JP2004168324A - Wafer container cushioning material - Google Patents

Wafer container cushioning material Download PDF

Info

Publication number
JP2004168324A
JP2004168324A JP2002332851A JP2002332851A JP2004168324A JP 2004168324 A JP2004168324 A JP 2004168324A JP 2002332851 A JP2002332851 A JP 2002332851A JP 2002332851 A JP2002332851 A JP 2002332851A JP 2004168324 A JP2004168324 A JP 2004168324A
Authority
JP
Japan
Prior art keywords
buffer
wafer container
wafer
projection
cushioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002332851A
Other languages
Japanese (ja)
Other versions
JP4193472B2 (en
Inventor
Kazuyoshi Watanabe
数義 渡辺
Noriko Ikeda
紀子 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2002332851A priority Critical patent/JP4193472B2/en
Publication of JP2004168324A publication Critical patent/JP2004168324A/en
Application granted granted Critical
Publication of JP4193472B2 publication Critical patent/JP4193472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cartons (AREA)
  • Buffer Packaging (AREA)
  • Packaging Frangible Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide wafer container cushioning materials, which can be arranged vertically in a compact manner while retaining a sufficient cushioning function. <P>SOLUTION: When a wafer container 4 containing a plurality of semiconductor wafers is housed in an outer packaging box 5, a pair of the expanded resin cushioning materials 1, 2 are placed on the top and bottom of the wafer container 4, respectively, so that each cushioning material is arranged between the wafer container 4 and the outer packaging box 5. The cushioning material 1 has a base 21 and the cushioning material 2 has a base 41, and a cushioning projection 29 of a closed circular shape is formed on the bases 21, 41, where the cushioning projections 29 come in contact with the bottom and the ceiling of the outer packaging box 5 are protrusively formed at the interior thereof, respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウェーハ等の半導体ウェーハが複数枚収納されたプラスチック製のウェーハ容器を搬送する時に、輸送中の衝撃や振動から起こるウェーハの破損を防止するため、ダンボールケース等の外装箱内で、該容器の上下に配置する1組の発泡樹脂製緩衝体に関し、特に、容器の上下に配置された1組の発泡樹脂製緩衝体の外装箱内で外装箱の上下に当接する緩衝突起の形状に関するものである。
【0002】
【従来の技術】
従来から、複数枚の半導体ウェーハを収納したプラスチック製のウェーハ容器を搬送する方法として、ダンボールケース等の箱体が外装箱に使用され、該外装箱内で容器の上下に1組の樹脂製あるいは発泡樹脂製の緩衝材を挿入して、搬送中の衝撃や振動を緩和させ、容器内に収納されている高価な半導体ウェーハの割れや損傷を防ぐ搬送方法が良く知られている。
【0003】
前記プラスチック製のウェーハ容器で現行使用されている代表例は、直径が6インチ(約150mm)、8インチ(約200mm)のシリコンウェーハ用のポリプロピレン製などのウェーハ容器であるが、最近12インチ(約300mm)用も開発されており、容器は大型化しているが形状は類似した方形の箱体である(特許文献1参照。)。
【0004】
樹脂製の緩衝体としては、ポリプロピレンなどポリオレフィン系樹脂からなる厚さ1mm前後の樹脂シートの加熱・真空成形法により製造されものが使用されており、緩衝性能は成形された樹脂シートの凹凸部が衝撃時に撓むあるいは凹むことにより発揮される(例えば、特許文献2,3参照。)。
【0005】
また、発泡樹脂製の緩衝体としては、発泡スチロールや発泡ポリプロピレンからなるものや、発泡ポリウレタンからなるものが知られている(例えば、特許文献4,5参照。)。
【0006】
シリコンウェーハは直径が6インチサイズから8インチサイズと大型化し、近年さらに12インチへと移行しつつある。この様な傾向から、収納するウェーハ容器のサイズが大きくかつ重くなり、ウェーハ1枚当たりの重量も重くなっているので、例えば、12インチウェーハ25枚入り(125g/枚)とすると、ウェーハを収納したウェーハ容器の総重量は8kgにも及ぶ。また、航空貨物としての搬送が一般的であるので、貨物室の高さ制限から積載効率が要望され、緩衝材の厚み低減や緩衝性能の向上がますます必要となって来た。
【0007】
これまで、6インチや8インチのシリコンウェーハ容器の上下に配置される発泡樹脂製の緩衝材としては、図1に示す緩衝材100のように、ウェーハ容器に外嵌する嵌合凹部101を有する方形状のベース部102を設け、ベース部102の嵌合凹部101の開口側とは反対側の面の4つの角部付近に4つの緩衝突起103を持ち、ベース部102の4つの側面に2つの緩衝突起104をそれぞれ持つ形状が一般的である。また、図2に示す緩衝材110のように、4つのウェーハ容器の嵌合凹部111を有する方形状のベース部112を設け、ベース部112に各ウェーハ容器に対応させてその中央部に開口部113を形成し、この開口部113の周囲に4つの緩衝突起114を形成するとともに、ベース部112の外縁部付近に複数の緩衝突起115を形成したものが知られている。
【0008】
【特許文献1】
特開2001−308171号公報
【特許文献2】
特開平7−307378号公報
【特許文献3】
特開2002−160769号公報
【特許文献4】
米国特許第613739号明細書
【特許文献5】
特開2000−20862号公報
【0009】
【発明が解決しようとする課題】
上述の様に、シリコンウェーハの口径が大型化すると、樹脂製の緩衝材では掛かる荷重だけでも持ち支えられなくなることと、元々緩衝性能は発泡樹脂製と比較して悪いため、集中的衝撃荷重を受けるとウェーハが容易に破損してしまい、もはや大型のウェーハ輸送容器の緩衝材としては適さなくなっている。
【0010】
一方、発泡樹脂製の緩衝材においても種々の課題を抱え、発泡スチロールにおいては、一般的に衝撃に弱い緩衝突起を緩衝体のベース部の外方に突出させる緩衝包装設計はせず、内側の商品の方向に緩衝突起を設置し、ダンボールケースとの接触は緩衝体全面とし、しかも安全性を考慮して内側に向いた緩衝突起を長くすることが多く、今回のように厚みの制限がある場合には採用は難しい。また、図3に示すように、2回目落下において急激な緩衝性能の低下があり、航空機への積み荷、積み下ろしが必ずしも丁寧であるとは限らないので、高価なウェーハを損傷させる心配がある。さらに、発泡スチロールは衝撃や摩擦で細かく砕けるので、ウェーハ収納容器に直接、ないしはアルミ袋などの容器保護カバーに付着してクリーンルーム内に侵入し、汚染の原因になる。尚、図3は、発泡スチロール(EPS)と発泡ポリプロピレン(EPP)と発泡ポリエチレン(EPE)の落下回数と緩衝係数の推移を示すグラフで、割れ性に関する記号は、「×」が悪く、「△」はやや悪く、「◎」は大変良好であることを示す。
【0011】
発泡ポリウレタンは低耐荷重性の欠点があり、軽量物用の緩衝材であって、しかも包装厚みを必要とする素材であり、本発明の目的にははじめから合致しない。
【0012】
発泡ポリプロピレンや発泡ポリエチレンなどの発泡ポリオレフィン系は、発泡スチロールに比較して柔軟性、復元性が優れ、しかも緩衝材の割れ、破砕の問題も解決され、塵埃の発生もないので、繰り返し衝撃を受けると破損し易い商品や高価で安全性を重視する商品あるいは輸出包装では広く使用されている素材である。
【0013】
しかし、最近のウェーハの大型化によるウェーハ容器総重量のアップ、航空貨物室の高さ制限からくる緩衝材厚みの低減、落下高さを50cmから100cm(通常この場合、緩衝材厚み2倍を必要とする。)に引き上げたいなどの要求から極めて厳しい緩衝包装設計が要望されており、発泡ポリオレフィン製の緩衝体であっても通常の緩衝包装設計では困難であることが判明した。
【0014】
次世代の12インチウェーハに対して、日本のシリコンウェーハ製造メーカー数社からなる工業会である新金属協会のシリコン委員会から、2000年6月に図4のごとく外装箱5の外寸法が提案されたが、これが緩衝包装設計上問題となるのは、水平2方向の幅ではなく、外装箱の外寸高さ460mmにおいてである。即ち、高さ460mmの中に、ウェーハ容器(例えば、信越ポリマー製MW300FG;高さ361mm)、1組の緩衝材高さ、上下のダンボール紙厚みを含ませる必要があり、緩衝材の厚みは約5cm前後となり、ウェーハを含む総重量8kgの容器の内容物を保護するには、厚みにおいて非常に厳しい条件となっている。
【0015】
即ち、次式の緩衝包装設計における緩衝材の厚さの計算式から、
T=C・H/G
緩衝材厚みTと落下高さHが規制されてしまうと、ビーズ法発泡樹脂緩衝体の緩衝係数Cもほとんど差がないためG値(商品が受ける衝撃の大きさ)も変更できない。ここに、今回の緩衝包装設計条件、T=5cm,C=2.7(ビーズ法発泡ポリエチレンを適用)、H=100cmを代入すると、G値=54G(一定値)となり、このG値にウェーハ容器内のシリコンウェーハが1枚たりとも損傷しないかは疑問である。
【0016】
一方、外装箱の側面方向からの外力にたいする包装設計は、上述した図4の新金属協会シリコン委員会の設定値は外装箱の水平2方向の幅が500×580mmであるので、ウェーハ容器(例えば、信越ポリマー製MW300FG)の側面方向の最大外寸は容器の蓋のサイズで、338×389mmであることから、左右に約80mm以上の緩衝材厚みが許容されるので、前式でG値を求めると、G値=34Gとなり、低G値となり図1のような従来法による緩衝突起形状が利用できる。
【0017】
【課題を解決するための手段】
本発明者らは、上述のように緩衝材の厚みを多く取れず、しかも落下高さを100cmとする厳しい条件においては、残された解決手段は緩衝突起の形状について検討するしかないと判断し、各種の形状を持った緩衝突起について検討を重ね、緩衝突起を閉じた環状とすることにより大幅な緩衝特性の向上が可能となることを発見し、本発明を完成するに至った。
【0018】
本発明に係るウェーハ容器緩衝体は、複数枚の半導体ウェーハを収納したウェーハ容器を外装箱内に収容するに際して、外装箱とウェーハ容器間においてウェーハ容器の上下に配置される1組の発泡樹脂製の緩衝体であって、これら1組の発泡樹脂製緩衝体のベース部に外装箱内で外装箱の底および天井に当接する緩衝突起を突出状に設け、この緩衝突起を閉じた環状に形成したものである。
【0019】
ここで言う閉じた環状とは、図1や図2のような従来法のように緩衝突起が分散したものではなく、本発明のごとくその分散した緩衝突起の先端の集計面積(受圧面積)相当分を閉じた環状に1周させた形状を指し、丸でも、楕円でも、方形でもその形状は問わない。また、環状がわずかに途切れている程度ならば、本発明は緩衝突起を連続的にしたことから効果が得られているので、必ずしも完全に閉じた形状でなくても良い。
【0020】
ただし、どのような緩衝突起の形状であっても、緩衝体がウェーハ容器を落下時に接触して支持する位置との関連は極めて重要であり、緩衝体全体がウェーハ容器の底面あるいは天面全域を当接支持する場合もあるが、突出部で支持させる場合が多く、この場合突出部の面の中心線と、閉じた環状の緩衝突起が外装箱と当接する面の中心線の位置を一致させ、衝撃時に受ける応力が一直線に伝達するよう設計することが好ましい。一般的に、緩衝体がウェーハ容器を支持する位置の中心線は、容器底面の形状の外縁部からやや内側の位置させ、付加的に中央部を線又は点の広がりで支持することもあるが、閉じた環状の緩衝突起の配置もウェーハ容器底面の形状の外縁部からやや内側の位置に設置し、ウェーハ容器が緩衝体の突出部に伝達する応力と緩衝突起が外装箱に伝達する応力とが衝撃を受ける方向に一直線に伝達する位置に配置させるのが望ましい。
【0021】
シリコンウェーハ収納容器は円柱状のものもあるが、一般的には概ね立方形の容器であり、緩衝体が容器を支持する位置の中心線は、容器底面の方形の外縁部からやや内側に設置される。従って、本発明の緩衝突起は閉じた方形環状であることが好ましい。
【0022】
また、緩衝突起を閉じた方形の環状とした上で、緩衝突起の少なくとも4角部を4辺部よりも幅広に構成すると、落下衝撃時の応力を4角部で集約的に吸収でき、緩衝性能を一段と向上できる。
【0023】
さらに、緩衝体がウェーハ容器を支持する位置の中心線を容器底面の形状の外縁部からやや内側の位置とし、これに付加的に中央部を線又は点の広がりで支持した場合、緩衝突起の方にも環状内を区画する区画緩衝突起、ないしは環状内に島状に配置した島状緩衝突起を緩衝突起と略同高に形成し、衝突時の応力分散をスムーズに行うことが、緩衝性能の向上にも繋がることが分かった。
【0024】
本発明に使用できる発泡樹脂製緩衝体としては、ビーズ法にて成形したポリオレフィン系樹脂製の発泡体を好適に利用できる。ビーズ法とは、ビーズ法発泡ポリスチレン(発泡スチロール)の製造方法に代表されるが、予め発泡した粒子状の予備発泡粒子を、所定の形状の金型に充填し、加熱して2回目の発泡膨張を起こさせ、粒子どうしが空間をなくして相互融着し、冷却して金型形状どおりの成形体を得る発泡体製造方法のことである。加熱媒体は普通加圧蒸気が使用される。また、ポリオレフィン系樹脂の発泡体とは、ポリエチレン、ポリプロピレン、スチレン/エチレンの複合ポリマーなどの発泡体などであって、発泡スチレンと比較すると柔軟性、耐久性のある発泡体である。また、その発泡倍率に関しては、ポリプロピレン製の発泡体では市販されている30倍品、45倍品(例えば、鐘淵化学工業(株)製;エペランPP−45)やビーズ法発泡ポリエチレン製で市販の20倍、38倍(例えば、鐘淵化学工業(株)製;エペランAXL38)が好適に使用される。緩衝体自身の割れにくさはビーズ法発泡ポリオレフィン系の中では、発泡ポリエチレンが最も優れる。
【0025】
本発明は、通常の直径6インチや8インチのシリコンウェーハが12インチと大型化し、ウェーハ容器総重量のアップ、航空貨物室の高さ制限からくる緩衝材厚みの低減、落下高さを50cmから100cmに引き上げるなどの要求から発明されたもので、直径12インチのシリコンウェーハの搬送に好適に利用できるが、直径が6インチや8インチのシリコンウェーハにおいても適用が可能である。
【0026】
【発明の実施の形態】
以下、本発明の実施例について図面を参照しながら説明する。
図4、図5に示すように、ウェーハ容器緩衝体1、2は、複数枚の半導体ウェーハ3を収納したウェーハ容器4を外装箱5内に収容するに際して、外装箱5とウェーハ容器4間においてウェーハ容器4の上下に配置されるものである。
【0027】
外装箱5は、段ボールなどからなる直方体状の周知の構成のもので、収容する半導体ウェーハ3の直径に応じたサイズに設定されたものである。例えば、直径12インチのシリコンウェーハ用の外装箱5では、高さ460mm、前後幅が500mm、左右幅が580mmのものを採用することになる。
【0028】
ウェーハ容器4は、複数の半導体ウェーハ3を収納できるものであれば、任意の構成のものを採用できる。ここでは、信越ポリマー製MW300FG;高さ361mmのウェーハ容器を例に、本発明と関連する部分についてのみ説明する。ウェーハ容器4の下端部には左右1対の脚部10が前後方向に略全長にわたって形成され、左右の脚部10間には部分円筒状の底面を有する膨出部11が前後方向に略全長にわたって形成されている。ウェーハ容器4の上部には外縁部に上方へ延びる外壁部を形成した蓋部材12が設けられ、この蓋部材12には前後方向に延びる1対のリブ部13が左右に間隔をあけて形成されている。
【0029】
上下の緩衝体1、2は、前述したように、ポリオレフィン系樹脂製の予備発泡粒子を用いてビーズ法にて製作した発泡成形体から構成されている。ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、スチレン/エチレンの複合ポリマーなどを採用可能で、ポリエチレンからなる発泡成形体は割れにくいので好適である。
【0030】
上側の緩衝体1について説明すると、図4〜図9に示すように、ウェーハ容器4の上部に外嵌する嵌合凹部20を形成した方形状のベース部21が設けられ、ベース部21の上壁部の中央部には方形状の開口部22が形成され、ベース部21の前後左右の側壁部には相互に間隔をあけて1対の側部緩衝突起23が突出状にそれぞれ形成され、ベース部21の左右の側壁部には嵌合凹部20側へ突出する4つの保持突起24が側部緩衝突起23に対応させて形成されている。ベース部21の上壁部の下面にはウェーハ容器4の蓋部材12の左部及び右部に当接される前後方向に延びる左右1対の左右押さえ部25が下方へ突出状に形成されるとともに、ウェーハ容器4の蓋部材12の中央部に当接される前後1対の中央押さえ部26が下方へ突出状に形成されている。ベース部21の上壁部の上面側には、開口部22を取り囲むように形成された平面視略方形枠状の環状緩衝突起27と、環状緩衝突起27の前後2辺の途中部から内側へ延びる補助緩衝突起28とを備えた上緩衝突起29が上方へ突出状に形成されている。
【0031】
そして、ウェーハ容器4に上下の緩衝体1、2を取り付けてこれを外装箱5に装填した状態で、ベース部21の前後の側壁部と保持突起24がウェーハ容器4の側面上部に当接されるとともに、左右押さえ部25及び中央押さえ部26がウェーハ容器4の蓋部材12の上面に当接されて、ウェーハ容器4の上部が上側の緩衝体1に保持され、また側部緩衝突起23が外装箱5の側壁部の内面に当接されるとともに、上緩衝突起29が外装箱5の天井に当接されて、上側の緩衝体1を介してウェーハ容器4が外装箱5に緩衝保持される。但し、上側の緩衝体1のうち上緩衝突起29以外の構成は、ウェーハ容器4の構成等に応じてその配設位置や形状を任意に設定してもよい。
【0032】
環状緩衝突起27と補助緩衝突起28とは断面台形状に形成され、その上面には外装箱5の天井に当接する当接面30が連続的に連なって形成されている。環状緩衝突起27の4角部と環状緩衝突起27と補助緩衝突起28との合流部は環状緩衝突起27の4辺部よりも幅広な略円形の幅広部31が形成され、落下衝撃時の荷重を幅広部31により集約的に吸収して、緩衝性能を向上できるように構成されている。但し、幅広部31及び補助緩衝時は、緩衝性能を向上させる上で設けることが好ましいが必ずしも必要なものではなく省略してもよい。
【0033】
環状緩衝突起27及び補助緩衝突起28は、その中心線L1が左右押さえ部25の中心線L2と中央押さえ部26の中心線L3上に位置するように配置され、左右押さえ部25及び中央押さえ部26に作用するウェーハ容器4からの上方への荷重を環状緩衝突起27及び補助緩衝突起28で効率的に受け止めることができるように構成されている。
【0034】
直径12インチのシリコンウェーハ用の緩衝体においては、例えば環状緩衝突起27及び補助緩衝突起28の高さを22mm、ベース部21側の基部の幅を25mm、緩衝突起27、28における当接面30の幅を15mm、幅広部31の基部の半径を25mm、幅広部31における当接面30の半径を20mmに設定することになる。また、ベース部21の上壁部の厚さを15mm、押さえ部25、26の高さを17mmに設定することになる。但し、これらの寸法は、半導体ウェーハ3のサイズによって適宜に設定することになる。
【0035】
下側の緩衝体2について説明すると、図4、図5、図10〜図13に示すように、ウェーハ容器4の下部に外嵌する嵌合凹部40を形成した方形状のベース部41が設けられ、ベース部41の前後左右の側壁部には相互に間隔をあけて1対の側部緩衝突起43が突出状にそれぞれ形成され、ベース部41の前後左右の側壁部には嵌合凹部40側へ突出する4つの保持突起44が側部緩衝突起43に対応させて形成されている。ベース部41の下壁部の上側にはウェーハ容器4の脚部10を載置する左右1対の載置面45が形成されるとともに、左右の載置面45間にはウェーハ容器4の膨出部11を受け止める3つの受け部46が上方へ突出状に形成されている。ベース部21の下壁部の下面側には、ベース部41の外縁部からやや中央部側部位に平面視略方形枠状の環状緩衝突起47と、環状緩衝突起47の前後2辺の途中部に連なり、環状緩衝突起47の内側を2つに区画する区画緩衝突起48とを備えた下緩衝突起49が下方へ突出状に形成されている。尚、符号42は、外装箱5の下側のフラップを閉じた時に、左右のフラップ間に形成される隙間を埋める為の突起である。
【0036】
そして、ウェーハ容器4に上下の緩衝体1、2を取り付けてこれを外装箱5に装填した状態で、保持突起44がウェーハ容器4の脚部10の側面及び前後面に当接されるとともに、ウェーハ容器4の脚部10が載置面45に載置され且つウェーハ容器4の膨出部11が受け部46に載置されて、ウェーハ容器4の下部が下側の緩衝体2に保持され、また側部緩衝突起43が外装箱5の側壁部の内面に当接されるとともに、下緩衝突起49が外装箱5の底面に当接されて、下側の緩衝体2を介してウェーハ容器4が外装箱5に緩衝保持される。但し、下側の緩衝体2のうち下緩衝突起49以外の構成は、ウェーハ容器4の構成等に応じてその配設位置や形状を任意に設定してもよい。
【0037】
環状緩衝突起47と区画緩衝突起48とは断面台形状に形成され、その下面には外装箱5の底面に当接する当接面50が連続的に連なって形成されている。環状緩衝突起47の4角部と環状緩衝突起47と区画緩衝突起48との合流部は環状緩衝突起47の4辺部よりも幅広な略円形の幅広部51が形成され、落下衝撃時の荷重を幅広部51により集約的に吸収して、緩衝性能を向上できるように構成されている。但し、区画緩衝突起48は省略してもよいし、複数本形成してもよい。また、幅広部51は省略してもよい。また、区画緩衝突起48に代えて、環状緩衝突起47の内側に環状緩衝突起47と切り離した島状の島状緩衝突起を形成してもよい。
【0038】
環状緩衝突起47及び区画緩衝突起48は、その中心線L4が左右の載置面45の中心線L5と受け部46の中心線L6上に位置するように配置され、載置面45及び受け部46に作用するウェーハ容器4からの下方への荷重を環状緩衝突起47及び区画緩衝突起48で効率的に受け止めることができるように構成されている。
【0039】
直径12インチのシリコンウェーハ用の緩衝体においては、例えば環状緩衝突起47及び区画緩衝突起48の高さを22mm、基部の幅を25mm、緩衝突起47、48における当接面50の幅を15mm、幅広部51の基部の半径を25mm、幅広部51における当接面50の半径を20mmに設定することになる。また、ベース部41の下壁部の厚さを15mm、受け部46の最も低い位置での高さを8mmに設定することになる。但し、これらの寸法は、半導体ウェーハ3のサイズによって適宜に設定することになる。
【0040】
尚、環状緩衝突起27、47は、連続した環状に形成することが好ましいが、その一部が欠損した形状のものも本発明の範疇である。また、必ずしも方形状に形成する必要はなく、ウェーハ容器4との当接面の形状に応じて円形や楕円形等の任意の形状に構成できる。
【0041】
次に本発明を完成するに至った経緯について説明する。
まず、図4に示されるように、新金属協会シリコン委員会からのダンボールケースの外装箱5の外寸で高さ方向の設定値は460mmと決められており、図5に示すように、上下のダンボール紙が1枚だけの単層部分と左右のフラップが重ね合わされた2層部分とがあり、単層部分の厚みの合計を10mmとし、2層部分の厚みの合計を26mmとすると、外装箱5内の空間の高さは434〜450mmとなる。この中での緩衝包装設計となり、ウェーハ容器4の高さを引いた寸法が1組の緩衝体1、2に与えられた厚みであり、片方で最低37mm〜最高65mmの間にあり、概ね50mm厚が緩衝体1、2に与えられている。
発泡樹脂製緩衝材の材質は、柔軟性と繰り返しの落下で緩衝係数が大きく低下しないポリオレフィン系のビーズ法発泡ポリエチレンとビーズ法発泡ポリプロピレンを選定した。
【0042】
まず、緩衝包装設計の基本である、落下時に衝撃を受ける緩衝体1、2の緩衝突起の面積(受圧面積)を求める。受圧面積Aは、次式から与えられ、
A=G・W/σmax
上述したG値=54G、W(商品総重量)=8kg、σmax(緩衝体1、2の最大応力)=2.8kg/cm(発泡ポリエチレン38倍発泡品)、(発泡ポリプロピレン45倍品=2.7kg/cm)を代入して155cm(160cm)を得た。ここから緩衝包装設計を開始した。側面方向の緩衝包装設計については上述したように緩衝体1、2厚みに余裕があるため通常の緩衝包装設計が可能で低G値で落下時の衝撃受けることができるためその設計内容は省略する。
【0043】
受圧面積と落下高さが決められてしまったので、基本的にG値は変えることができないため、緩衝突起形状の検討で緩衝性能の向上が見られないか種々の形状について検討する。まず、図1の従来法で緩衝包装設計して、100cm落下(以下の落下試験は全て100cm)させ、ウェーハ容器4に収納されたシリコンウェーハ3に変化がないか確認したところ、ウェーハ3がウェーハ容器4内のサポートから外れたり、回転したり、ウェーハ3自身が損傷したりする現象が発生し、従来法では緩衝効果が期待できないことが分かった。
【0044】
その後、緩衝体におけるウェーハ容器4の支持面の中心線と緩衝突起の中心線の位置を上下に一致させることが好ましいことが分かり、緩衝突起の総受圧面積を数本の細長い帯状に分割して、緩衝体におけるウェーハ容器4の支持面の中心線に緩衝突起の中心線を合わせて落下試験した結果、緩衝性能の改良が見られた。しかし、ウェーハ3の衝撃からの保護にはまだ不充分であった。
【0045】
次に、緩衝体がウェーハ容器を支持する位置の中心線と緩衝突起の中心線の位置を一致させ(以下の緩衝突起はこの方法を取り入れている。)、緩衝突起の形状を閉じた環状として、落下試験を行ったところ、緩衝性能は大幅に向上した。これは、G値が変えられないケースでも、緩衝突起が閉じた環状であったために、落下時の衝撃応力を均等に分散させ、落下時の振動のぶれを抑制したためではないかと思われる。
【0046】
さらに、閉じた環状の衝突突起の内側を区画したり、中心部に島を形成させる方法も緩衝性能を向上させる方向にある落下試験結果が得られている。
【0047】
最後に本発明がその目的を達成するに至ったのは、緩衝突起を閉じた方形の環状として、内側が区画された形状や中心部に島のある形状であっても良いが、閉じた方形の環状の4角部を4辺部よりも幅広にして、落下衝撃時の応力を4角部に集約的に吸収させる方法を講じたことである。本形状で落下試験した結果、シリコンウェーハ3のウェーハ容器4内での動きが止まり、破損に至る可能性が低下し、薄肉でも緩衝突起形状設計で要求された厳しい緩衝要求性能を満足させられることを証明した。
【0048】
次に、比較試験について説明する。
(比較例1)
図14に示す緩衝体61、62は、図1のごとく従来法に基づく包装設計により製作したもので、上下の緩衝体61、62は共に外装箱5の天面と底面の接する緩衝突起64が4角部に配置されており、側面4方向に各辺2つの緩衝突起63を持つ形状である。上の緩衝体61に開口部65があるのは、ウェーハ容器に貼られた内容物の識別表示を見るためのものである。本設計通りに、発泡ポリエチレン38倍発泡品および発泡ポリプロピレン45倍品を切削加工して緩衝体61、62を作製した。次に、図4のダンボールケースに12インチのシリコンウェーハ325枚入りのウェーハ容器4を、その上下に緩衝体61、62を挿入配置させてなる包装体を製作した。そして、この包装体を10個用いて1角3稜6面のそれぞれについて高さ100cmからの落下試験を実施したところ、表1(落下試験1、2)(ただし、底面と天面以外の1角3稜4側面は全て合格となったので表記しないものとする。)のごとくで、2種の発泡ポリエチレン38倍発泡品および発泡ポリプロピレン45倍品製の緩衝体61、62でウェーハ3の回転、外れ、割れが発生した。なお、発泡ポリプロピレン45倍品製緩衝体62は落下1回目で自らも破損した。尚、評価項目における「回転」は、ウェーハ3にマーキングを施して、ウェーハ3のマーキング位置が移動しているか否かを目視にて確認し、移動している場合には「×」、移動していない場合には「○」とした。「外れ」は、ウェーハ容器4に形成したウェーハ装填用レールからウェーハ3が外れているか否かを目視にて確認し、外れている場合には「×」、外れていない場合には「○」とした。「割れ」は、ウェーハ3に割れ或いはクラックが入っているか否かを目視にて確認し、割れ或いはクラックが発生している場合には「×」、割れ或いはクラックが発生していない場合には「○」とした。また、以下に説明する、比較例2、本発明例1、2、3に関しても、その落下試験は比較例1と同様の方法で行った。
【0049】
【表1】

Figure 2004168324
【0050】
(比較例2)
図15に示す緩衝体71、72は、図14に示す緩衝体61、62の緩衝突起63と同一受圧面積を持つ緩衝突起73の中心線の位置を緩衝体71、72におけるウェーハ容器4の支持面の中心線に一致させ、その形状を上緩衝体71の緩衝突起73は2本の長い短冊形状とし、下緩衝体72の緩衝突起73は3本の長い短冊形状として、衝撃時の応力を中心部から分散させようと試みた。試作は発泡ポリエチレン38倍発泡品のみとした。緩衝体71、72を用いた落下試験結果は表2(落下試験3)のごとく落下1回目でのウェーハ3の割れは防止でき改良は見られるが、まだシリコンウェーハ3の回転や外れがある。
【0051】
【表2】
Figure 2004168324
【0052】
(本発明例1)
図16に示す緩衝体81、82は、図15に示す緩衝体71、72の緩衝突起73と同一受圧面積を持つが、図14に示す緩衝体61、62と同じく緩衝突起83の中心線の位置を緩衝体81、82におけるウェーハ容器4の支持面の中心線に一致させ、その形状を閉じた方形の環状とした。試作は発泡ポリエチレン38倍発泡品のみとした。緩衝体81、82を用いた落下試験結果は表3(落下試験4)のごとくで大幅に改良され、落下2回目で天面でウェーハ3の回転が見られたものの、ウェーハ3の破損は天面落下3回目ではじめて割れが発生したのみである。
【0053】
【表3】
Figure 2004168324
【0054】
(本発明例2)
図17に示す緩衝体91、92は、図16に示す緩衝体81、82の緩衝突起83と同一受圧面積を持ち、緩衝突起83と同じく緩衝突起93の中心線の位置を緩衝体91、92におけるウェーハ容器4の支持面の中心線に一致させ、その形状を閉じた方形の環状とし、さらに方形の中央に、緩衝突起93における前後辺を連結する1本の区画緩衝突起94を追加し(上緩衝体91は開口部95があるため途切れた形状となった)応力分散を図った。試作は発泡ポリエチレン38倍発泡品のみで行い、落下試験に供した。緩衝体91、92を用いた落下試験結果は表4(落下試験5)のごとくで、天面落下3回目でウェーハ3の回転が見られた。シリコンウェーハ3の割れは落下3回でも起こらなかった。3回以上の落下は現実には起こりそうにないのでほぼ合格と言える。
【0055】
【表4】
Figure 2004168324
【0056】
(本発明例3)
図6〜図13に示す緩衝体1、2は、図17に示す緩衝体91、92の緩衝突起93、94と同一受圧面積を持つが、図16に示す緩衝体81、82と同じく緩衝突起83の中心線の位置を緩衝体1、2におけるウェーハ容器4の支持面の中心線に一致させ、その形状を閉じた方形の環状とし、さらに方形の中央に、区画緩衝突起48を追加して応力分散を図ると共に、方形の角部の幅を4辺部の幅よりも広げた形状とした。試作は発泡ポリエチレン38倍発泡品と発泡ポリプロピレン45倍品の両方を行い、落下試験に供した。緩衝体1、2を用いた落下試験結果は表5(落下試験6,7)のごとくで落下3回の試験においてウェーハ3の異常は全く見られなかった。ただし、発泡ポリプロピレン45倍品は落下3回目で緩衝体2自らが破損した。
【0057】
【表5】
Figure 2004168324
【0058】
【発明の効果】
シリコンウェーハの口径が12インチまで大型化すると、収納した容器総重量が増し、航空貨物室の高さから緩衝体に与えられた厚みが減じられ、かつ落下高さの要望が従来の50cmから100cmまで引き上げられ、従来の緩衝包装設計では対応がつかない状態であった。本発明はこのような状況に鑑み、緩衝体のベース部から突き出す緩衝突起の形状を閉じた環状とすること、方形の容器では閉じた方形の環状に、また環状内を区画するか中央に島部を設けること、閉じた方形の環状の4角部を4辺部の幅より広くすることにより緩衝性能を大幅に向上させることができ、シリコン委員会で決められた外寸のダンボールケースでも、ウェーハ容器内のシリコンウェーハを輸送中の振動や衝撃から破損を防止できた。
【図面の簡単な説明】
【図1】(a)は従来法の緩衝包装設計による緩衝体の正面図、(b)は同緩衝体の底面図。
【図2】(a)は米国特許に見られる緩衝体の平面図、(b)は(a)のA−A線断面図。
【図3】落下回数と緩衝係数Cの関係を示すグラフ。
【図4】外装箱に対するウェーハ容器の収納状態を示す分解斜視図。
【図5】外装箱に対するウェーハ容器の収納状態を示す縦断面図。
【図6】本発明例3に係る上緩衝体の平面図
【図7】同緩衝体の底面図
【図8】図6のA−A線断面図
【図9】図6のB−B線断面図
【図10】本発明例3に係る下緩衝体の平面図
【図11】同緩衝体の底面図
【図12】図10のA−A線断面図
【図13】図10のB−B線断面図
【図14】(a)は比較例1の下緩衝体の底面図、(b)は比較例1の上緩衝体の平面図
【図15】(a)は比較例2の下緩衝体の底面図、(b)は比較例2の上緩衝体の平面図
【図16】(a)は本発明例1の下緩衝体の底面図、(b)は本発明例1の上緩衝体の平面図
【図17】(a)は本発明例2の下緩衝体の底面図、(b)は本発明例2の上緩衝体の平面図
【符号の説明】
1 上緩衝体 2 下緩衝体
3 ウェーハ 4 ウェーハ容器
5 外装箱
10 脚部 11 膨出部
12 蓋部材 13 リブ部
20 嵌合凹部 21 ベース部
22 開口部 23 側部緩衝突起
24 保持突起 25 左右押さえ部
26 中央押さえ部 27 環状緩衝突起
28 補助緩衝突起 29 上緩衝突起
30 当接面 31 幅広部
40 嵌合凹部 41 ベース部
42 突起 43 側部緩衝突起
44 保持突起 45 載置面
46 受け部 47 環状緩衝突起
48 区画緩衝突起 49 下緩衝突起
50 当接面 51 幅広部
61 上緩衝体 62 下緩衝体
63 緩衝突起 64 緩衝突起
65 開口部
71 上緩衝体 72 下緩衝体
73 緩衝突起
81 上緩衝体 82 下緩衝体
83 緩衝突起
91 上緩衝体 92 下緩衝体
93 緩衝突起 94 区画緩衝突起
95 開口部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention, when transporting a plastic wafer container containing a plurality of semiconductor wafers such as silicon wafers, in order to prevent damage to the wafer caused by shock and vibration during transport, in an outer box such as a cardboard case The present invention relates to a set of foamed resin shock absorbers disposed above and below the container, and more particularly, to a set of shock-absorbing protrusions that contact the upper and lower sides of the outer case within the outer case of a set of foamed resin shock absorbers disposed above and below the container. It is about shape.
[0002]
[Prior art]
BACKGROUND ART Conventionally, as a method of transporting a plastic wafer container containing a plurality of semiconductor wafers, a box body such as a cardboard case has been used for an outer box, and a pair of resin or 2. Description of the Related Art There is a well-known transport method in which a shock-absorbing material made of a foamed resin is inserted to reduce shocks and vibrations during transport and prevent cracking and damage of an expensive semiconductor wafer stored in a container.
[0003]
A typical example of the plastic wafer container currently used is a wafer container made of polypropylene for silicon wafers having a diameter of 6 inches (about 150 mm) or 8 inches (about 200 mm). A container with a size of about 300 mm) has also been developed.
[0004]
As the resin buffer, a material manufactured by heating / vacuum forming a resin sheet having a thickness of about 1 mm made of a polyolefin resin such as polypropylene is used. It is exerted by bending or denting upon impact (for example, see Patent Documents 2 and 3).
[0005]
Further, as a buffer made of a foamed resin, those made of foamed styrene or foamed polypropylene and those made of foamed polyurethane are known (for example, see Patent Documents 4 and 5).
[0006]
Silicon wafers have increased in diameter from 6 inches to 8 inches in size, and have recently shifted to 12 inches. From such a tendency, the size of the wafer container to be stored is large and heavy, and the weight per wafer is also heavy. For example, if the 12-inch wafer contains 25 wafers (125 g / sheet), the wafer is stored. The total weight of the wafer container thus obtained reaches as much as 8 kg. In addition, since transportation as air cargo is common, loading efficiency is demanded due to the height limitation of the cargo compartment, and it has become increasingly necessary to reduce the thickness of cushioning material and improve cushioning performance.
[0007]
Until now, as a cushioning material made of a foamed resin disposed above and below a 6-inch or 8-inch silicon wafer container, there is a fitting concave portion 101 which fits outside the wafer container like a cushioning material 100 shown in FIG. A rectangular base 102 is provided, and four buffer protrusions 103 are provided near four corners of a surface of the base 102 opposite to the opening side of the fitting recess 101, and two buffer protrusions 103 are provided on four side surfaces of the base 102. A shape having two buffer protrusions 104 is common. As shown in FIG. 2, a rectangular base 112 having fitting recesses 111 for four wafer containers is provided, and an opening is formed in the center of the base 112 corresponding to each wafer container. It is known that a plurality of buffer protrusions 115 are formed near the outer edge of the base portion 112 while forming a plurality of buffer protrusions 114 around the opening 113.
[0008]
[Patent Document 1]
JP 2001-308171 A
[Patent Document 2]
JP-A-7-307378
[Patent Document 3]
JP-A-2002-176069
[Patent Document 4]
US Pat. No. 6,137,739
[Patent Document 5]
JP-A-2000-20862
[0009]
[Problems to be solved by the invention]
As described above, when the diameter of the silicon wafer is increased, the resin cushioning material cannot support the load alone, and the buffering performance is originally worse than that of the foamed resin. When received, the wafer is easily broken and is no longer suitable as a cushioning material for a large wafer transport container.
[0010]
On the other hand, foamed resin cushioning materials also have various problems, and foamed polystyrene generally does not have a cushioning packaging design that protrudes shock-sensitive cushioning projections outward from the base portion of the cushioning body. The cushioning projection is installed in the direction of the direction, the contact with the cardboard case is the entire surface of the cushioning body, and in consideration of safety, the inwardly facing cushioning projection is often lengthened. Is difficult to adopt. In addition, as shown in FIG. 3, there is a sudden drop in the buffering performance at the second drop, and loading and unloading to an aircraft is not always careful, and there is a concern that an expensive wafer may be damaged. Furthermore, since the styrene foam is finely broken by impact or friction, it adheres directly to the wafer storage container or to a container protective cover such as an aluminum bag and enters the clean room, causing contamination. FIG. 3 is a graph showing the transition of the number of drops and the buffer coefficient of the expanded polystyrene (EPS), expanded polypropylene (EPP), and expanded polyethylene (EPE). Slightly poor, “◎” indicates very good.
[0011]
Foamed polyurethane has a drawback of low load resistance, is a cushioning material for lightweight objects, and is a material requiring a packaging thickness, and does not meet the purpose of the present invention from the beginning.
[0012]
Expanded polyolefins such as expanded polypropylene and expanded polyethylene have better flexibility and resilience than Styrofoam, and also solve the problem of cracking and crushing of the cushioning material, and do not generate dust. It is a widely used material for easily damaged products, expensive and safety-oriented products, and export packaging.
[0013]
However, the recent increase in the size of wafers has increased the total weight of the wafer container, reduced the thickness of the cushioning material due to restrictions on the height of the air cargo compartment, and reduced the drop height from 50 cm to 100 cm. ), It is found that it is difficult to design a cushioning package made of expanded polyolefin with a normal cushioning packaging design.
[0014]
For the next generation of 12-inch wafers, the Silicon Committee of the New Metal Association, an association of several Japanese silicon wafer manufacturers, proposed the outer dimensions of the outer box 5 in June 2000, as shown in Fig. 4 However, it is not the width in the horizontal two directions but the outer height of the outer box of 460 mm that is a problem in the cushioning packaging design. That is, it is necessary to include a wafer container (for example, MW300FG made by Shin-Etsu Polymer; height 361 mm) in a height of 460 mm, a pair of cushioning material heights, and upper and lower cardboard paper thicknesses. In order to protect the contents of the container having a total weight of 8 kg including the wafer, which is about 5 cm, the thickness is very severe.
[0015]
That is, from the following formula for calculating the thickness of the cushioning material in the cushioning packaging design,
T = CH / G
If the buffer material thickness T and the drop height H are regulated, the G value (the magnitude of the impact received by the product) cannot be changed because the buffer coefficient C of the bead-formed foamed resin buffer has almost no difference. Substituting the buffer packaging design conditions of this time, T = 5 cm, C = 2.7 (applying the beads method foamed polyethylene), and H = 100 cm, the G value becomes 54 G (constant value), and the wafer becomes the G value. It is doubtful that any silicon wafer in the container will not be damaged.
[0016]
On the other hand, in the packaging design for the external force from the side direction of the outer box, the setting value of the Silicon Committee of the New Metal Association shown in FIG. 4 is such that the width of the outer box in the two horizontal directions is 500 × 580 mm. The maximum outer dimension in the lateral direction of Shin-Etsu Polymer MW300FG is the size of the container lid, which is 338 x 389 mm. Therefore, a buffer material thickness of about 80 mm or more is allowed on the left and right. As a result, the G value is 34 G, which is a low G value, and a buffer protrusion shape according to the conventional method as shown in FIG. 1 can be used.
[0017]
[Means for Solving the Problems]
The present inventors have determined that, under the severe conditions where the thickness of the cushioning material cannot be increased as described above and the drop height is 100 cm, the remaining solution is to study the shape of the cushioning projection. The present inventor has repeatedly studied buffer projections having various shapes, and has found that the buffer projections can be significantly improved by forming the buffer projections into a closed annular shape, thereby completing the present invention.
[0018]
The wafer container buffer according to the present invention comprises a set of foamed resin arranged above and below the wafer container between the outer box and the wafer container when the wafer container containing a plurality of semiconductor wafers is accommodated in the outer box. A cushioning projection that abuts the bottom and ceiling of the outer box in the outer box in the base portion of the set of foamed resin buffers, and forms the closed projection in a closed annular shape. It was done.
[0019]
Here, the term “closed ring” does not mean that the buffer projections are dispersed as in the conventional method as shown in FIGS. 1 and 2, but corresponds to the total area (pressure receiving area) of the tips of the dispersed buffer projections as in the present invention. It refers to the shape of one round of a closed circle, and it does not matter whether it is round, elliptical, or square. If the annular shape is slightly interrupted, the present invention is effective because the buffer projections are made continuous, so that the shape is not necessarily completely closed.
[0020]
However, regardless of the shape of the buffer projection, the relationship between the buffer and the position where the buffer contacts and supports the wafer container when dropped is extremely important, and the entire buffer covers the entire bottom surface or top surface of the wafer container. In some cases, they are abutted and supported, but in many cases they are supported by protrusions.In this case, the center line of the surface of the protrusion and the position of the center line of the surface where the closed annular buffer protrusion comes into contact with the outer box are matched. It is preferable to design so that the stress received at the time of impact is transmitted straight. In general, the center line of the position where the buffer supports the wafer container is positioned slightly inside from the outer edge of the shape of the container bottom, and the center may be additionally supported by a line or point spread. The arrangement of the closed ring-shaped buffer projections is also set at a position slightly inside from the outer edge of the shape of the bottom surface of the wafer container, and the stress transmitted by the wafer container to the protrusion of the buffer and the stress transmitted by the buffer projections to the outer box are reduced. Is desirably arranged at a position where it is transmitted in a straight line in the direction in which an impact is received.
[0021]
Silicon wafer storage containers are generally cylindrical, but they are generally cubic containers, and the center line of the position where the buffer supports the container is located slightly inside from the rectangular outer edge of the container bottom. Is done. Therefore, it is preferable that the cushioning projection of the present invention is a closed rectangular ring.
[0022]
Further, if the buffer protrusion is formed in a closed rectangular shape and at least the four corners of the buffer protrusion are configured to be wider than the four sides, the stress at the time of a drop impact can be collectively absorbed by the four corners, and the buffer is formed. Performance can be further improved.
[0023]
Furthermore, the center line of the position where the buffer supports the wafer container is set to a position slightly inside from the outer edge of the shape of the bottom of the container, and if the center is additionally supported by the spread of lines or points, the buffer protrusions On the other hand, the partitioning buffer projections that partition the inside of the ring or the island-shaped buffering protrusions arranged in an island shape in the ring are formed at approximately the same height as the buffering projections, so that stress distribution at the time of collision can be performed smoothly, so that the buffering performance Was found to lead to improvement of
[0024]
As a foamed resin buffer usable in the present invention, a polyolefin resin foam molded by a bead method can be suitably used. The bead method is represented by a method for producing expanded polystyrene (expanded polystyrene) by the bead method. A pre-expanded particulate pre-expanded particle is filled in a mold having a predetermined shape, and heated to form a second expanded foam. This is a method for producing a foam in which particles are fused together without any space, and cooled to obtain a molded product in the shape of a mold. Pressurized steam is usually used as a heating medium. The polyolefin-based resin foam is a foam such as polyethylene, polypropylene, or a styrene / ethylene composite polymer, and is a foam that is more flexible and durable than foamed styrene. Regarding the expansion ratio, polypropylene foams are commercially available, such as 30-fold and 45-fold products (for example, Eperan PP-45, manufactured by Kanebuchi Chemical Industry Co., Ltd.) and bead-processed polyethylene foam. 20 times and 38 times (for example, Eperan AXL38 manufactured by Kanegafuchi Chemical Co., Ltd.) are preferably used. Among the bead method foamed polyolefins, foamed polyethylene is the most excellent in the resistance of the buffer itself to cracking.
[0025]
The present invention increases the size of normal 6 inch or 8 inch silicon wafers to 12 inches, increases the total weight of wafer containers, reduces the thickness of cushioning material due to the height limitation of the air cargo compartment, and reduces the drop height from 50 cm. It was invented from the requirement of raising it to 100 cm and can be suitably used for transporting a silicon wafer having a diameter of 12 inches, but is also applicable to a silicon wafer having a diameter of 6 inches or 8 inches.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 4 and 5, when the wafer container buffers 1 and 2 accommodate the wafer container 4 accommodating a plurality of semiconductor wafers 3 in the outer box 5, the wafer container buffers 1 and 2 are disposed between the outer box 5 and the wafer container 4. They are arranged above and below the wafer container 4.
[0027]
The outer box 5 has a well-known rectangular parallelepiped configuration made of cardboard or the like, and is set to a size corresponding to the diameter of the semiconductor wafer 3 to be accommodated. For example, the outer box 5 for a silicon wafer having a diameter of 12 inches has a height of 460 mm, a front-rear width of 500 mm, and a left-right width of 580 mm.
[0028]
The wafer container 4 may have any configuration as long as it can store a plurality of semiconductor wafers 3. Here, only a portion related to the present invention will be described using a Shin-Etsu Polymer MW300FG; wafer container having a height of 361 mm as an example. A pair of left and right legs 10 are formed at the lower end of the wafer container 4 over substantially the entire length in the front-rear direction, and a swelling portion 11 having a partially cylindrical bottom surface is formed between the left and right legs 10 substantially in the front-rear direction. It is formed over. At the upper part of the wafer container 4, a lid member 12 having an outer wall portion extending upward at an outer edge portion is provided, and a pair of rib portions 13 extending in the front-rear direction are formed on the lid member 12 at right and left intervals. ing.
[0029]
As described above, the upper and lower buffers 1 and 2 are each formed of a foam molded body manufactured by using a bead method using pre-expanded particles made of a polyolefin resin. As the polyolefin-based resin, polyethylene, polypropylene, a styrene / ethylene composite polymer, or the like can be adopted, and a foamed molded article made of polyethylene is preferable because it is hard to crack.
[0030]
The upper buffer 1 will be described. As shown in FIGS. 4 to 9, a rectangular base 21 having a fitting recess 20 formed on the upper part of the wafer container 4 is provided. A square opening 22 is formed at the center of the wall, and a pair of side buffer protrusions 23 are formed in the front, rear, left and right side walls of the base 21 at intervals from each other so as to protrude. Four holding projections 24 projecting toward the fitting recess 20 are formed on the left and right side walls of the base 21 so as to correspond to the side buffer projections 23. On the lower surface of the upper wall of the base portion 21, a pair of left and right pressing portions 25 extending in the front-rear direction and abutting on the left and right portions of the lid member 12 of the wafer container 4 are formed to protrude downward. At the same time, a pair of front and rear center pressing portions 26 abutting on the center portion of the lid member 12 of the wafer container 4 is formed so as to protrude downward. On the upper surface side of the upper wall portion of the base portion 21, a substantially rectangular frame-shaped annular buffering projection 27 formed so as to surround the opening 22, and inward from the middle of two front and rear sides of the annular buffering projection 27. An upper buffering projection 29 having an extended auxiliary buffering projection 28 is formed to project upward.
[0031]
With the upper and lower buffers 1 and 2 attached to the wafer container 4 and loaded into the outer box 5, the front and rear side walls of the base 21 and the holding projections 24 abut on the upper side surface of the wafer container 4. At the same time, the left and right holding parts 25 and the center holding part 26 are in contact with the upper surface of the lid member 12 of the wafer container 4, the upper part of the wafer container 4 is held by the upper buffer 1, and the side buffer protrusions 23 are The upper buffer protrusion 29 abuts on the inner surface of the side wall of the outer box 5, and the upper buffer projection 29 abuts on the ceiling of the outer box 5, so that the wafer container 4 is buffered and held by the outer box 5 via the upper buffer 1. You. However, in the configuration of the upper buffer 1 other than the upper buffer protrusion 29, the arrangement position and shape thereof may be set arbitrarily according to the configuration of the wafer container 4.
[0032]
The annular buffer protrusion 27 and the auxiliary buffer protrusion 28 are formed in a trapezoidal cross section, and a contact surface 30 that contacts the ceiling of the outer box 5 is continuously formed on the upper surface thereof. A substantially circular wide portion 31 wider than the four sides of the annular buffer projection 27 is formed at the junction of the four corners of the annular buffer projection 27 and the annular buffer projection 27 and the auxiliary buffer projection 28, and the load at the time of a drop impact is formed. Is collectively absorbed by the wide portion 31 so that the buffering performance can be improved. However, at the time of the wide portion 31 and the auxiliary buffer, it is preferable to provide the buffer portion in order to improve the buffer performance, but it is not always necessary and may be omitted.
[0033]
The annular buffering projection 27 and the auxiliary buffering projection 28 are arranged such that the center line L1 thereof is located on the center line L2 of the left and right holding section 25 and the center line L3 of the center holding section 26, and the left and right holding section 25 and the center holding section 25 are arranged. An upward load from the wafer container 4 acting on 26 is configured to be efficiently received by the annular buffer protrusion 27 and the auxiliary buffer protrusion 28.
[0034]
In the buffer for a silicon wafer having a diameter of 12 inches, for example, the height of the annular buffering projection 27 and the auxiliary buffering projection 28 is 22 mm, the width of the base on the base 21 side is 25 mm, and the contact surfaces 30 of the buffering projections 27 and 28 are provided. Is set to 15 mm, the radius of the base of the wide portion 31 is set to 25 mm, and the radius of the contact surface 30 in the wide portion 31 is set to 20 mm. In addition, the thickness of the upper wall portion of the base portion 21 is set to 15 mm, and the heights of the holding portions 25 and 26 are set to 17 mm. However, these dimensions are appropriately set according to the size of the semiconductor wafer 3.
[0035]
The lower buffer 2 will be described. As shown in FIGS. 4, 5, and 10 to 13, a square base portion 41 having a fitting concave portion 40 externally fitted to the lower portion of the wafer container 4 is provided. A pair of side buffer protrusions 43 are formed in the front, rear, left and right side wall portions of the base portion 41 at an interval from each other so as to protrude. Four holding projections 44 projecting to the side are formed corresponding to the side buffer projections 43. A pair of left and right mounting surfaces 45 on which the legs 10 of the wafer container 4 are mounted are formed on the upper side of the lower wall of the base portion 41, and the expansion of the wafer container 4 is provided between the left and right mounting surfaces 45. Three receiving portions 46 for receiving the protrusions 11 are formed so as to protrude upward. On the lower surface side of the lower wall portion of the base portion 21, a substantially rectangular frame-shaped annular buffering protrusion 47 is provided from the outer edge portion of the base portion 41 to a slightly central portion side, and a halfway portion of two front and rear sides of the annular buffering protrusion 47. And a lower buffering projection 49 having a partitioning buffering projection 48 for partitioning the inside of the annular buffering projection 47 into two parts is formed in a downwardly projecting shape. Reference numeral 42 denotes a projection for filling a gap formed between the left and right flaps when the lower flap of the outer box 5 is closed.
[0036]
Then, in a state where the upper and lower buffers 1 and 2 are attached to the wafer container 4 and loaded into the outer box 5, the holding projections 44 are brought into contact with the side surfaces and the front and rear surfaces of the legs 10 of the wafer container 4, The leg 10 of the wafer container 4 is mounted on the mounting surface 45, and the bulging portion 11 of the wafer container 4 is mounted on the receiving portion 46, and the lower portion of the wafer container 4 is held by the lower buffer 2. In addition, the side buffer protrusion 43 is in contact with the inner surface of the side wall of the outer box 5, and the lower buffer protrusion 49 is in contact with the bottom surface of the outer box 5. 4 is buffered and held in the outer box 5. However, in the configuration of the lower buffer 2 other than the lower buffer projection 49, the arrangement position and shape thereof may be arbitrarily set according to the configuration of the wafer container 4.
[0037]
The annular buffer projection 47 and the partition buffer projection 48 are formed in a trapezoidal cross section, and a contact surface 50 that contacts the bottom surface of the outer box 5 is continuously formed on the lower surface thereof. A substantially circular wide portion 51 wider than the four sides of the annular buffering projection 47 is formed at the converging portion of the four corners of the annular buffering projection 47, the annular buffering projection 47, and the partitioning buffering projection 48. Is absorbed intensively by the wide portion 51 so that the buffering performance can be improved. However, the partition buffer protrusion 48 may be omitted, or a plurality of partition buffer protrusions 48 may be formed. Further, the wide portion 51 may be omitted. Also, instead of the partition buffer protrusion 48, an island buffer protrusion may be formed inside the annular buffer protrusion 47 and separated from the annular buffer protrusion 47.
[0038]
The annular buffer protrusion 47 and the partition buffer protrusion 48 are arranged such that their center lines L4 are located on the center line L5 of the left and right mounting surfaces 45 and the center line L6 of the receiving portion 46, respectively. It is configured such that a downward load acting on the wafer container 4 from the wafer container 4 can be efficiently received by the annular buffer projection 47 and the partition buffer projection 48.
[0039]
In a buffer for a silicon wafer having a diameter of 12 inches, for example, the height of the annular buffer projection 47 and the partition buffer projection 48 is 22 mm, the width of the base is 25 mm, and the width of the contact surface 50 in the buffer projections 47 and 48 is 15 mm. The radius of the base of the wide portion 51 is set to 25 mm, and the radius of the contact surface 50 in the wide portion 51 is set to 20 mm. In addition, the thickness of the lower wall of the base portion 41 is set to 15 mm, and the height of the receiving portion 46 at the lowest position is set to 8 mm. However, these dimensions are appropriately set according to the size of the semiconductor wafer 3.
[0040]
The annular buffer projections 27 and 47 are preferably formed in a continuous annular shape, but those having a partially missing shape are also within the scope of the present invention. Further, it is not always necessary to form it in a square shape, and it can be formed in an arbitrary shape such as a circle or an ellipse according to the shape of the contact surface with the wafer container 4.
[0041]
Next, the process of completing the present invention will be described.
First, as shown in FIG. 4, the set value in the height direction in the outer dimension of the outer box 5 of the cardboard case from the New Metal Association Silicon Committee is determined to be 460 mm, and as shown in FIG. If the total thickness of the single-layer part is 10 mm and the total thickness of the two-layer part is 26 mm, the exterior The height of the space in the box 5 is 434 to 450 mm. In this case, the buffer package is designed, and the dimension obtained by subtracting the height of the wafer container 4 is the thickness given to one set of the buffer bodies 1 and 2, which is between 37 mm to 65 mm on one side and about 50 mm on one side. Thickness is provided for the cushions 1,2.
As the material of the foamed resin cushioning material, a polyolefin-based bead foamed polyethylene and a beaded foamed polypropylene were selected, which are flexible and do not greatly reduce the buffer coefficient due to repeated drops.
[0042]
First, the area (pressure receiving area) of the buffer projections of the buffer bodies 1 and 2 that receive an impact when dropped, which is the basis of the buffer packaging design, is determined. The pressure receiving area A is given by the following equation:
A = GW / σmax
The above-mentioned G value = 54G, W (gross product weight) = 8 kg, σmax (maximum stress of the buffer bodies 1 and 2) = 2.8 kg / cm 2 (Expanded polyethylene 38 times expanded product), (Expanded polypropylene 45 times product = 2.7 kg / cm) 2 ) To 155cm 2 (160cm 2 ) Got. From here, the design of the buffer packaging was started. As for the cushioning design in the lateral direction, as described above, the cushioning bodies 1 and 2 have a sufficient thickness, so that a normal cushioning packaging design can be performed, and a low G value can be used to receive a shock at the time of a fall. .
[0043]
Since the pressure receiving area and the drop height have been determined, the G value cannot be basically changed. Therefore, in the examination of the shape of the cushioning protrusion, various shapes are examined for any improvement in the cushioning performance. First, a buffer package is designed by the conventional method of FIG. 1 and dropped by 100 cm (all of the following drop tests are 100 cm), and it is confirmed whether or not the silicon wafer 3 stored in the wafer container 4 has changed. Phenomena such as detachment from the support in the container 4, rotation, and damage to the wafer 3 themselves occurred, and it was found that the buffering effect could not be expected by the conventional method.
[0044]
Thereafter, it was found that it is preferable that the center line of the support surface of the wafer container 4 in the buffer and the center line of the buffer protrusion are aligned vertically, and the total pressure receiving area of the buffer protrusion is divided into several elongated strips. As a result of a drop test in which the center line of the buffer projection was aligned with the center line of the support surface of the wafer container 4 in the buffer, the buffer performance was improved. However, it was still insufficient to protect the wafer 3 from impact.
[0045]
Next, the center line of the position where the buffer supports the wafer container and the center line of the buffer protrusion are matched (the following buffer protrusion adopts this method), and the shape of the buffer protrusion is a closed ring. When a drop test was performed, the buffer performance was greatly improved. This is probably because even in the case where the G value cannot be changed, the shock-absorbing projections are closed and annular, so that the impact stress at the time of drop is evenly distributed and the vibration at the time of drop is suppressed.
[0046]
Further, drop test results have been obtained in which the method of partitioning the inside of the closed annular collision projection or forming an island at the center improves the cushioning performance.
[0047]
Finally, the present invention has attained its object, as a closed annular shape having a closed cushioning projection, a shape with an inner section or an island at the center may be used. The width of the ring-shaped square portion is made wider than the four side portions, so that the stress at the time of the drop impact is intensively absorbed by the square portion. As a result of the drop test in this shape, the movement of the silicon wafer 3 in the wafer container 4 is stopped, the possibility of damage is reduced, and the strict buffer performance required in the design of the buffer protrusion shape can be satisfied even with a thin wall. Proved.
[0048]
Next, a comparative test will be described.
(Comparative Example 1)
The buffer bodies 61 and 62 shown in FIG. 14 are manufactured by a packaging design based on the conventional method as shown in FIG. 1, and both the upper and lower buffer bodies 61 and 62 have buffer projections 64 that contact the top surface and the bottom surface of the outer box 5. It is arranged at four corners, and has a shape having two buffer protrusions 63 on each side in the four side directions. The opening 65 in the upper buffer 61 is for viewing the identification of the contents affixed to the wafer container. Buffers 61 and 62 were manufactured by cutting a 38-fold foamed polyethylene product and a 45-fold foamed polypropylene product as designed. Next, a package was manufactured in which the wafer container 4 containing 325 12-inch silicon wafers was inserted and arranged above and below the cardboard case shown in FIG. Then, a drop test from a height of 100 cm was performed on each of the six corners and three ridges using ten pieces of this package, and Table 1 (drop tests 1 and 2) (however, 1 other than the bottom surface and the top surface) was used. Rotation of the wafer 3 by two kinds of cushions 61 and 62 made of foamed polyethylene 38 times foamed product and foamed polypropylene 45 times product, as shown in FIG. , Coming off and cracking. The buffer 62 made of 45-fold foamed polypropylene itself was damaged at the first drop. In addition, "rotation" in the evaluation item is performed by marking the wafer 3 and visually checking whether or not the marking position of the wafer 3 is moving. If not, it was marked as “○”. "Disengagement" is visually confirmed whether or not the wafer 3 is detached from the wafer loading rail formed in the wafer container 4, and is "X" if it is detached, "O" if it is not detached. And The “crack” is visually checked to see if the wafer 3 has cracks or cracks. If the crack or crack has occurred, “x”; if the crack or crack has not occurred, "O" was set. Further, the drop test of Comparative Example 2 and Inventive Examples 1, 2, and 3 described below was performed in the same manner as in Comparative Example 1.
[0049]
[Table 1]
Figure 2004168324
[0050]
(Comparative Example 2)
The buffer bodies 71 and 72 shown in FIG. 15 support the wafer container 4 in the buffer bodies 71 and 72 by setting the center line position of the buffer projection 73 having the same pressure receiving area as the buffer projection 63 of the buffer bodies 61 and 62 shown in FIG. The shape of the buffer projection 73 of the upper buffer 71 is made into two long strips, and the shape of the buffer projection 73 of the lower buffer 72 is made into three long strips. Tried to disperse from the center. The prototype was made only of a foamed polyethylene foam 38 times. As shown in Table 2 (Drop test 3), the results of the drop test using the buffers 71 and 72 can prevent cracking of the wafer 3 at the first drop and can be improved, but the silicon wafer 3 still rotates and comes off.
[0051]
[Table 2]
Figure 2004168324
[0052]
(Example 1 of the present invention)
The buffer bodies 81 and 82 shown in FIG. 16 have the same pressure receiving area as the buffer projections 73 of the buffer bodies 71 and 72 shown in FIG. 15, but have the same pressure receiving area as the buffer bodies 61 and 62 shown in FIG. The position was made coincident with the center line of the support surface of the wafer container 4 in the buffers 81 and 82, and the shape was a closed rectangular ring. The prototype was made only of a foamed polyethylene foam 38 times. The results of the drop test using the shock absorbers 81 and 82 were greatly improved as shown in Table 3 (drop test 4). Although the rotation of the wafer 3 was observed on the top surface at the second drop, the damage of the wafer 3 was Cracks only occurred for the first time after the third drop.
[0053]
[Table 3]
Figure 2004168324
[0054]
(Example 2 of the present invention)
The buffers 91 and 92 shown in FIG. 17 have the same pressure receiving area as the buffer projections 83 of the buffers 81 and 82 shown in FIG. , The shape of the supporting surface of the wafer container 4 is matched with the center line, and the shape is a closed rectangular ring. Further, at the center of the rectangular shape, one partition buffer protrusion 94 connecting the front and rear sides of the buffer protrusion 93 is added ( The upper buffer 91 has an interrupted shape due to the opening 95). Trial production was performed using only a 38-fold expanded polyethylene foam product and subjected to a drop test. The results of the drop test using the buffers 91 and 92 are as shown in Table 4 (drop test 5). The rotation of the wafer 3 was observed at the third drop of the top surface. The crack of the silicon wafer 3 did not occur even if it was dropped three times. Three or more drops are unlikely to occur in reality, so it can be said that they almost passed.
[0055]
[Table 4]
Figure 2004168324
[0056]
(Example 3 of the present invention)
The buffer bodies 1 and 2 shown in FIGS. 6 to 13 have the same pressure receiving areas as the buffer projections 93 and 94 of the buffer bodies 91 and 92 shown in FIG. 17, but have the same cushioning projections as the buffer bodies 81 and 82 shown in FIG. The position of the center line 83 coincides with the center line of the support surface of the wafer container 4 in the buffers 1 and 2, the shape is a closed rectangular ring, and a partition buffer protrusion 48 is added at the center of the square. In addition to stress distribution, the width of the square corner was made wider than the width of the four sides. For the trial production, both a foamed polyethylene 38 times expanded product and a foamed polypropylene 45 times product were subjected to a drop test. The results of the drop test using the buffers 1 and 2 are as shown in Table 5 (drop tests 6 and 7). In the test of three drops, no abnormality of the wafer 3 was observed at all. However, in the case of the 45 times expanded polypropylene, the buffer 2 itself was damaged at the third drop.
[0057]
[Table 5]
Figure 2004168324
[0058]
【The invention's effect】
When the diameter of the silicon wafer is increased to 12 inches, the total weight of the stored containers is increased, the thickness given to the buffer is reduced from the height of the air cargo compartment, and the drop height is required to be reduced from the conventional 50 cm to 100 cm. Up to the point where conventional cushioning packaging designs could not cope. In view of such a situation, the present invention considers that the shape of the buffer projection protruding from the base of the buffer body is a closed ring, a closed rectangular ring for a rectangular container, and an island that is partitioned or centered in the ring. By providing a part and making the closed square ring-shaped square part wider than the width of the four sides, the cushioning performance can be greatly improved, and even in the outer cardboard case determined by the Silicon Committee, The silicon wafer in the wafer container was prevented from being damaged by vibration and impact during transportation.
[Brief description of the drawings]
FIG. 1A is a front view of a shock absorber according to a conventional shock absorber packaging design, and FIG. 1B is a bottom view of the shock absorber.
FIG. 2 (a) is a plan view of a shock absorber found in a US patent, and FIG. 2 (b) is a cross-sectional view taken along line AA of FIG. 2 (a).
FIG. 3 is a graph showing the relationship between the number of drops and a buffer coefficient C;
FIG. 4 is an exploded perspective view showing a state where the wafer container is stored in an outer box.
FIG. 5 is a longitudinal sectional view showing a state where a wafer container is stored in an outer box.
FIG. 6 is a plan view of an upper buffer according to a third embodiment of the present invention.
FIG. 7 is a bottom view of the shock absorber.
FIG. 8 is a sectional view taken along line AA of FIG. 6;
9 is a sectional view taken along line BB of FIG. 6;
FIG. 10 is a plan view of a lower buffer according to a third embodiment of the present invention.
FIG. 11 is a bottom view of the shock absorber.
FIG. 12 is a sectional view taken along line AA of FIG. 10;
FIG. 13 is a sectional view taken along line BB of FIG. 10;
14A is a bottom view of the lower buffer of Comparative Example 1, and FIG. 14B is a plan view of the upper buffer of Comparative Example 1.
15A is a bottom view of a lower buffer of Comparative Example 2, and FIG. 15B is a plan view of an upper buffer of Comparative Example 2. FIG.
16A is a bottom view of the lower buffer of the first embodiment of the present invention, and FIG. 16B is a plan view of the upper buffer of the first embodiment of the present invention.
17A is a bottom view of the lower buffer of the second embodiment of the present invention, and FIG. 17B is a plan view of the upper buffer of the second embodiment of the present invention.
[Explanation of symbols]
1 Upper buffer 2 Lower buffer
3 wafer 4 wafer container
5 Outer box
10 legs 11 bulge
12 Lid 13 Rib
20 Fitting recess 21 Base part
22 Opening 23 Side buffer protrusion
24 Holding projection 25 Left and right holding part
26 Central holding part 27 Annular buffer protrusion
28 Auxiliary buffer protrusion 29 Upper buffer protrusion
30 abutment surface 31 wide part
40 Fitting recess 41 Base part
42 projection 43 side buffer projection
44 Holding projection 45 Mounting surface
46 Receiving part 47 Annular buffer protrusion
48 Section buffer protrusion 49 Lower buffer protrusion
50 Contact surface 51 Wide part
61 Upper buffer 62 Lower buffer
63 buffer protrusion 64 buffer protrusion
65 opening
71 Upper buffer 72 Lower buffer
73 buffer projection
81 Upper buffer 82 Lower buffer
83 buffer projection
91 Upper buffer 92 Lower buffer
93 Buffer projection 94 Partition buffer projection
95 opening

Claims (7)

複数枚の半導体ウェーハを収納したウェーハ容器を外装箱内に収容するに際して、外装箱とウェーハ容器間においてウェーハ容器の上下に配置される1組の発泡樹脂製の緩衝体であって、これら1組の発泡樹脂製緩衝体のベース部に外装箱内で外装箱の底および天井に当接する緩衝突起を突出状に設け、この緩衝突起を閉じた環状に形成したことを特徴するウェーハ容器緩衝体。When accommodating a wafer container accommodating a plurality of semiconductor wafers in an outer box, a set of foamed resin buffers arranged above and below the wafer container between the outer box and the wafer container. A wafer container buffer characterized in that a buffer projection is provided in the base portion of the foamed resin buffer body protrudingly in contact with the bottom and ceiling of the outer box in the outer box, and the buffer projection is formed in a closed annular shape. 前記緩衝突起を閉じた方形環状に形成した請求項1記載のウェーハ容器緩衝体。2. The wafer container buffer according to claim 1, wherein the buffer projection is formed in a closed rectangular shape. 前記緩衝突起の少なくとも4角部を4辺部よりも幅広に構成した請求項2記載のウェーハ容器緩衝体。3. The wafer container buffer according to claim 2, wherein at least four corners of said buffer projection are wider than four sides. 前記緩衝突起の環状内を区画する区画緩衝突起、ないしは環状内に島状に配置した島状緩衝突起を緩衝突起と略同高に形成した請求項1〜3いずれか1項記載のウェーハ容器緩衝体。The wafer container buffer according to any one of claims 1 to 3, wherein a partition buffer projection that partitions an inside of the buffer protrusion or an island buffer protrusion arranged in an island shape in the ring is formed at substantially the same height as the buffer protrusion. body. 前記1組の緩衝体がビーズ法にて成形したポリオレフィン系樹脂製の発泡体からなる請求項1〜4いずれか1項記載のウェーハ容器緩衝体。The wafer container buffer according to any one of claims 1 to 4, wherein the one set of buffers is made of a polyolefin resin foam molded by a bead method. 前記ポリオレフィン系樹脂がポリエチレンである請求項5記載のウェーハ容器緩衝体。The wafer container buffer according to claim 5, wherein the polyolefin resin is polyethylene. 前記半導体ウェーハが直径12インチのシリコンウェーハである請求項1〜6いずれか1項記載のウェーハ容器緩衝体。7. The wafer container buffer according to claim 1, wherein the semiconductor wafer is a silicon wafer having a diameter of 12 inches.
JP2002332851A 2002-11-15 2002-11-15 Wafer container buffer Expired - Fee Related JP4193472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332851A JP4193472B2 (en) 2002-11-15 2002-11-15 Wafer container buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332851A JP4193472B2 (en) 2002-11-15 2002-11-15 Wafer container buffer

Publications (2)

Publication Number Publication Date
JP2004168324A true JP2004168324A (en) 2004-06-17
JP4193472B2 JP4193472B2 (en) 2008-12-10

Family

ID=32697752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332851A Expired - Fee Related JP4193472B2 (en) 2002-11-15 2002-11-15 Wafer container buffer

Country Status (1)

Country Link
JP (1) JP4193472B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119020A (en) * 2005-10-31 2007-05-17 Toshiba Ceramics Co Ltd Shock absorbing material for transportation
KR100800392B1 (en) 2006-12-20 2008-02-04 주식회사 실트론 Insert for packing container of wafer
JP2008094417A (en) * 2006-10-10 2008-04-24 Sumco Corp Cushion for use in packaging cassette case
WO2008096462A1 (en) 2007-02-06 2008-08-14 Shin-Etsu Polymer Co., Ltd. Damping body for packaging and package body
JP2010018285A (en) * 2008-07-08 2010-01-28 Konica Minolta Business Technologies Inc Foamed shock absorber for packing
US7748539B2 (en) 2005-11-16 2010-07-06 Shin-Etsu Polymer Co., Ltd. Packaged body
JP2012212766A (en) * 2011-03-31 2012-11-01 Miraial Kk Wafer container
US8439197B2 (en) 2006-01-23 2013-05-14 Shin-Etsu Polymer Co., Ltd. Damping body for packaging and package body
JP2013249126A (en) * 2012-06-04 2013-12-12 Shin Etsu Polymer Co Ltd Pallet for substrate housing container and package body for the substrate housing container
WO2014184845A1 (en) * 2013-05-13 2014-11-20 ミライアル株式会社 Packaging structure for packaging of substrate storage receptacle
WO2015015615A1 (en) * 2013-08-01 2015-02-05 ミライアル株式会社 Packing structure for packing substrate storing container
WO2015029173A1 (en) * 2013-08-28 2015-03-05 ミライアル株式会社 Packing structure for packing substrate storing container
US20160233119A1 (en) * 2013-10-16 2016-08-11 Miraial Co., Ltd. Structure for fastening together resin members in substrate storing container
JP2018107216A (en) * 2016-12-22 2018-07-05 株式会社Sumco Buffer material
CN110092092A (en) * 2018-01-31 2019-08-06 胜高股份有限公司 Buffer component
JP2020040734A (en) * 2019-12-06 2020-03-19 株式会社Sumco Cushioning material
CN111792199A (en) * 2020-06-29 2020-10-20 珠海格力电器股份有限公司 Packaging structure of clothes dryer
CN113451223A (en) * 2021-08-31 2021-09-28 山东普利斯林智能仪表有限公司 Packaging mechanism and packaging method for semiconductor substrate

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119020A (en) * 2005-10-31 2007-05-17 Toshiba Ceramics Co Ltd Shock absorbing material for transportation
US7748539B2 (en) 2005-11-16 2010-07-06 Shin-Etsu Polymer Co., Ltd. Packaged body
US8439197B2 (en) 2006-01-23 2013-05-14 Shin-Etsu Polymer Co., Ltd. Damping body for packaging and package body
JP2008094417A (en) * 2006-10-10 2008-04-24 Sumco Corp Cushion for use in packaging cassette case
KR100800392B1 (en) 2006-12-20 2008-02-04 주식회사 실트론 Insert for packing container of wafer
EP2123572A4 (en) * 2007-02-06 2011-12-07 Shinetsu Polymer Co Damping body for packaging and package body
WO2008096462A1 (en) 2007-02-06 2008-08-14 Shin-Etsu Polymer Co., Ltd. Damping body for packaging and package body
JP2010018285A (en) * 2008-07-08 2010-01-28 Konica Minolta Business Technologies Inc Foamed shock absorber for packing
JP2012212766A (en) * 2011-03-31 2012-11-01 Miraial Kk Wafer container
JP2013249126A (en) * 2012-06-04 2013-12-12 Shin Etsu Polymer Co Ltd Pallet for substrate housing container and package body for the substrate housing container
WO2014184845A1 (en) * 2013-05-13 2014-11-20 ミライアル株式会社 Packaging structure for packaging of substrate storage receptacle
JP6018301B2 (en) * 2013-05-13 2016-11-02 ミライアル株式会社 Packing structure for packing the substrate storage container
JPWO2015015615A1 (en) * 2013-08-01 2017-03-02 ミライアル株式会社 Packing structure for packing the substrate storage container
WO2015015615A1 (en) * 2013-08-01 2015-02-05 ミライアル株式会社 Packing structure for packing substrate storing container
US10403527B2 (en) 2013-08-01 2019-09-03 Miraial Co., Ltd. Packing structure for packing substrate storing container
JP6067118B2 (en) * 2013-08-01 2017-01-25 ミライアル株式会社 Packing structure for packing the substrate storage container
WO2015029173A1 (en) * 2013-08-28 2015-03-05 ミライアル株式会社 Packing structure for packing substrate storing container
US9966288B2 (en) * 2013-10-16 2018-05-08 Miraial Co., Ltd. Structure for fastening together resin members in substrate storing container
US20160233119A1 (en) * 2013-10-16 2016-08-11 Miraial Co., Ltd. Structure for fastening together resin members in substrate storing container
JP2018107216A (en) * 2016-12-22 2018-07-05 株式会社Sumco Buffer material
CN110092092A (en) * 2018-01-31 2019-08-06 胜高股份有限公司 Buffer component
JP2020040734A (en) * 2019-12-06 2020-03-19 株式会社Sumco Cushioning material
CN111792199A (en) * 2020-06-29 2020-10-20 珠海格力电器股份有限公司 Packaging structure of clothes dryer
CN113451223A (en) * 2021-08-31 2021-09-28 山东普利斯林智能仪表有限公司 Packaging mechanism and packaging method for semiconductor substrate

Also Published As

Publication number Publication date
JP4193472B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP2004168324A (en) Wafer container cushioning material
JP4827500B2 (en) Package
US7789239B2 (en) Insert trays for packages, packages including such trays, and methods for packaging articles of manufacture
JP5240188B2 (en) Roll holder
JP2803567B2 (en) Packaging structure for semiconductor wafer storage container
US4114759A (en) Protective package
JP4995208B2 (en) Packing buffer and packing body
JP4519777B2 (en) Packing buffer and packing body
JP3755580B2 (en) Container packing body and container buffer
JP5165623B2 (en) Buffer packaging material
JP6593430B2 (en) Buffer for packing semiconductor wafer storage container
JP6891724B2 (en) Silicon packing box and silicon packing method
JP2010036955A (en) Packing member
JP6119287B2 (en) Buffer material for packing wafer storage containers
JP5340769B2 (en) Buffer packaging material
US7753210B2 (en) Damper system for transportation of a container
JP5721576B2 (en) Packing body and buffer
GB2472434A (en) Packaging material for protecting articles
JP4916350B2 (en) Buffer body and packing body
JP2005041503A (en) Cushioning body for use in transporting semiconductor wafer
JP7571391B2 (en) Packaging structure of lead-acid batteries
WO2023127336A1 (en) Packaging body, packaging method for sealed storage container, and transportation method
JP7381496B2 (en) Buffer packaging for items of different sizes
JP2004123114A (en) Packaging implement and corner cushioning material
WO2015097489A1 (en) Cushioning packaging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4193472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees