JP2004158670A - 光学特性計測方法、露光方法及びデバイス製造方法 - Google Patents

光学特性計測方法、露光方法及びデバイス製造方法 Download PDF

Info

Publication number
JP2004158670A
JP2004158670A JP2002323664A JP2002323664A JP2004158670A JP 2004158670 A JP2004158670 A JP 2004158670A JP 2002323664 A JP2002323664 A JP 2002323664A JP 2002323664 A JP2002323664 A JP 2002323664A JP 2004158670 A JP2004158670 A JP 2004158670A
Authority
JP
Japan
Prior art keywords
transfer
wafer
exposure
measurement
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002323664A
Other languages
English (en)
Inventor
Kazuyuki Miyashita
和之 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2002323664A priority Critical patent/JP2004158670A/ja
Publication of JP2004158670A publication Critical patent/JP2004158670A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】短時間に精度及び再現性良く投影光学系の光学特性を計測する。
【解決手段】ステップ504において、転写領域行列DCの撮像データが撮像され、ステップ510において、転写領域行列DCの撮像データが撮像される。ステップ518において、転写領域行列DC内のピクセルデータと参照情報としての転写領域行列DC内のピクセルデータとの差分情報を求める。このようにすれば、転写領域行列DCに形成された計測用パターンの像の形成状態に関する成分だけを差分情報として抽出することができる。次いで、その差分情報に基づいて、計測用パターンの像の形成状態が転写領域毎に算出され、各転写領域の計測用パターンの像の形成状態とその転写領域形成時の露光条件との関係に基づいて、投影光学系の光学特性が算出される。
【選択図】 図8

Description

【0001】
【発明の属する技術分野】
本発明は、光学特性計測方法、露光方法及びデバイス製造方法に係り、更に詳しくは、投影光学系の光学特性を計測する光学特性計測方法、該光学特性計測方法によって計測された光学特性を考慮して調整された投影光学系を用いて露光を行う露光方法、及び該露光方法を利用したデバイス製造方法に関する。
【0002】
【従来の技術】
従来より、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程では、マスク又はレチクル(以下、「レチクル」と総称する)に形成されたパターンを、投影光学系を介してレジスト等が塗布されたウエハ又はガラスプレート等の基板(以下、適宜「ウエハ」ともいう)上に転写する露光装置が用いられている。この種の装置としては、近年では、スループットを重視する観点から、ステップ・アンド・リピート方式の縮小投影露光装置(いわゆる「ステッパ」)や、このステッパを改良したステップ・アンド・スキャン方式の走査型露光装置などの逐次移動型の露光装置が、比較的多く用いられている。
【0003】
また、半導体素子(集積回路)等は年々高集積化しており、これに伴い半導体素子等の製造装置である投影露光装置には、一層の高解像力、すなわちより微細なパターンを精度良く転写できることが要求されるようになってきた。投影露光装置の解像力を向上させるためには、投影光学系の光学性能を向上させることが必要である。従って投影光学系の光学特性(結像特性を含む)を正確に計測し、評価することが重要となっている。
【0004】
投影光学系の光学特性、例えばパターンの像面の正確な計測は、投影光学系の有効視野内の各評価点(計測点)における最適なフォーカス位置(最良フォーカス位置)を正確に計測できることが前提となる。
【0005】
従来の投影露光装置における最良フォーカス位置の計測方法としては、主として以下の2つが知られている。
【0006】
1つは、いわゆるCD/フォーカス法として知られている計測方法である。ここでは、所定のレチクルパターン(例えば、ラインアンドスペースパターン等)をテストパターンとして、このテストパターンを投影光学系の光軸方向に関する複数のウエハ位置でテスト用ウエハに転写する。そして、そのテスト用ウエハを現像して得られるレジスト像(転写されたパターンの像)の線幅値を、走査型電子顕微鏡(SEM)等を用いて計測し、その線幅値と投影光学系の光軸方向に関するウエハ位置(以下、適宜「フォーカス位置」ともいう)との相関関係に基づいて最良フォーカス位置を判断する。
【0007】
他の1つは、いわゆるSMPフォーカス計測法として知られている計測方法である。ここでは、複数のフォーカス位置で、くさび形マークのレジスト像をウエハ上に形成し、フォーカス位置の違いによるレジスト像の線幅値の変化を長手方向の寸法変化に増幅させて置き換え、ウエハ上のマークを検出するアライメント系などのマーク検出系を用いてレジスト像の長手方向の長さを計測する。そして、フォーカス位置とレジスト像の長さとの相関関係を示す近似曲線の極大値近傍を所定のスライスレベルでスライスし、得られたフォーカス位置の範囲の中点を最良フォーカス位置と判断する。
【0008】
そして、種々のテストパターンについて、このようにして得られた最良フォーカス位置に基づいて、投影光学系の光学特性である非点収差や像面湾曲等を計測している。
【0009】
しかし、上述したCD/フォーカス法では、例えばレジスト像の線幅値をSEMで計測するために、SEMのフォーカス合わせを厳密に行う必要があり、1点当たりの計測時間が非常に長く、多数点での計測をするためには数時間から数十時間が必要とされていた。また、投影光学系の光学特性を計測するためのテスト用パターンも微細化するとともに、投影光学系の視野内での評価点の数も増加することが予想される。従って、SEMを用いた従来の計測方法では、計測結果が得られるまでのスループットが大幅に低下するという不都合があった。また、測定誤差や測定結果の再現性についても、より高いレベルが要求されるようになり、従来の計測方法ではその対応が困難となってきている。さらに、フォーカス位置と線幅値の相関関係を示す近似曲線は、誤差を小さくするために4次以上の近似曲線が用いられており、それには、評価点毎に少なくとも5種類のフォーカス位置に関する線幅値が求められなければならないという制約があった。また、最良フォーカス位置からずれたフォーカス位置(投影光学系の光軸方向に関する+方向と−方向との両方を含む)での線幅値と最良フォーカス位置での線幅値との差は、誤差を小さくするために10%以上であることが要求されているが、この条件を満足させることが困難となってきた。
【0010】
また、上述したSMPフォーカス計測法では、通常、計測を単色光で行うために、レジスト像の形状の違いにより干渉の影響が異なり、それが計測誤差(寸法オフセット)につながることが考えられる。さらに、画像処理にてくさび形マークのレジスト像の長さ計測を行うには、レジスト像の最も細くなる長手方向の両端部分までの情報を詳細に取り込む必要が有り、現状の画像取り込み機器(CCDカメラ等)の分解能では未だ十分ではないという問題点がある。また、テストパターンが大きいために、投影光学系の有効視野内での評価点の数を増加させることが困難であった。
【0011】
この他、主として上述のCD/フォーカス法の欠点を改善するものとして、テスト露光によってパターンが転写されたウエハを現像し、現像後にウエハ上に形成されるパターンのレジスト像を撮像し、その撮像データを用いて所定のテンプレートとのパターンマッチングを行い、その結果に基づいて最良フォーカス位置などの最良露光条件を決定する発明が知られている(特許文献1、特許文献2等参照)。この特許文献1、2等に開示される発明によると、SMP計測法のような現状の画像取り込み機器(CCDカメラ等)の分解能不足や、投影光学系の視野内での評価点の数の増加が困難であるという不都合もない。
【0012】
【特許文献1】
特開平11−233434号公報
【特許文献2】
国際公開第02/029870号パンフレット
【0013】
【発明が解決しようとする課題】
しかるに、テンプレートマッチング法を採用し、かつこれを自動化する場合には、そのテンプレートマッチングを容易にするためにパターンとともにマッチングの基準となる枠(パターン)がウエハ上に形成されるのが通常である。
【0014】
しかしながら、上述のようなテンプレートマッチングを用いた最良露光条件の決定方法にあっては、多種多用なプロセス条件の中にはパターンの近傍に形成されるテンプレートマッチングの基準となる枠の存在により、画像処理方式のウエハアライメント系、例えばFIA(Field Image Alignment)系のアライメントセンサなどで画像取り込みを行った場合に、パターン部のコントラストが著しく低下して計測が不可能になる場合があった。
【0015】
かかる不都合を改善するための手法として、テンプレートマッチングによらず、各転写領域の画像データの代表値(例えば、コントラスト値)などに基づいて各転写領域の像の形成状態(例えば像の有無など)を検出することにより、投影光学系の光学特性あるいは最良露光条件などを決定することも考えられるが、いずれの方法を用いても、異なる露光条件の下で各転写領域に形成された像の形成状態をそれぞれ比較することによって、投影光学系の光学特性あるいは最良露光条件を決定することに変わりはない。
【0016】
しかしながら、このように、露光条件を変更しながらパターンを転写した場合には、そのパターン像の形成状態だけでなく、例えば前述の枠などパターン像周辺の形成状態も微妙に変化する。このような周辺部分の変化は、パターン部のコントラストを著しく低下させ、計測精度に多大な影響を与えてしまうという不都合があった。さらに、一般に、レジスト像は、露光条件によっては膜減りなどの現象が発生する場合があり、このような現象も、コントラストの低下を招き、投影光学系の光学特性の計測に対する外乱要因となる。
【0017】
また、ウエハ上に形成されるパターンのレジスト像の画像データは、その画像データを撮像する光学系の光学特性に影響を受けるため、この光学系の光学特性が、最良露光条件の決定に影響を与えてしまい、投影光学系の光学特性を正確に計測できなくなる場合があるという不都合があった。
【0018】
本発明は、かかる事情の下になされたものであり、その第1の目的は、短時間に確実に、精度及び再現性良く投影光学系の光学特性を計測することができる光学特性計測方法を提供することにある。
【0019】
また、本発明の第2の目的は、高精度な露光を実現することができる露光方法を提供することにある。
【0020】
また、本発明の第3の目的は、高集積度のデバイスの生産性を向上させることができるデバイス製造方法を提供することにある。
【0021】
【課題を解決するための手段】
請求項1に記載の発明は、投影光学系(PL)の光学特性を計測する光学特性計測方法であって、前記投影光学系の有効視野内に配置された所定の計測用パターン(MP)を、前記投影光学系を介して、少なくとも1つの露光条件を変更しながら感光物体(W)上の異なる領域に順次転写することによって複数の転写領域(DC)を形成する第1工程と;前記複数の転写領域の形成状態に関する情報を検出する第2工程と;前記検出された形成状態に関する情報と参照情報との差分情報を算出する第3工程と;前記算出された差分情報に基づいて、前記所定の計測用パターンの像の形成状態を転写領域毎に算出する第4工程と;前記複数の転写領域における露光条件と像の形成状態との関係に基づいて、前記投影光学系の光学特性を計測する第5工程と;を含む光学特性計測方法である。
【0022】
本明細書において、「露光条件」とは、照明条件(マスクの種別を含む)、像面上における露光ドーズ量等狭義の露光条件の他、投影光学系の光学特性など露光に関連する全ての構成部分の設定条件を含む広義の露光条件を意味する。
【0023】
これによれば、第1工程において、それぞれ転写時の露光条件が異なる計測用パターンが感光物体上に転写されて複数の転写領域が形成され、第2工程において、それらの転写領域の形成状態に関する情報が検出される。ここで、「転写領域の形成状態に関する情報」とは、感光物体上の転写領域が転写によりどのような状態で形成されているかを示す情報である。このような情報の検出は、その感光物体を現像することなく感光物体上に形成された潜像に対して行っても良いし、感光物体を現像した後、その感光物体上に形成されたレジスト像、あるいはレジスト像が形成された感光物体をエッチング処理して得られる像(エッチング像)などに対して行っても良い。ここで、感光物体上における転写領域の形成状態を検出するための感光層は、フォトレジストに限らず、光(エネルギ)の照射によって像(潜像及び顕像)が形成されるものであれば良い。例えば、感光層は、光記録層、光磁気記録層などであっても良く、従って、感光層が形成される物体もウエハ又はガラスプレート等に限らず、光記録層、光磁気記録層が形成可能な板等であっても良い。
【0024】
例えば、転写領域の形成状態の検出をレジスト像、エッチング像などに対して行う場合には、SEMなどの顕微鏡は勿論、例えば露光装置のアライメント検出系、例えばアライメントマークの像を撮像素子上に結像する画像処理方式のアライメント検出系、いわゆるFIA(Field Image Alignment)系のアライメントセンサや、コヒーレントな検出光を対象に照射し、その対象から発生する散乱光又は回折光を検出するアライメントセンサ、例えばいわゆるLSA系のアライメントセンサや、その対象から発生する2つの回折光(例えば同次数)を干渉させて検出するアライメントセンサなどの各種のアライメントセンサをも検出光学系として用いることができる。例えば、転写領域の形成状態の検出を潜像に対して行う場合には、FIA系などを用いることができる。
【0025】
次いで、第3工程において、複数の転写領域の形成状態に関する情報と参照情報との差分情報を算出する。複数の転写領域の形成状態に関する情報には、本来抽出すべき、所定の計測用パターンの像の形成状態に関する成分だけでなく、例えば転写時の変動要素や前述の検出光学系が有する照明むらや収差等のその光学特性による成分も含まれており、それらの成分に関する情報を、参照情報として算出し、複数の転写領域の形成状態に関する情報からその参照情報を差し引けば、所定の計測用パターンの像の形成状態に関する成分だけを差分情報として抽出することができるようになる。次いで、第4工程において、算出された差分情報に基づいて、計測用パターンの像の形成状態が転写領域毎に算出され、第5工程において、各転写領域の像の形成状態とその転写領域の露光条件との関係に基づいて、投影光学系の光学特性が算出される。
【0026】
したがって、請求項1に記載の光学特性計測方法によれば、第3工程において、複数の転写領域の形成状態に関する情報から、計測用パターンの像の形成状態に関する情報の成分以外の外乱成分を参照情報としてキャンセルすることができるため、計測用パターンの像の形成状態を精度良く算出することができ、投影光学系の光学特性を精度良く算出することができる。
【0027】
この場合、請求項2に記載の光学特性計測方法のごとく、前記第3工程に先立って、矩形マークを前記感光物体上に順次転写することによって、前記転写領域と同一形状及び大きさを有する矩形マーク転写領域を、その配置状態が前記複数の転写領域の配置状態と同一となるように形成する第6工程と;前記第3工程に先立って、前記複数の矩形マーク転写領域の形成状態に関する情報を前記参照情報として検出する第7工程と;をさらに含むこととすることができる。
【0028】
かかる場合には、計測用パターンの転写領域(以下、適宜「計測用パターン転写領域」と称す)と同一形状及び大きさを有する矩形マーク転写領域が、計測用パターンの複数の転写領域と同一の配置状態となるように形成され、転写により感光物体上に実際に形成された矩形マーク転写領域の形成状態に関する情報を参照情報として検出する。したがって、実際の感光物体上に転写された計測用パターン転写領域と形状が合同で配置状態が同じ転写領域の情報を差分用の参照情報として用いることができるため、計測用パターンの像の形成状態に関する情報の成分以外の外乱成分を精度良くキャンセルすることができる。
【0029】
この場合、請求項3に記載の光学特性計測方法のごとく、前記第6工程では、前記各矩形マーク転写領域を形成する際の露光条件を、その矩形マーク転写領域に対応する転写領域が形成される際の露光条件と同一の条件とすることとすることができる。
【0030】
かかる場合には、各矩形マーク転写領域が形成される際の露光条件が、各矩形マーク転写領域に対応する各計測パターン転写領域が形成される際の露光条件と同一となるように設定されている。このようにして形成された矩形マーク転写領域の形成状態を差分用の参照情報として用いれば、複数の計測パターン転写領域の形成状態に関する情報から、計測用パターンの像の形成状態以外の外乱成分を一層精度良くキャンセルすることができるようになる。
【0031】
この場合、請求項4に記載の光学特性計測方法のごとく、前記計測用パターン及び前記矩形マークを、互いに重ならないように、前記投影光学系の有効視野内に配置したうえで、前記第1工程及び前記第6工程を同時に実行することとすることができる。かかる場合には、第1工程及び第6工程を同時に実行し、計測用パターン転写領域と矩形マーク転写領域とを同一の露光条件で同時に形成することができるようになるため、転写に要する時間を短縮することができる。
【0032】
上記請求項2〜4のいずれか一項に記載の光学特性計測方法において、請求項5に記載の光学特性計測方法のごとく、前記第2工程及び前記第7工程では、同一の検出光学系を用いて前記形成状態に関する情報を検出することとすることができる。かかる場合には、計測用パターン転写領域と矩形マーク転写領域とが同一の検出光学系によって検出されるので、その検出光学系によって検出された、それらの転写領域の形成状態に関する情報同士を差分すれば、その検出光学系の光学特性の影響をキャンセルすることができる。
【0033】
上記請求項1〜5のいずれか一項に記載の光学特性計測方法において、請求項6に記載の光学特性計測方法のごとく、前記第2工程に先立って、前記複数の転写領域と所定の位置関係を有する位置検出用領域を前記感光物体上に形成する第8工程をさらに含み、前記第2工程では、前記複数の転写領域の形成状態に関する情報とともに、前記位置検出用領域の形成状態に関する情報を検出し、前記位置検出用領域の形成状態に関する情報に基づいて、前記複数の転写領域の位置を検出することとすることができる。かかる場合には、複数の転写領域と所定の位置関係を有する位置検出用領域を感光物体上に形成するため、その位置検出用領域に基づいてそれらの転写領域の位置を検出するのが容易となる。
【0034】
上記請求項1〜6のいずれか一項に記載の光学特性計測方法において、請求項7に記載の光学特性計測方法のごとく、前記形成状態に関する情報には、前記複数の転写領域上の複数の検出点においてそれぞれ検出された輝度値が含まれており、前記第3工程では、前記各検出点における輝度値と、前記参照情報に含まれるその検出点に対応する輝度値との差分値を検出点毎に前記差分情報として算出することとすることができる。
【0035】
例えば、形成状態に関する情報は、撮像によって得られた画像データから検出される場合もある。この画像データは、マトリクス状に配置された複数の画素それぞれについて得られる輝度値の集合体である。すなわち、各画素は複数の転写領域上の複数の輝度値の検出点にそれぞれ対応すると考えられ、この検出点における明るさがその画素の輝度値となる。また、この場合、参照情報も、前述の画像データに対応するため、輝度値の集合体となっている必要がある。そして、第3工程では、転写領域の各検出点における輝度値と、参照情報に含まれるその検出点に対応する輝度値との差分値を差分情報とする。
【0036】
この場合、請求項8に記載の光学特性計測方法のごとく、前記第3工程では、検出点毎に算出された差分値を、平滑化することとすることができる。
【0037】
上記請求項7又は8に記載の光学特性計測方法において、請求項9に記載の光学特性計測方法のごとく、前記第4工程では、検出点毎に算出された差分値に関する代表値を、転写領域毎に算出することとすることができる。
【0038】
この場合、請求項10に記載の光学特性計測方法のごとく、前記第4工程では、前記各転写領域の前記代表値に基づいて、その転写領域における前記計測用パターンの像の有無に関する情報を算出することとすることができる。
【0039】
この場合、請求項11に記載の光学特性計測方法のごとく、前記第5工程では、前記露光条件の変化に対する前記像の有無に関する情報の変化の度合を算出し、その度合に基づいて前記露光条件の最適値を算出することとすることができる。
【0040】
上記請求項9〜11のいずれか一項に記載の光学特性計測方法において、請求項12に記載の光学特性計測方法のごとく、前記各転写領域の代表値は、その転写領域内の少なくとも一部の領域に含まれる検出点に関する輝度値の差分値の加算値、微分の総和値、分散、及び標準偏差の少なくとも1つであることとすることができる。
【0041】
なお、本明細書において、上記の代表値として用いられる輝度値の差分値の加算値、微分の総和値、分散あるいは標準偏差などを、適宜、「スコア」あるいは「コントラストの指標値」などと呼ぶものとする。
【0042】
上記請求項1〜12のいずれか一項に記載の光学特性計測方法において、請求項13に記載の光学特性計測方法のごとく、前記露光条件は、前記投影光学系の光軸方向に関する前記感光物体の位置及び前記転写の際に照射されるエネルギビームのエネルギ量の少なくとも一方であることとすることができる。
【0043】
かかる場合には、計測用パターンの転写に際しては、露光条件として、すなわち投影光学系の光軸方向に関する感光物体の位置及び感光物体上に照射されるエネルギビームのエネルギ量の少なくとも一方を変更しながら計測用パターンの像を感光物体上の複数の領域に順次転写する。この結果、感光物体上の各領域には、それぞれ転写時の投影光学系の光軸方向に関する感光物体の位置及び感光物体上に照射されるエネルギビームのエネルギ量の少なくとも一方が異なる計測用パターンの像が転写され、それらの少なくとも一方の最適条件を算出することができるようになる。
【0044】
請求項14に記載の発明は、露光用のエネルギビームをマスクに照射し、前記マスクに形成されたパターンを、投影光学系を介して感光物体上に転写する露光方法であって、請求項1〜13のいずれか一項に記載の光学特性計測方法によって計測された光学特性を考慮して前記投影光学系を調整する工程と;前記調整された投影光学系を介して前記マスクに形成されたパターンを前記感光物体上に転写する工程と;を含む露光方法である。
【0045】
これによれば、請求項1〜13のいずれか一項に記載の光学特性計測方法によって計測された投影光学系の光学特性を考慮して最適な転写が行えるように投影光学系が調整され、その調整された投影光学系を介してマスクに形成されたパターンを感光物体上に転写するので、微細パターンを感光物体上に高精度に転写することができる。
【0046】
請求項15に記載の発明は、リソグラフィ工程を含むデバイス製造方法であって、前記リソグラフィ工程では、請求項14に記載の露光方法を用いるデバイス製造方法である。
【0047】
これによれば、リソグラフィ工程では、請求項14に記載の露光方法により微細パターンを感光物体上に精度良く転写することができるので、結果的に高集積度のデバイスの生産性(歩留まりを含む)を向上させることが可能となる。
【0048】
【発明の実施の形態】
以下、本発明の一実施形態を図1〜図12に基づいて説明する。
【0049】
図1には、本発明に係る光学特性計測方法及び露光方法を実施するのに好適な一実施形態に係る露光装置100の概略的な構成が示されている。この露光装置100は、ステップ・アンド・スキャン方式の走査型投影露光装置、いわゆるスキャニング・ステッパである。なお、図1においては、紙面左右方向に延びる座標軸をX軸(紙面右側を正とする)とし、そのX軸に直交し、紙面表裏方向に延びる座標軸をY軸(紙面奥側を正とする)とし、X軸及びY軸に直交し、紙面上下方向に延びる座標軸をZ軸方向(紙面上側を正とする)として、XYZ座標系が設定されている。以下の説明及びその説明で参照される図面では、適宜この座標系が用いられる。なお、後述するように、この露光装置100における走査露光の際の走査方向は、Y軸方向である。
【0050】
この露光装置100は、図1に示されるように、紙面上部(+Z側)に示される照明系IOP、その照明系IOPの−Z側に配置され照明系IOPから射出された照明光ILにより照明されるマスクとしてのレチクルRを保持可能なレチクルステージRST、そのレチクルステージRSTの−Z側に配置されレチクルRを介した照明光ILを+Z側から入射し、レチクルR上のパターンの空間像を−Z側に投影する投影光学系PL、その投影光学系PLの−Z側に配置され感光剤(フォトレジスト)が塗布された感光物体としてのウエハWを保持して2次元平面(XY平面内)を移動するXYステージ20、投影光学系PLの+X側に配置された検出光学系としてのアライメント検出系AS、及び装置全体を統括制御するマイクロコンピュータ(あるいはワークステーション)などから成る主制御装置28を中心とする制御系等を備えている。
【0051】
前記照明系IOPは、図2に示されるように、光源1、ビーム整形光学系2、エネルギ粗調器3、オプティカルインテグレータ(ホモジナイザ)4、照明系開口絞り板5、ビームスプリッタ6、第1リレーレンズ7A、第2リレーレンズ7B、固定レチクルブラインド8A、可動レチクルブラインド8B、折り曲げミラーM等を備えている。なお、オプティカルインテグレータとしては、フライアイレンズ、ロッド型(内面反射型)インテグレータ、あるいは回折光学素子などを用いることができる。本実施形態では、オプティカルインテグレータ4としてフライアイレンズが用いられているので、以下では、オプティカルインテグレータ4を、フライアイレンズ4とも呼ぶ。
【0052】
ここで、照明系IOPの上記構成各部について説明する。前記光源1としては、KrFエキシマレーザ(発振波長248nm)やArFエキシマレーザ(発振波長193nm)等が使用される。光源1のパルス発光は、主制御装置28の指示によって制御可能であり、その光源1のパルス発光の状態は、主制御装置28によって監視されている。なお、光源1は、実際には、露光装置本体が設置されるクリーンルーム内の床面、あるいは該クリーンルームとは別のクリーン度の低い部屋(サービスルーム)等に設置され、不図示の引き回し光学系を介してビーム整形光学系2の入射端に接続されている。
【0053】
前記ビーム整形光学系2は、光源1からパルス発光されたレーザビームLBの断面形状を、該レーザビームLBの光路後方に設けられたフライアイレンズ4に効率よく入射するように整形するもので、例えばシリンダレンズやビームエキスパンダ(いずれも図示省略)等で構成される。
【0054】
前記エネルギ粗調器3は、ビーム整形光学系2後方のレーザビームLBの光路上に配置されている。ここでは、回転板31の周囲に透過率(=1−減光率)の異なる複数個(例えば6個)のNDフィルタ(図2ではその内の2個のNDフィルタ32A、32Dのみが示されている)が配置されており、その回転板31を駆動モータ33で回転させレーザビームLBが透過するNDフィルタを切り換えることによって、入射するレーザビームLBに対する透過率を100%から等比級数的に複数段階で切り換えることができるようになっている。駆動モータ33は、主制御装置28によって制御される。
【0055】
前記フライアイレンズ4は、エネルギ粗調器3後方のレーザビームLBの光路上に配置され、レチクルRを均一な照度分布で照明するためにその射出側焦点面に多数の点光源(光源像)から成る面光源、すなわち2次光源を形成する。この2次光源から射出されるレーザビームを以下においては、「照明光IL」と呼ぶものとする。
【0056】
前記フライアイレンズ4の射出側焦点面の近傍に、円板状部材から成る照明系開口絞り板5が配置されている。この照明系開口絞り板5には、ほぼ等角度間隔で、例えば通常の円形開口より成る開口絞り、小さな円形開口より成りコヒーレンスファクタであるσ値を小さくするための開口絞り(小σ絞り)、輪帯照明用の輪帯状の開口絞り(輪帯絞り)、及び変形光源法用に複数の開口を偏心させて配置して成る変形開口絞り(図2ではこのうちの2種類の開口絞りのみが図示されている)等が配置されている。この照明系開口絞り板5は、主制御装置28により制御されるモータ等の駆動装置51により回転されるようになっており、これによりいずれかの開口絞りが照明光ILの光路上に選択的に設定される。なお、開口絞り板5の代わりに、あるいはそれと組み合わせて、例えば照明光学系内に交換して配置される複数の回折光学素子、照明光学系の光軸に沿って可動なプリズム(円錐プリズム、多面体プリズムなど)、及びズーム光学系の少なくとも1つを含む光学ユニットを、光源1(具体的にはエネルギ粗調器3)とオプティカルインテグレータ4との間に配置し、オプティカルインテグレータ4がフライアイレンズであるときはその入射面上での照明光ILの強度分布、オプティカルインテグレータ4が内面反射型インテグレータであるときはその入射面に対する照明光ILの入射角度範囲などを可変とすることで、照明光学系の瞳面上での照明光ILの光量分布(2次光源の大きさや形状)、すなわち照明条件の変更に伴う光量損失を抑えることが望ましい。
【0057】
照明系開口絞り板5後方の照明光ILの光路上に、反射率が小さく透過率の大きなビームスプリッタ6が配置され、更にこの後方の光路上に、固定レチクルブラインド8A及び可動レチクルブラインド8Bを介在させて第1リレーレンズ7A及び第2リレーレンズ7Bから成るリレー光学系が配置されている。
【0058】
固定レチクルブラインド8Aは、レチクルRのパターン面に対する共役面から僅かにデフォーカスした面に配置されており、その固定レチクルブラインド8Aには、レチクルR上の照明領域を規定する矩形開口が形成されている。また、この固定レチクルブラインド8Aの近傍には、走査露光時の走査方向(ここではY軸方向とする)とこれに直交する非走査方向(X軸方向)にそれぞれ対応する方向とに光学的に対応する位置及び幅が照明光ILの光軸IXを中心に可変である開口部を有する可動レチクルブラインド8Bが配置されている。走査露光の開始時及び終了時において、主制御装置28からの指示により、固定レチクルブラインド8Aによって規定されている照明領域が、可動レチクルブラインド8Bによって更に制限されることによって、不要な部分(後述するレチクルR上の回路パターン等の転写すべき部分以外の部分)の露光が防止されるようになっている。
【0059】
リレー光学系を構成する第2リレーレンズ7B後方の照明光ILの光路上には、当該第2リレーレンズ7Bを通過した照明光ILをレチクルRに向けて反射する折り曲げミラーMが配置されている。
【0060】
一方、ビームスプリッタ6による反射光路上には、集光レンズ52を介して光電変換素子よりなるインテグレータセンサ53が配置されている。このインテグレータセンサ53としては、例えば遠紫外域で感度があり、且つ光源1のパルス発光を検出するために高い応答周波数を有するPIN型のフォトダイオード等を使用することができる。インテグレータセンサ53の光電変換信号は、不図示のピークホールド回路及びA/D変換器を介して出力DP(digit/pulse)として主制御装置28に供給される。本実施形態では、インテグレータセンサ53の計測値は、露光量制御に用いられる他、投影光学系PLに対する照射量の計算に用いられ、この照射量は、ウエハ反射率(これは、インテグレータセンサの出力と不図示の反射率モニタの出力とに基づいて求めることもできる)とともに、投影光学系PLの照明光吸収による結像特性の変化量の算出にも用いられる。このインテグレータセンサ53の出力DPと、ウエハWの表面上での照明光ILの照度(強度)との相関係数(又は相関関数)は予め求められており、主制御装置28内部のメモリ内に記憶されている。
【0061】
このようにして構成された照明系IOPの作用を簡単に説明すると、光源1からパルス発光されたレーザビームLBは、ビーム整形光学系2に入射して、ここで後方のフライアイレンズ4に効率よく入射するようにその断面形状が整形された後、エネルギ粗調器3に入射する。そして、このエネルギ粗調器3のいずれかのNDフィルタを透過したレーザビームLBは、フライアイレンズ4に入射する。これによりフライアイレンズ4の射出側焦点面に多数の点光源(光源像)より成る面光源、すなわち2次光源が形成される。この2次光源から射出された照明光ILは、照明系開口絞り板5上のいずれかの開口絞りを通過した後、透過率が大きく反射率が小さなビームスプリッタ6に至る。このビームスプリッタ6を透過した露光光としての照明光ILは、第1リレーレンズ7Aを経て固定レチクルブラインド8A及び可動レチクルブラインド8Bの矩形の開口部を通過した後、第2リレーレンズ7Bを通過して折り曲げミラーMによって光路が垂直下方に折り曲げられ、レチクルステージRST上に保持されたレチクルR上のスリット状(X軸方向に細長い長方形又は円弧状)の照明領域を均一な照明分布で照明する。一方、ビームスプリッタ6で反射された照明光ILは、集光レンズ52を介して光電変換素子よりなるインテグレータセンサ53で受光されてその光電変換信号が主制御装置28に供給され、露光量制御等に用いられる。
【0062】
図1に戻り、前記レチクルステージRST上には、レチクルRが、例えば不図示のバキュームチャック等を介して真空吸着(又は静電チャックを介して静電吸着)により固定されている。レチクルステージRSTは、ここでは、リニアモータ等を含むレチクルステージ駆動系56Rにより、後述する投影光学系PLの光軸AX(前述の照明光ILの光軸IXに一致)に垂直なXY平面内で2次元的に(X軸方向及びY軸方向及びXY平面に直交するZ軸回りの回転方向(θz方向)に)微少駆動可能であるとともに、レチクルステージRSTの基盤である不図示のレチクルベース上をY軸方向に指定された走査速度で移動可能となっている。
【0063】
また、レチクルステージRST上には、レチクルレーザ干渉計(以下、「レチクル干渉計」と略述する)54Rからのレーザビームを反射する移動鏡52Rが固定されており、レチクルステージRSTのXY面内の位置は、レチクル干渉計54Rによって、例えば0.5〜1nm程度の分解能で常時検出される。ここで、実際には、レチクルステージRST上には走査露光時の走査方向(Y軸方向)に直交する反射面を有する移動鏡と非走査方向(X軸方向)に直交する反射面を有する移動鏡とが設けられ、レチクル干渉計54RはY軸方向に少なくとも2軸、X軸方向に少なくとも1軸設けられているが、図1ではこれらが代表的に移動鏡52R、レチクル干渉計54Rとして示されている。
【0064】
レチクル干渉計54RからのレチクルステージRSTの位置情報は、主制御装置28に送信される。主制御装置28は、レチクルステージ駆動系56Rを介してレチクルステージRSTの移動を制御する。具体的には、レチクルステージRSTは、レチクルステージ駆動系56Rによって水平面(XY平面)内で微小駆動可能であるとともに、走査方向であるY軸方向に、レチクルRの全面が少なくとも投影光学系PLの光軸AXを横切ることができる程度の所定移動ストローク範囲で走査される。なお、レチクルステージRSTの端面を鏡面加工して前述の反射面(前述の移動鏡52Rの反射面に相当)を形成しても良い。また、移動鏡52Rで走査方向(Y軸方向)と直交する反射面の代わりに、少なくとも1つのコーナーキューブ型のミラー(レトロリフレクタ)を用いても良い。
【0065】
また、レチクルステージRSTには、レチクルRの下方に、レチクルR上の照明領域より大きい開口(図1では点線で示されている)が形成されている。後述するように、この開口は、レチクルRを通過した照明光ILの通路となる。
【0066】
また、露光装置100では、レチクルRの上方に、投影光学系PLを介してレチクルR上のマーク(又はレチクルステージRSTの基準マーク)と、後述する基準マークとを同時に観察するための露光波長の光を用いたTTR(Through The Reticle)アライメント系から成る一対のレチクルアライメント検出系(以下、便宜上「RA検出系」と呼ぶ)が設けられている。これらのRA検出系の検出信号は、アライメント制御装置16を介して、主制御装置28に供給されるようになっている。この場合、レチクルRからの検出光をそれぞれのRA検出系に導くための不図示の偏向ミラーが移動自在に配置され、露光工程が開始されると、主制御装置28からの指令の下で、不図示のミラー駆動装置により偏向ミラーが待避される。なお、RA検出系と同等の構成は、例えば特開平7−176468号公報等に開示されており、公知であるからここでは詳細な説明を省略する。
【0067】
前記投影光学系PLは、その光軸AXの方向がZ軸方向となるように配置されている。この投影光学系PLは、ここでは両側テレセントリックな縮小系であり、Z軸方向の共通の光軸AXを有し、その光軸AXに沿って例えば所定間隔で配置された複数枚のレンズエレメント(不図示)から成る屈折光学系が使用されている。この投影光学系PLの投影倍率は、例えば1/4(又は1/5)等に設定されている。このため、照明系IOPからの照明光ILによってレチクルR上におけるスリット状照明領域が均一な照度で照明されると、このレチクルRを通過した照明光ILにより、投影光学系PLを介したそのスリット状照明領域内のレチクルRの回路パターン等が投影光学系PLにより縮小されて、その回路パターン等の縮小像(部分倒立像)が、表面にフォトレジストが塗布されたウエハW上に投影され、前記照明領域と共役なウエハW上の被露光領域(照明領域に共役な領域)に形成される。
【0068】
投影光学系PLを構成するレンズエレメントのうちの一部のレンズエレメントは、それぞれ複数の駆動素子(例えばピエゾ素子など)によって光軸AXの方向及びXY面に対する傾斜方向に微小駆動可能に構成されている。本実施形態では、各駆動素子に与えられる駆動電圧(駆動素子の駆動量)が、主制御装置28からの指令に応じて結像特性補正コントローラ(不図示)により制御され、投影光学系PLの結像特性、例えば、像面湾曲、ディストーション、倍率、コマ収差、非点収差、球面収差等が補正される。
【0069】
前記XYステージ20は、実際には、不図示のステージベース上に設置されており、そのステージベース上をY軸方向に移動するYステージと、このYステージ上をX軸方向に移動するXステージとで構成されているが、図1ではこれらが代表的にXYステージ20として示されている。このXYステージ20上にウエハテーブル18が搭載され、このウエハテーブル18上に不図示のウエハホルダを介してウエハWが真空吸着等によって保持されている。
【0070】
前記ウエハテーブル18は、ウエハWを保持するウエハホルダをZ軸方向及びXY面に対する傾斜方向に微小駆動するもので、Z・チルトステージとも称される。このウエハテーブル18の上面には、移動鏡24が設けられており、この移動鏡24にレーザビームを投射して、その反射光を受光することにより、ウエハテーブル18のXY面内の位置を計測するウエハレーザ干渉計(以下、「ウエハ干渉計」と略述する)26が移動鏡24の反射面に対向して設けられている。なお、実際には、ウエハテーブル18上には、X軸に直交する反射面を有するX移動鏡と、Y軸に直交する反射面を有するY移動鏡とが設けられており、これに対応して、X方向位置計測用のXレーザ干渉計とY方向位置計測用のYレーザ干渉計とが設けられているが、図1ではこれらが代表して移動鏡24、ウエハ干渉計26として図示されている。なお、Xレーザ干渉計及びYレーザ干渉計は測長軸を複数有する多軸干渉計であり、ウエハテーブル18のX、Y位置の他、回転(ヨーイング(Z軸回りの回転であるθz回転)、ピッチング(X軸回りの回転であるθx回転)、ローリング(Y軸回りの回転であるθy回転))も計測可能となっている。従って、以下の説明ではウエハ干渉計26によって、ウエハテーブル18のX、Y、θz、θy、θxの5自由度方向の位置が計測されるものとする。なお、移動鏡24の代わりにウエハテーブル18の端面を鏡面加工して反射面として用いても良い。
【0071】
ウエハ干渉計26の計測値は主制御装置28に供給され、主制御装置28はこのウエハ干渉計26の計測値に基づいてウエハステージ駆動系22を介してXYステージ20を制御することにより、ウエハテーブル18のXY面内の位置(θz回転を含む)を制御する。
【0072】
また、ウエハW表面のZ軸方向の位置及び傾斜量は、例えば特開平6−283403号公報等に開示される送光系50a及び受光系50bを有する斜入射方式の多点焦点位置検出系から成るフォーカスセンサAFSによって計測されるようになっている。このフォーカスセンサAFSの計測値も主制御装置28に供給されており、主制御装置28は、フォーカスセンサAFSの計測値に基づいてウエハステージ駆動系22を介してウエハテーブル18をZ、θx及びθy方向に駆動して、投影光学系PLの光軸AXの方向に関するウエハWの位置及び傾きを制御するようになっている。
【0073】
このようにしてウエハテーブル18を介してウエハWのX、Y、Z、θx、θyの5自由度方向の位置及び姿勢制御がなされるようになっている。なお、残りのθz(ヨーイング)の誤差については、ウエハ干渉計26で計測されたウエハテーブル18のヨーイング情報に基づいてレチクルステージRSTとウエハテーブル18との少なくとも一方を回転させることによって補正される。
【0074】
また、ウエハテーブル18上には、その表面がウエハWの表面と同じ高さになるような基準板FPが固定されている。この基準板FPの表面には、後述するアライメント検出系のいわゆるベースライン計測等に用いられる基準マークを含む各種の基準マークが形成されている。
【0075】
更に、本実施形態では、投影光学系PLの側面に、ウエハWに形成されたアライメントマーク等のマークを検出するマーク検出系(及び検出光学系)としてのオフ・アクシス方式のアライメント検出系ASが設けられている。このアライメント検出系ASは、LSA(Laser Step Alignment)系、FIA(Field Image Alignment)系と呼ばれるアライメントセンサを有しており、基準板FP上の基準マーク及びウエハ上のアライメントマークのX、Y2次元方向の位置計測を行なうことが可能である。
【0076】
ここで、LSA系は、レーザ光をマークに照射して、回折・散乱された光を利用して検出対象のマークの位置を計測する最も汎用性のあるセンサであり、従来から幅広いプロセスウエハに使用されている。また、FIA系は、ハロゲンランプ等のブロードバンド(広帯域)光で検出対象のマークを照明し、このマーク画像を画像処理することによってマーク位置を計測する画像処理方式の結像式アライメントセンサであり、アルミ層やウエハ表面の非対称マークに有効に使用される。
【0077】
本実施形態では、これらのアライメントセンサを、適宜目的に応じて使い分け、ウエハ上の各被露光領域の正確な位置計測を行なうファインアライメント等を行なうようになっている。この他、アライメント検出系ASとして、例えばコヒーレントな検出光を検出対象のマークに照射し、そのマークから発生する2つの回折光(例えば同次数)を干渉させて検出するアライメントセンサを単独で、あるいは上記FIA系、LSA系などと適宜組み合わせて用いることは可能である。
【0078】
アライメント制御装置16は、アライメント検出系ASを構成する各アライメントセンサからの情報DSをA/D変換し、このデジタル化された波形信号を演算処理してマーク位置情報を検出する。この結果は、アライメント制御装置16から主制御装置28に供給されるようになっている。
【0079】
次に、本実施形態に係る投影光学系PLの光学特性を計測するのに用いられるレチクルの一例について説明する。
【0080】
図3には、投影光学系PLの光学特性を計測するのに用いられるレチクルRの一例が示されている。この図3は、レチクルRをパターン面側(図1における下面側、すなわち−Z側)から見た平面図である。この図3に示されるように、レチクルRでは、ほぼ正方形のマスク基板としてのガラス基板42の中央に、クロム等の遮光部材から成る、Y軸方向に長手方向を有する長方形状のパターン領域PAが形成されている。なお、図3では、レチクルR上における照明領域が点線で示されている。
【0081】
パターン領域PAの中心(すなわちレチクルRの中心(レチクルセンタ)に一致)より+X側で照明領域内部の位置には、例えば20μm角の開口パターン(透過領域)が形成され、当該開口パターンの中央部にラインアンドスペースパターン(L/Sパターン)から成る計測用パターン(遮光領域)MPが形成されている。計測用パターンMPは、一例としてX軸方向を周期方向とする線幅約1.3μm、長さ約12μm程度の5本のラインパターンが、ピッチ約2.6μmで配列されたマルチバーパターンによって構成されている。このため、本実施形態では、開口パターンと中心を同じくする、該開口パターンの約60%の縮小領域部分に計測用パターンMPが配置されている。なお、この開口パターンと計測用パターンMPとから成るマークを計測マークAPとする。
【0082】
また、パターン領域PAの中心より−X側で照明領域内部の位置には、計測マークAPの開口パターンと合同、すなわち同一形状及び大きさを有する矩形マークBPが形成されている。矩形マークBP内には、計測用パターンMPのようなパターンは形成されておらず、矩形マークBPと計測マークAPとは、本実施形態ではX軸方向に関して少なくとも460μm(20μm×23)以上の間隔を置いて形成される必要がある。後述するように、これらのマークを、ウエハW上の13行23列のマトリクス状の複数の領域にそれぞれ転写する(即ち、ウエハW上でX軸方向に関する各マークを転写すべき領域の個数を23個とする)ためである。なお、計測マークAPと矩形マークBPとはX軸方向の間隔がウエハW上で計測マークAPが転写される13×23個の領域と、矩形マークBPが転写される13×23個の領域とが重ならないように設定されていれば良い。
【0083】
また、前述のレチクルセンタを通るパターン領域PAのX軸方向の両側には、一対のレチクルアライメントマークRM1、RM2が形成されている。
【0084】
次に、本実施形態の露光装置100における投影光学系PLの光学特性計測方法について、主制御装置28内のCPUの処理アルゴリズムを簡略化して示す図4のフローチャートに沿って、かつ適宜他の図面を用いて説明する。
【0085】
先ず、図4のステップ402において、不図示のレチクルローダを介してレチクルステージRST上にレチクルRをロードするとともに、不図示のウエハローダを介してウエハWをウエハテーブル18上にロードする。なお、このウエハWには、ポジ型のフォトレジストが塗布されているものとする。
【0086】
次のステップ404において、レチクルRの投影光学系PLに対する位置合わせ、レチクルブラインドの設定などの所定の準備作業を行う。具体的には、主制御装置28は、ウエハテーブル18上に設けられた基準板FPの表面に形成されている一対の基準マーク(不図示)の中点が投影光学系PLの光軸AXとほぼ一致するように、ウエハテーブル18を移動する。この移動は、主制御装置28によりウエハ干渉計26の計測結果をモニタしつつウエハステージ駆動系22を介してXYステージ20を移動することにより行われる。次に、主制御装置28は、レチクルRの中心(レチクルセンタ)が投影光学系PLの光軸AXとほぼ一致するように、レチクル干渉計54Rの計測値に基づいて、レチクルステージ駆動系56Rを介してレチクルステージRSTの位置を調整する。このとき、例えば、前述のレチクルアライメント検出系(不図示)によって、投影光学系PLを介してレチクルアライメントマークRM1,RM2と対応する前述の基準マークとの相対位置が検出される。
【0087】
そして、主制御装置28は、レチクルアライメント検出系によって検出された相対位置の検出結果に基づいてレチクルアライメントマークRM1,RM2と対応する前述の基準マークとの相対位置誤差がともに最小となるようにレチクルステージ駆動系56Rを介してレチクルステージRSTのXY面内の位置を調整する。これにより、レチクルRの中心(レチクルセンタ)が投影光学系PLの光軸と正確にほぼ一致するとともに、レチクルRの回転角もウエハ干渉計26の測長軸で規定される直交座標系の座標軸に正確に一致するようになる。
【0088】
また、照明光ILの照射領域(投影光学系PLの有効視野内に対応)が図3の点線で示される位置に一致するように、照明系IOP内の可動レチクルブラインド8Bの非走査方向の開口幅が調整される。
【0089】
このようにして、所定の準備作業が終了すると、次のステップ406に移行して、露光エネルギ量の目標値を初期化する。すなわち、カウンタjに初期値「1」を設定して露光エネルギ量の目標値PをPに設定する(j←1)。本実施形態では、カウンタjは、露光エネルギ量の目標値の設定とともに、露光の際のウエハWのX軸方向(後述するマトリクスの行方向)の移動目標位置の設定にも用いられる。なお、本実施形態では、前述のようにウエハWの表面にポジ型レジストが塗布され、例えばポジ型レジストに関する既知の最適露光量を中心として、露光エネルギ量をPからΔP刻みでP(一例としてN=23のとき、P=P〜P23)まで変化させるので、カウンタjは、少なくとも1からN(23)までカウントできるように設定されている必要がある。
【0090】
次のステップ408において、投影光学系PLの光軸AXの方向に関するウエハWの位置(Z軸方向に関する位置、以下、これを「ウエハWのフォーカス位置」と呼ぶ)の目標値を初期化する。すなわち、カウンタiに初期値「1」を設定してウエハWのフォーカス位置の目標値ZをZに設定する(i←1)。本実施形態では、カウンタiは、ウエハWのフォーカス位置の目標値の設定とともに、露光の際のウエハWのY軸方向(後述するマトリクスの列方向)の移動目標位置の設定にも用いられる。なお、本実施形態では、例えば投影光学系PLに関する既知の最良フォーカス位置(設計値など)を中心としてウエハWのフォーカス位置をZからΔZ刻みでZ(一例としてM=13のとき、Z=Z〜Z13)まで変化させるため、カウンタiは、少なくとも1からM(13)までカウントできるように設定されている必要がある。
【0091】
従って、本実施形態では、投影光学系PLの光軸AXの方向に関するウエハWの位置とウエハW上に照射される照明光ILのエネルギ量をそれぞれ変更しながら、計測マークAP(計測用パターンMPを含むマーク)及び矩形マークBPをウエハW上に順次転写するための、N×M(一例として23×13=299)回の露光(後述するステップ414における露光)が行われることになる。この露光により、ウエハW上には、計測マークAPが転写されたN×M個の転写領域(DAi,j、i=1〜M、j=1〜N)から成るマトリクス状の転写領域行列DCと、矩形マークBPが転写されたN×M個の転写領域(DAi,j、i=1〜M、j=1〜N)から成るマトリクス状の転写領域行列DCが形成されることとなる(図6参照)。
【0092】
ここで、説明は前後するが、便宜上、後述する露光によって、計測マークAPが転写されるウエハW上の転写領域行列DCと矩形マークBPが転写されるウエハW上の転写領域行列DCとについて図5を用いて説明する。この図5に示されるように、本実施形態では、M行N列(13行23列)のマトリクス状に配置されたM×N(=13×23=299)個の仮想の転写領域DAi,j(i=1〜M、j=1〜N)に計測マークAP及び矩形マークBPがそれぞれ転写され、これら計測マークAP及び矩形マークBPがそれぞれ転写されたM×N個の転写領域DAi,jから成る転写領域行列DC及び転写領域行列DCがウエハW上に形成される。なお、仮想の転写領域DAi,jは、図5に示されるように、+X方向が行方向(jの増加方向)となり、+Y方向が列方向(iの増加方向)となるように配列されている。また、以下の説明において用いられる添え字i,j、及びM,Nは、上述と同じ意味を有するものとする。
【0093】
図4に戻り、次のステップ410において、計測マークAPが、ウエハW上の転写領域行列DCの転写領域DAi,j(ここではDA1,1(図6参照))に転写され、矩形マークBPが、転写領域行列DCの転写領域DAi,j(DA1,1)に転写される位置に、ウエハ干渉計26の計測値をモニタしつつウエハステージ駆動系22を介してXYステージ20(ウエハW)を移動させる。
【0094】
次のステップ412において、ウエハWのフォーカス位置が、設定された目標値Z(この場合Z)と一致するように、フォーカスセンサAFSからの計測値をモニタしながらウエハテーブル18をZ軸方向に微少駆動する。このとき、転写領域行列DCと転写領域行列DCとで転写領域DAi,jのフォーカス位置がそれぞれ目標値Zに設定されるように、ウエハテーブル18の傾斜制御を行っても良い。
【0095】
次のステップ414において、露光を実行する。ここでは、投影光学系PLの光学特性を計測するのが目的であるため、露光中は、レチクルRとウエハW、すなわちレチクルステージRSTとXYステージ20とを、静止させたままとする。これは、もし、レチクルステージRSTとXYステージ20を走査させて露光したとすると、露光によって転写された像の形成状態が、それらのステージの相対位置関係の微小な変化に影響を受け、その影響が投影光学系PLの光学特性の計測にとっての外乱成分となるからである。なお、レチクルステージRSTを静止させたままでも、前述のように、計測マークAP及び矩形マークBPは照射領域内にあるため、それらを同時にウエハW上に転写することができる。
【0096】
また、このとき、ウエハW上の一点における露光エネルギ量(積算露光量)が、設定された目標値(この場合P)となるように、露光量制御が行われる。この露光エネルギ量の制御方法としては、例えば、次の第1〜第3の方法を、単独で、あるいは適宜組み合わせて用いることができる。
【0097】
すなわち、第1の方法として、パルスの繰り返し周波数を一定に維持し、エネルギ粗調器3を用いてレーザビームLBの透過率を変化させ像面(ウエハ面)に与えられる露光光のエネルギ量を調整する。第2の方法として、パルスの繰り返し周波数を一定に維持し、光源1に指示を与えてレーザビームLBの1パルス当たりのエネルギを変化させることにより像面(ウエハ面)に与えられる露光光のエネルギ量を調整する。第3の方法として、レーザビームLBの透過率及びレーザビームLBの1パルス当たりのエネルギを一定に維持し、パルスの繰り返し周波数を変更することによって、像面(ウエハ面)に与えられる露光光のエネルギ量を調整する。なお、これらの方法のうち、どれを選択するかについては、主制御装置28によって決定される。
【0098】
これにより、図6に示されるように、ウエハW上の転写領域行列DCの転写領域DA1,1に計測用パターンMPを含む計測マークAPの像が転写され、転写領域行列DCの転写領域DA1,1に矩形マークBPの像が転写される。
【0099】
図4に戻り、ステップ416において、ウエハWのフォーカス位置の目標値がZ以上であるか否かを判断することにより、所定のZ範囲での露光が終了したか否かを判断する。ここでは、最初の目標値Zでの露光が終了しただけなので、ステップ418に移行し、カウンタiを1インクリメントする(i←i+1)とともに、ウエハWのフォーカス位置の目標値にΔZを加算する(Z←Z+ΔZ)。また、フォーカス位置の目標値をZ(=Z+ΔZ)に変更した後、ステップ410に戻る。このステップ410において、ウエハW上の転写領域行列DC、DCの各転写領域DA2,1に計測マークAPと矩形マークBPとがそれぞれ転写される位置にウエハWが位置決めされるように、XYステージ20を所定のステップピッチSPだけXY面内で所定方向(この場合−Y方向)に移動する。なお、ステップピッチSPは、約5μmに限らないが、5μmすなわち計測マークAP及び矩形マークBPのウエハW上の投影像の寸法以下であることが望ましい。この理由については後述する。
【0100】
次のステップ412において、ウエハWのフォーカス位置が目標値(この場合Z)と一致するように、ウエハテーブル18をΔZだけ光軸AXの方向に移動させ、ステップ414において前述と同様にして露光を行い、ウエハW上の転写領域行列DC、DCの各転写領域DA2,1にそれぞれ計測マークAPと矩形マークBPとをそれぞれ転写する。但し、前述のように、ステップピッチSPが、計測マークAP及び矩形マークBPのウエハW上の投影像の寸法以下となっているので、転写領域行列DC、DCの転写領域DA2,1と転写領域DA2,1との境界部分に、計測マークAP及び矩形マークBPの開口パターンの像の一部によって形成される枠線が形成されることはない。
【0101】
以後、ステップ416における判断が肯定されるまで、すなわちそのとき設定されているウエハWのフォーカス位置の目標値がZであると判断されるまで、ステップ410→412→414→416→418の閉ループの各処理(判断を含む)を繰り返し実行する。これにより、ウエハW上の転写領域行列DCの転写領域DAi,1(i=3〜M)に計測マークAPがそれぞれ順次転写されるとともに、転写領域行列DCの転写領域DAi,1(i=3〜M)に矩形マークBPがそれぞれ順次転写される。
【0102】
一方、転写領域DAM,1に対する露光が終了し、上記ステップ416における判断が肯定されると、処理はステップ420に移行し、そのとき設定されている露光エネルギ量の目標値がP以上であるか否かを判断する。ここでは、そのとき設定されている露光エネルギ量の目標値はP(<P)であるため、このステップ420における判断は否定され、処理はステップ422に移行する。
【0103】
ステップ422では、カウンタjを1インクリメントする(j←j+1)とともに、露光エネルギ量の目標値にΔPを加算する(P←P+ΔP)。ここでは、露光エネルギ量の目標値をP(=P+ΔP)に変更した後、処理はステップ408に戻る。
【0104】
このステップ408においてウエハWのフォーカス位置の目標値を初期化した後、ステップ410→412→414→416→418の閉ループの処理(判断を含む)を、ステップ416における判断が肯定されるまで、すなわち露光エネルギ量の目標値Pでの、所定のウエハWのフォーカス位置範囲(Z〜Z)についての露光が終了するまで、繰り返し実行する。これにより、ウエハW上の転写領域行列DCの転写領域DAi,2(i=1〜M)に計測マークAPが順次転写されるとともに、転写領域行列DCの転写領域DAi,2(i=1〜M)に矩形マークBPが順次転写される。
【0105】
一方、露光エネルギ量の目標値Pでの、所定のウエハWのフォーカス位置範囲(Z〜Z)についての露光が終了すると、ステップ416における判断が肯定され、ステップ420に移行し、設定されている露光エネルギ量の目標値がP以上であるか否かを判断する。この場合、露光エネルギ量の目標値はPであるため、このステップ420における判断は否定され、ステップ422に移行する。ステップ422において、カウンタjを1インクリメントするとともに、露光エネルギ量の目標値にΔPを加算する(P←P+ΔP)。ここでは、露光エネルギ量の目標値をPに変更した後、ステップ408に戻る。以後、上記と同様の処理(ステップ416及びステップ420における判断を含む)が、繰り返し実行される。このようにして、ウエハW上の転写領域行列DCの転写領域DAi,j(i=1〜M、j=3〜N)に計測マークAPが順次転写されるとともに、転写領域行列DCの転写領域DAi,j(i=1〜M、j=3〜N)に矩形マークBPが順次転写される。すなわち、所定の露光エネルギ量の範囲(P〜P)についてのウエハWの所定のフォーカス位置範囲(Z〜Z)についての露光が実行される。
【0106】
カウンタjの値がNとなると、ステップ420における判断は肯定され、ステップ424に移行する。これにより、ウエハW上の転写領域行列DC、DCには、図6に示されるように、フォーカス位置と露光エネルギ量との組合せがそれぞれ異なるN×M(一例として23×13=299)個の計測マークAP及び矩形マークBPの転写像(潜像)が形成される。なお、実際には、上述のようにして、ウエハW上に計測マークAP及び矩形マークBPの転写像(潜像)が形成されたN×M(一例として23×13=299)個の転写領域が形成された段階で、結果的に転写領域行列DC、DCが形成されるのであるが、上記の説明では、内容を分かり易くするために、転写領域行列DC、DCが予めウエハW上に存在しているかのような説明方法を採用した。
【0107】
図4に戻り、ステップ424において、不図示のウエハアンローダを介してウエハWをウエハテーブル18上からアンロードするとともに不図示のウエハ搬送系を用いてウエハWを露光装置100にインラインにて接続されている不図示のコータ・デベロッパに搬送する。
【0108】
上記のコータ・デベロッパに対するウエハWの搬送後に、ステップ426に進んでウエハWの現像が終了するのを待つ。このステップ426における待ち時間の間に、コータ・デベロッパによってウエハWの現像が行われる。この現像の終了により、ウエハW上には、図6に示されるような矩形(長方形)の転写領域行列DC、DCのレジスト像が形成され、このレジスト像が形成されたウエハWが投影光学系PLの光学特性を計測するための試料となる。図7(A)には、ウエハW上に形成された転写領域行列DCのレジスト像の一例が示され、図7(B)には、ウエハW上に形成された転写領域行列DCのレジスト像の一例が示されている。計測マークAPには計測用パターンMPが配設されているため、図7(A)に示されるように、その計測マークAPの転写領域行列DCにおいて、ウエハWのフォーカス位置や露光エネルギ量の露光条件が良好であった一部の転写領域には、計測用パターンMPのレジスト像が形成されているが、図7(B)に示されるように、矩形マークBPによって形成された転写領域行列DCの全ての転写領域には、そのような計測パターンのレジスト像は形成されていない。なお、図7(A)、図7(B)では、転写領域行列DC及び転写領域行列DCは、N×M(23×13=299)個の転写領域DAi,j(i=1〜M、j=1〜N)によって構成され、隣接する転写領域相互間に仕切りの枠のレジスト像が存在するかのように図示されているが、これは個々の転写領域を分かり易くするためにこのようにしたものである。しかし、実際には、隣接する転写領域相互間に仕切りの枠のレジスト像は存在しない。このように枠を無くすことにより、従来問題となっていた、FIA系のアライメントセンサなどによる画像取り込みに際し、枠による干渉に起因してパターン部のコントラスト低下が生じるのを防止できる。このため、本実施形態では、前述のステップピッチSPを、計測マークAP及び矩形マークBPのウエハW上の投影像の寸法以下となるように設定したのである。
【0109】
また、この場合、隣接する転写領域間のマルチバーパターンから成る計測用パターンMPのレジスト像同士の距離をLとすると、この距離Lは、一方の計測用パターンMPの像のコントラストに隣接する計測用パターンMPの像の存在が影響を与えない程度の距離とされている。この距離Lは、転写領域を撮像する撮像装置(本実施形態の場合、アライメント検出系AS(FIA系のアライメントセンサ))の解像度、計測用パターンMPの像のコントラスト、レジストの反射率、屈折率などを含むプロセスによって定まるプロセスファクタ、アライメント検出系AS(FIA系のアライメントセンサ)の検出波長などのうちの少なくとも1つの条件に基づいて決定されるのが望ましい。
【0110】
上記ステップ426の待ち状態で、不図示のコータ・デベロッパの制御系からの通知によりウエハWの現像が終了したことを確認すると、ステップ428に移行し、不図示のウエハローダに指示を出して、前述のステップ402と同様にしてウエハWをウエハテーブル18上に再度ロードした後、ステップ430の投影光学系PLの光学特性を算出するサブルーチン(以下、「光学特性計測ルーチン」とも呼ぶ)に移行する。
【0111】
この光学特性計測ルーチンでは、まず、図8のステップ502において、図7(A)に示されるウエハW上の転写領域行列DCのレジスト像がアライメント検出系ASで検出可能となる位置にウエハWを移動させる。この移動、すなわち位置決めは、ウエハ干渉計26の計測値をモニタしつつ、ウエハステージ駆動系22を介してXYステージ20を制御することにより行う。なお、以下の光学特性計測ルーチンの説明では、転写領域行列DCのレジスト像を、適宜「転写領域行列DC」と略述するものとする。
【0112】
次のステップ504では、ウエハW上の転写領域行列DCをアライメント検出系ASのFIA系アライメントセンサ(以下、適宜「FIAセンサ」と略述する)を用いて撮像し、その撮像(画像)データを取り込む。なお、FIAセンサは、レジスト像を自身の有する撮像素子(CCD等)のピクセル単位に分割し、ピクセル毎に対応するレジスト像の濃淡を8ビットのデジタルデータ(ピクセルデータ、輝度値)として主制御装置28に供給するようになっている。すなわち、前記撮像データは、複数のピクセルデータで構成されている。なお、ここでは、レジスト像の濃度が高くなる(黒に近くなる)につれてピクセルデータの値は大きくなるものとする。
【0113】
次のステップ506では、FIAセンサから得られた転写領域行列DCの撮像データを整理し、撮像データファイルを作成する。
【0114】
次のステップ508において、図7(B)で示されるウエハW上の転写領域行列DCのレジスト像がアライメント検出系ASで検出可能となる位置に、ウエハ干渉計26の計測値をモニタしつつ、ウエハステージ駆動系22を介してXYステージ20を制御することによって、ウエハWを移動させる。なお、以下の光学特性計測ルーチンの説明では、転写領域行列DCのレジスト像を、適宜「転写領域行列DC」と略述するものとする。
【0115】
次のステップ510では、ウエハW上の転写領域行列DCをアライメント検出系ASのFIAセンサを用いて撮像し、その撮像データを取り込み、ステップ512では、FIAセンサからの転写領域行列DCの撮像データを整理し、撮像データファイルを作成する。
【0116】
次のステップ514では、転写領域行列DC、DCの外枠の位置、より具体的には、それらの枠の4つの頂点の位置を検出する枠検出処理を行う。ここで、転写領域行列の外枠は、図7(A)、図7(B)において太線で示されている、転写領域行例DC、DCの最も外側の外周枠のことである。この枠検出は、ステップ506及びステップ512において作成された両領域行列周辺の撮像データファイルの撮像データを用いて行われるが、このような外枠は、転写領域行列DC、DCとその周辺の未露光領域との境界線(エッジ)であるため、撮像データにおいては、その境界線付近に対応するピクセルデータの値が、急激に変化しているものと予想される。したがって、撮像データ中のピクセルデータの変化の状態を調べていけば、その撮像データにおける外枠(エッジ)の位置情報を検出(すなわちエッジ検出)することが可能となる。
【0117】
例えば、撮像データにおいて、転写領域行列DC、DCの外枠を構成し、互いに対向する2辺を必ず通過すると予想される縦又は横方向の少なくとも2本ずつの直線に沿ったピクセルデータの値の変化を抽出し、それらのピクセルデータの値の変化に基づいて、それらの直線状の転写領域行列と未露光領域との境界、すなわち上述の外枠の少なくとも2点の位置情報を、外枠を形成する4辺について検出し、1辺毎に得られる2点の位置情報に基づいて外枠となる4辺の位置情報を検出し、それらの直線の交点を転写領域行列DC、DCの外枠の4頂点として検出するようにしても良い。
【0118】
なお、本実施形態では、このような枠検出処理の精度は、投影光学系PLの光学特性の計測に多大な影響を及ぼすようになるため、外枠検出を精度良く行う必要がある。そのため、画像処理の一手法として公知なエッジ検出用フィルタを、上述の撮像データに適用してエッジを強調したり、その撮像データに含まれるノイズ成分をフィルタ処理によって除去したり、最初はラフに外枠を検出して、統計的手法、例えば、境界線のピクセルデータがある正規分布等の分布に従うとして、その正規分布による最尤推定の手法などを用いて、未露光領域と転写領域とのピクセルデータの閾値を求め、高精度に外枠の位置を求めるようにしても良い。また、結果的に算出された外枠の4点の位置が、長方形の4頂点を正確に構成していない場合には、その4点の位置情報に基づいて、最小二乗法などの手法を用いて、その4点に最も近い長方形の4頂点を、外枠の4頂点とするようにしても良い。
【0119】
そして、ステップ516において、ステップ514において検出された転写領域行列DCの外枠情報と転写領域行列DCの外枠情報(外枠の4点の位置情報)とに基づいて、両領域行列DC、DCの外枠の行方向の辺の長さ、列方向の辺の長さの比をそれぞれ算出する。そして、それらの比に基づいて、転写領域行列DCの外枠の大きさを基準として、転写領域行列DCの外枠の大きさ、すなわちスケーリングを合わせる。これにより、両領域行列DC、DCを重ね合わせたときに、両領域行列DC、DCが実質的に過不足なく重なり合うようになる。
【0120】
そして、ステップ518において、スケーリング合わせされた外枠の内部の転写領域行列DC内のピクセル(検出点)と、参照情報としての転写領域行列DCのピクセルとをそれぞれの撮像データから抽出し、転写領域行列DC、DCを重ね合わせたときに、転写領域行列DCの各ピクセルに対応する転写領域行列DCのピクセルを求め、転写領域行列DCのピクセルの輝度値と、そのピクセルに対応する(最も近傍に存在する)転写領域行列DCのピクセルの輝度値との差分値を、転写領域行列DC内のピクセル毎に算出する。この転写領域行列DC内のピクセル毎に得られる差分値の集合体が差分情報となる。
【0121】
転写領域行列DCの各転写領域DAi,jは、それぞれ異なるウエハWのフォーカス位置や露光ドーズ量の露光条件の下で形成されたものであるため、図9(A)を示されるように、計測マークAPの像全体の形成状態が転写領域毎に異なったものとなっており、それが、計測用パターンMPのレジスト像の形成状態を示すコントラストを精度良く計測できない原因となっていた。そこで、本実施形態では、転写領域行列DCの各転写領域DAi,jとそれぞれ同一の露光条件で形成された転写領域から成る図9(B)に示される転写領域行列DCを用意し、転写領域行列DCのピクセルデータ(輝度値)から転写領域行列DCのピクセルデータ(輝度値)を差分すれば、その差分情報として、図9(C)に示されるように、各露光条件における計測用パターンMPの像の形成状態だけが抽出されるようになる。
【0122】
図8に戻り、次のステップ520では、ステップ518において算出された差分情報を、フィルタ処理を実行して平滑化する。具体的には、前記各ピクセルの差分値が、その周囲のピクセルの差分値と著しく異なる場合には、その差分値は、その周囲のピクセルの差分値の全体的な変化に合わせて調整される。一般に、撮像データにはノイズ成分が含まれており、それらのデータを差分すると、そのノイズ成分が強調されるようになる。この平滑化により、そのようなノイズ成分を抑圧することができるようになる。
【0123】
次のステップ522では、ステップ514において求められた転写領域行列DCの外枠情報に基づいて、転写領域行列DCを各転写領域DAi,jに分割する。具体的には、転写領域行列DCの外枠を基準として、転写領域行列DCを、13×23のマトリクス状に等分割し、各転写領域DAi,j(i=1〜13、j=1〜23)を求める。
【0124】
次に、最適露光条件を算出するサブルーチン524(以下、適宜「最適露光条件算出ルーチン」とも呼ぶ)に移行する。この最適露光条件算出ルーチンでは、まず、図10に示されるように、ステップ602において、各転写領域DAi,j(i=1〜M、j=1〜N)について、その領域内の各ピクセルの輝度値の差分値に関する代表値(以下、適宜「スコア」とも呼ぶ)を算出する。
【0125】
以下、スコアEi,j(i=1〜M、j=1〜N)の算出方法について詳述する。
【0126】
通常、撮像された計測対象において、上述のようにして求めた差分情報のうち、計測パターンMPに対応するパターン部分とそれ以外の非パターン部分には、コントラスト差がある。パターンが消失している転写領域内には、非パターン領域の輝度を有するピクセルだけが存在し、一方、パターンが残存する領域内にはパターン領域の輝度を有するピクセルと非パターン領域輝度を有するピクセルとが混在する。従って、パターン有無判別を行うための代表値(スコア)として、各転写領域内での輝度値の差分値のばらつきを用いることができる。
【0127】
本実施形態では、一例として、転写領域内の指定範囲のピクセルの輝度の差分値の分散(又は標準偏差)を、スコアEとして採用するものとする。
【0128】
指定範囲内のピクセルの総数をSとし、k番目のピクセルの輝度値の差分値をIとすると、スコアEは次式(1)で表せる。
【0129】
【数1】
Figure 2004158670
【0130】
本実施形態の場合、前述の如く、レチクルR上で、計測マークAPの開口パターンと中心を同じくする、その開口パターンの約60%の縮小領域部分に計測用パターンMPが配置されている。また、前述の露光の際のステップピッチSPが、各計測マークAPのウエハW上への投影像の寸法とほぼ一致する約5μmに設定されている。従って、パターン残存の転写領域において、計測用パターンMPに相当するパターン領域は、転写領域DAi,jと中心を同じくし、該転写領域DAi,jをほぼ60%に縮小した範囲(領域)に存在することとなる。
【0131】
かかる点を考慮すると、上記の指定範囲として、例えば転写領域DAi,j(i=1〜M、j=1〜N)と中心を同じくし、その領域を縮小した範囲をスコア算出に用いることができる。但し、その縮小率A(%)は以下のように制限される。
【0132】
まず、下限については、範囲が狭すぎるとスコア算出に用いる領域が、パターン部分のみになってしまい、そうするとパターン残存部でもばらつきが小さくなってパターン有無判別には利用できなくなる。この場合には、上述のパターンの存在範囲から明らかなように、A>60%である必要があることが望ましい。また、上限については、当然100%以下となるが、検出誤差などを考慮して100%より小さい比率にすべきである。これより、縮小率Aは、60%<A<100%に定める必要があることが望ましい。
【0133】
本実施形態の場合、パターン部が転写領域の約60%を占めているため、スコア算出に用いる領域(指定範囲)の転写領域に対する比を上げるほどS/N比が上がるものと予想される。
【0134】
しかるに、スコア算出に用いる領域内でのパターン部と非パターン部の領域サイズが同じになれば、パターン有無判別のS/N比を最大にすることができる。従って、幾つかの比率を実験的に確認して、最も安定した結果が得られる比率として、A=90%という比率を採用するものとした。勿論Aは、90%に限定されるものではなく、計測用パターンMPと計測マークAPとの関係、及びステップピッチSPによって決定されるウエハW上の転写領域を考慮して、転写領域DAi,jに対する計測用パターンMPの像が占める割合を考慮して定めれば良い。また、スコア算出に用いる指定範囲は、転写領域DAi,jと中心を同じくする領域に限定されるものではなく、計測用パターンMPの像が転写領域DAi,j内のどの位置に存在するかを考慮して定めれば良い。
【0135】
従って、ステップ602では、前述の差分情報から、各転写領域DAi,jの前記指定範囲内の差分情報を抽出し、上式(1)を用いて、各転写領域DAi,j(i=1〜M、j=1〜N)のスコアEi,j(i=1〜M、j=1〜N)を算出する。
【0136】
上記の方法で求めたスコアEi,jは、計測用パターンMPの像の形成状態を数値として表しているので、所定の閾値で二値化することによってそのパターンの有無の判別を自動的にかつ安定して行うことが可能である。
【0137】
次に、ステップ604において、転写領域DAi,j毎に先に求めたスコアEi,jと所定の閾値SHとを比較して、各転写領域DAi,jにおける計測用パターンMPの像の有無を検出し、検出結果としての判定値Fi,j(i=1〜M、j=1〜N)を図示しない記憶装置に保存する。すなわち、このようにして、スコアEi,jに基づいて、転写領域DAi,j毎に計測用パターンMPの像の形成状態を検出する。なお、像の形成状態としては、種々のものが考えられるが、本実施形態では、上述の如く、スコアEi,jがパターンの有無具合を数値として表すものであるという点に基づいて、転写領域DAi,j内にパターンの像が形成されているか否かに着目することとしたものである。
【0138】
ここでは、スコアEi,jが閾値SH以上の場合には、計測用パターンMPの像が形成されていると判断し、検出結果としての判定値Fi,jを「0」とする。一方、スコアEi,jが閾値SH未満の場合には、計測用パターンMPの像が形成されていないと判断し、検出結果としての判定値Fi,jを「1」とする。図11には、この検出結果の一例がテーブルデータとして示されている。この図11に示されるテーブルデータは、前述の図5に示される転写領域行列DCに対応するものである。
【0139】
図11において、例えば、F12,16は、ウエハWのZ軸方向に関する位置がZ12で、露光エネルギ量がP16のときに転写された計測用パターンMPの像の形成状態の検出結果を意味し、一例として、図11の場合には、F12,16は、「1」という値になっており、計測用パターンMPの像が形成されていないと判断されたことを示している。
【0140】
なお、閾値SHは、予め設定されている値であり、オペレータが図示しない入出力装置を用いて変更することも可能である。
【0141】
次のステップ606では、上述の検出結果に基づいて、フォーカス位置毎にパターンの像が形成されている転写領域の数を求める。すなわち、フォーカス位置(Z〜Z13)毎に判定値「0」の転写領域が何個あるかを計数し、その計数結果をパターン残存数T(i=1〜M)とする。この際に、周囲の領域と異なる値を持ついわゆる跳び領域は無視する。例えば、図11の場合には、ウエハWのフォーカス位置がZではパターン残存数T=8、ZではT=11、ZではT=14、ZではT=16、ZではT=16、ZではT=13、ZではT=11、ZではT=8、ZではT=5、Z10ではT10=3、Z11ではT11=2、Z12ではT12=2、Z13ではT13=2である。このようにして、フォーカス位置とパターン残存数Tとの関係を求めることができる。
【0142】
なお、上記の跳び領域が生ずる原因として、計測時の誤認識、レーザのミスファイヤ、ゴミ、ノイズ等が考えられるが、このようにして生じた跳び領域がパターン残存数Tの検出結果に与える影響を軽減するために、フィルタ処理を行っても良い。このフィルタ処理としては、例えば評価する転写領域を中心とする3×3の転写領域のデータ(判定値Fi,j)の平均値(単純平均値又は重み付け平均値)を求めることが考えられる。なお、フィルタ処理は、形成状態の検出処理前のデータ(スコアEi,j)に対して行っても勿論良く、この場合には、より有効に跳び領域の影響を軽減できる。
【0143】
次のステップ608では、パターン残存数から最良フォーカス位置を算出するためのn次の近似曲線(例えば4〜6次曲線)を求める。
【0144】
具体的には、上記ステップ606で検出されたパターンの残存数を、横軸をフォーカス位置とし、縦軸をパターン残存数Tとする座標系上にプロットする。例えば、この近似曲線は、図12に示されるようになる。ここで、本実施形態の場合、ウエハWの露光にあっては、各転写領域DAi,jを同一の大きさとし、かつ、行方向で隣接する転写領域間の露光エネルギの差を一定値(=ΔP)とし、列方向で隣接する転写領域間のフォーカス位置の差を一定値(=ΔZ)としたので、パターン残存数Tが露光エネルギ量に比例するものとして扱うことができる。すなわち、図12において、縦軸は露光エネルギ量Pであると考えることもできる。
【0145】
上記のプロット後、各プロット点をカーブフィットすることによりn次の近似曲線(最小自乗近似曲線)を求める。これにより、例えば図12に点線で示されるような曲線P=f(Z)が求められる。
【0146】
図10に戻り、次のステップ610では、上記曲線P=f(Z)の極値(極大値又は極小値)の算出を試みるとともに、その結果に基づいて極値が存在するか否かを判断する。そして、極値が算出できた場合には、ステップ614に移行して極値におけるフォーカス位置を算出して、その算出結果を光学特性の一つである最良フォーカス位置とする。
【0147】
一方、上記ステップ610において、極値が算出されなかった場合には、ステップ612に移行して、ウエハWの位置変化(Zの変化)に対応する曲線P=f(Z)の変化量が最も小さいフォーカス位置の範囲を算出し、その範囲の中間の位置を最良フォーカス位置として算出し、その算出結果を最良フォーカス位置とする。すなわち、曲線P=f(Z)の最も平坦な部分に基づいてフォーカス位置を算出する。
【0148】
ここで、このステップ612のような最良フォーカス位置の算出ステップを設けたのは、計測用パターンMPの種類やレジストの種類その他の露光条件によっては、例外的に上述の曲線P=f(Z)が明確なピークを持たないような場合があり、このような場合にも、最良フォーカス位置をある程度の精度で算出できるようにする必要があるからである。
【0149】
そして、上述のようにして求められた投影光学系PLの光学特性のデータは、ステップ616において、図示しない記憶装置に保存されるとともに、不図示の表示装置の画面上に表示される。これにより、最適露光条件算出ルーチンの処理、すなわち図10に示されるサブルーチン524の処理を終了し、図8に示される一連の光学特性の計測処理を終了する。
【0150】
次に、デバイス製造の場合における、本実施形態の露光装置100による露光動作を説明する。
【0151】
前提として、上述のようにして決定された最良フォーカス位置の情報が、不図示の入出力装置を介して主制御装置28に入力されているものとし、レチクルRとウエハWとは、露光装置100からアンロードされているものとする。
【0152】
まず、主制御装置28からの指示に応じて、不図示のレチクルローダにより、転写対象となる所定の回路パターン(デバイスパターン)が形成されたレチクルRがレチクルステージRST上にロードされる。同様に、不図示のウエハローダにより、ウエハWがウエハテーブル18上にロードされる。
【0153】
次に、主制御装置28により、不図示のレチクルアライメント検出系、ウエハテーブル18上の基準板FP、アライメント検出系AS等を用いて、レチクルアライメント、ベースライン計測などの準備作業が所定の手順で行われ、これに続いてEGA(エンハンスト・グローバル・アライメント)方式などのウエハアライメントが行われる。なお、上記のレチクルアライメント、ベースライン計測等の準備作業については、例えば特開平7−176468号公報(対応米国特許第5,646,413号)に詳細に開示され、また、これに続くEGAについては、特開昭61−44429号公報(対応米国特許第4,780,617号)に詳細に開示されているので、ここではこれ以上の詳細説明は省略する。
【0154】
上記のウエハアライメントが終了すると、以下のようにしてステップ・アンド・スキャン方式の露光動作が行われる。
【0155】
まず、主制御装置28は、レチクルRとウエハW、すなわちレチクルステージRSTとXYステージ20とのY軸方向の相対走査を開始する。両ステージRST、20がそれぞれの目標走査速度に達して等速同期状態に達すると、照明系IOPからの紫外パルス光によってレチクルRのパターン領域が照明され始め、走査露光が開始される。上記の相対走査は、主制御装置28が、前述したウエハ干渉計26及びレチクル干渉計54Rの計測値をモニタしつつ、レチクルステージ駆動系56R及びウエハステージ駆動系22を制御することにより行われる。
【0156】
主制御装置28は、特に上記の走査露光時には、レチクルステージRSTのY軸方向の移動速度VrとXYステージ20のY軸方向の移動速度Vwとが、投影光学系PLの投影倍率(1/4倍あるいは1/5倍)に応じた速度比に維持されるように同期制御を行う。また、主制御装置28は、走査露光中に、フォーカスセンサAFSによって検出されたウエハWのZ軸方向に関する位置情報に基づき、前述した光学特性補正後の投影光学系PLの像面の焦点深度の範囲内にウエハWの表面の露光領域が収まるように、ウエハステージ駆動系22を介してウエハテーブル18をZ軸方向及び傾斜方向に駆動し、ウエハWのフォーカス・レベリング制御を行う。なお、本実施形態では、ウエハWの露光動作に先立って、上述のように算出された最良フォーカス位置に基づいて投影光学系PLの像面を算出し、この像面がフォーカスセンサAFSの検出基準となるようにフォーカスセンサAFSの光学的なキャリブレーション(例えば、受光系50b内に配置される平行平面板の傾斜角度の調整など)が行われる。勿論、光学的なキャリブレーションを必ずしも行う必要はなく、例えば先に算出された像面とフォーカスセンサAFSの検出基準との偏差に応じたオフセットを考慮して、フォーカスセンサAFSの出力に基づいてウエハWの表面を像面に一致させるフォーカス動作(及びレベリング動作)を行うようにしても良い。
【0157】
そして、レチクルRのパターン領域の異なる領域が紫外パルス光で逐次照明され、パターン領域の全面に対する照明が完了することにより、ウエハW上の第1ショット領域の走査露光が終了する。これにより、レチクルRのパターンが投影光学系PLを介して第1ショット領域に縮小転写される。
【0158】
上述のようにして、第1ショット領域の走査露光が終了すると、主制御装置28により、ウエハステージ駆動系22を介してXYステージ20がX、Y軸方向にステップ移動され、第2ショット領域の露光のための走査開始位置(加速開始位置)に移動される。
【0159】
そして、主制御装置28により、上述と同様に各部の動作が制御され、ウエハW上の第2ショット領域に対して上記と同様の走査露光が行われる。
【0160】
このようにして、ウエハW上のショット領域の走査露光とショット間のステッピング動作とが繰り返し行われ、ウエハW上の露光対象ショットの全てにレチクルRのパターンが順次転写される。
【0161】
ウエハW上の全露光対象ショットへのパターン転写が終了すると、次のウエハと交換され、上記と同様にアライメント、露光動作が繰り返される。
【0162】
以上詳細に説明したように、本実施形態に係る露光装置における、投影光学系PLの光学特性計測方法によると、図4のステップ414(第1工程、第6工程)において、それぞれ露光条件が異なる計測用パターンMPを含む計測マークAPの像が、ウエハW上に転写されて複数の転写領域DAi,jから成る転写領域行列DCが形成されると同時に、矩形マークBPの像がウエハW上に転写されて複数の転写領域DAi,jから成る転写領域行列DCが形成される。
【0163】
そして、図8のステップ504(第2工程)において、転写領域行列DCの撮像データが撮像され、ステップ510(第7工程)において、転写領域行列DCの撮像データが撮像される。
【0164】
次いで、ステップ518(第3工程)において、転写領域行列DC内のピクセルデータと参照情報としての転写領域行列DC内のピクセルデータとの差分情報を求める。このようにすれば、計測用パターンMPの像の形成状態に関する成分だけを差分情報として抽出することができる。次いで、図10のステップ604(第4工程)において、その差分情報に基づいて、計測用パターンMPの像の形成状態が転写領域毎に算出され、ステップ612又はステップ614(第5工程)において、各転写領域DAi,jの計測用パターンMPの像の形成状態とその転写領域形成時の露光条件(ウエハWのフォーカス位置)との関係に基づいて、投影光学系PLの光学特性(本実施形態では、最良フォーカス位置)が算出される。
【0165】
すなわち、本実施形態では、計測用パターンMPを含む計測マークAPの転写領域DAi,jと同一形状及び大きさを有する矩形マークBPの転写領域DAi,jが、計測用パターンMPの複数の転写領域DAi,jと同一の配置状態となるように形成される。そして、転写により実際にウエハW上に形成された矩形マークBPの転写領域DAi,jの形成状態に関する情報を参照情報として、転写領域行列DC内のピクセルデータから差し引いている。したがって、実際のウエハW上に形成された外形が同じで配置状態が同一な転写領域DAi,jの情報を差分用の参照情報として用いることができるため、計測用パターンMPの像の形成状態に関する情報の成分以外の外乱成分を精度良くキャンセルすることができる。そのため、各転写領域DAi,jの計測用パターンMPの像の形成状態を精度良く算出することができ、結果的に、投影光学系PLの光学特性を精度良く算出することができる。
【0166】
また、本実施形態では、矩形マークBPの転写領域DAi,jが形成される際のウエハWのフォーカス位置や露光ドーズ量の露光条件が、その転写領域DAi,jに対応する計測パターンMPの転写領域DAi,jが形成される際の露光条件と同一となるように設定されている。このようにして形成された矩形マークBPの転写領域DAi,jの形成状態を差分用の参照情報として用いれば、複数の計測パターンMPの転写領域DAi,jの形成状態に関する情報から、計測用パターンMPの像の形成状態以外の外乱成分をさらに精度良くキャンセルすることができるようになる。
【0167】
また、本実施形態では、計測用パターンMPの転写領域DAi,jと矩形マークBPの転写領域DAi,jとが、同一の検出光学系(アライメント検出系ASのFIAセンサ)によって検出されるので、そのFIAセンサによって検出された、それらの転写領域の形成状態に関する情報同士を差分すれば、そのFIAセンサの光学特性の影響を、精度良くキャンセルすることができる。
【0168】
また、本実施形態の場合、隣接する転写領域間に枠線が存在しないので、像形成状態の検出対象である複数の転写領域(主として計測用パターンMPの像の残存する転写領域)において、計測用パターンMPの像のコントラストが枠線の干渉に起因して低下することがない。このため、それらの複数の転写領域の撮像データとしてパターン部と非パターン部のS/N比の良好なデータを得ることができる。従って、転写領域毎の計測用パターンMPの像の形成状態を精度、再現性良く検出することが可能となる。しかも、その像の形成状態を客観的、定量的なスコアEi,jを閾値SHと比較してパターンの有無情報(二値化情報)に変換して検出するので、転写領域毎の計測用パターンMPの形成状態を、再現性良く検出することができるとともに、パターン有無の判別を自動的にかつ安定して行うことができる。従って、本実施形態では、二値化に際して、閾値は一つだけで足り、複数の閾値を設定しておいて閾値毎にパターンの有無具合を判別するような場合に比べて、像の形成状態の検出に要する時間を短縮することができるとともに、その検出アルゴリズムも簡略化することができる。
【0169】
また、主制御装置28は、上述した転写領域毎の計測用パターンMPの像の形成状態の検出結果、すなわち客観的かつ定量的な上記のスコアEi,j、すなわち画像のコントラストの指標値を用いた検出結果に基づいて最良フォーカス位置を求めている。このため、短時間で精度良く最良フォーカス位置を求めることが可能となる。従って、この最良フォーカス位置に基づいて決定される投影光学系PLの光学特性の測定精度及び測定結果の再現性を向上させることができるとともに、結果的に投影光学系PLの光学特性の計測のスループットを向上させることが可能となる。
【0170】
また、本実施形態では、従来の寸法を計測する方法(CD/フォーカス法、SMPフォーカス計測法など)に比べて、計測用パターンMPを小さくすることができる。このため、転写領域間の間隔を狭くすることができ、転写領域の数を増やすことが可能となる。そのため、ΔP、ΔZを小さくして、最良フォーカス位置の測定精度を高めることが可能となる。
【0171】
また、本実施形態に係る光学特性計測方法によると、統計処理による近似曲線の算出という客観的、かつ確実な方法を基礎として最良フォーカス位置を算出することができる。なお、近似曲線の次数によっては、その変曲点、あるいはその近似曲線と所定のスライスレベルとの複数の交点等に基づいて最良フォーカス位置を算出することは可能である。
【0172】
また、本実施形態の露光装置によると、前述の光学特性計測方法により精度良く計測された投影光学系PLの光学特性(最良フォーカス位置)を考慮して最適な転写が行えるように投影光学系PLが露光に先立って調整され、その調整された投影光学系PLを介してレチクルRに形成されたパターンがウエハW上に転写される。更に、上述のようにして決定された最良フォーカス位置を考慮して露光の際のフォーカス制御目標値の設定が行われるので、デフォーカスによる色むらの発生を効果的に抑制することができる。従って、本実施形態に係る露光方法によると、微細パターンをウエハ上に高精度に転写することが可能となる。
【0173】
なお、上記実施形態では、計測用パターンMPの像の形成状態を、スコアEi, と閾値SHとを比較してパターンの有無情報(二値化情報)に変換して検出する場合について説明したが、本発明はこれに限定されるものではない。上記実施形態では、転写領域行列DC、DCの外枠を精度良く検出し、この外枠を基準として各転写領域DAi,jを演算により算出するので、各転写領域の位置を正確に求めることができる。従って、この正確に求められた各転写領域に対してテンプレートマッチングを行うこととしても良い。このようにすれば、短時間にテンプレートマッチングを行うことができる。この場合、テンプレートパターンとして、例えば像が形成された転写領域あるいは像が形成されなかった転写領域の撮像データを用いることができる。このようにしても、客観的、定量的な相関値の情報が転写領域毎に得られるので、得られた情報を所定の閾値と比較して、計測用パターンMPの形成状態を二値化情報(像の有無情報)に変換することによって、上記実施形態と同様に像の形成状態を精度、再現性良く検出することができる。
【0174】
また、上記実施形態では、各転写領域DAi,jの検出の基準となる外枠の検出、及び各転写領域DAi,jの像の形成状態の検出にFIA系のアライメントセンサを用いるものとしたが、本発明はこれに限定されるものではない。すなわち、外枠の検出、及び各転写領域の像の形成状態の検出の少なくとも一方に、SEM(走査型電子顕微鏡)などの他の撮像装置(画像計測装置)を用いても良い。かかる場合であっても、外枠を基準として、転写領域行列DC、DC内の各転写領域DAi,jの位置を精度良く求めることが可能である。
【0175】
また、上記実施形態では、ウエハW上への転写工程に要する時間を短縮化するため、転写領域行列DCと転写領域行列DCとを、同時に形成するとしたが、本発明はこれに限定されるものではなく、これらは、別々に形成するようにしても良い。例えば、計測用パターンMPを含む計測マークAPが形成されたレチクルAと、矩形マークBPが形成されたレチクルBとを用意し、まずレチクルAをレチクルステージRST上に搭載して、前述のように露光により転写領域行列DCをウエハ上に形成し、次にレチクルAをレチクルBに交換し、前述と同様の露光により転写領域行列DCをウエハ上に形成するようにしても良い。この場合、レチクルAにおける計測マークAPの配置位置と、レチクルBにおける矩形マークBPの配置位置とを同じとし、転写領域行列DC及び転写領域行列DCを別々のウエハ上に形成するようにしても良い。このようにすれば、計測マークAPを介した照明光ILと、矩形マークBPを介した照明光ILとは、投影光学系PLにおいて同じ瞳位置を通過することとなり、転写領域行列DCと転写領域行列DCとの差分情報が、投影光学系PLの収差に影響を受けることがなくなるので、最良フォーカス位置や、露光量等の露光条件をさらに精度良く算出することができるようになる。
【0176】
また、上記実施形態では、矩形マークBPの転写領域は、計測マークAPの転写領域と同時に、すなわち計測マークAPの転写領域と同一の露光条件によって形成されたが、本発明はこれに限定されるものではなく、矩形マークBPの各転写領域は、すべて同一の露光条件で形成されるようにしても良い。このようにしても、転写領域行列DCと転写領域行列DCとを同じアライメント検出系ASのFIAセンサ等の同じ検出光学系で検出して、それらの差分情報を得るようにすれば、その検出光学系に含まれるオフセット成分については除去することができる。
【0177】
また、上記実施形態では、レチクルR上に計測マークAPと矩形マークBPとをそれぞれ1つずつ形成したが、本発明はこれに限定されるものではなく、計測マークAPを、レチクルR上に複数個設けるようにしても良い。例えば、パターン領域PAの中心と照明領域の4隅の部分の合計5箇所(これらの箇所をそれぞれ評価点とする)に、計測マークAPを設けるようにしても良い。このようにすれば、5つの計測マークAPにそれぞれ対応する5つの転写領域行列DCがウエハW上に形成されるようになり、その5つの転写領域行列DCについてそれぞれの最良フォーカス位置を得ることができる。このようにすれば、5つの最良フォーカス位置のデータに基づいて、投影光学系PLの光学特性の1つである像面湾曲も算出することができるようになる。また、前述した露光領域内の各計測点(評価点)での焦点深度などを求めることもできる。なお、複数の計測マークAPにそれぞれ対応して複数の矩形マークBPを設ける必要はなく、例えば1つの矩形マークBPのみを設け、複数の転写領域行列DCで共通の参照情報として用いても良い。
【0178】
さらに、レチクルR上に、例えば各評価点に対応するレチクルR上の領域の近傍に、前述したステップピッチSPの整数倍、例えば8倍、12倍などの間隔で複数の計測マークAPを配置し、各計測マークAPの内部に、周期方向が異なるL/Sパターンや、ピッチが異なるL/Sパターンなど複数種類の計測用パターンをそれぞれ配置しても良い。このようにすると、例えば、各評価点に対応する位置に近接して配置された周期方向が直交する1組のL/Sパターンを計測用パターンとして得られた最良フォーカス位置から各評価点における非点収差を求めることができる。さらに、投影光学系PLの有効視野内の各評価点について、上述のようにして算出された非点収差に基づいて最小二乗法による近似処理を行うことにより非点収差面内均一性を求めるとともに、非点収差面内均一性と像面湾曲とから総合焦点差を求めることも可能となる。
【0179】
このように、像面湾曲を算出する場合には、主制御装置28は、露光に先立って、この光学特性データに基づいて、図示しない結像特性補正コントローラに指示し、例えば投影光学系PLの少なくとも1つの光学素子(本実施形態では、レンズエレメント)の位置(他の光学素子との間隔を含む)あるいは傾斜などを変更することにより、その像面湾曲が補正されるように投影光学系PLの結像特性を可能な範囲で補正する。なお、投影光学系PLの結像特性の調整に用いる光学素子は、レンズエレメントなどの屈折光学素子だけでなく、例えば凹面鏡などの反射光学素子、あるいは投影光学系PLの収差(ディストーション、球面収差など)、特にその非回転対称成分を補正する収差補正板などでも良い。さらに、投影光学系PLの結像特性の補正方法は光学素子の移動に限られるものではなく、例えば光源1を制御して照明光ILの中心波長を僅かにシフトさせる方法、又は投影光学系PLの一部で屈折率を変化させる方法などを単独、あるいは光学素子の移動との組み合わせで採用しても良い。
【0180】
また、上記実施形態では、差分情報の算出に用いられる参照情報として、実際にウエハ上に転写された矩形マークの転写領域から成る転写領域行列DCを撮像することによって得られた撮像データを使用したが、本発明はこれに限定されるものではなく、参照情報として、投影光学系PLの数学モデルを用いた光学系シミュレーションによって求められたデータを用いても良い。このようにすれば、実際にウエハW上に形成された転写領域行列DCを撮像する工程等が不要となるので、光学特性の算出に要する時間を短縮することができる。
【0181】
なお、上記実施形態では、ウエハWのステップピッチSPを、通常より狭く設定することにより、ウエハW上に形成された転写領域行列DC、DCを構成する転写領域間に枠が残存しないようにして、枠の干渉によるパターン部のコントラスト低下を防止する場合について説明した。しかし、本実施形態では、必ずしも枠が残らないようにする必要はない。たとえ転写領域間に枠が残存していたとしても、転写領域行列DC、DCの差分情報の算出によって、枠の情報が消去され計測用パターンの像の形成状態に関する情報(すなわち差分情報)だけが抽出され、その情報で結果的に、投影光学系PLの光学特性が算出されるので、枠の存在が、投影光学系PLの光学特性の算出に影響を与えないからである。
【0182】
この場合、各転写領域に転写されたマルチバーパターンとこれに隣接するパターンとが、マルチバーパターンの像のコントラストが隣接するパターンによる影響を受けない距離L以上離れているので、複数の転写領域の少なくとも一部の複数の転写領域における像の形成状態を、画像処理の手法、テンプレートマッチング、あるいはスコア検出を含むコントラスト検出などの画像処理手法により検出する際に、それぞれの転写領域に転写されたマルチバーパターンの像のS/N比が良好な撮像信号を得ることができる。従って、この撮像信号に基づいて、テンプレートマッチング、あるいはスコア検出を含むコントラスト検出などの画像処理手法により各転写領域に形成されたマルチバーパターンの像の形成状態を精度良く検出することができる。
【0183】
なお、上記実施形態では、レチクルR上の計測用パターンMPとして開口パターン内の中央部に配置された1種類のL/Sパターン(マルチバーパターン)を用いる場合について説明したが、本発明がこれに限定されないことは言うまでもない。計測用パターンとしては、周期方向が異なる少なくとも2種類のL/Sパターンや、孤立線やコンタクトホールなどを用いても良い。計測用パターンMPとしてL/Sパターンを用いる場合には、デューティ比及び周期方向は、任意で良い。また、計測用パターンMPとして周期パターンを用いる場合、その周期パターンは、L/Sパターンだけではなく、例えばドットマークを周期的に配列したパターンでも良い。これは、像の線幅等を計測する従来の方法とは異なり、像の形成状態をスコア(コントラスト)で検出しているからである。
【0184】
また、上記実施形態では、1種類のスコアに基づいて最良フォーカス位置を求めているが、これに限らす、複数種類のスコアを設定しこれらに基づいて、それぞれ最良フォーカス位置を求めても良く、あるいはこれらの平均値(あるいは重み付け平均値)に基づいて最良フォーカス位置を求めても良い。
【0185】
また、上記実施形態では、差分情報を抽出するエリアを矩形としているが、これに限定されるものではなく、例えば、円形や楕円形、あるいは三角形などであっても良い。また、その大きさも任意に設定することができる。すなわち、計測用パターンMPの形状に合わせて抽出エリアを設定することによりノイズを減少させ、S/N比を高くすることが可能である。
【0186】
また、上記実施形態では、像の形成状態の検出に1種類の閾値を用いているが、これに限らず、複数の閾値を用いても良い。複数の閾値を求める場合、それぞれの閾値を、スコアと比較することで、転写領域の像の形成状態を検出することとしても良い。この場合、例えば第1の閾値での検出結果から最良フォーカス位置が算出困難な場合に、第2の閾値での形成状態の検出を行い、その検出結果から最良フォーカス位置を求めることなどが可能となる。
【0187】
また、予め複数の閾値を設定しておき、閾値毎に最良フォーカス位置を求め、それらの平均値(単純平均値あるいは重み付け平均値)を最良フォーカス位置としても良い。例えば、各閾値に応じて、露光エネルギ量Pが極値を示すときのフォーカス位置を順次算出する。そして、各フォーカス位置の平均値を最良フォーカス位置とする。なお、露光エネルギ量Pとフォーカス位置Zとの関係を示す近似曲線と適当なスライスレベル(露光エネルギ量)との2つの交点(フォーカス位置)を求め、両交点の平均値を、閾値毎に算出し、それらの平均値(単純平均値あるいは重み付け平均値)を最良フォーカス位置としても良い。
【0188】
あるいは、閾値毎に最良フォーカス位置を算出し、閾値と最良フォーカス位置との関係において、閾値の変動に対して、最良フォーカス位置の変化が最も小さい区間における最良フォーカス位置の平均値(単純平均値あるいは重み付け平均値)を最良フォーカス位置としても良い。
【0189】
また、上記実施形態では、予め設定されている値SHを閾値として用いているが、これに限定されるものではない。例えば、ウエハW上の計測用パターンMPが転写されていない領域を撮像し、得られたスコアを閾値として用いても良い。なお、上記実施形態では、転写領域行列DC,DCでそれぞれ外枠検出を行って各転写領域DAi,jの位置情報を得るものとしたが、転写領域行列DC,DCの一方のみで外枠検出を行い、その検出結果を用いて他方の転写領域行列の各転写領域の位置情報を得るようにしても良い。このとき、他方の転写領域行列では外枠が形成されていなくても良い。
【0190】
また、転写領域行列DCと転写領域行列DCとの位置検出の高精度化を図るため、転写領域行列DC及び転写領域行列DCの周辺にその位置を検出するための位置検出用領域を形成するようにしても良い(第8工程)。例えば、転写領域行列DCと転写領域行列DCとの周辺に、それらの行列DC、DCとの位置関係が明らかな例えば全体として矩形の位置検出用領域を形成し、両行列DC、DCの位置情報を検出する際には、その両行列の外枠を検出せずに、位置検出用領域の位置情報を検出し、その位置情報に基づいて、両行列の位置情報を検出するようにしても良い。この場合、上述の位置検出用領域は、過露光状態で、計測マークAP及び矩形マークBPをウエハW上に転写することによって形成するようにしても良い。このようにすれば、位置検出用領域作成用のパターンを備えるレチクルを新たに製作する必要がなくなる。なお、この場合には、転写領域行列DC及び転写領域行列DCにそれぞれ対応する位置検出用領域が、各領域行列の外側を囲むように、かつ両領域行列と連続する(すなわち、各領域行列DC、DCの最外周の境界の外枠が消滅する)ように形成されるのが望ましい。このようにしても、位置検出用領域の最外周の外枠を基準として、転写領域行列DC及び転写領域行列DCの位置を検出することができるが、転写領域行列DC及び転写領域行列DCの最外周の転写領域上に形成されたパターン像と未露光領域との距離が確実にL以上となるため、位置検出用領域の最外周の外枠を精度良く計測することができる。また、上記実施形態では、転写領域行列DCを構成するN×M個の転写領域を全て露光するものとしたが、N×M個の転写領域の少なくとも1個、即ち曲線P=f(Z)の決定に明らかに寄与しない露光条件が設定される転写領域(例えば、図7(A)で右上隅及び右下隅に位置する転写領域など)についてはその露光を行わなくてもよい。すなわち、計測マークAPを転写すべき複数の転写領域は全体として矩形(マトリクス)となっていなくても良い。
【0191】
また、上記実施形態では、各転写領域DAi,jの計測用パターンの像の有無を、スコアを閾値と比較することで検出するものとしたが、その代わりに、次のようにして、前述の図12の曲線P=f(Z)と同様の近似曲線を算出しても良い。
【0192】
すなわち、前述の外枠検出及びその検出結果を利用した各転写領域の位置の算出により、撮像データ上における転写領域行列DCの範囲を容易に求めることができる。そして、この転写領域行列DCに対応する撮像データの所定方向、例えば前述のマトリックスの行方向(X軸方向)のピクセル列毎のピクセルデータの差分値の加算値(X軸方向の走査線上の輝度値の差分値の積算信号)の分布状況を検出する。図13には、このようにして得られた図9(C)の差分情報におけるピクセル列毎のピクセルデータ(ピクセル値)の差分値の加算値Gの分布曲線G=g(Z)の一例が示されている。そこで、この曲線G=g(Z)における各ピーク点(図13中に●で示される)を、カーブフィットすることによりn次の近似曲線(最小自乗近似曲線)を求める。これにより、例えば図13に点線で示されるような曲線G=h(Z)が求められる。この曲線G=h(Z)と前述の曲線P=f(Z)とを比べると明からなように、両者はほぼ同様の形状をしていることがわかる。この場合、所定方向のピクセル列毎のピクセルデータの差分値の加算値の分布状況を算出するという簡単な画像処理により、前述の転写領域毎の像の形成状態(例えば有無検出)の検出結果と実質的に等価な分布状況のデータを得ることができる。従って、客観的かつ定量的な撮像データを用いて、前述の転写領域毎の像の形成状態(例えば有無検出)の検出結果を得る場合と同程度あるいはそれ以上の検出精度及び再現性で、より簡易な手法により像の形成状態を検出することができる。
【0193】
そして、上記の曲線G=h(Z)を用いて、上記実施形態と同様の処理を行うことにより、投影光学系PLの光学特性、例えばベストフォーカス位置などを求めることとすれば良い。このようにしても、上記実施形態と同様に、客観的かつ定量的な撮像データを用いた検出結果に基づいて光学特性が求められるため、従来の方法と比較して光学特性を精度及び再現性良く計測することができる。
【0194】
なお、上記実施形態の露光装置100では、主制御装置28は、図示しない記憶装置に格納されている処理プログラムに従って、前述した投影光学系PLの光学特性の計測を行うことにより、計測処理の自動化を実現することができる。勿論、この処理プログラムは、他の情報記録媒体(CD−ROM、MO等)に保存されていても良い。さらに、計測を行う時に、図示しないサーバから処理プログラムをダウンロードしても良い。また、計測結果を、図示しないサーバに送付したり、インターネットやイントラネットを介して電子メール及びファイル転送により、外部に通知することも可能である。
【0195】
なお、上記実施形態では、計測用パターンMPを含む計測マークAPをウエハW上の転写領域行列DCの各転写領域DAi,jに転写した後、現像後にウエハW上の各転写領域DAi,jに形成されるレジスト像をアライメント検出系ASによって撮像し、その撮像データに対して画像処理を行う場合について説明したが、本発明に係る光学特性計測方法はこれに限定されるものではない。例えば、撮像の対象は、露光の際にレジストに形成された潜像であっても良く、上記像が形成されたウエハを現像し、さらにそのウエハをエッチング処理して得られる像(エッチング像)などに対して行っても良い。また、ウエハなどの物体上における像の形成状態を検出するための感光層は、フォトレジストに限らず、光(エネルギ)の照射によって像(潜像及び顕像)が形成されるものであれば良い。例えば、感光層は、光記録層、光磁気記録層などであっても良く、従って、感光層が形成される物体もウエハ又はガラスプレート等に限らず、光記録層、光磁気記録層などが形成可能な板等であっても良い。
【0196】
また、オペレータなどが介在することなく、前述の計測結果(最良フォーカス位置など)に基づいて投影光学系PLの光学特性を調整することができる。すなわち、露光装置に自動調整機能を持たせることが可能となる。
【0197】
また、上記実施形態では、パターンの転写の際に変更される露光条件が、投影光学系PLの光軸AXの方向に関するウエハWの位置及びウエハWの面上に照射されるエネルギビームのエネルギ量(露光ドーズ量)である場合について説明したが、本発明がこれに限定されるものではない。例えば、照明条件(マスクの種別を含む)、投影光学系PLの結像特性など露光に関連する全ての構成部分の設定条件などの何れかであれば良く、また、必ずしも2種類の露光条件を変更しながら露光を行う必要もない。すなわち、一種類の露光条件、例えば投影光学系PLの光軸AXの方向に関するウエハWの位置のみを変更しながら、計測用パターンMPをウエハW上の複数の領域に転写し、その転写像の形成状態を検出する場合であっても、上記実施形態と同様のスコアを用いたコントラスト計測、あるいはテンプレートマッチングの手法により、その検出を迅速に行うことができるという効果がある。
【0198】
また、上記実施形態において、最良フォーカス位置とともに最良露光量を決定することができる。すなわち、露光エネルギ量を低エネルギ量側にも設定されて、上記実施形態と同様の処理を行い、露光エネルギ量毎に、その像が検出されたフォーカス位置の幅を求め、その幅が最大となるときの露光エネルギ量を算出し、その場合の露光量を最良露光量とするようにしても良い。
【0199】
また、上記実施形態では、一例として、転写領域内の指定範囲のピクセル値の差分値の分散(又は標準偏差)を、スコアEとして採用するものとしたが、本発明がこれに限定されるものではなく、転写領域内又はその一部(例えば、前述の指定範囲)のピクセル値の差分値の加算値、微分総和値をスコアEとしても良い。また、上記実施形態では、図3に示されるように、開口パターンの内部に遮光部によって計測用パターンMPが形成された場合について説明したが、これに限らず、図3の場合と反対に、パターン領域PAを光透過部として形成し、その中で矩形の遮光部内に光透過性のパターンから成る計測用パターンを形成するようにしても良い。なお、この場合には、フォトレジストとして、ネガ型のレジストを用いるのが望ましい。また、レチクルのパターン領域PAを光透過部とし、この場合は前述の計測用パターンMPを設けるだけでもよいし、あるいは計測用パターンMPを囲む遮光性の枠状パターンを一緒に形成しても良い。また、矩形マークBPは遮光性の枠でも良い。但し、例えばレチクルブラインドを用いるなどして、N×M個の転写領域に転写すべきマーク以外によるその転写領域の不要な露光を防止する必要がある。
【0200】
また、上記実施形態では計測マークを静止露光方式でウエハに転写するものとしたが、静止露光方式の代わりに、あるいはそれに加えて走査露光方式で、上記実施形態と全く同様に少なくとも1つの露光条件を変えながら計測用パターンをウエハ上に転写することでダイナミックな光学特性を求めるようにしても良い。
【0201】
さらに、本発明が適用される露光装置の光源は、KrFエキシマレーザやArFエキシマレーザに限らず、Fレーザ(波長157nm)、あるいは他の真空紫外域のパルスレーザ光源であっても良い。この他、露光用照明光として、例えば、DFB(Distributed Feedback、分布帰還)型半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、紫外域の輝線(g線、i線等)を出力する超高圧水銀ランプ等を用いても良い。この場合には、ランプ出力制御、NDフィルタ等の減光フィルタ、光量絞り等によって露光エネルギの調整を行えば良い。また、EUV光、X線、あるいは電子線及びイオンビームなどの荷電粒子線を露光ビームとして用いる露光装置に本発明を適用しても良い。
【0202】
なお、上記実施形態では、本発明がステップ・アンド・スキャン方式の縮小投影露光装置に適用された場合について説明したが、本発明の適用範囲がこれに限定されないのは勿論である。すなわち、ステップ・アンド・リピート方式、ステップ・アンド・スティッチ方式、ミラープロジェクション・アライナー、及びフォトリピータなどにも好適に適用することができる。
【0203】
さらに、投影光学系PLは、屈折系、反射屈折系、及び反射系のいずれでも良いし、縮小系、等倍系、及び拡大系のいずれでも良い。
【0204】
さらに、本発明は、半導体素子の製造に用いられる露光装置だけでなく、液晶表示素子、プラズマディスプレイなどを含むディスプレイの製造に用いられる、デバイスパターンをガラスプレート上に転写する露光装置、薄膜磁気ヘッドの製造に用いられる、デバイスパターンをセラミックウエハ上に転写する露光装置、撮像素子(CCDなど)、マイクロマシン、有機EL、及びDNAチップなどの製造、さらにはマスク又はレチクルの製造に用いられる露光装置などにも適用することができる。
【0205】
《デバイス製造方法》
次に、上記説明した露光装置及び方法を使用したデバイスの製造方法の実施形態を説明する。
【0206】
図14には、デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、DNAチップ、マイクロマシン等)の製造例のフローチャートが示されている。図14に示されるように、まず、ステップ301(設計ステップ)において、デバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップ302(マスク製作ステップ)において、設計した回路パターンを形成したマスクを製作する。一方、ステップ303(ウエハ製造ステップ)において、シリコン等の材料を用いてウエハを製造する。
【0207】
次に、ステップ304(ウエハ処理ステップ)において、ステップ301〜ステップ303で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術によってウエハ上に実際の回路等を形成する。次いで、ステップ305(デバイス組立ステップ)において、ステップ304で処理されたウエハを用いてデバイス組立を行う。このステップ305には、ダイシング工程、ボンディング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。
【0208】
最後に、ステップ306(検査ステップ)において、ステップ305で作製されたデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にデバイスが完成し、これが出荷される。
【0209】
図15には、半導体デバイスの場合における、上記ステップ304の詳細なフロー例が示されている。図15において、ステップ311(酸化ステップ)においてはウエハの表面を酸化させる。ステップ312(CVDステップ)においてはウエハ表面に絶縁膜を形成する。ステップ313(電極形成ステップ)においてはウエハ上に電極を蒸着によって形成する。ステップ314(イオン打込みステップ)においてはウエハにイオンを打ち込む。以上のステップ311〜ステップ314それぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
【0210】
ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップ315(レジスト形成ステップ)において、ウエハに感光剤を塗布する。引き続き、ステップ316(露光ステップ)において、上記実施形態の露光装置及び露光方法によってマスクの回路パターンをウエハに転写する。次に、ステップ317(現像ステップ)においては露光されたウエハを現像し、ステップ318(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップ319(レジスト除去ステップ)において、エッチングが済んで不要となったレジストを取り除く。
【0211】
これらの前処理工程と後処理工程とを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。
【0212】
以上のような、本実施形態のデバイス製造方法を用いれば、露光ステップで、上記実施形態の露光装置及び露光方法が用いられるので、前述した光学特性計測方法で精度良く求められた光学特性を考慮して調整された投影光学系PLを介して高精度な露光が行われ、高集積度のデバイスを生産性良く製造することが可能となる。
【0213】
【発明の効果】
以上説明したように、本発明に係る光学特性計測方法によれば、短時間で確実に、精度及び再現性良く投影光学系の光学特性を求めることができるという効果がある。
【0214】
また、本発明に係る露光方法によれば、高精度な露光を実現できるという効果がある。
【0215】
また、本発明に係るデバイス製造方法によれば、高集積度のデバイスの生産性を向上することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態の露光装置の概略構成を示す図である。
【図2】図1の照明系IOPの具体的構成の一例を説明するための図である。
【図3】投影光学系の光学特性の計測に用いられるレチクルの一例を示す図である。
【図4】光学特性計測方法を説明するためのフローチャートである。
【図5】転写領域の配列を説明するための図である。
【図6】ウエハW上に転写領域行列DC、転写領域行列DCが形成された状態を示す図である。
【図7】図7(A)は、ウエハW上に形成された転写領域行列DCのレジスト像の一例を示す図であり、図7(B)は、ウエハW上に形成された転写領域行列DCのレジスト像の一例を示す図である。
【図8】図4のサブルーチン430(光学特性の算出処理)の詳細を示すフローチャートである。
【図9】図9(A)は、転写領域行列DCのレジスト像の一例を示す図であり、図9(B)は、転写領域行列DCのレジスト像の一例を示す図であり、図9(C)は、それらの差分の結果の一例を示す図である。
【図10】図8のサブルーチン524の処理を示すフローチャートである。
【図11】検出結果の一例を示すテーブルデータ形式の図である。
【図12】パターン残存数(露光エネルギ量)とフォーカス位置との関係を示す図である。
【図13】図9(C)の差分情報におけるピクセル列毎のピクセルデータ(ピクセル値)の差分値の加算値Gの分布曲線の一例を示す図である。
【図14】本発明に係るデバイス製造方法の実施形態を説明するためのフローチャートである。
【図15】図14のステップ304における処理のフローチャートである。
【符号の説明】
MP…計測用パターン、DC、DC…転写領域行列、DAi,j…転写領域、PL…投影光学系、W…ウエハ(感光物体)、W…ウエハ(感光物体)。

Claims (15)

  1. 投影光学系の光学特性を計測する光学特性計測方法であって、
    前記投影光学系の有効視野内に配置された所定の計測用パターンを、前記投影光学系を介して、少なくとも1つの露光条件を変更しながら感光物体上の異なる領域に順次転写することによって複数の転写領域を形成する第1工程と;
    前記複数の転写領域の形成状態に関する情報を検出する第2工程と;
    前記検出された形成状態に関する情報と参照情報との差分情報を算出する第3工程と;
    前記算出された差分情報に基づいて、前記所定の計測用パターンの像の形成状態を転写領域毎に算出する第4工程と;
    前記複数の転写領域における露光条件と像の形成状態との関係に基づいて、前記投影光学系の光学特性を計測する第5工程と;を含む光学特性計測方法。
  2. 前記第3工程に先立って、矩形マークを前記感光物体上に順次転写することによって、前記転写領域と同一形状及び大きさを有する矩形マーク転写領域を、その配置状態が前記複数の転写領域の配置状態と同一となるように形成する第6工程と;
    前記第3工程に先立って、前記複数の矩形マーク転写領域の形成状態に関する情報を前記参照情報として検出する第7工程と;をさらに含むことを特徴とする請求項1に記載の光学特性計測方法。
  3. 前記第6工程では、
    前記各矩形マーク転写領域を形成する際の露光条件を、その矩形マーク転写領域に対応する転写領域が形成される際の露光条件と同一の条件とすることを特徴とする請求項2に記載の光学特性計測方法。
  4. 前記計測用パターン及び前記矩形マークを、互いに重ならないように、前記投影光学系の有効視野内に配置したうえで、前記第1工程及び前記第6工程を同時に実行することを特徴とする請求項3に記載の光学特性計測方法。
  5. 前記第2工程及び前記第7工程では、
    同一の検出光学系を用いて前記形成状態に関する情報を検出することを特徴とする請求項2〜4のいずれか一項に記載の光学特性計測方法。
  6. 前記第2工程に先立って、前記複数の転写領域と所定の位置関係を有する位置検出用領域を前記感光物体上に形成する第8工程をさらに含み、
    前記第2工程では、前記複数の転写領域の形成状態に関する情報とともに、前記位置検出用領域の形成状態に関する情報を検出し、
    前記位置検出用領域の形成状態に関する情報に基づいて、前記複数の転写領域の位置を検出することを特徴とする請求項1〜5のいずれか一項に記載の光学特性計測方法。
  7. 前記形成状態に関する情報には、前記複数の転写領域上の複数の検出点においてそれぞれ検出された輝度値が含まれており、
    前記第3工程では、前記各検出点における輝度値と、前記参照情報に含まれるその検出点に対応する輝度値との差分値を検出点毎に前記差分情報として算出することを特徴とする請求項1〜6のいずれか一項に記載の光学特性計測方法。
  8. 前記第3工程では、検出点毎に算出された差分値を、平滑化することを特徴とする請求項7に記載の光学特性計測方法。
  9. 前記第4工程では、
    検出点毎に算出された差分値に関する代表値を、転写領域毎に算出することを特徴とする請求項7又は8に記載の光学特性計測方法。
  10. 前記第4工程では、
    前記各転写領域の前記代表値に基づいて、その転写領域における前記計測用パターンの像の有無に関する情報を算出することを特徴とする請求項9に記載の光学特性計測方法。
  11. 前記第5工程では、
    前記露光条件の変化に対する前記像の有無に関する情報の変化の度合を算出し、その度合に基づいて前記露光条件の最適値を算出することを特徴とする請求項10に記載の光学特性計測方法。
  12. 前記各転写領域の代表値は、その転写領域内の少なくとも一部の領域に含まれる検出点に関する輝度値の差分値の加算値、微分の総和値、分散、及び標準偏差の少なくとも1つであることを特徴とする請求項9〜11のいずれか一項に記載の光学特性計測方法。
  13. 前記露光条件は、前記投影光学系の光軸方向に関する前記感光物体の位置及び前記転写の際に照射されるエネルギビームのエネルギ量の少なくとも一方であることを特徴とする請求項1〜12のいずれか一項に記載の光学特性計測方法。
  14. 露光用のエネルギビームをマスクに照射し、前記マスクに形成されたパターンを、投影光学系を介して感光物体上に転写する露光方法であって、
    請求項1〜13のいずれか一項に記載の光学特性計測方法によって計測された光学特性を考慮して前記投影光学系を調整する工程と;
    前記調整された投影光学系を介して前記マスクに形成されたパターンを前記感光物体上に転写する工程と;を含む露光方法。
  15. リソグラフィ工程を含むデバイス製造方法であって、
    前記リソグラフィ工程では、請求項14に記載の露光方法を用いるデバイス製造方法。
JP2002323664A 2002-11-07 2002-11-07 光学特性計測方法、露光方法及びデバイス製造方法 Pending JP2004158670A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323664A JP2004158670A (ja) 2002-11-07 2002-11-07 光学特性計測方法、露光方法及びデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323664A JP2004158670A (ja) 2002-11-07 2002-11-07 光学特性計測方法、露光方法及びデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2004158670A true JP2004158670A (ja) 2004-06-03

Family

ID=32803473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323664A Pending JP2004158670A (ja) 2002-11-07 2002-11-07 光学特性計測方法、露光方法及びデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2004158670A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912501B2 (en) 2012-03-16 2014-12-16 Kabushiki Kaisha Toshiba Optimum imaging position detecting method, optimum imaging position detecting device, photomask manufacturing method, and semiconductor device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912501B2 (en) 2012-03-16 2014-12-16 Kabushiki Kaisha Toshiba Optimum imaging position detecting method, optimum imaging position detecting device, photomask manufacturing method, and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US6706456B2 (en) Method of determining exposure conditions, exposure method, device manufacturing method, and storage medium
JP4018653B2 (ja) リソグラフィ投影装置における焦点スポットのモニタリング
US7948616B2 (en) Measurement method, exposure method and device manufacturing method
JPWO2002091440A1 (ja) 光学特性計測方法、露光方法及びデバイス製造方法
US20080068595A1 (en) Measurement Method, Exposure Method, and Device Manufacturing Method
US20080208499A1 (en) Optical characteristics measurement method, exposure method and device manufacturing method, and inspection apparatus and measurement method
WO2008038751A1 (fr) Procédé de mesure de largeur de ligne, procédé de détection de statut de formation d'image, procédé d'ajustement, procédé d'exposition et procédé de fabrication de dispositif
US20110242520A1 (en) Optical properties measurement method, exposure method and device manufacturing method
JPH06349696A (ja) 投影露光装置及びそれを用いた半導体製造装置
JPWO2005038885A1 (ja) 光学特性計測装置及び光学特性計測方法、露光装置及び露光方法、並びにデバイス製造方法
JP2005337912A (ja) 位置計測装置、露光装置、及びデバイスの製造方法
JP2004146702A (ja) 光学特性計測方法、露光方法及びデバイス製造方法
JP2001217174A (ja) 位置検出方法、位置検出装置、露光方法、及び露光装置
JP2007281126A (ja) 位置計測方法、位置計測装置及び露光装置
TW201101369A (en) Exposure method and device manufacturing method, and overlay error measuring method
JP2004207521A (ja) 光学特性計測方法、露光方法及びデバイス製造方法
JP2004165307A (ja) 像検出方法、光学特性計測方法、露光方法及びデバイス製造方法
TW527638B (en) Evaluating method of lithography system, adjusting method for substrate-processing apparatus, lithography system and exposure apparatus
JP2004146703A (ja) 光学特性計測方法、露光方法及びデバイス製造方法
JP2004163313A (ja) 輪郭検出方法及び装置、位置検出方法及び装置、並びに露光装置
JP2004158670A (ja) 光学特性計測方法、露光方法及びデバイス製造方法
JP2004165483A (ja) データ抽出方法及び装置、位置検出方法及び装置、並びに露光装置
JP2005303043A (ja) 位置検出方法とその装置、位置合わせ方法とその装置、露光方法とその装置、及び、位置検出プログラム
JPWO2002061505A1 (ja) マスク、光学特性計測方法、露光装置の調整方法及び露光方法、並びにデバイス製造方法
JP2010199453A (ja) 検出方法、光学特性計測方法、露光方法及び露光装置、並びにデバイス製造方法