JP2004162078A - Copper plating device - Google Patents

Copper plating device Download PDF

Info

Publication number
JP2004162078A
JP2004162078A JP2002325685A JP2002325685A JP2004162078A JP 2004162078 A JP2004162078 A JP 2004162078A JP 2002325685 A JP2002325685 A JP 2002325685A JP 2002325685 A JP2002325685 A JP 2002325685A JP 2004162078 A JP2004162078 A JP 2004162078A
Authority
JP
Japan
Prior art keywords
copper
concentration
plating
electrolytic solution
plating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002325685A
Other languages
Japanese (ja)
Inventor
Toshiro Yoshikawa
俊郎 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP2002325685A priority Critical patent/JP2004162078A/en
Publication of JP2004162078A publication Critical patent/JP2004162078A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper plating device which can perform electrolytic copper plating with good results by accurately controlling the copper ion concentration in a plating solution. <P>SOLUTION: The plating device is equipped with an insoluble anode, a cathode being an object to be plated, and a plating bath filled with an electrolytic solution containing, e.g., copper sulfate and free sulfuric acid. The device is constructed so that, in copper plating with the device, the copper concentration in the plating bath is detected with a colorimeter with a wavelength of measuring light set at 500 nm or higher, preferably 540 nm, and based on the detected concentration, a makeup material, e.g., copper oxide, is supplied. The copper concentration is detected without being affected by impurities, e.g., titanium and iron. By supplying copper on the basis of the detected concentration, the supply timing can be easily set. Thus, the copper ion concentration in the electrolytic solution can be accurately controlled, enabling copper plating with good results. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、被メッキ材に銅メッキをするための銅メッキ装置に関する。
【0002】
【従来の技術】
被メッキ体例えばプリント基板に銅メッキ処理を施す手法の一つとして、電解液である硫酸中に銅メッキ材を供給し、不溶性陽極と陰極をなす被メッキ体との間で通電する電解メッキ法が知られている。
【0003】
前記電解メッキ法においては、図8に示すメッキ装置が用いられることが知られている(例えば、特許文献1)。
図中10はメッキ浴槽であり、硫酸に例えば酸化銅からなる銅メッキ材を溶解せしめた電解液が満たされていると共に、直流電源11の正極側に接続された陽極12と、直流電源11の負極側に接続された陰極13である被メッキ材例えば被メッキ用金属板とが浸漬されている。ここで各電極12、13に電流が通電されると、陽極12では反応式1に示す電極反応により酸素が生成する一方、陰極13である被メッキ体の表面には反応式2に示す電極反応により銅が析出することで銅メッキがなされる。また銅イオンが少なくなった電解液は、ポンプP1を介して撹拌手段14aを備えた溶解槽14に供給され、ここでホッパから例えば酸化銅の粉体が所定量投入されて銅が補給される。このとき通電電流と、陰極表面でおこる反応効率、つまり陰極に析出する電解液中の銅イオンの量とは対応関係が良好であり、そのため通電された電流積算値から電解液の銅イオン濃度を把握して、それに見合う量の酸化銅が補給されていた。そして銅が補給された電解液がポンプP2を介してメッキ浴槽10に戻される。なお15は電解液中の不溶解残渣を取り除くためのフィルタである。
O→(1/2)O+2H+2e…(1)
Cu2++2e→Cu…(2)
【0004】
【特許文献1】
特開2002−68743号公報(第4頁、図2)
【0005】
ところで最近、図9に示すように、被メッキ体として複数のプリント基板16a、16bを圧着してなる多層プリント基板16が用いられるようになっている。この場合、先ず予め表面に無電解銅メッキ膜が形成された基板16a、16bの各々において銅メッキがなされて例えば円形の貫通孔であるスルーホール17a、17bがメッキ銅で埋められ、次いで基板16aおよび基板16bが圧着されて多層プリント基板を得る。この場合、スルーホール17a(17b)をメッキ銅で密に埋めるには、できるだけ銅濃度の高い電解液を用いた方がよい。即ち、従来のように硫酸銅の濃度が例えば90〜100g/リットルの電解液を用いていたのでは銅濃度が低すぎてスルーホール17a(17b)が密に埋まらず空隙ができてしまい、結果として各基板16a、16b間の接触抵抗が大きいプリント基板となる。このため硫酸銅の濃度が例えば180〜190g/リットル、遊離硫酸濃度が90〜100g/リットルにすることが検討されている。
【0006】
【発明が解決しようとする課題】
しかしながら上述の高濃度の電解液を用いてメッキする場合、硫酸銅濃度の制御が難しくなる問題がある。即ち、硫酸銅の濃度が高すぎると硫酸銅が電解液中で析出してしまい、この析出した硫酸銅が陰極であるメッキ材の表面に付着して、水洗したときにその部分が溶けて欠陥品になる場合があり、更には電解液中の遊離硫酸濃度が低下してメッキ時の電流が流れにくくなる。また逆に硫酸銅濃度が低くなると既述のように密な銅メッキをすることができず、更にまた遊離硫酸濃度が高くなって酸化銅が溶けにくくなる。このような理由から高濃度な電解液を用いる場合にはシビアな濃度管理が要求されるが、前記したように通電された電流積算値から硫酸銅濃度を把握していたのでは例えば上部が開放構造のメッキ浴槽10から水が蒸発することで電解液中の硫酸銅濃度が変わってしまうなどの外乱により実際の硫酸銅濃度との間に差が生じてしまう問題が懸念される。
【0007】
本発明のメッキ装置はこのような事情の下になされたものであり、その目的は不溶性陽極を用いて電解銅メッキをする際に、電解液の銅イオン濃度を高精度に制御をすることができ、良好なメッキを行うことのできる銅メッキ装置を提供することにある。また他の目的は広範囲な銅イオン濃度に亘って高精度な銅イオン濃度の制御を行うことのできる銅メッキ装置を提供することにある。
【0008】
本発明のメッキ装置は、不溶性陽極と、陰極をなす被メッキ体と、メッキ材である銅を含む電解液を満たしたメッキ浴槽と、を備えたメッキ装置において、
メッキ浴槽中の銅の濃度を検知するための測定光の波長が500nm以上の比色計と、
前記電解液に銅を溶解させるための溶解槽と、
前記メッキ浴槽と前記溶解槽との間で電解液を循環させる循環手段と、
前記比色計により検出される銅の濃度の検出値に基づいて、メッキ浴槽中の銅濃度が予め設定された値になるように、前記溶解槽に銅を供給するための供給手段と、を備えたことを特徴とする。
【0009】
本発明の銅メッキ装置によれば、測定波長を所定の値に設定した比色計を用いてメッキ浴槽の電解液に含まれる銅の濃度を検知することにより、例えばチタン、鉄などの不純物の影響を回避して高精度な銅濃度の検知がなされ、更にその検出値に基づいて銅の補給を行うことにより、補給するタイミングを容易に設定することができる。このため電解液中の銅イオン濃度を高精度に制御することができ、その結果良好な銅メッキをすることができる。
【0010】
前記メッキ浴槽中の電解液は、例えば硫酸銅および遊離硫酸を含んでおり、この硫酸銅の濃度は160g/リットル〜195g/リットルに制御される構成であってもよく、遊離硫酸の濃度は90g/リットル〜130g/リットルであってもよい。
【0011】
また前記溶解槽に補給される銅は、例えば酸化銅であってもよく、この酸化銅は、例えば塩基性炭酸銅を還元雰囲気とはならない雰囲気下で250℃〜800℃に加熱することにより熱分解し、次いで水洗することにより得られた易溶解性のものであってもよい。
【0012】
【発明の実施の形態】
本発明のメッキ装置に係る実施の形態について図1を参照しながら説明する。図中20は例えば硫酸銅(CuSO・5HO)および遊離硫酸(HSO)を含む電解液が満たされるメッキ浴槽であり、このメッキ浴槽20には不溶性陽極例えばチタン(Ti)板に白金イリジウム系貴金属でコーティングされた陽極21と、陰極22である被メッキ材例えばプリント基板をなす被メッキ用金属板とが前記電解液に浸漬されて設けられている。更に陽極21および陰極22には直流電源Eが接続されており、メッキ処理時において各電極21、22には所定の直流電流(メッキ電流)が供給されるように構成されている。
【0013】
また前記メッキ浴槽20には、メッキ浴槽20中の電解液の濃度がばらつくのを抑えるために、電解液を循環するための循環ポンプ23が循環路を介して接続されており、その途中には循環された電解液中の銅イオン濃度を例えば硫酸銅換算で検知するための濃度検知部例えば吸光光度法を用いた比色計3が設けられている。
【0014】
前記比色計3の概略について図2を用いて詳しく説明すると、図中30はその一部が光透過性部材で構成されたサンプル通流部である吸収セル部であり、その上部には前記循環ポンプ23からのサンプル液を吸収セル部30に供給するための供給路31および、このサンプルが排出される排出路32が夫々接続されている。また吸収セル部30の光透過性部材を挟んで相対向する発光部をなす光源33と、受光した光を電気量に変換するための受光部34とからなる光センサーが設けられている。更に吸収セル部30と受光部34との間には、電解液中の不純物例えば通電時に陽極21から極めて僅かながら溶出するチタン(Ti)あるいは、ポンプや配管の接液部から溶出する鉄(Fe)などの吸収領域を避けるために、光源33から発せられた光のうち所定の波長例えば500nm〜600nm、例えば540nmの光を通過させる光学フィルター35が設けられている。なお、36は増幅部であり、37は出力部である。
【0015】
図1に説明を戻すと、図中40は、メッキ浴槽20からオーバフローした電解液に、銅イオンの補給材である例えば酸化銅(CuO)を溶解せしめるための銅溶解手段をなす溶解槽であり、この溶解槽40の上部には例えば酸化銅粉を所定量供給するためのダンパなどの開閉機構41aを備え、当該酸化銅粉を貯蔵するためのホッパ41が設けられている。また溶解槽40の内部は仕切部材42で仕切られており、例えば3槽の液貯留部43a、43b、43cに分割されている。これらの液貯留部43a〜43cを上流側から順に第1の液貯留部43a、第2の液貯留部43bおよび第3の液貯留部43cと呼ぶものとすると、酸化銅が供給される第1の液貯留部43aには、酸化銅の溶解を促進させると共に槽内の銅濃度を均一にするための撹拌手段44が設けられている。更にまた第3の液貯留部43cの底部側には、銅が補給された電解液を前記メッキ浴槽20に供給するための供給ポンプ48が供給路を介して接続されている。また第1の液貯留部43aに供給された酸化銅が未溶解のまま後段に配される供給ポンプ48に直接行かないように液流規制板47が設けられている。なお図中Fは、電解液中の不溶解残渣を取り除くためのフィルターである。
【0016】
更にまた、図中5は制御部であり、この制御部は例えば比色計3により検出される銅濃度の検出値が予め決められた投入開始の設定値Lを下回るとホッパ41の回転機構41aが開いて銅の供給動作が開始される一方、この銅濃度の検出値が予め決められた投入停止の設定値Hを越えると回転機構41aを閉じて銅の供給動作を停止するといったように、比色計3により検出される銅の濃度の検出値に基づいて供給動作を制御する機能を有している。
【0017】
ここで前記酸化銅は市販されているものを用いてもよいが、硫酸に対して溶解特性に優れた易溶解性のものを用いるのが好ましい。この易溶解性の酸化銅を製造する手法の一例を簡単に説明すると、先ず原料である塩基性炭酸銅を加熱炉、例えばロ−タリキルンに供給し、例えば当該塩基性炭酸銅を直接バ−ナで加熱しないようにして加熱雰囲気が還元雰囲気にならないようにすると共に、例えば250℃以上で800℃以下の温度に加熱して熱分解を促進させて酸化銅を生成させる。続いて当該酸化銅を例えば純水あるいは超純水で水洗した後、遠心分離機により水分を飛ばしてから乾燥機で乾燥させることで、粉体である酸化銅を得る。このようにして得られた酸化銅は遊離硫酸に対して優れた易溶解特性を有しており、そのためホッパ41から投入された酸化銅は速やかに硫酸に溶解する。従って当該酸化銅が投入されてからこのメッキ装置が保有する電解液の銅濃度(比色計3の検出値)に下げ止まりがあるまでの時間が短く、更には溶解槽40内に残った未溶解の酸化銅が時間差をおいて溶けることで銅の投入を止めたにも拘らず銅濃度が上昇するといったことも抑えられるので、結果として酸化銅を投入するタイミングの設定が簡単になり制御が容易となる点で得策である。
【0018】
続いて上述のメッキ装置を用いてメッキ処理がなされる工程について説明する。先ず溶解槽40にて硫酸銅の濃度が例えば160〜195g/リットル、遊離硫酸濃度が例えば90〜130g/リットルになるように酸化銅が溶解され、更にメッキ表面を平坦化するための所定の添加剤を図示しない供給源から供給されて調製された電解液が循環ポンプ48によりメッキ浴槽20に供給されて建浴がなされる。そしてメッキ浴槽20からオーバーフローした電解液が第1の液貯留部43aに戻されることで、当該メッキ装置系内での電解液の循環が行われる。
【0019】
ここで循環ポンプ23によりメッキ浴槽20の電解液のサンプルが比色計3に供給され、この比色計3により銅濃度の検出が開始される。当該比色計3においては、光源33から発せられた光は、吸収セル30内を通流するサンプルにより一部が吸光され、吸光されずに通過した光のうち光学フィルタ35を通過する所定の波長例えば540nmの光を受光部34が受光して電気量に変換する。そして増幅部36により増幅された後、出力部37を介して制御部5へ出力される。この制御部5において、例えば予め作成された関数(例えば、図3に示す検量線に相当)に基づいて、前記出力部37からの信号である電気量に対応する硫酸銅濃度が算出されることで硫酸銅の濃度が求められる。なお、図3(a)は硫酸銅濃度と吸光度との関係で示した検量線であり、図3(b)は硫酸銅濃度と前記変換された出力との関係を示す検量線であり、両者共に予め試験を行って作成されたものである。
【0020】
続いて上述のようにして比色計3により銅濃度の検知が行われると共に、メッキ装置系内の電解液の濃度分布を少なくするために、即ちメッキ浴槽20と溶解槽40の夫々に満たされる電解液の濃度差を少なくするために、循環ポンプ48による電解液の循環が続けて行われた状態で、直流電源Eから各電極21、22に直流電流が通電されてメッキ処理が開始される。このとき「従来の技術」に記載の反応式1および反応式2により陽極21では酸素が生成する一方、電解液中の銅イオンが陰極22である被メッキ材の表面に析出することにより当該被メッキ材に銅メッキがなされることとなる。
【0021】
メッキ時における電解液中の銅濃度に着目して以下に説明するが、濃度の経時変化の様子を一例として示す図4を参照すると理解しやすい。先ず上述のようにして電解液中の銅イオンが被メッキ材の表面に析出することにより、電解液中の硫酸銅の濃度が低下する一方、電解液中の遊離硫酸の濃度が上昇する。このとき例えば連続的に比色計3の検出値がサンプリングされており、設定値内に収まっているか否か判断される。そして時刻t1において比色計3により検出される硫酸銅の濃度が予め決められた投入開始の設定値Lを下回ると、開閉機構41aが開いて所定量の酸化銅が溶解槽41へ投入され、そして酸化銅が溶解することで銅イオンが補給される。このように比色計3の検出値がサンプリングされて酸化銅が投入されると、電解液中の硫酸銅濃度が上昇し、時刻t2において比色計3により検出される硫酸銅の濃度が予め決められた投入停止の設定値Hを上回ると開閉機構41aを閉じて、次に設定値Lを下回るまで投入動作を停止する(時刻t3)。ここで設定値Lは160g/リットルよりも大きく、設定値Hは195g/リットルよりも小さく設定され、目標濃度に対してマージンを取っておくことにより、銅濃度が目標濃度から外れないようにしている。
【0022】
上述の実施の形態によれば、比色計3を用いてメッキ浴槽20の電解液に含まれる硫酸銅濃度を検知し、その検出値に基づいて酸化銅の補給を行うことにより、酸化銅を補給するタイミングを容易に設定することができる。このため予め設定された狭い範囲の高濃度領域に銅濃度を維持できるので、例えば図10に記載の多層プリント基板16のスルーホール17を密に埋めることができ、更に硫酸銅の析出による欠陥の発生が抑えることができる。その結果、良好な銅メッキを行うことができる。また比色計3は、原子吸光計、イオンクロマトグラフなどの測定器に比して安く手に入れることができるので、低コスト化を図れる点で有利である。
【0023】
また上述の実施の形態によれば、既述のように銅メッキを行う場合に電解液中へ混入することが確実に起こると考えられる例えばチタンや鉄などの不純物の吸光帯域を避けるために、比色計3の測定光の波長を500nm以上、好ましくは540nmに設定することにより、後述する実施例の結果からも明らかなように、当該不純物の影響を受けることが少ない。そのため高精度に硫酸銅濃度を検知することができ、結果として電解液中の銅濃度を高精度に制御することができる。このため良好な銅メッキを行うことができる。更に不純物ではないが、電解液に添加される前記添加剤の吸収帯域は500nm以下にあるので、当該添加剤の影響も回避することができる。なお、波長の上限は特に規定していないが、硫酸銅の吸収波長の理由から600nm以下が好ましい。
【0024】
本発明の銅メッキ装置においては、補給材は酸化銅に限られず、例えば銅粉、亜酸化銅、炭酸銅などの銅化合物であってもよい。このような構成であっても上述の場合と同様の効果を得ることができる。
【0025】
更に本発明の銅メッキ装置においては、既述のような手法により不純物の影響を回避し、硫酸銅濃度と吸光度との良好な相関関係(図3記載の検量線)把握しているので、硫酸銅濃度が160g/リットルよりも低い濃度、例えば「従来の技術」に記載した90〜100g/リットル濃度の電解液にも適用することができる。更に30g/リットルの希薄な電解液にも適用することができる。従って、広範囲な銅イオン濃度に対して高精度な濃度制御をすることができる。
【0026】
【実施例】
続いて本発明の効果を確認するために行った実施例について説明する。
【0027】
(実施例1)
本例は、上述のメッキ装置を用いて銅メッキをした実施例である。メッキ浴組成およびメッキ条件を以下に示す。
硫酸銅(CuSO・5HO)の初期濃度;190g/リットル
遊離硫(HSO)の初期濃度;90g/リットル
電流密度;3A/dm
陽極21;不溶性陽極
メッキ浴温度;25℃
メッキ浴槽20の容量;20リットル
被メッキ体のサイズ;200mm×200mm(電解面積4dm
このようなメッキ装置を用いて通電時間49時間以上の銅メッキの処理を行った。硫酸銅濃度の制御値は180〜195g/リットルとし、設定値Lを185g/リットル、設定値Hを190g/リットルに夫々設定した。メッキ浴の硫酸銅濃度の経時変化の結果を図5に示す。
【0028】
(実施例2)
本例は、比色計3の測定精度を確認するために行った実施例である。電解液の組成は、硫酸銅濃度が50g/リットル、遊離硫の濃度が200g/リットル、チタンが20ppmであった。続いて電解液サンプルを25℃に温調すると共に、比色計3を用いて測定波長300〜600nmの範囲で吸光度(ABS)を測定した。その結果をグラフ化したものを図6に示す。
【0029】
(比較例1)
本例は、チタンを加えなかったことを除いて実施例2と同様の試験を行った比較例である。各波長毎に吸光度を測定しグラフ化したものを実施例2と同じく図6に示す。
【0030】
(実施例3)
本例は、チタンに代えて鉄を夫々50ppm、100ppm相当加え、更に硫酸銅(CuSO・5HO)の濃度が180g/リットル、遊離硫酸(HSO)の濃度が90g/リットルであったことを除いて実施例2と同様の試験を行った実施例である。各波長毎に吸光度を測定しグラフ化したものを図7に示す。
【0031】
(比較例2)
本例は、鉄を加えなかったことを除いて実施例3と同様の試験を行った比較例である。各波長毎に吸光度を測定しグラフ化したものを実施例3と同じく図7に示す。
【0032】
(実施例1の結果と考察)
図5の結果から明らかなように、銅メッキを開始すると硫酸銅濃度が時間と共に低下する。そして硫酸銅濃度が設定値Lを下回ると、酸化銅の投入動作が開始され180g/リットルを下回る前に硫酸銅濃度が上昇する。その後も酸化銅の投入が続けられて硫酸濃度が上昇し、設定値Hを上回ると酸化銅の投入が停止され195g/リットルを上回る前に硫酸銅濃度が低下する。即ち、このような動作が繰り返し行われることにより、連続電解メッキを行ってもメッキ浴中の銅イオンを制御できることが確認された。なお、このようにして得られた銅メッキは平坦かつ空隙などが殆どない良好なものであることを確認している。
【0033】
(実施例2および比較例1の結果と考察)
図6の結果から明らかなように、サンプルである電解液にチタンが含まれる場合と、チタンを含まない場合とを比べると、ある波長領域における吸光度が異なっている。即ち、チタンが含まれる場合には約410nmをピークとして340〜500nmの範囲においてチタンの吸光帯域があることが明らかである。従って測定光の波長を500nm以上、好ましくは540nm以上に設定すればチタンの影響を避けられることが確認された。
【0034】
(実施例3および比較例2の結果と考察)
図7の結果から明らかなように、上述のチタンを含む場合と同様に電解液に鉄が含まれる場合と、鉄を含まない場合とを比べるとその吸光度が異なっており、420nmよりも小さい波長の範囲において鉄の影響を受けていることが分かる。更に鉄の濃度が高いほど影響力が大きいことが分かる。従って測定光の波長を420nm以上に設定すれば鉄の影響を避けられ、更に500nm以上に設定すれば同時にチタンの影響も避けられることが確認された。
【0035】
【発明の効果】
以上のように本発明の銅メッキ装置によれば、比色計を用いてメッキ浴槽の電解液に含まれる銅の濃度を検知し、その検出値に基づいて銅の補給を行うことにより、補給するタイミングを容易に設定することができるので、電解液の銅イオン濃度を高精度に制御をすることができる。更に比色計の測定光を所定の波長に設定することにより、例えばチタン、鉄などの不純物の影響を回避できるので、良好な銅メッキを行うことができる。また広範囲な銅イオン濃度に亘って高精度な銅イオン濃度の制御を行うことができるので、種々の用途に応じた銅メッキを共通の装置を用いて良好に行うことができる。その結果として良好な銅メッキを行うことができる。
【図面の簡単な説明】
【図1】本発明に係る銅メッキ装置の実施の形態を示す説明図である。
【図2】本発明に係る銅メッキ装置に用いられる比色計の概略を示す斜視図である。
【図3】本発明に係る銅メッキ装置に用いられる比色計の検量線を示す説明図である。
【図4】本発明に係る銅メッキ装置を用いてメッキしたときの硫酸銅の濃度の変化を示す説明図である。
【図5】本発明の効果を確認するために行った実施例の結果を示す特性図である。
【図6】本発明の効果を確認するために行った実施例の結果を示す特性図である。
【図7】本発明の効果を確認するために行った実施例の結果を示す特性図である。
【図8】従来の銅メッキ装置を示す説明図である。
【図9】銅メッキが施される多層プリント基板を示す説明図である。
【符号の説明】
20 メッキ浴槽
21 陽極
22 陰極
3 比色計
30 吸収セル
33 光源
34 受光部
35 光学フィルタ
40 溶解槽
41 ホッパ
5 制御部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a copper plating apparatus for plating a material to be plated with copper.
[0002]
[Prior art]
As one of the methods of performing copper plating on a substrate to be plated, for example, a printed circuit board, an electrolytic plating method in which a copper plating material is supplied in sulfuric acid which is an electrolytic solution, and current is passed between an insoluble anode and a substrate to be a cathode. It has been known.
[0003]
In the electrolytic plating method, it is known that a plating apparatus shown in FIG. 8 is used (for example, Patent Document 1).
In the figure, reference numeral 10 denotes a plating bath, which is filled with an electrolytic solution obtained by dissolving a copper plating material made of, for example, copper oxide in sulfuric acid, and has an anode 12 connected to the positive electrode side of the DC power supply 11 and a DC power supply 11. A material to be plated which is the cathode 13 connected to the negative electrode side, for example, a metal plate to be plated is immersed. When a current is applied to each of the electrodes 12 and 13, oxygen is generated at the anode 12 by the electrode reaction shown in the reaction formula 1 while the electrode reaction shown in the reaction formula 2 is formed on the surface of the plate 13 which is the cathode 13. As a result, copper is deposited and copper plating is performed. The electrolytic solution having reduced copper ions is supplied via a pump P1 to a dissolving tank 14 provided with a stirring means 14a, where a predetermined amount of, for example, copper oxide powder is supplied from a hopper to supply copper. . At this time, the conducting current and the reaction efficiency occurring on the cathode surface, that is, the amount of copper ions in the electrolytic solution deposited on the cathode, have a good correspondence, and therefore, the copper ion concentration of the electrolytic solution is calculated from the integrated value of the supplied current. By grasping, copper oxide was supplied in an amount corresponding to that. Then, the electrolytic solution supplied with copper is returned to the plating bath 10 via the pump P2. Reference numeral 15 denotes a filter for removing insoluble residues in the electrolytic solution.
H 2 O → (1 /) O 2 + 2H + + 2e (1)
Cu 2+ + 2e → Cu (2)
[0004]
[Patent Document 1]
JP-A-2002-68743 (page 4, FIG. 2)
[0005]
Recently, as shown in FIG. 9, a multilayer printed board 16 formed by pressing a plurality of printed boards 16a and 16b as a body to be plated has been used. In this case, first, copper plating is performed on each of the substrates 16a and 16b having an electroless copper plating film formed on the surface in advance, and for example, through holes 17a and 17b, which are circular through holes, are filled with plated copper. Then, the substrate 16b is pressed to obtain a multilayer printed circuit board. In this case, in order to densely fill the through holes 17a (17b) with plated copper, it is better to use an electrolytic solution having a copper concentration as high as possible. That is, if an electrolytic solution having a concentration of copper sulfate of, for example, 90 to 100 g / liter is used as in the related art, the copper concentration is too low, and the through holes 17a (17b) are not densely filled to form voids. As a result, a printed board having a large contact resistance between the boards 16a and 16b is obtained. For this reason, it has been studied to make the concentration of copper sulfate 180 to 190 g / liter, for example, and the free sulfuric acid concentration to 90 to 100 g / liter.
[0006]
[Problems to be solved by the invention]
However, when plating is performed using the above-mentioned high-concentration electrolytic solution, there is a problem that it is difficult to control the concentration of copper sulfate. In other words, if the concentration of copper sulfate is too high, copper sulfate precipitates in the electrolytic solution, and the deposited copper sulfate adheres to the surface of the plating material serving as the cathode, and the portion is dissolved when washed with water to cause defects. In some cases, the concentration of free sulfuric acid in the electrolytic solution decreases, and the current during plating becomes difficult to flow. Conversely, when the concentration of copper sulfate is low, dense copper plating cannot be performed as described above, and further, the concentration of free sulfuric acid increases and copper oxide becomes difficult to dissolve. For this reason, when a high-concentration electrolytic solution is used, severe concentration control is required. However, if the copper sulfate concentration is determined from the integrated current value as described above, for example, the upper part is open. There is a concern that a difference may occur between the actual copper sulfate concentration due to disturbance such as a change in the concentration of copper sulfate in the electrolytic solution due to evaporation of water from the plating bath 10 having the structure.
[0007]
The plating apparatus of the present invention has been made under such circumstances, and its purpose is to control the copper ion concentration of the electrolytic solution with high precision when performing electrolytic copper plating using an insoluble anode. It is an object of the present invention to provide a copper plating apparatus capable of performing good plating. It is another object of the present invention to provide a copper plating apparatus capable of controlling a copper ion concentration with high accuracy over a wide range of copper ion concentrations.
[0008]
The plating apparatus of the present invention is a plating apparatus comprising: an insoluble anode, an object to be plated serving as a cathode, and a plating bath filled with an electrolytic solution containing copper as a plating material.
A colorimeter having a wavelength of measurement light of 500 nm or more for detecting the concentration of copper in the plating bath,
A dissolving tank for dissolving copper in the electrolytic solution,
Circulating means for circulating the electrolyte between the plating bath and the dissolving tank,
Supply means for supplying copper to the melting tank, based on the detected value of the copper concentration detected by the colorimeter, so that the copper concentration in the plating bath becomes a preset value. It is characterized by having.
[0009]
According to the copper plating apparatus of the present invention, by detecting the concentration of copper contained in the electrolytic solution of the plating bath using a colorimeter with a measurement wavelength set to a predetermined value, for example, titanium, impurities such as iron By avoiding the influence, the copper concentration is detected with high accuracy, and the supply of copper is performed based on the detected value, whereby the timing of the supply can be easily set. Therefore, the concentration of copper ions in the electrolytic solution can be controlled with high accuracy, and as a result, favorable copper plating can be performed.
[0010]
The electrolytic solution in the plating bath contains, for example, copper sulfate and free sulfuric acid, and the concentration of the copper sulfate may be controlled to 160 g / liter to 195 g / liter, and the concentration of free sulfuric acid is 90 g. / Liter to 130 g / liter.
[0011]
The copper supplied to the melting tank may be, for example, copper oxide. The copper oxide may be heated, for example, by heating basic copper carbonate to 250 ° C. to 800 ° C. in an atmosphere that does not become a reducing atmosphere. It may be a readily soluble one obtained by decomposing and then washing with water.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the plating apparatus of the present invention will be described with reference to FIG. In the drawing, reference numeral 20 denotes a plating bath filled with an electrolytic solution containing, for example, copper sulfate (CuSO 4 .5H 2 O) and free sulfuric acid (H 2 SO 4 ). The plating bath 20 has an insoluble anode such as a titanium (Ti) plate. An anode 21 coated with a platinum iridium-based noble metal and a material to be plated, which is a cathode 22, for example, a metal plate to be plated, which forms a printed circuit board, are provided soaked in the electrolytic solution. Further, a DC power supply E is connected to the anode 21 and the cathode 22, so that a predetermined DC current (plating current) is supplied to each of the electrodes 21 and 22 during plating.
[0013]
Further, a circulation pump 23 for circulating the electrolytic solution is connected to the plating bath 20 via a circulation path in order to suppress the concentration of the electrolytic solution in the plating bath 20 from varying. A concentration detector for detecting the concentration of copper ions in the circulated electrolyte in terms of, for example, copper sulfate, for example, a colorimeter 3 using an absorptiometric method is provided.
[0014]
The details of the colorimeter 3 will be described in detail with reference to FIG. 2. In the figure, reference numeral 30 denotes an absorption cell part which is a sample passage part partially constituted by a light transmitting member, A supply path 31 for supplying the sample liquid from the circulation pump 23 to the absorption cell unit 30 and a discharge path 32 for discharging the sample are connected to each other. In addition, an optical sensor is provided which includes a light source 33 serving as a light emitting unit opposed to each other with the light transmitting member of the absorption cell unit 30 interposed therebetween, and a light receiving unit 34 for converting received light into an electric quantity. Further, between the absorption cell section 30 and the light receiving section 34, impurities in the electrolytic solution, for example, titanium (Ti) eluted from the anode 21 slightly when energized, or iron (Fe) eluted from a liquid contact part of a pump or a pipe. ) Is provided with an optical filter 35 that allows light having a predetermined wavelength, for example, 500 nm to 600 nm, for example, 540 nm, of the light emitted from the light source 33 to pass therethrough. In addition, 36 is an amplifying unit, and 37 is an output unit.
[0015]
Returning to FIG. 1, reference numeral 40 in the figure denotes a dissolving tank serving as a copper dissolving means for dissolving, for example, copper oxide (CuO), which is a replenishing material for copper ions, in the electrolytic solution overflowing from the plating bath 20. An opening / closing mechanism 41a such as a damper for supplying a predetermined amount of copper oxide powder, for example, is provided above the melting tank 40, and a hopper 41 for storing the copper oxide powder is provided. Further, the inside of the dissolving tank 40 is partitioned by a partition member 42, for example, divided into three tanks 43a, 43b, and 43c. If these liquid storage sections 43a to 43c are referred to as a first liquid storage section 43a, a second liquid storage section 43b, and a third liquid storage section 43c in order from the upstream side, the first liquid storage section 43a to which the copper oxide is supplied. The liquid storage section 43a is provided with a stirring means 44 for promoting the dissolution of copper oxide and making the copper concentration in the tank uniform. Further, a supply pump 48 for supplying an electrolytic solution replenished with copper to the plating bath 20 is connected to a bottom side of the third liquid storage section 43c via a supply path. Further, a liquid flow regulating plate 47 is provided so that the copper oxide supplied to the first liquid storage section 43a does not directly go to a supply pump 48 disposed in a subsequent stage without being dissolved. Note that F in the figure is a filter for removing insoluble residues in the electrolytic solution.
[0016]
Further, in the figure, reference numeral 5 denotes a control unit, which controls the rotation mechanism 41a of the hopper 41 when the detected value of the copper concentration detected by, for example, the colorimeter 3 falls below a predetermined setting value L for the start of feeding. Is opened and the supply operation of copper is started. On the other hand, when the detected value of the copper concentration exceeds a predetermined setting value H for stopping the supply, the rotating mechanism 41a is closed to stop the supply operation of copper. It has a function of controlling the supply operation based on the detected value of the copper concentration detected by the colorimeter 3.
[0017]
Here, commercially available copper oxide may be used, but it is preferable to use a copper oxide having excellent solubility in sulfuric acid and easy solubility. To briefly explain an example of a method for producing this easily soluble copper oxide, first, basic copper carbonate as a raw material is supplied to a heating furnace, for example, a rotary kiln, and the basic copper carbonate is directly burned, for example. In order to prevent the heating atmosphere from becoming a reducing atmosphere by heating at a temperature of, for example, heating to a temperature of 250 ° C. or higher and 800 ° C. or lower to promote thermal decomposition to generate copper oxide. Subsequently, the copper oxide is washed with, for example, pure water or ultrapure water, and then the moisture is removed by a centrifugal separator, followed by drying with a dryer to obtain copper oxide as a powder. The copper oxide thus obtained has excellent easy dissolving properties for free sulfuric acid, and therefore, the copper oxide supplied from the hopper 41 is rapidly dissolved in sulfuric acid. Therefore, the time from the introduction of the copper oxide until the copper concentration (detected value of the colorimeter 3) of the electrolytic solution held by the plating apparatus stops decreasing, and the undissolved remaining in the dissolving tank 40 is further reduced. The copper oxide melts with a time lag to prevent the copper concentration from increasing even though the copper input was stopped, so that the timing to input the copper oxide is simpler and easier to control. This is a good idea.
[0018]
Next, a step of performing a plating process using the above-described plating apparatus will be described. First, copper oxide is dissolved in the dissolving tank 40 so that the concentration of copper sulfate becomes, for example, 160 to 195 g / l and the concentration of free sulfuric acid becomes, for example, 90 to 130 g / l, and a predetermined addition for flattening the plating surface is further performed. The electrolytic solution prepared by supplying the agent from a supply source (not shown) is supplied to the plating bath 20 by the circulation pump 48 to form a bath. Then, the electrolyte solution overflowing from the plating bath 20 is returned to the first solution storage section 43a, so that the electrolyte solution is circulated in the plating apparatus system.
[0019]
Here, a sample of the electrolytic solution in the plating bath 20 is supplied to the colorimeter 3 by the circulation pump 23, and the detection of the copper concentration is started by the colorimeter 3. In the colorimeter 3, the light emitted from the light source 33 is partially absorbed by the sample flowing through the absorption cell 30, and the light that has passed through the optical filter 35 among the light that has not been absorbed is passed through the optical filter 35. The light receiving unit 34 receives light having a wavelength of, for example, 540 nm, and converts the light into an electric quantity. After being amplified by the amplifying unit 36, it is output to the control unit 5 via the output unit 37. The control unit 5 calculates the concentration of copper sulfate corresponding to the quantity of electricity, which is a signal from the output unit 37, based on, for example, a function created in advance (for example, corresponding to the calibration curve shown in FIG. 3). Gives the concentration of copper sulfate. FIG. 3A is a calibration curve showing the relationship between the concentration of copper sulfate and the absorbance, and FIG. 3B is a calibration curve showing the relationship between the concentration of copper sulfate and the converted output. Both were created by conducting tests in advance.
[0020]
Subsequently, the copper concentration is detected by the colorimeter 3 as described above, and the copper concentration is filled in the plating bath 20 and the dissolution bath 40 in order to reduce the concentration distribution of the electrolytic solution in the plating apparatus system. In order to reduce the difference in the concentration of the electrolyte, a DC current is supplied from the DC power supply E to each of the electrodes 21 and 22 in a state where the circulation of the electrolyte by the circulation pump 48 is continuously performed, and the plating process is started. . At this time, oxygen is generated at the anode 21 according to the reaction formulas 1 and 2 described in “Prior Art”, while copper ions in the electrolytic solution precipitate on the surface of the material to be plated, which is the cathode 22, so that the coating is performed. Copper plating is performed on the plating material.
[0021]
The following description focuses on the copper concentration in the electrolytic solution at the time of plating, but it can be easily understood by referring to FIG. 4 showing an example of how the concentration changes with time. First, as described above, the concentration of copper sulfate in the electrolytic solution decreases, while the concentration of free sulfuric acid in the electrolytic solution increases, because the copper ions in the electrolytic solution precipitate on the surface of the material to be plated. At this time, for example, the detection value of the colorimeter 3 is continuously sampled, and it is determined whether or not the detection value is within the set value. Then, when the concentration of copper sulfate detected by the colorimeter 3 at time t1 falls below a predetermined setting value L for the start of charging, the opening / closing mechanism 41a opens and a predetermined amount of copper oxide is charged into the melting tank 41, Then, copper ions are supplied by dissolving the copper oxide. When the detection value of the colorimeter 3 is sampled and copper oxide is introduced in this way, the concentration of copper sulfate in the electrolytic solution increases, and the concentration of copper sulfate detected by the colorimeter 3 at time t2 is determined in advance. When the value exceeds the determined value H for stopping the closing, the opening / closing mechanism 41a is closed, and the closing operation is stopped until the value falls below the set value L (time t3). Here, the set value L is set to be larger than 160 g / liter, and the set value H is set to be smaller than 195 g / liter. By setting a margin with respect to the target concentration, the copper concentration does not deviate from the target concentration. I have.
[0022]
According to the above-described embodiment, the concentration of copper sulfate contained in the electrolytic solution in the plating bath 20 is detected using the colorimeter 3, and copper oxide is replenished based on the detected value. Replenishment timing can be easily set. For this reason, the copper concentration can be maintained in a predetermined high concentration region in a narrow range, so that the through holes 17 of the multilayer printed circuit board 16 shown in FIG. Occurrence can be suppressed. As a result, good copper plating can be performed. The colorimeter 3 can be obtained at a lower price than measuring devices such as an atomic absorption spectrometer and an ion chromatograph, and is advantageous in that cost can be reduced.
[0023]
Further, according to the above-described embodiment, in order to avoid the absorption band of impurities such as titanium and iron, which are considered to surely occur in the electrolytic solution when performing copper plating as described above, By setting the wavelength of the measurement light of the colorimeter 3 to 500 nm or more, preferably 540 nm, the influence of the impurities is small as is clear from the results of the examples described later. Therefore, the concentration of copper sulfate can be detected with high accuracy, and as a result, the concentration of copper in the electrolytic solution can be controlled with high accuracy. Therefore, good copper plating can be performed. Further, although not an impurity, the absorption band of the additive added to the electrolytic solution is at 500 nm or less, so that the influence of the additive can be avoided. The upper limit of the wavelength is not particularly defined, but is preferably 600 nm or less from the reason of the absorption wavelength of copper sulfate.
[0024]
In the copper plating apparatus of the present invention, the replenishing material is not limited to copper oxide, but may be a copper compound such as copper powder, cuprous oxide, or copper carbonate. Even with such a configuration, the same effects as those described above can be obtained.
[0025]
Further, in the copper plating apparatus of the present invention, the influence of impurities is avoided by the above-described method, and a good correlation between the copper sulfate concentration and the absorbance (the calibration curve shown in FIG. 3) is grasped. The present invention can also be applied to an electrolytic solution having a copper concentration lower than 160 g / liter, for example, a concentration of 90 to 100 g / liter as described in "Prior Art". Further, the present invention can be applied to a dilute electrolyte of 30 g / liter. Therefore, highly accurate concentration control can be performed for a wide range of copper ion concentrations.
[0026]
【Example】
Next, examples performed to confirm the effects of the present invention will be described.
[0027]
(Example 1)
This embodiment is an embodiment in which copper plating is performed using the above-described plating apparatus. The plating bath composition and plating conditions are shown below.
Initial concentration of copper sulphate (CuSO 4 .5H 2 O); 190 g / l Initial concentration of free sulfur (H 2 SO 4 ); 90 g / l current density; 3 A / dm 2
Anode 21; Insoluble anodic plating bath temperature; 25 ° C
The capacity of the plating bath 20; the size of the object to be plated, 20 liters; 200 mm × 200 mm (electrolytic area 4 dm 2 )
Using such a plating apparatus, a copper plating process was performed for an energization time of 49 hours or more. The control value of the copper sulfate concentration was 180 to 195 g / liter, the set value L was set to 185 g / liter, and the set value H was set to 190 g / liter. FIG. 5 shows the results of the change over time in the concentration of copper sulfate in the plating bath.
[0028]
(Example 2)
This example is an example performed to confirm the measurement accuracy of the colorimeter 3. The composition of the electrolytic solution was such that the concentration of copper sulfate was 50 g / l, the concentration of free sulfur was 200 g / l, and titanium was 20 ppm. Subsequently, the temperature of the electrolyte solution sample was adjusted to 25 ° C., and the absorbance (ABS) was measured using the colorimeter 3 in the range of the measurement wavelength of 300 to 600 nm. FIG. 6 shows a graph of the result.
[0029]
(Comparative Example 1)
This example is a comparative example in which the same test as in Example 2 was performed except that titanium was not added. FIG. 6 shows a graph obtained by measuring the absorbance for each wavelength and graphing the same as in Example 2.
[0030]
(Example 3)
In this example, iron was added in an amount of 50 ppm and 100 ppm, respectively, in place of titanium. Further, the concentration of copper sulfate (CuSO 4 .5H 2 O) was 180 g / l, and the concentration of free sulfuric acid (H 2 SO 4 ) was 90 g / l. This is an example in which a test similar to that of Example 2 was performed except that the test was performed. FIG. 7 shows absorbance measured for each wavelength and graphed.
[0031]
(Comparative Example 2)
This example is a comparative example in which the same test as in Example 3 was performed except that iron was not added. FIG. 7 shows a graph obtained by measuring the absorbance for each wavelength and graphing the same as in Example 3.
[0032]
(Results and consideration of Example 1)
As is clear from the results of FIG. 5, when copper plating is started, the concentration of copper sulfate decreases with time. When the concentration of copper sulfate falls below the set value L, the operation of feeding copper oxide is started, and the concentration of copper sulfate rises before falling below 180 g / liter. Thereafter, the supply of copper oxide is continued to increase the sulfuric acid concentration. When the concentration exceeds the set value H, the supply of copper oxide is stopped and the concentration of copper sulfate decreases before the concentration exceeds 195 g / liter. That is, it was confirmed that the copper ions in the plating bath can be controlled by performing such operations repeatedly even when continuous electrolytic plating is performed. In addition, it was confirmed that the copper plating obtained in this way was flat and had almost no voids.
[0033]
(Results and consideration of Example 2 and Comparative Example 1)
As is clear from the results in FIG. 6, the absorbance in a certain wavelength region is different between the case where the electrolyte solution as a sample contains titanium and the case where it does not contain titanium. That is, when titanium is contained, it is clear that there is an absorption band of titanium in a range of 340 to 500 nm with a peak at about 410 nm. Therefore, it was confirmed that the influence of titanium can be avoided by setting the wavelength of the measurement light to 500 nm or more, preferably 540 nm or more.
[0034]
(Results and Considerations of Example 3 and Comparative Example 2)
As is clear from the results of FIG. 7, the absorbance differs between the case where iron is contained in the electrolytic solution and the case where iron is not contained, as in the case where titanium is contained, and the wavelength is smaller than 420 nm. It can be seen that iron is affected in the range. Further, it can be seen that the higher the iron concentration, the greater the influence. Therefore, it was confirmed that the influence of iron can be avoided by setting the wavelength of the measurement light to 420 nm or more, and the influence of titanium can be avoided at the same time by setting it to 500 nm or more.
[0035]
【The invention's effect】
As described above, according to the copper plating apparatus of the present invention, replenishment is performed by detecting the concentration of copper contained in the electrolytic solution of the plating bath using a colorimeter and replenishing copper based on the detected value. Since it is possible to easily set the timing for performing this, it is possible to control the copper ion concentration of the electrolytic solution with high accuracy. Further, by setting the measurement light of the colorimeter to a predetermined wavelength, it is possible to avoid the influence of impurities such as titanium and iron, so that good copper plating can be performed. Further, since the copper ion concentration can be controlled with high accuracy over a wide range of copper ion concentrations, copper plating suitable for various uses can be favorably performed using a common apparatus. As a result, good copper plating can be performed.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of a copper plating apparatus according to the present invention.
FIG. 2 is a perspective view schematically showing a colorimeter used for the copper plating apparatus according to the present invention.
FIG. 3 is an explanatory diagram showing a calibration curve of a colorimeter used in the copper plating apparatus according to the present invention.
FIG. 4 is an explanatory diagram showing a change in the concentration of copper sulfate when plating is performed using the copper plating apparatus according to the present invention.
FIG. 5 is a characteristic diagram showing a result of an example performed to confirm an effect of the present invention.
FIG. 6 is a characteristic diagram showing a result of an example performed to confirm an effect of the present invention.
FIG. 7 is a characteristic diagram showing a result of an example performed to confirm an effect of the present invention.
FIG. 8 is an explanatory view showing a conventional copper plating apparatus.
FIG. 9 is an explanatory view showing a multilayer printed circuit board to which copper plating is applied.
[Explanation of symbols]
Reference Signs List 20 plating bath 21 anode 22 cathode 3 colorimeter 30 absorption cell 33 light source 34 light receiving unit 35 optical filter 40 melting tank 41 hopper 5 control unit

Claims (5)

不溶性陽極と、陰極をなす被メッキ体と、メッキ材である銅を含む電解液を満たしたメッキ浴槽と、を備えたメッキ装置において、
メッキ浴槽中の銅の濃度を検知するための測定光の波長が500nm以上の比色計と、
前記電解液に銅を溶解させるための溶解槽と、
前記メッキ浴槽と前記溶解槽との間で電解液を循環させる循環手段と、
前記比色計により検出される銅の濃度の検出値に基づいて、メッキ浴槽中の銅濃度が予め設定された値になるように、前記溶解槽に銅を供給するための供給手段と、を備えたことを特徴とする銅メッキ装置。
In a plating apparatus including an insoluble anode, a body to be plated forming a cathode, and a plating bath filled with an electrolytic solution containing copper as a plating material,
A colorimeter having a wavelength of measurement light of 500 nm or more for detecting the concentration of copper in the plating bath,
A dissolution tank for dissolving copper in the electrolytic solution,
Circulating means for circulating the electrolyte between the plating bath and the dissolving tank,
Supply means for supplying copper to the dissolving tank so that the copper concentration in the plating bath becomes a preset value based on the detected value of the copper concentration detected by the colorimeter. A copper plating apparatus comprising:
前記メッキ浴槽中の電解液は、硫酸銅および遊離硫酸を含んでおり、この硫酸銅の濃度は160g/リットル〜195g/リットルに制御されることを特徴とする請求項1記載の銅メッキ装置。The copper plating apparatus according to claim 1, wherein the electrolytic solution in the plating bath contains copper sulfate and free sulfuric acid, and the concentration of the copper sulfate is controlled to 160 g / liter to 195 g / liter. 前記遊離硫酸の濃度は90g/リットル〜130g/リットルであることを特徴とする請求項2記載の銅メッキ装置。The copper plating apparatus according to claim 2, wherein the concentration of the free sulfuric acid is 90 g / L to 130 g / L. 前記溶解槽に補給される銅は、酸化銅であることを特徴とする請求項1ないし3のいずれかに記載の銅メッキ装置。4. The copper plating apparatus according to claim 1, wherein the copper supplied to the melting tank is copper oxide. 前記酸化銅は、塩基性炭酸銅を還元雰囲気とはならない雰囲気下で250℃〜800℃に加熱することにより熱分解し、次いで水洗することにより得られた易溶解性のものであることを特徴とする請求項4記載の銅メッキ装置。The copper oxide is easily soluble, obtained by thermally decomposing basic copper carbonate by heating to 250 ° C. to 800 ° C. in an atmosphere that does not become a reducing atmosphere, and then washing with water. The copper plating apparatus according to claim 4, wherein
JP2002325685A 2002-11-08 2002-11-08 Copper plating device Pending JP2004162078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325685A JP2004162078A (en) 2002-11-08 2002-11-08 Copper plating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325685A JP2004162078A (en) 2002-11-08 2002-11-08 Copper plating device

Publications (1)

Publication Number Publication Date
JP2004162078A true JP2004162078A (en) 2004-06-10

Family

ID=32804830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325685A Pending JP2004162078A (en) 2002-11-08 2002-11-08 Copper plating device

Country Status (1)

Country Link
JP (1) JP2004162078A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098756A1 (en) * 2008-02-05 2009-08-13 Mitsubishi Materials Corporation Process and apparatus for producing high-purity aqueous copper sulfate solution or aqueous copper sulfate solution containing iron sulfate, and high-purity aqueous copper sulfate solution or aqueous copper sulfate solution containing iron sulfate
CN104818517A (en) * 2015-04-07 2015-08-05 安徽江南鸣放电子科技有限公司 Zinc and copper electroplating solution zinc ion control apparatus
KR20180049746A (en) * 2016-11-03 2018-05-11 주식회사에이치티엔씨 Solution management system
CN108693178A (en) * 2018-05-15 2018-10-23 珠海倍力高科科技有限公司 A kind of chemical copper Analysis Control Unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098756A1 (en) * 2008-02-05 2009-08-13 Mitsubishi Materials Corporation Process and apparatus for producing high-purity aqueous copper sulfate solution or aqueous copper sulfate solution containing iron sulfate, and high-purity aqueous copper sulfate solution or aqueous copper sulfate solution containing iron sulfate
CN104818517A (en) * 2015-04-07 2015-08-05 安徽江南鸣放电子科技有限公司 Zinc and copper electroplating solution zinc ion control apparatus
KR20180049746A (en) * 2016-11-03 2018-05-11 주식회사에이치티엔씨 Solution management system
CN108693178A (en) * 2018-05-15 2018-10-23 珠海倍力高科科技有限公司 A kind of chemical copper Analysis Control Unit

Similar Documents

Publication Publication Date Title
JP4041667B2 (en) Plating bath analysis method
KR102314415B1 (en) Copper oxide powder for use in plating of a substrate
JP5876767B2 (en) Plating apparatus and plating solution management method
CN104233451A (en) TSV bath evaluation using field versus feature contrast
US6899803B2 (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
Ding et al. Electrochemical migration behavior and mechanism of PCB-ImAg and PCB-HASL under adsorbed thin liquid films
TWI275790B (en) Analysis method
JP2004162078A (en) Copper plating device
US7520973B2 (en) Method for regenerating etching solutions containing iron for the use in etching or pickling copper or copper alloys and an apparatus for carrying out said method
JP4221365B2 (en) Apparatus and method for monitoring electrolysis
WO2019077995A1 (en) Aluminum foil and aluminum member for electrodes
Van Der Putten et al. Electrochemistry of colloidal palladium: an experimental study of sol formation and electrocatalysis
Mohamedi et al. Ni–Al alloy as alternative cathode for molten carbonate fuel cells
KR100558129B1 (en) Method and apparatus for regulating the concentration of substances in electrolytes
US20220336211A1 (en) Apparatus for electro-chemical plating
JP3843224B2 (en) Method for measuring sulfuric acid concentration in plating solution
Gong et al. Electrodeposition of Fe‐Tb Alloys from an Aqueous Electrolyte
JPH0158270B2 (en)
JP3157678U (en) Electrolytic plating system
Neshkova et al. Real-time stoichiometry monitoring of electrodeposited chalcogenide films via coulometry and electrochemical quartz-crystal microgravimetry with hydrodynamic control. Ag2+ δSe case
JP2009108399A (en) Apparatus for removing impurity contained in electroless tin-plating solution, and method therefor
Ghidaoui et al. Oxide formation during etching of gallium arsenide
NL8702593A (en) METHOD FOR ELECTLESSLY STORING COPPER OF GOOD QUALITY.
JPH0798296A (en) Measuring method for concentration of additive in electroless copper plating liquid
Perkin Practical methods of electro-chemistry

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050621

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Effective date: 20060516

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926