタイミングで、走査線3aにパルス的に走査信号G1、G2、…、Gmを、この順に線順次で印加するように構成されている。画素電極9aは、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけそのスイッチを閉じることにより、データ線6aから供給される画像信号S1、S2、…、Snを所定のタイミングで書き込む。
画素電極9aを介して電気光学物質の一例としての液晶に書き込まれた所定レベルの画像信号S1、S2、…、Snは、対向基板に形成された対向電極との間で一定期間保持される。液晶は、印加される電圧レベルにより分子集合の配向や秩序が変化することにより、光を変調し、階調表示を可能とする。ノーマリーホワイトモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が減少し、ノーマリーブラックモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が増加され、全体として電気光学装置からは画像信号に応じたコントラストをもつ光が出射する。
ここで保持された画像信号がリークするのを防ぐために、画素電極9aと対向電極との間に形成される液晶容量と並列に蓄積容量70を付加する。この蓄積容量70は、走査線3aに並んで設けられ、固定電位側容量電極を含むとともに定電位に固定された容量電極300を含んでいる。
以下では、上記データ線6a、走査線3a、TFT30等による、上述のような回路動作が実現される電気光学装置の、実際の構成について、図2及び図3を参照して説明する。
まず、図2において、画素電極9aは、TFTアレイ基板10上に、マトリクス状に複数設けられており(点線部9a´により輪郭が示されている)、画素電極9aの縦横の境界に各々沿ってデータ線6a及び走査線3aが設けられている。データ線6aは、例えばアルミニウム膜等を含む金属膜あるいは合金膜等からなり、走査線3aは、例えば導電性のポリシリコン膜等からなる。また、走査線3aは、半導体層1aのうち図中右上がりの斜線領域で示したチャネル領域1a´に対向するように配置されており、該走査線3aはゲート電極として機能する。すなわち、走査線3aとデータ線6aとの交差する箇所にはそれぞれ、チャネル領域1a´に走査線3aの本線部がゲート電極として対向配置された画素スイッチング用のTFT30が設けられている。
次に、電気光学装置は、図2のA−A´線断面図たる図3に示すように、例えば、石英基板、ガラス基板、シリコン基板からなるTFTアレイ基板10と、これに対向配置される、例えばガラス基板や石英基板からなる対向基板20とを備えている。
TFTアレイ基板10の側には、図3に示すように、前記の画素電極9aが設けられており、その上側には、ラビング処理等の所定の配向処理が施された配向膜16が設けられている。画素電極9aは、例えばITO膜等の透明導電性膜からなる。他方、対向基板20の側には、その全面に渡って対向電極21が設けられており、その下側には、ラビング処理等の所定の配向処理が施された配向膜22が設けられている。このうち対向電極21は、上述の画素電極9aと同様に、例えばITO膜等の透明導電性膜からなり、前記の配向膜16及び22は、例えば、ポリイミド膜等の透明な有機膜からなる。このように対向配置されたTFTアレイ基板10及び対向基板20間には、後述のシール材(図15及び図16参照)により囲まれた空間に液晶等の電気光学物質が封入され、液晶層50が形成される。液晶層50は、画素電極9aからの電界が印加されていない状態で配向膜16及び22により所定の配向状態をとる。液晶層50は、例えば一種又は数種類のネマティック液晶を混合した電気光学物質からなる。シール材は、TFT基板10及び対向基板20をそれらの周辺で貼り合わせるための、例えば光硬化性樹脂や熱硬化性樹脂からなる接着剤であり、両基板間の距離を所定値とするためのグラスファイバー或いはガラスビーズ等のスペーサが混入されている。
一方、TFTアレイ基板10上には、前記の画素電極9a及び配向膜16の他、これらを含む各種の構成が積層構造をなして備えられている。この積層構造は、図3に示すように、下から順に、下側遮光膜11aを含む第1層、TFT30及び走査線3a等を含む第2層、蓄積容量70及びデータ線6a等を含む第3層、シールド層400等を含む第4層、前記の画素電極9a及び配向膜16等を含む第5層(最上層)からなる。また、第1層及び第2層間には下地絶縁膜12が、第2層及び第3層間には第1層間絶縁膜41が、第3層及び第4層間には第2層間絶縁膜42が、第4層及び第5層間には第3層間絶縁膜43が、それぞれ設けられており、前述の各要素間が短絡することを防止している。また、これら各種の絶縁膜12、41、42及び43には、例えば、TFT30の半導体層1a中の高濃度ソース領域1dとデータ線6aとを電気的に接続するコンタクトホール等もまた設けられている。以下では、これらの各要素について、下から順に説明を行う。
まず、第1層には、例えば、Ti(チタン)、Cr(クロム)、W(タングステン)、Ta(タンタル)、Mo(モリブデン)等の高融点金属のうちの少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等からなる下側遮光膜11aが設けられている。この下側遮光膜11aは、平面的にみて格子状にパターニングされており、これにより各画素の開口領域を規定している(図2参照)。下側遮光膜11aの走査線3aとデータ線6aが交差する領域では、画素電極9aの角を角取りするように突出した領域が形成されている。また、この下側遮光膜11aについては、その電位変動がTFT30に対して悪影響を及ぼすことを避けるために、画像表示領域からその周囲に延設して定電位源に接続するとよい。
次に、第2層として、TFT30及び走査線3aが設けられている。TFT30は、図3に示すように、LDD(Lightly Doped Drain)構造を有しており、その構成要素としては、上述したようにゲート電極として機能する走査線3a、例えばポリシリコン膜からなり走査線3aからの電界によりチャネルが形成される半導体層1aのチャネル領域1a´、走査線3aと半導体層1aとを絶縁するゲート絶縁膜を含む絶縁膜2、半導体層1aにおける低濃度ソース領域1b及び低濃度ドレイン領域1c並びに高濃度ソース領域1d及び高濃度ドレイン領域1eを備えている。
なお、TFT30は、好ましくは図3に示したようにLDD構造をもつが、低濃度ソース領域1b及び低濃度ドレイン領域1cに不純物の打ち込みを行わないオフセット構造をもってよいし、走査線3aの一部からなるゲート電極をマスクとして高濃度で不純物を打ち込み、自己整合的に高濃度ソース領域及び高濃度ドレイン領域を形成するセルフアライン型のTFTであってもよい。また、本実施形態では、画素スイッチング用TFT30のゲート電極を、高濃度ソース領域1d及び高濃度ドレイン領域1e間に1個のみ配置したシングルゲート構造としたが、これらの間に2個以上のゲート電極を配置してもよい。このようにデュアルゲート、あるいはトリプルゲート以上でTFTを構成すれば、チャネルとソース及びドレイン領域との接合部のリーク電流を防止でき、オフ時の電流を低減することができる。さらに、TFT30を構成する半導体層1aは非単結晶層でも単結晶層でも構わない。単結晶層の形成には、貼り合わせ法等の公知の方法を用いることができる。半導体層1aを単結晶層とすることで、特に周辺回路の高性能化を図ることができる。
以上説明した下側遮光膜11aの上、かつ、TFT30の下には、例えばシリコン酸化膜等からなる下地絶縁膜12が設けられている。下地絶縁膜12は、下側遮光膜11aからTFT30を層間絶縁する機能のほか、TFTアレイ基板10の全面に形成されることにより、TFTアレイ基板10の表面研磨時における荒れや、洗浄後に残る汚れ等で画素スイッチング用のTFT30の特性変化を防止する機能を有する。
そして、本実施形態においては特に、この下地絶縁膜12には、平面的にみて半導体層1aの両脇に、後述するデータ線6aに沿って延びる半導体層1aのチャネル長と同じ幅、もしくはチャネル長より長い溝(コンタクトホール状に形成された溝)12cvが掘られており、この溝12cvに対応して、その上方に積層される走査線3aは下側に凹状に形成された部分を含んでいる(図2では、複雑化を避けるため不図示とした。)。また、この溝12cv全体を埋めるようにして、走査線3aが形成されていることにより、該走査線3aには、これと一体的に形成された水平的突出部3bが延設されるようになっている。これにより、TFT30の半導体層1aは、図2によく示されているように、平面的にみて側方から覆われるようになっており、少なくともこの部分からの光の入射が抑制されるようになっている。なお、水平的突出部3bは、半導体層1aの片側だけでもよい。
さて、前述の第2層に続けて第3層には、蓄積容量70及びデータ線6aが設けられている。蓄積容量70は、TFT30の高濃度ドレイン領域1e及び画素電極9aに電気的に接続された画素電位側容量電極としての第1中継層71と、固定電位側容量電極としての容量電極300とが、誘電体膜75を介して対向配置されることにより形成されている。容量電極700はコンタクトホール87を介してシールド層400に電気的に接続される。この蓄積容量70によれば、画素電極9aにおける電位保持特性を顕著に高めることが可能となる。そして、本実施形態においては特に、この蓄積容量70は、図3或いは図2のB−B´断面図たる図4に示すように立体的な形状を有するものとして形成されている。なお、図4においては、簡単のため、二層構造を有するものとして容量電極300を描いてはいない。後の図5においても同様である。
誘電体膜75は、図4に示すように、例えば膜厚5〜200nm程度の比較的薄いHTO(High Temperature Oxide)膜、LTO(Low Temperature Oxide)膜等の酸化シリコン膜、あるいは窒化シリコン膜等から構成される。本実施形態においては特に、この誘電体膜75は、図3に示すように、下層に酸化シリコン膜75a、上層に窒化シリコン膜75bというように二層構造を有し、TFTアレイ基板10の全面に渡って形成されている。また、誘電体膜75の他の例として、下層の酸化シリコン膜75aは、TFTアレイ基板10の全面に渡って形成し、上層の窒化シリコン膜75bは、遮光領域(非開口領域)内で収まるようにパターンニングして、着色性のある窒化シリコン膜の存在により透過率が低くなることを防止するように構成してもよい。
これにより、電荷蓄積特性の更なる向上、ひいては画素電極9aにおける電位保持特性の更なる向上等が見込めることになるが、この点については、後に図5以降を参照しながら改めて触れることとする。ここでは特に、蓄積容量70を構成する容量電極300にのみ着目し、且つ、本実施形態において特に、この容量電極300と同一膜として形成されているデータ線6aについて説明を行うこととする。
まず、容量電極300及びデータ線6aが「同一膜」として形成されているとは、両者が同一層として、あるいは製造工程段階において同時に形成されていることを意味している。ただし、容量電極300及びデータ線6a間は平面形状的に連続して形成さているのではなく、両者間はパターニング上分断されている。
具体的には、図2に示すように、容量電極300は、走査線3aの形成領域に重なるように、すなわち図中X方向に沿って分断されつつ形成されており、データ線6aは、半導体層1aの長手方向に重なるように、すなわち図中Y方向に延在するように形成されている。より詳しくは、容量電極300は、走査線3aに沿って延びる本線部と、図2中、半導体層1aに隣接する領域において該半導体層1aに沿って図中上方に突出した突出部(図中略台形状のように見える部分)と、後述するコンタクトホール85に対応する個所が僅かに括れた括れ部とを備えている。このうち突出部は、蓄積容量70の形成領域の増大に貢献する。すなわち、蓄積容量70は、平面的には、隣接するデータ線6a間の走査線3aに重なる領域と、走査線3aとデータ線6aが交差する角部で下側遮光膜11が画素電極9aの角を角取りする領域に形成されている。
他方、データ線6aは、図2中Y方向に沿って直線的に延びる本線部を有している。なお、半導体層1aの図2中上端は、右方に90度直角に折り曲がるような形状を有しているが、これはデータ線6aを避けて、該半導体層1aと蓄積容量70との電気的接続を図るためである(図3参照)。
本実施形態では、以上のような形状が呈されるようにパターニング等が実施されて、容量電極300及びデータ線6aが同時に形成されることになる。
また、これら容量電極300及びデータ線6aは、図3に示すように、下層に導電性のポリシリコンからなる層、上層にアルミニウムからなる層の二層構造を有する膜として形成されている。このうちデータ線6aについては、後述する誘電体膜75の開口部を貫通するコンタクトホール81を介して、TFT30の半導体層1aと電気的に接続されることとなるが、該データ線6aが上述のような二層構造をとり、また前述の第1中継層71が導電性のポリシリコン膜からなることにより、該データ線6a及び半導体層1a間の電気的接続は、直接には、導電性のポリシリコン膜によって実現されることになる。すなわち、下から順に、第1中継層のポリシリコン膜、データ線6aの下層のポリシリコン膜及びその上層のアルミニウム膜ということになる。したがって、両者間の電気的接続を良好に保つことが可能となる。
また、容量電極300及びデータ線6aは、光反射性能の比較的大きいアルミニウムを含み、且つ、光吸収性能の比較的大きいポリシリコンを含むことから、遮光層として機能し得る。すなわち、これらによれば、TFT30の半導体層1aに対する入射光(図3参照)の進行を、その上側で遮ることが可能である。
以上説明したTFT30ないし走査線3aの上、かつ、蓄積容量70ないしデータ線6aの下には、例えば、NSG(ノンシリケートガラス)、PSG(リンシリケートガラス)、BSG(ボロンシリケートガラス)、BPSG(ボロンリンシリケートガラス)等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等、あるいは好ましくはNSGからなる第1層間絶縁膜41が形成されている。そして、この第1層間絶縁膜41には、TFT30の高濃度ソース領域1dとデータ線6aとを電気的に接続するコンタクトホール81が開孔されている。また、第1層間絶縁膜41には、TFT30の高濃度ドレイン領域1eと蓄積容量70を構成する第1中継層71とを電気的に接続するコンタクトホール83が開孔されている。
なお、これら二つのコンタクトホールのうち、コンタクトホール81の形成部分では、後述する誘電体膜75が形成されないように、換言すれば、該誘電体膜75に開口部が形成されるようになっている。これは、該コンタクトホール81においては、第1中継層71を介して、高濃度ソース領域1b及びデータ線6a間の電気的導通を図る必要があるためである。ちなみに、このような開口部が誘電体膜75に設けられていれば、TFT30の半導体層1aに対する水素化処理を行うような場合において、該処理に用いる水素を、該開口部を通じて半導体層1aにまで容易に到達させることが可能となるという作用効果を得ることも可能となる。
また、本実施形態では、第1層間絶縁膜41に対しては、約1000℃の焼成を行うことにより、半導体層1aや走査線3aを構成するポリシリコン膜に注入したイオンの活性化を図ってもよい。
さて、前述の第3層に続けて第4層には、遮光性のシールド層400が形成されている。このシールド層400は、平面的にみると、図2及び図3に示すように、図2中X方向及びY方向それぞれに延在するように格子状に形成されている。該シールド層400のうち図2中Y方向に延在する部分については特に、データ線6aを覆うように、且つ、該データ線6aよりも幅広に形成されている。また、図2中X方向に延在する部分については、後述の第3中継電極402を形成する領域を確保するために、各画素電極9aの一辺の中央付近に切り欠き部を有している。さらには、図2中XY方向それぞれに延在するシールド層400の交差部分の角部においては、前述の容量電極300の略台形状の突出部に対応するように、略三角形状の部分が設けられている。この略三角形状の部分もまた、シールド層400に含まれる。
このシールド層400は、画素電極9aが配置された画像表示領域10aからその周囲に延設され、定電位源と電気的に接続されることで、固定電位とされている。なお、ここに述べた「定電位源」としては、データ線駆動回路101に供給される正電源や負電源の定電位源でもよいし、対向基板20の対向電極21に供給される定電位源でも構わない。
このように、データ線6aの全体を覆うように形成されているとともに(図3参照)、固定電位とされたシールド層400の存在によれば、該データ線6a及び画素電極9a間に生じる容量カップリングの影響を排除することが可能となる。すなわち、データ線6aへの通電に応じて、画素電極9aの電位が変動するという事態を未然に回避することが可能となり、画像上に該データ線6aに沿った表示ムラ等を発生させる可能性を低減することができる。本実施形態においてはまた、シールド層400は格子状に形成されているから、走査線3aが延在する部分についても無用な容量カップリングが生じないように、これを抑制することが可能となっている。また、シールド層400における上述の三角形状の部分は、容量電極300と画素電極9aとの間に生じる容量カップリングの影響を排除することが可能であり、これによっても、上述と略同様な作用効果が得られることになる。
また、第4層には、このようなシールド層400と同一膜として、本発明にいう「中継層」の一例たる第2中継層402が形成されている。この第2中継層402は、後述のコンタクトホール89を介して、蓄積容量70を構成する第1中継層71及び画素電極9a間の電気的接続を中継する機能を有する。なお、これらシールド層400及び第2中継層402間は、前述の容量電極300及びデータ線6aと同様に、平面形状的に連続して形成されているのではなく、両者間はパターニング上分断されるように形成されている。
他方、上述のシールド層400及び第2中継層402は、下層にアルミニウムからなる層、上層に窒化チタンからなる層の二層構造を有している。これにより、まず、窒化チタンによるコンタクトホール89の開口時の突きぬけ防止のためのバリアメタルとして機能することが期待される。また、第2中継層402において、下層のアルミニウムからなる層は、蓄積容量70を構成する第1中継層71と接続され、上層の窒化チタンからなる層は、ITO等からなる画素電極9aと接続されるようになっている。この場合、とりわけ後者の接続は良好に行われることになる。この点、仮に、アルミニウムとITOとを直接に接続してしまう形態をとると、両者間において電蝕が生じてしまい、アルミニウムの断線、あるいはアルミナの形成による絶縁等のため、好ましい電気的接続が実現されないこととは対照的である。このように、本実施形態では、第2中継層402と画素電極9aとの電気的接続を良好に実現することができることにより、該画素電極9aに対する電圧印加、あるいは該画素電極9aにおける電位保持特性を良好に維持することが可能となる。
さらには、シールド層400及び第2中継層402は、光反射性能に比較的優れたアルミニウムを含み、且つ、光吸収性能に比較的優れた窒化チタンを含むことから、遮光層として機能し得る。すなわち、これらによれば、TFT30の半導体層1aに対する入射光(図2参照)の進行を、その上側でさえぎることが可能である。なお、このようなことについては、既に述べたように、上述の容量電極300及びデータ線6aについても同様にいえる。本実施形態においては、これらシールド層400、第2中継層402、容量電極300及びデータ線6aが、TFTアレイ基板10上に構築される積層構造の一部をなしつつ、TFT30に対する上側からの光入射を遮る上側遮光膜(あるいは、「積層構造の一部」を構成しているという点に着目すれば「内蔵遮光膜」)として機能しうる。なお、この「上側遮光膜」ないし「内蔵遮光膜」なる概念によれば、上述の構成のほか、走査線3aや第1中継層71等もまた、それに含まれるものとして考えることができる。要は、最も広義に解する前提の下、TFTアレイ基板10上に構築される不透明な材料からなる構成であれば、「上側遮光膜」ないし「内蔵遮光膜」と呼びうる。
以上説明した前述のデータ線6aの上、かつ、シールド層400の下には、NSG、PSG、BSG、BPSG等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等、あるいは好ましくはNSGからなる第2層間絶縁膜42が形成されている。この第2層間絶縁膜42には、前記のシールド層400と容量電極300とを電気的に接続するためのコンタクトホール87、及び、第2中継層402と第1中継層71とを電気的に接続するためのコンタクトホール85がそれぞれ開孔されている。
なお、第2層間絶縁膜42に対しては、第1層間絶縁膜41に関して前述したような焼成を行わないことにより、容量電極300の界面付近に生じるストレスの緩和を図るようにしてもよい。
最後に、第5層には、上述したように画素電極9aがマトリクス状に形成され、該画素電極9a上に配向膜16が形成されている。そして、この画素電極9a下には、NSG、PSG、BSG、BPSG等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等、あるいは好ましくはBPSGからなる第3層間絶縁膜43が形成されている。この第3層間絶縁膜43には、画素電極9a及び前記の第2中継層402間を電気的に接続するためのコンタクトホール89が開孔されている。
(蓄積容量の構成)
以下では、上述の蓄積容量70の構成、より詳しくは、該蓄積容量70が立体的に構成されていることについて、図4及び図5を参照しながら説明する。ここに図5は、図2における符号Qを付した部分に係る蓄積容量70の立体的な構成を示す斜視図である。なお、図5は、図2乃至図4中に示されたすべての構成を図示するものではなく、例えば、蓄積容量70を構成する誘電体膜75や走査線3a等、幾つかの要素について、その図示が適宜省略されたものとなっている。
図4及び図5において、蓄積容量70は、走査線3aが延在する方向に沿って形成された立体的部分を有する。この立体的部分では、第1中継層71の一部として凸状部71aが形成されており、この凸状部71aの上に誘電体膜75及び容量電極300が形成されることで、コンデンサが構成されている。これにより、蓄積容量70は、基板の表面に対して立ち上がった平面に沿って、第1中継層71、誘電体膜75及び容量電極300が積層構造をなしている部分を含む構造を有し、該蓄積容量70の断面形状は凸形状を含むものとなる。
ここで、このような凸形状の高さ、ないし前記凸状部71aの高さH(図5参照)としては、これを50〜1000nm程度とすると好ましい。この範囲以下であると、蓄積容量の増大効果が十分に得られず、また、この範囲以上であると、段差があまりにも大きくなりすぎて、該段差による液晶層50内の配向不良等、デメリットが生じてくるからである。
ちなみに、蓄積容量70が立体的部分を含むように形成されていることにより、図4に示すように、立体的部分の上に形成される第3層間絶縁膜43の表面上には、第2層間絶縁膜42、シールド層400等を介して、凸部43Aが形成されている。すなわち、図4中、左右方向に相隣接する画素電極9a間には、いわば障壁が設けられるような形となる。
このような形態となる蓄積容量70は、図2乃至図5からわかるように、走査線3a及びデータ線6aの形成領域を含む遮光領域内に、いわば閉じ込められるように形成されており、開口率の減少をもたらすようなことがない。
また、上述した第1中継層71、容量電極300及び誘電体膜75は、本実施形態において、以下に記すような属性をそれぞれ有する。
まず、第1中継層71は、例えば導電性のポリシリコン膜からなり画素電位側容量電極として機能する。ただし、第1中継層71は、金属又は合金を含む単一層膜又は多層膜から構成してもよい。また、この第1中継層71は、画素電位側容量電極としての機能のほか、コンタクトホール83、85及び89を介して、画素電極9aとTFT30の高濃度ドレイン領域1eとを中継接続する機能をもつ。この第1中継層71は、図2に示すように、前述の容量電極300の平面形状と略同一の形状を有するように形成されている。
次に、容量電極300は、蓄積容量70の固定電位側容量電極として機能する。本実施形態において、容量電極300を固定電位とするためには、固定電位とされたシールド層400と電気的接続が図られることによりなされている。
なお、この容量電極300はデータ線6aと同一膜として形成され、且つ、下層にポリシリコン膜、上層にアルミニウム膜を含む二層構造を有するように形成されていることについては、既に述べたとおりである。
最後に、誘電体膜75は、図3に示すように、例えば膜厚5〜200nm程度の比較的薄いHTO(High Temperature Oxide)膜、LTO(Low Temperature Oxide)膜等の酸化シリコン膜、あるいは窒化シリコン膜等から構成される。蓄積容量70を増大させる観点からは、膜の信頼性が十分に得られる限りにおいて、誘電体膜75は薄いほどよい。
そして、本実施形態においては特に、この誘電体膜75は、図3に示すように、下層に酸化シリコン膜75a、上層に窒化シリコン膜75bというように二層構造を有するものとなっている。これにより、比較的誘電率の大きい窒化シリコン膜75bが存在することにより、蓄積容量70の容量値を増大させることが可能となる他、それにもかかわらず、酸化シリコン膜75aが存在することにより、蓄積容量70の耐圧性を低下せしめることがない。このように、誘電体膜75を二層構造とすることにより、相反する二つの作用効果を享受することが可能となる。また、窒化シリコン膜75bが存在することにより、TFT30に対する水の進入を未然に防止することが可能となっている。これにより、本実施形態では、TFT30におけるスレッショルド電圧の上昇という事態を将来することがなく、比較的長期の装置運用が可能となる。なお、本実施形態では、誘電体膜75は、二層構造を有するものとなっているが、場合によっては、例えば酸化シリコン膜、窒化シリコン膜及び酸化シリコン膜等というような三層構造や、あるいはそれ以上の積層構造を有するように構成してもよい。
また、本実施形態では、データ線6a及び容量電極300は、二層構造としたが、下層より、ポリシリコン膜、アルミニウム膜、窒化チタン膜の三層構造にし、窒化チタン膜をコンタクトホール87の開口時のバリアメタルとして形成しても良い。
なお、図3乃至図5において、本実施形態に係る蓄積容量70は、TFTアレイ基板10上、下から順に、第1中継層71、誘電体膜75及び容量電極300という積層構造をもって構成されていたが、場合によっては、この逆に、容量電極300、誘電体膜75及び第1中継層71という積層構造を採用してもよい。
要は、誘電体膜75を挟んで一対の電極が構成されていればよく、そのような相対的な関係が満たされている限り、具体的にどのような構成を採ろうとも基本的に自由である。
このような構成となる本実施形態の電気光学装置においては、上記蓄積容量70の存在を要因として、次のような作用効果が奏されることとなる。
まず、本実施形態においては、蓄積容量70の断面形状が凸形状を含むように構成されていたことにより、該凸形状の側面の面積部分だけ容量増大の作用効果が見込めることになる。これは、既に参照した図5と、同図と同趣旨の図ではあるが立体的部分を含まない蓄積容量70´の構成例を示す図6との対比から明らかとなる。なお、図6において、蓄積容量70´は、いずれも平面的に形成された中継層71´及び容量電極300´によって、その下部電極及び上部電極が構成されていることにより、図5に示したような走査線3aに沿う立体的部分が存在しない構成となっている。
これら図5及び図6から明らかなように、本実施形態では、高さHの凸状部71aが、概ね画素電極9aの一辺の長さLの分だけ、第1中継層71の一部として形成されているため、図6に比べて図5の方が、全体として概ね2HLだけ面積が増加した蓄積容量70が構成されていることがわかる。この2HLなる面積は、立体的部分の側壁部分の面積に該当するのは言うまでもない。
したがって、本実施形態によれば、蓄積容量70を構成する、固定電位側容量電極としての容量電極300及び画素電位側容量電極としての第1中継層71の面積を平面的に増大させることなく、その容量を増大させることが可能となるから、高開口率を維持しまま、蓄積容量70の増大を実現することが可能となり、もって表示ムラ、ちらつき等のない高品質な画像を表示することができることになる。
また、本実施形態においては、前述のように、蓄積容量70の断面形状が凸形状を含むようにするために、第1中継層71にその一部たる凸状部71aを形成する形態をとっていたことにより、その製造が容易である。すなわち、前記凸状部71aないし前記凸形状は、第1中継層71の形成プロセス中に形成可能であるから、例えば、凸形状を形成するため別途に材料を用意したり別プロセスを実施したりすること等から考えると、製造コストをその相応分削減することが可能となるのである。
さらに、本実施形態においては、蓄積容量70が凸形状を含む部分が、走査線3aに沿って形成されていたことにより、次のような作用効果が得られる。すなわち、本実施形態に係る電気光学装置が、1H反転駆動方式で駆動される場合においては、走査線3aを挟んで相隣接する画素電極間に生じる横電界の発生を抑制することが可能となるのである。これは、図4に示すように、第1中継層71の一部たる凸状部71a上に形成される第3層間絶縁膜43の表面上に、第2層間絶縁膜42、シールド層400を介して凸部43Aが形成されることによるものである。すなわち第一に、該凸部43A上に画素電極9aの縁部が乗るように該画素電極9aを形成すれば、図4に示すように、対向電極21及び画素電極9a間の距離を、G1からG2に狭める、もしくはG1より狭めることが可能となり、それだけ縦電界、図4中上下方向に印加される電界を強めることが可能となるからである。
また第二に、画素電極9aの縁部が凸部43Aの上に存在するか否かにかかわらず、該凸部43Aが有する誘電率の如何によって横電界自体を弱め得ることによる。さらに第三に、前記凸部43A及び対向電極21間の間隙が、図4に示すように、G1からG3に狭められることに伴い、その容積、すなわち該間隙内に位置する液晶層50の体積を減少させることが可能であるから、液晶層50に与える横電界の影響を相対的に小さくすることが可能であることによる。
このように、本実施形態によれば、データ線6aを挟んで生じる可能性のある横電界の発生を抑制することが可能となるから、該横電界による液晶層50中における液晶分子の配向状態に乱れが生じる可能性を低減することが可能となり、もって高品質な画像を表示することができることになるのである。
なお、上記実施形態においては、蓄積容量70の立体的部分の断面形状が矩形状とされていたが、本発明は、このような形態に限定されるものではない。例えば図7に示すように、該断面形状がテーパ形状となるような形態としてもよい。
ここに図7は、図5と同趣旨の図であって、その断面形状がテーパ形状となる蓄積容量70Aの斜視図である。
この図7において、第1中継層71Aと一体としての凸状部71AAは、その断面形状がテーパ状を有するものとされ、該凸状部71AA上に、誘電体膜及び容量電極300Aが形成されることで、その断面形状にテーパ形状を含む蓄積容量70Aが構成される形態となる。
この場合においても、立体的部分を構成する側壁の面積分だけ蓄積容量の増大が見込めるにもかかわらず、開口率が犠牲にならないことは、図5と同様であるのが明白である。また、このような形態では特に、図7から明らかなように、図5に示した凸状部71Aのような鋭敏な角部が存在せず、丸まったコーナー部を有する形態となるから、該凸状部71AAの上の誘電体膜及び容量電極300Aを好適に形成することが可能となる。これは、該誘電体膜及び該容量電極300Aの成膜過程において、図4又は図5のような形態に比べて、そのカバーレッジの悪化等につき懸念する必要がなくなるからである。
また、上記実施形態においては、凸状部71Aが第1中継層71と一体的なものとして形成されていたが、本発明は、このような形態にも限定されない。例えば、第1中継層71の下に、該第1中継層71とは異なる材料となる凸状部材を設け、その上に、誘電体膜75及び容量電極300を形成するような形態としてもよい。
さらに、上述においては、走査線3aに沿って凸部が形成されるような形態について述べたが、本発明は、このような形態に限定されるものではない。例えば、第3層間絶縁膜43の表面を、CMP(Chemical Mechanical Polishing)処理等により平坦化することも可能である。これにより、その下方に存在する各種配線や素子等による段差に起因する液晶層50の配向不良を低減することが可能となる。ただし、このように第3層間絶縁膜43に平坦化処理を施すのに代えて、又は加えて、TFTアレイ基板10、下地絶縁膜12、第1層間絶縁膜41及び第2層間絶縁膜42のうち少なくとも一つに溝を掘って、データ線6a等の配線やTFT30等を埋め込むことにより、平坦化処理を行ってもよい。
(電気光学装置の変形形態)
以下では、本発明の電気光学装置の変形形態について、図8乃至図10を参照しながら説明する。ここに図8及び図9は、それぞれ、図2及び図3等と同趣旨の図であって、本変形形態の特徴を現す平面図及び断面図である。また、図10は、図5と同趣旨の図であって、図8における符号Qを付した部分に係る蓄積容量70DFの立体的な構成を示す斜視図である。なお、本変形形態の電気光学装置は、上記の各種実施形態の電気光学装置の画素部における構成と略同様な構成を備えている。したがって、以下では、本変形形態において特徴的な部分のみについて主な説明を加えることとし、残余の部分については、その説明を適宜省略ないし簡略化することとする。
図8及び図9においては、図2及び図3と比べて、蓄積容量70DFを構成する上部電極たる容量電極300DFとデータ線6aとが同一膜として構成されていない点、また、それに伴って、層間絶縁膜が増加されている、すなわち、新たにもう一層、「第4層間絶縁膜44」が設けられている点、そしてゲート電極3aaと同一膜として中継電極719が形成されている点に大きな相違がある。これにより、TFTアレイ基板10上から順に、走査線を兼ねる下側遮光膜11aを含む第1層、ゲート電極3aaを有するTFT30を含む第2層、蓄積容量70DFを含む第3層、データ線6a等を含む第4層、シールド層404が形成される第5層、前記の画素電極9a及び配向膜16等を含む第6層(最上層)からなる。また、第1層及び第2層間には下地絶縁膜12が、第2層及び第3層間には第1層間絶縁膜41が、第3層及び第4層間には第2層間絶縁膜42が、第4層及び第5層間には第3層間絶縁膜43が、第5層及び第6層間には第4層間絶縁膜44が、それぞれ設けられており、前述の各要素間が短絡することを防止している。
また、走査線3aに代わるゲート電極3aaが形成されるとともに、これと同一膜として中継電極719が形成されている。
また、前記の第3層及び第4層間に位置する第2層間絶縁膜42には、コンタクトホール801が形成されるとともに、第4層には、これらのコンタクトホール801に対応するようにシールド層用中継層6a1が形成されており、前記の第4層及び第5層間に位置する第3層間絶縁膜43には、コンタクトホール803が形成されている。これにより、シールド層404と容量電極300DFとの間は、コンタクトホール801ないしシールド層用中継層6a1及びコンタクトホール803により電気的に接続されている。
そして、図9においては、ゲート電極3aaと同一膜として中継電極719が形成されているとともに、該中継電極719には、画素電極9a及び第1中継層71DFが電気的に接続されている。
より詳しくは、まず、画素電極9aとの電気的接続は、第2中継層6a2及び第3中継層406を介して行われている。このうち第2中継層6a2は、データ線6aと同一膜として、且つ、第1及び第2層間絶縁膜41及び42に中継電極719へと至るように開孔されたコンタクトホール882を埋めるようにして形成されている。また、第3中継層406は、シールド層404と同一膜として、且つ、第3層間絶縁膜43に前記第2中継層6a2へと至るように開孔されたコンタクトホール804を埋めるようにして形成されている。
なお、この場合、画素電極9aのITOと電蝕のおそれがあるのは、第3中継層406ということになるから、該第3中継層406に関して、上述のようにアルミニウム膜及び窒化チタン膜からなる構成を採用するようにすればよい。また、場合により、シールド層404及び第3中継層406については、ITOで形成するとともに基板の全面に関してベタ状に形成し、これら要素を構成するITOと電蝕のおそれが生じる第2中継層6a2及びシールド層用中継層6a1等について、同様な二層構造を採用する等としてもよい。
他方、中継電極719と第1中継層71DFとの電気的接続は、第1層間絶縁膜41に開孔されたコンタクトホール881を介して行われている。すなわち、コンタクトホール881を開孔後、これを埋めるように第1中継層71DFの前駆膜を形成することにより、第1中継層71DF及び中継電極719の電気的接続が実現されることになる。
以上により、第1中継層71DF及び画素電極9a間は、中継電極719を介して電気的に接続されることになる。
ちなみに、上述の実施形態においては、ゲート電極を同一平面内で含むように走査線3aが形成されていたが、本形態においては、中継電極719を形成する領域を確保するため、走査線の役割は、上述の実施形態における下側遮光膜11aが担うようになっている。すなわち、本形態における下側遮光膜11aは、平面的に見ると、ストライプ状に形成されるとともに、コンタクトホールを成す溝12cvの底が該下側遮光膜11aに接するように形成されることで、ゲート電極3aaには、該下側遮光膜11aから走査信号が供給されるようになっている。また、下側遮光膜11aは、データ線6aと交差する領域では、画素電極9aの角を角取りするように突出した領域が形成されている。
これにより、本形態における水平的突出部3bは、半導体層1aに対する遮光機能を発揮するとともに、ゲート電極3aaへの信号供給の機能をも発揮することとなる。
また、中継電極719は、平面的に見て、図8に示すように、各画素電極9aの一辺の略中央に位置するように、島状に形成されている。中継電極719と、ゲート電極3aaとは同一膜として形成されているから、後者が例えば導電性ポリシリコン膜等からなる場合においては、前者もまた、導電性ポリシリコン膜等からなる。
そして、本態様においては、上述の実施形態と同様に、図9に示すように、蓄積容量が立体的に構成されている。すなわち、本変形形態では、第1中継層71DFの一部として凸状部71DFAが形成されており、これにより、蓄積容量70DFの断面形状は凸形状を含むものとなっている。第1中継層は、光吸収性の導電性のポリシリコンや、光反射性の金属又は合金を含む単一層膜又は多層膜からなる。この蓄積容量70DFは、図10に示すように、図5とは異なり、下側遮光膜11a(即ち、上記実施形態で該当するところの「走査線3a」。以下同じ。)の上にのみ第1中継層71DF及び容量電極300DFが存在するのではなく、データ線6a上にもこれらが存在し、且つ、下側遮光膜11a及びデータ線6aのいずれの方向についても立体的部分が形成されている点が異なる。
このような形態となる本変形形態にあっても、蓄積容量70DFが立体的に構成されていることより得られる作用効果は、上記した実施形態において説明したと略同様に享受し得る。すなわち、立体的部分の側壁部分の面積の大きさだけ、容量値の増大を図ることができる。しかも、本変形形態によれば、図5と比べて明らかに、蓄積容量の容量値増大化の効果は大きいことが明白である。これにより、高開口率を維持したまま、蓄積容量の増大を実現することが可能となり、もって表示ムラ、ちらつき等のない高品質な画像を表示することができる。
また、このような立体的部分を含む蓄積容量70DFAでは、図4に示したような凸部43Aが、下側遮光膜11a及びデータ線6aのいずれの方向に沿っても形成されることになるから、このような形態に係る電気光学装置については、これを1H反転駆動方式、1S反転駆動方式、又はドット反転駆動方式のいずれによって駆動する場合であっても、上述したのと同様な理屈によって横電界の発生を抑止することが可能となり、高品質な画像表示を行うことが可能となる。
なお、本実施形態に係る電気光学装置において奏されるその他の作用効果、即ち、シールド層404の存在により、データ線6a及び画素電極9a間の容量カップリングの影響を排除する等の作用効果についても、本変形形態において略同様に享受し得ることは言うまでもない。
また、本形態においては特に、中継電極719が形成されていることにより、次のような作用効果を得ることができる。すなわち、図3等においては、TFT30及び画素電極9a間の電気的接続を図るためには、同図におけるコンタクトホール85のように、蓄積容量70を構成する、より下層の電極たる第1中継層71の図中「上面」において接触を図る必要があった。
しかしながら、このような形態では、容量電極300及び誘電体膜75の形成工程において、それらの前駆膜をエッチングする際には、その直下に位置する第1中継層71を健全に残存させながら、当該前駆膜のエッチングを実行するという非常に困難な製造工程を実施しなければならない。とりわけ本発明のように、誘電体膜75として高誘電率材料を使用する場合においては、一般にそのエッチングが困難であり、また、容量電極300におけるエッチングレートと該高誘電率材料におけるエッチングレートが不揃いになるなどの条件も重なるため、当該製造工程の困難性はより高まることになる。したがって、このような場合においては、第1中継層71において、いわゆる「突き抜け」等を生じさせてしまう可能性が大きい。こうなると、悪い場合には、蓄積容量70を構成する容量電極300及び第1中継層71間に短絡を生じさせるおそれ等も生じてくる。
しかるに、本形態のように、第1中継層71DFの図中「下面」に電気的接続点を設けることによって、TFT30及び画素電極9a間の電気的接続を実現するようにすれば、上述のような不具合は発生しないのである。なぜなら、図9からも明らかな通り、本形態では、容量電極300DF及び誘電体膜75の前駆膜をエッチングしつつ、第1中継層71DFを残存させなければならないという工程は必要ないからである。
以上により、本形態によれば、上述のような困難なエッチング工程を経る必要がないから、第1中継層71DF及び画素電極9a間の電気的接続を良好に実現することができる。これは、中継電極719を介して両者間の電気的接続を実現しているからに他ならない。更にいえば、同じ理由から、本変形形態によれば、容量電極300DF及び第1中継層71DF間で短絡が生じるなどという可能性はきわめて小さい。すなわち、欠陥なき蓄積容量70DFを好適に形成することが可能なのである。
しかも、このような中継電極719を設けて、蓄積容量70DF及び画素電極9a間の電気的接続を図ることによれば、該蓄積容量を形成すべき面積の確保がより容易である。したがって、該蓄積容量は、より多くの立体的部分を含み得ることになり、その結果、容量値増大化という作用効果をより効果的に達成することができる(図2及び図5と、図8及び図10とを対比参照)。
なお、本態様では、容量電極300DFとデータ線6aとが別々の層に形成されるため、図2等のように、同一平面内における両者間の電気的絶縁を図る必要はない。したがって、本態様においては、容量電極300DFは、下側遮光膜11aの方向に延在する容量線の一部として形成することが可能である。また、これにより、該容量電極300DFを固定電位とするためには、該容量線を画像表示領域10a外まで延設して定電位源に接続するような形態とすればよい。更に、この場合、容量電極300DFを含む容量線は、それ自体独自に定電位源に接続することが可能であり、シールド層404もまた、それ自体独自に定電位源に接続することが可能となるため、そのような構成を採用する場合においては、両者間を電気的に接続するコンタクトホール801及び803は必ずしも必要がない。
尚、誘電体膜75は、図9に示すように、下層に酸化シリコン膜75a、上層に窒化シリコン膜75bというように二層構造を有し、TFTアレイ基板10の全面に渡って形成されている。また、誘電体膜75の他の例として、下層の酸化シリコン膜75aは、TFTアレイ基板10の全面に渡って形成し、上層の窒化シリコン膜75bは、遮光領域(非開口領域)内で収まるようにパターンニングして、着色性のある窒化シリコン膜の存在により透過率が低くなることを防止するように構成してもよい。
また、データ線6a、シールド層用中継層6a1、第2中継層6a2は、下層より順に、アルミニウムからなる層、窒化チタンからなる層、窒化シリコン膜からなる層の三層構造を有する膜として形成しても良い。窒化シリコン膜は、その下層のアルミニウム層と窒化チタン層を覆うように少し大きなサイズにパターンニングされていると良い。このうちデータ線6aが、比較的低抵抗な材料たるアルミニウムを含むことにより、TFT30、画素電極9aに対する画像信号の供給を滞りなく実現することができる。他方、データ線6a上に水分の浸入をせき止める作用に比較的優れた窒化シリコン膜が形成されることにより、TFT30の耐湿性向上を図ることができ、その寿命長期化を実現することができる。また、窒化シリコン膜は、低温成膜が可能なプラズマ窒化シリコン膜が望ましい。
(立体的蓄積容量の変形形態)
上述においては、蓄積容量70DFの立体的部分が、下側遮光膜11a及びデータ線6aの双方に沿うように形成されていたが、本発明は、このような実施形態のみに限定されるものではなく、その他種々の具体的な態様を採り得る。以下、その他の具体的態様について、順次説明する。
まず、例えば図11に示すように、下側遮光膜11aの方向についてのみ、第1中継層71DFAと一体としての凸状部71DFAAを形成するとともに、該凸状部71DFAA上に、誘電体膜及び容量電極300DFAを形成することで、前記の方向について立体的部分が設けられるような蓄積容量70DFAを構成してもよい。
ちなみに、このような形態に係る電気光学装置を1H反転駆動方式で駆動すれば、上述したのと同様な理屈によって横電界の発生を抑止することが可能となり、高品質な画像を表示することが可能となる。
あるいはまた、図12に示すように、データ線6aの方向についてのみ、第1中継層71DFBと一体としての凸状部71DFBAを形成するとともに、該凸状部71DFBA上に、誘電体膜及び容量電極300DFBを形成することで、前記の方向について立体的部分が設けられるような蓄積容量70DFBを構成してもよい。
更にはまた、図13に示すように、下側遮光膜11aが延在する方向を境にしてデータ線6aの一方に延在する方向と、該下側遮光膜11aが延在する方向とについて、第1中継層71DFCと一体としての凸状部71DFCAを形成するとともに、該凸状部71DFCA上に、誘電体膜及び容量電極300DFCを形成することで、前記の各方向について、立体的部分が設けられるような蓄積容量70DFCを構成してもよい。
ちなみに、このような図11乃至図13のいずれの形態にしても、図6等の従来例に比べて、立体的部分を構成する側壁の面積分だけ蓄積容量の増大が見込めるにもかかわらず、開口率を減少させるようなことがないことは、図5或いは図10と同様であることが明白である。
また、上記変形形態では、蓄積容量70DFの凸形状を含む断面形状が、完全な矩形状とされていたが、本発明においては、その他、例えば図14に示すように、該断面形状がテーパ形状となるような形態としてもよい。より詳しくは、第1中継層71DFDと一体としての凸状部71DFDAは、図13に示すように、その断面形状がテーパ状を有するものとされ、該凸状部71DFDA上に、誘電体膜及び容量電極300DFDが形成されることで、その断面形状にテーパ形状を含む蓄積容量70DFDが構成される形態となる。
この場合においても、立体的部分を構成する側壁の面積分だけ蓄積容量の増大が見込めるにもかかわらず、開口率が犠牲にならないことは、図5或いは図10と同様であるのが明白である。また、このような形態では特に、図13から明らかなように、図10等に示した凸状部71DFAのような鋭敏な角部が存在せず、丸まったコーナー部を有する形態となるから、該凸状部71DFDAの上の誘電体膜及び容量電極300DFDを好適に形成することが可能となる。これは、該誘電体膜及び該容量電極300DFDの成膜過程において、そのカバーレッジの悪化等につき懸念する必要がなくなるからである。
さらには、上記実施形態においては、凸状部71DFAが第1中継層71と一体的なものとして形成されていたが、本発明は、このような形態にも限定されない。例えば、第1中継層71DFの下に、該第1中継層71DFとは異なる材料となる凸状部材を設け、中継層として機能させ、第1中継層71DF、誘電体膜75及び容量電極300DFを形成するような形態としてもよい。この場合、第1中継層71DFは、薄い膜でもよいし、厚い膜でもよい。
(電気光学装置の全体構成)
以上のように構成された各実施形態における電気光学装置の全体構成を図15及び図16を参照して説明する。なお、図15は、TFTアレイ基板をその上に形成された各構成要素とともに対向基板20の側からみた平面図であり、図16は図15のH−H´断面図である。
図15及び図16において、本実施形態に係る電気光学装置では、TFTアレイ基板10と対向基板20とが対向配置されている。TFTアレイ基板10と対向基板20との間には、液晶50が封入されており、TFTアレイ基板10と対向基板20とは、画像表示領域10aの周囲に位置するシール領域に設けられたシール材52により相互に接着されている。
シール材52は、両基板を貼り合わせるため、例えば紫外線硬化樹脂、熱硬化樹脂等からなり、紫外線、加熱等により硬化させられたものである。また、このシール材52中には、本実施形態における液晶装置がプロジェクタ用途のように小型で拡大表示を行う液晶装置であれば、両基板間の距離(基板間ギャップ)を所定値とするためのグラスファイバー、あるいはガラスビーズ等のギャップ材(スペーサ)が散布されている。あるいは、当該液晶装置が液晶ディスプレイや液晶テレビのように大型で等倍表示を行う液晶装置であれば、このようなギャップ材は、液晶層50中に含まれてよい。
シール材52の外側の領域には、データ線6aに画像信号を所定のタイミングで供給することにより該データ線6aを駆動するデータ線駆動回路101及び外部回路接続端子102がTFTアレイ基板10の一辺に沿って設けられており、走査線3aに走査信号を所定のタイミングで供給することにより、走査線3aを駆動する走査線駆動回路104が、この一辺に隣接する二辺に沿って設けられている。
なお、走査線3aに供給される走査信号遅延が問題にならないのならば、走査線駆動回路104は片側だけでもよいことは言うまでもない。また、データ線駆動回路101を画像表示領域10aの辺に沿って両側に配列してもよい。
TFTアレイ基板10の残る一辺には、画像表示領域10aの両側に設けられた走査線駆動回路104間をつなぐための複数の配線105が設けられている。
また、対向基板20のコーナー部の少なくとも一箇所においては、TFTアレイ基板10と対向基板20との間で電気的に導通をとるための導通材106が設けられている。
図16において、TFTアレイ基板10上には、画素スイッチング用のTFTや走査線、データ線等の配線が形成された後の画素電極9a上に、配向膜が形成されている。他方、対向基板20上には、対向電極21のほか、最上層部分に配向膜が形成されている。また、液晶層50は、例えば一種又は数種類のネマテッィク液晶を混合した液晶からなり、これら一対の配向膜間で、所定の配向状態をとる。
なお、TFTアレイ基板10上には、これらのデータ線駆動回路101、走査線駆動回路104等に加えて、複数のデータ線6aに画像信号を所定のタイミングで印加するサンプリング回路、複数のデータ線6aに所定電圧レベルのプリチャージ信号を画像信号に先行して各々供給するプリチャージ回路、製造途中や出荷時の当該電気光学装置の品質、欠陥等を検査するための検査回路等を形成してもよい。
(電子機器)
次に、以上詳細に説明した電気光学装置をライトバルブとして用いた電子機器の一例たる投射型カラー表示装置の実施形態について、その全体構成、特に光学的な構成について説明する。ここに、図17は、投射型カラー表示装置の図式的断面図である。
図17において、本実施形態における投射型カラー表示装置の一例たる液晶プロジェクタ1100は、駆動回路がTFTアレイ基板上に搭載された液晶装置を含む液晶モジュールを3個用意し、それぞれRGB用のライトバルブ100R、100G及び100Bとして用いたプロジェクタとして構成されている。液晶プロジェクタ1100では、メタルハライドランプ等の白色光源のランプユニット1102から投射光が発せられると、3枚のミラー1106及び2枚のダイクロックミラー1108によって、RGBの三原色に対応する光成分R、G及びBに分けられ、各色に対応するライトバルブ100R、100G及び100Bにそれぞれ導かれる。この際特に、B光は、長い光路による光損失を防ぐために、入射レンズ1122、リレーレンズ1123及び出射レンズ1124からなるリレーレンズ系1121を介して導かれる。そして、ライトバルブ100R、100G及び100Bによりそれぞれ変調された三原色に対応する光成分は、ダイクロックプリズム1112により再度合成された後、投射レンズ1114を介してスクリーン1120にカラー画像として投射される。
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨、あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電気光学装置及び電子機器もまた、本発明の技術的範囲に含まれるものである。電気光学装置としては、電気泳動装置やEL(エレクトロルミネッセンス)装置や電子放出素子を用いた装置(Field Emission Display 及び Surface-Conduction Electron-Emitter Display)等に適用できる。
本発明の実施形態の電気光学装置における画像表示領域を構成するマトリクス状の複数の画素に設けられた各種素子、配線等の等価回路を示す回路図である。 本発明の実施形態の電気光学装置におけるデータ線、走査線、画素電極等が形成されたTFTアレイ基板の相隣接する複数の画素群の平面図である。 図2のA−A´断面図である。 図2のB−B´断面図である。 一画素に対応する蓄積容量の立体的な構成を示す斜視図である。 図5と同趣旨図であるが、蓄積容量が立体的部分を含まない従来の電気光学装置に関する構成例を示す斜視図である。 図5と同趣旨の図であって、蓄積容量の断面形状に含まれる凸形状が、テーパ形状となる構成例を示す斜視図である。 図2と同趣旨の図であって、蓄積容量とデータ線とが別々の層に形成されている態様について示すものである。 図4と同趣旨の図であって、蓄積容量とデータ線とが別々の層に形成されている態様について示すものである。 図5と同趣旨の図であって、図8及び図9に示される、一画素に対応する蓄積容量の立体的な構成を示す斜視図である。 図10と同趣旨の図であって、蓄積容量の立体的部分が下側遮光膜の方向にのみ延在している構成例を示す斜視図である。 図10と同趣旨の図であって、蓄積容量の立体的部分がデータ線の方向にのみ延在している構成例を示す斜視図である。 図10と同趣旨の図であって、蓄積容量の立体的部分が下側遮光膜が延在する方向を境としてデータ線の一方の方向と下側遮光膜が延在する方向に延在している構成例を示す斜視図である。 図10と同趣旨の図であって、蓄積容量の断面形状に含まれる凸形状が、テーパ形状となる構成例を示す斜視図である。 本発明の実施形態の電気光学装置におけるTFTアレイ基板を、その上に形成された各構成要素とともに対向基板の側から見た平面図である。 図15のH−H´断面図である。 本発明の電子機器の実施形態である投射型カラー表示装置の一例たるカラー液晶プロジェクタを示す図式的断面図である。
符号の説明
1a…半導体層
2…絶縁膜
3a…走査線
6a…データ線
9a…画素電極
10…TFTアレイ基板
11a…下側遮光膜
16…配向膜
20…対向基板
21…対向電極
22…配向膜
30…TFT
43…第3層間絶縁膜
43A…凸部
50…液晶層
70…蓄積容量
75…誘電体膜
75a…酸化シリコン膜
75b…窒化シリコン膜
70、70A、70DFA、70DFB、70DFC、70DFD…蓄積容量
300、300A、300DFA、300DFB、300DFC、300DFD…容量線(上部電極)
71、71A、71DFA、71DFB、71DFC、71DFD…第1中継層(下部電極)
71a、71AA、71DFAA、71DFBA、71DFCA、71DFDA…凸状部
81、82、83、85、87、89…コンタクトホール
400…シールド層

Claims (14)

  1. 基板上に、第1方向に延在するデータ線及び該データ線に交差する第2方向に延在する走査線、並びに、前記データ線及び前記走査線の交差領域に対応するように配置された画素電極及び薄膜トランジスタが積層構造の一部をなして備えられた電気光学装置であって、
    前記基板上には更に、
    前記薄膜トランジスタ及び前記画素電極に電気的に接続された蓄積容量と、
    前記データ線及び前記画素電極間に配置されたシールド層とが、
    前記積層構造の一部をなして備えられてなり、
    前記蓄積容量を構成する誘電体膜を挟持してなる上部電極及び下部電極は、前記基板の表面に平行な面に沿って積層された第1部分と、前記基板の表面に対して立ち上がった平面に沿って積層された第2部分とを含むことにより、その断面形状が凸形状を含むことを特徴とする電気光学装置。
  2. 基板上に、第1方向に延在するデータ線及び該データ線に交差する第2方向に延在する走査線、並びに、前記データ線及び前記走査線の交差領域に対応するように配置された画素電極及び薄膜トランジスタが積層構造の一部をなして備えられた電気光学装置であって、
    前記基板上には更に、
    前記薄膜トランジスタ及び前記画素電極に電気的に接続された蓄積容量と、
    前記データ線及び前記画素電極間に配置された遮光膜とが、
    前記積層構造の一部をなして備えられてなり、
    前記蓄積容量を構成する誘電体膜を挟持してなる上部電極及び下部電極は、前記基板の表面に平行な面に沿って積層された第1部分と、前記基板の表面に対して立ち上がった平面に沿って積層された第2部分とを含むことにより、その断面形状が凸形状を含むことを特徴とする電気光学装置。
  3. 前記シールド層は、前記蓄積容量の上部電極と電気的に接続されていることを特徴とする請求項1記載の電気光学装置。
  4. 前記凸形状は、前記下部電極が前記基板に対して凸状の部分を含むように形成されることにより、形作られていることを特徴とする請求項1乃至3のいずれか一項に記載の電気光学装置。
  5. 前記下部電極は、光吸収性の導電材料でなることを特徴とする請求項4に記載の電気光学装置。
  6. 前記凸形状は、前記下部電極下に凸状部材が形成されることにより、形作られていることを特徴とする請求項1乃至5のいずれか一項に記載の電気光学装置。
  7. 前記凸形状は、テーパ形状を含むことを特徴とする請求項1乃至6のいずれか一項に記載の電気光学装置。
  8. 前記凸形状の高さは、50〜1000nmであることを特徴とする請求項1乃至7のいずれか一項に記載の電気光学装置。
  9. 前記画素電極はマトリクス状に配列されてなり、前記走査線及び前記データ線は、前記マトリクス状に対応した遮光領域に形成されており、
    前記蓄積容量は前記遮光領域内に形成されていることを特徴とする請求項1乃至8のいずれか一項に記載の電気光学装置。
  10. 前記蓄積容量の前記凸形状は、前記走査線及び前記データ線の少なくとも一方に沿って形成されていることを特徴とする請求項1乃至9のいずれか一項に記載の電気光学装置。
  11. 前記蓄積容量を構成する誘電体膜は、相異なる材料を含む複数の層からなるとともに、そのうちの一の層は他の層に比べて高誘電率材料からなる層を含む積層体を構成していることを特徴とする請求項1乃至10のいずれか一項に記載の電気光学装置。
  12. 前記誘電体膜は、酸化シリコン膜及び窒化シリコン膜からなることを特徴とする請求項11に記載の電気光学装置。
  13. 前記積層構造の一部として、前記画素電極の下地として配置された層間絶縁膜が更に備えられており、
    前記層間絶縁膜の表面は平坦化処理が施されていることを特徴とする請求項1乃至12のいずれか一項に記載に記載の電気光学装置。
  14. 請求項1乃至13のいずれか一項に記載の電気光学装置を具備してなることを特徴とする電子機器。
JP2003321792A 2002-10-31 2003-09-12 電気光学装置及び電子機器 Withdrawn JP2004170920A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321792A JP2004170920A (ja) 2002-10-31 2003-09-12 電気光学装置及び電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002318543 2002-10-31
JP2003321792A JP2004170920A (ja) 2002-10-31 2003-09-12 電気光学装置及び電子機器

Publications (1)

Publication Number Publication Date
JP2004170920A true JP2004170920A (ja) 2004-06-17

Family

ID=32715874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321792A Withdrawn JP2004170920A (ja) 2002-10-31 2003-09-12 電気光学装置及び電子機器

Country Status (1)

Country Link
JP (1) JP2004170920A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176119A (ja) * 2009-01-05 2010-08-12 Seiko Epson Corp 電気光学装置及び電子機器
JP7456013B2 (ja) 2021-01-12 2024-03-26 株式会社ジャパンディスプレイ 表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176119A (ja) * 2009-01-05 2010-08-12 Seiko Epson Corp 電気光学装置及び電子機器
JP7456013B2 (ja) 2021-01-12 2024-03-26 株式会社ジャパンディスプレイ 表示装置

Similar Documents

Publication Publication Date Title
JP3858880B2 (ja) 電気光学装置及び電子機器
JP4021392B2 (ja) 電気光学装置及び電子機器
JP3870941B2 (ja) 電気光学装置及び電子機器
JP4095518B2 (ja) 電気光学装置及び電子機器
JP4045226B2 (ja) 電気光学装置及び電子機器
US20070058102A1 (en) Electro-optical device and electronic apparatus
JP4186767B2 (ja) 電気光学装置及び電子機器
JP2004191931A (ja) 電気光学装置及びその製造方法並びに電子機器
JP4069906B2 (ja) 電気光学装置及びその製造方法並びに電子機器
JP4506133B2 (ja) 電気光学装置及び電子機器
JP4214741B2 (ja) 電気光学装置及び電子機器
JP4862936B2 (ja) 電気光学装置及び電子機器
JP2004170910A (ja) 電気光学装置及び電子機器
JP4730407B2 (ja) 電気光学装置及び電子機器
JP4003724B2 (ja) 電気光学装置及び電子機器
JP2004170920A (ja) 電気光学装置及び電子機器
JP2004170912A (ja) 電気光学装置及び電子機器
JP2004170918A (ja) 電気光学装置及び電子機器
JP2004170914A (ja) 電気光学装置及び電子機器
JP2006065356A (ja) 電気光学装置及び電子機器
JP2004191930A (ja) 電気光学装置及びその製造方法並びに電子機器
JP2004354968A (ja) 電気光学装置及び電子機器

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205