JP2004158313A - Electrolyte material for solid electrolyte fuel cell, cell of solid electrolyte fuel cell, and manufacturing method of these - Google Patents

Electrolyte material for solid electrolyte fuel cell, cell of solid electrolyte fuel cell, and manufacturing method of these Download PDF

Info

Publication number
JP2004158313A
JP2004158313A JP2002323362A JP2002323362A JP2004158313A JP 2004158313 A JP2004158313 A JP 2004158313A JP 2002323362 A JP2002323362 A JP 2002323362A JP 2002323362 A JP2002323362 A JP 2002323362A JP 2004158313 A JP2004158313 A JP 2004158313A
Authority
JP
Japan
Prior art keywords
fuel cell
layer
electrolyte
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002323362A
Other languages
Japanese (ja)
Other versions
JP4135891B2 (en
Inventor
Jun Aketo
純 明渡
Keiko Kushibiki
圭子 櫛引
Noritoshi Sato
文紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nissan Motor Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nissan Motor Co Ltd
Priority to JP2002323362A priority Critical patent/JP4135891B2/en
Publication of JP2004158313A publication Critical patent/JP2004158313A/en
Application granted granted Critical
Publication of JP4135891B2 publication Critical patent/JP4135891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte material for a solid electrolyte fuel cell, in which a thermal shock resistance can be enhanced. <P>SOLUTION: Because the electrolyte material for the solid electrolyte fuel cell is constituted by a lamellar structure, the thermal shock resistance is enhanced, and when an electrolyte layer of a cell for the fuel cell is formed by the electrolyte material, a heat stress accompanied with frequent starts/stops can be moderated, and it is prevented beforehand that a crack progresses on the whole electrolyte layer and power generation becomes impossible due to membrane breakage, and the cell for the solid electrolyte fuel cell superior in the thermal shock resistance can be formed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質を使用して電気化学反応により電気エネルギーを得る固体電解質型燃料電池に用いられる電解質材料、この電解質材料を用いるとともに固体電解質型燃料電池の発電要素を構成する燃料電池セル、及びこれらの製造方法に関するものである。
【0002】
【従来の技術】
この種の固体電解質型燃料電池としては、例えば一方の電極層を兼ねる多孔質支持基板上に、薄膜状の電解質層と他方の電極層を形成したものがある。電解質層がガスの隔壁としての機能を果たすには、その性状をより緻密にすることが望ましく、また、電解質層がイオン伝導膜としての機能を果たすには、その膜厚をより薄くすることが望ましい。
【0003】
電解質層を形成するには、例えば以下の(1)〜(3)の方法があった。
(1) スクリーン印刷法などのスラリーを塗布し、これを焼成する方法がある。この方法では、緻密な電解質層を形成することができ、一般的に1200〜1700℃で焼結を行っている。この際、支持基板と膜の焼結収縮を調整して、基板の破損を防止し、且つ膜を緻密に焼結することが重要である。例えば、特開2001−23653号公報には、比表面積(平均粒径)の異なる複数の粉末を含むスラリーを塗布することにより、経済性や量産性に優れた工法で、大面積に適用が容易な電解質層を形成する方法が開示されている。また、特開2002−15757号公報には、均質で緻密な電解質層を形成することができるスラリーが開示されている。
【0004】
(2) 特開昭61−91880号公報には、カルシアで安定化させたジルコニアで基板を形成し、基板温度1000〜1500℃で化学的蒸着法(EVD法)により電解質層を形成する方法が開示されている。この場合、緻密で膜厚が薄い電解質層を形成することができるという特徴がある。
【0005】
(3) 多孔質支持基板上に溶射法によって電解質層を成膜する方法がある。溶射法は、原料粉粒径や成膜条件を最適化することにより、ある程度封孔処理をしながら成膜することができ、成膜速度が速いという特徴がある。しかし、通常形成される溶射膜は、数%の気孔を有し、膜の緻密性が充分ではない。そこで、特開平9−50818号公報には、電解質層を溶射法で形成した後、電解質の構成元素を含む有機金属溶液を塗布することより、封孔処理をして緻密化する方法が提案されている。このような溶射法を用いることにより、1000℃を超える熱処理工程なしに電解質層を形成することができるので、多孔質支持基板として脆くないNi−Cr合金などの耐熱金属材料を使用することが可能になる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記(1)〜(3)で述べた電解質層を備えた従来の固体電解質型燃料電池にあっては、以下の(a)〜(c)のような問題点があった。
【0007】
(a) 定置型の大型燃料電池を構成する場合、量産性に優れるという特徴がある。しかし、自動車などの移動体に搭載する場合は、小型化することが重要な課題となっている。また、積層体である発電セル板の変形や反りを低減するには、多孔質支持基板が厚くなるため、体積あたりの積層数を増加することが困難である。さらに、高温で焼成するので発電セル板の反りや歪みが生じ、これらを複数積層してガスシール性を確保するために積層体を締め付ける機構部分が大型化する。そしてさらに、支持基板がセラミックス製であるため、締め付け荷重が大きいと割れてしまう恐れがあった。
【0008】
(b) 化学的蒸着法で形成した電解質層は、緻密で、1000℃程度の高温で連続動作させる定置型燃料電池に対しては十分の耐熱性を有する。しかし、(1)と同様にセラミックス製の支持基板を用いなければならないため、発電セル板を薄板化して、簡略化したスタック締め付け構造でガスシール性を確保するのが困難であった。
【0009】
(c) 溶射法で形成した電解質層は、一般的にラメラ構造になりやすいが、プラズマなどにより溶融状態になった原料粉粒子を基板あるいは膜表面に吹き付けて成膜するため、成膜工程時に局所的に温度が上昇する。そのため、熱応力の緩和機構をもつ中間層がない支持基板に直接形成する場合は、基板と電解質層の間にクラックが発生することがあり、これにより密着性が低下し、且つ歩留まりが悪いものであった。
【0010】
【発明の目的】
本発明は、上記従来の状況に鑑みて成されたもので、耐熱衝撃性を向上させることができる固体電解質型燃料電池用電解質材料と、この電解質材料を用いた固体電気質型燃料電池セルを提供することを目的とし、また、1200℃を超える熱処理工程を必要とせずに、金属などを使用して、電解質材料及び固体電解質型燃料電池セルを安価に且つ生産性良く得ることができる製造方法を提供することを目的としている。
【0011】
【課題を解決するための手段】
本発明に係わる固体電解質型燃料電池用電解質材料は、ラメラ構造から成ることを特徴としている。また、本発明に係わる固体電解質型燃料電池用電解質材料の製造方法は、ラメラ構造をエアロゾルデポジション法により形成することを特徴としている。
【0012】
本発明に係わる固体電解質型燃料電池セルは、基板上に少なくとも電解質層と一方の電極層を形成した積層構造を有する固体電解質型燃料電池セルであって、ラメラ構造から成る電解質材料を電解質層に用いて、この電解質層を一方の電極層と他方の電極層で挟持したことを特徴とし、一実施態様として、一方の電極層を柱状構造にしたことを特徴としている。また、本発明に係わる固体電解質型燃料電池セルの製造方法は、ラメラ構造を有する電解質層をエアロゾルデポジション法により形成し、柱状構造を有する電極層を物理的気相成膜法により形成することを特徴としている。
【0013】
【発明の効果】
本発明に係わる固体電解質型燃料電池用電解質材料によれば、ラメラ構造から成る構成としたことにより、耐熱衝撃性を高めることができる。すなわち、当該電解質材料で燃料電池セルの電解質層を形成した際に、頻繁な起動停止に伴う熱応力を緩和することができ、電解質層全体にクラックが進展したり膜破壊により発電不能になったりすること未然に防止し、耐熱衝撃性に優れた固体電解質型燃料電池セルを形成することができる。
【0014】
本発明に係わる固体電解質型燃料電池セルによれば、電解質層の耐熱衝撃性を向上させることができると共に、発電に必要な触媒反応が生じる三相界面へガスを十分拡散させることができ、発電出力の向上を実現することができる。また、当該燃料電池セルを発電要素とするセル板を複数枚積層してスタック化する場合に、セル板周辺部での接合やガスマニホルドの接続、及び電気出力配線などの組み立て加工が容易な支持基板を使用することができ、これにより小型のスタックの形成が容易になるという効果がある。
【0015】
本発明に係わる固体電解質型燃料電池用電解質材料の製造方法及び固体電解質型燃料電池セルの製造方法によれば、耐熱衝撃性に優れた電解質材料及び固体電解質型燃料電池セルを得ることができる。さらに、1200℃を超える熱処理の後工程を不要にすることができるので、金属製支持基板を使用した固体電解質型燃料電池セルを安価に形成することができる。これにより、組み立て加工が容易で量産性に優れたスタックの製造を可能にするとともに、熱衝撃や機械的振動などで割れや破壊が生じにくいスタックを製造することができる。
【0016】
【発明の実施の形態】
本発明に係わる固体電解質型燃料電池用電解質材料は、ラメラ構造及び柱状構造のうちの少なくともラメラ構造で構成してある。また、固体電解質型燃料電池セルは、基板上に少なくとも電解質層と一方の電極層(空気極層)を形成した積層構造を有し、上記の電解質材料から成る電解質層を一方の電極層と他方の電極層(燃料極層)で挟持したものとなっている。
【0017】
ラメラ構造は、層状構造であって、層内は結晶結合力が強く、層間は層内より弱い。層内は微結晶構造となっている場合や、結晶配向性を示す場合がある。柱状構造は、膜厚方向に柱が林立した状態の構造である。各柱の中は結晶結合力が強く、各柱間は柱内より弱い。各柱内は微結晶構造となっている場合、結晶配向性を示す場合及び単結晶の場合がある。また、各柱は、基板付近から膜厚方向に除々に太くなる場合や、膜厚方向に一定の太さの場合がある。
【0018】
電解質材料を用いた燃料電池セルは、電解質層が少なくともラメラ構造を含むものである。つまり、膜厚方向と垂直な方向に緩和機構をもつラメラ構造、及び膜厚方向に緩和機構をもつ柱状構造のうちの少なくともラメラ構造を含むことにより、熱衝撃に伴って発生する熱応力を緩和することができると共に、両電極層と電解質層から成る発電三層部の割れ等を防止することができる。なお、電解質層は、ラメラ構造のみの単層とするだけでなく、ラメラ構造と柱状構造との均質な結晶構造の層を含む複数層から構成することができる。
【0019】
ここで、ラメラ構造の層は、その厚さを0.1μm以上100μm以下とするのが望ましく、柱状構造の層は、その厚さを0.1μm以上100μm以下とするのが望ましい。ラメラ構造の層と柱状構造の層の最適な膜厚は、要求される耐熱衝撃特性のほか、基板、電極層及び電解質層の熱膨張係数やヤング率などの膜特性、並びに発電三層の層構成に依存する。なお、ラメラ構造や柱状構造の各層の厚さを上記範囲としたのは、例えば、ラメラ構造の層の厚さが100μmより厚い場合には、イオン伝導性が低下して発電出力が低下するからである。また、柱状構造の層の厚さが0.1μmに満たない場合には、熱応力緩和効果が小さいので好ましくなく、柱状構造の層の厚さが100μmより厚い場合には、成膜にかかる工程時間を要し、量産性が低下する問題があるからである。
【0020】
電解質材料(電解質層)の材質は、酸素イオン伝導性などを有する従来公知の材料として、例えば酸化ネオジウム(Nd2O3)、酸化サマリウム(Sm2O3)、イットリア(Y2O3)、酸化ガドリニウム(Gd2O3)及び酸化スカンジウム(Sc2O3)の少なくとも一方を固溶した安定化ジルコニア、セリア(CeO2)系固溶体、酸化ビスマス、並びにドーパントをドープしたLaGaO3から成る群より選ばれた少なくとも1種以上の材料を使用することができるが、これらに限定されることはない。また、電解質層が複数層で構成される場合には、上記の組成が異なる材料で形成することもできる。
【0021】
また、燃料電池セルの好適な形態としては、電解質層がラメラ構造のみから成り、空気極層及び燃料極層のうちの少なくとも一方が柱状構造のみで構成したものがある。例えば、電極を兼ねない支持基板に、柱状構造を含む一方の電極層を形成し、その上にラメラ構造を含む電解質層を形成するものである。
【0022】
さらに、例えば、燃料極層を兼ねるNi−YSZサーメット焼結体から成る支持基板上に、Ni−YSZサーメットの柱状構造を形成し、その上にラメラ構造を含む電解質層を形成することもできる。これにより、支持基板と電解質層の熱膨張係数に起因する熱応力を緩和することができる。
【0023】
そしてさらに、電解質層の上層に形成される他方の電極層も柱状構造とすることができる。柱状構造の層は、柱状間の膜密度を疎にした構造に形成することができるため、とくに電極層を柱状構造とすれば、発電に必要な触媒反応が起きる三相界面へ酸素ガス分子や燃料ガス分子を拡散させるのに好適であると同時に、熱応力を緩和することができる。
【0024】
本発明に係わる燃料電池セルでは、電解質層がラメラ構造であり、いずれか一方の電極層が柱状構造であれば上記効果を有するが、より好適には、基板上に形成した電極層を柱状構造とし、電解質層をラメラ構造とすれば、より一層の熱応力緩和効果を発揮する。
【0025】
電極層には、公知の材料を使用することができ、燃料極層としては、Ni又はCuと電解質材料とのサーメットを使用することができる。また、空気極層としては、公知のランタン−マンガン系酸化物やランタン−コバルト系酸化物など遷移金属ペロブスカイト型酸化物を用いることができる。
【0026】
燃料電池セルの支持基板には、公知の燃料極層材料の焼結体や、空気極層材料の焼結体を使用することができる。また、電極を兼ねない支持基板としては、カルシア安定化ジルコニアやSi基板、多孔質のNi−Cr合金、及びSUSなどを使用することができる。
【0027】
電極中の柱状構造は、その層の厚さを0.1μm以上100μm以下とするのが望ましい。柱状構造の層の最適な膜厚は、要求される耐熱衝撃特性、基板、電極層及び電解質層の熱膨張係数やヤング率などの膜特性、並びに発電三層の層構成に依存する。なお、層の厚さを上記範囲としたのは、0.1μmに満たない場合には、熱応力緩和効果が小さいので好ましくないからであり、100μmより厚い場合には、成膜にかかる工程時間を要し、量産性が低下する問題があるからである。
【0028】
電解質材料の好適な製造方法としては、ラメラ構造の層をエアロゾルデポジション法により形成し、柱状構造の層を物理的気相成膜法(PVD法)により形成する方法がある。さらに、燃料電池セルの好適な製造方法としては、ラメラ構造の層を有する電解質層をエアロゾルデポジション法により形成し、柱状構造の層を有する電極層を物理的気相成膜法(PVD法)により形成する方法がある。
【0029】
また、ラメラ構造の層の形成方法としては、エアロガスデポジッション法や溶射法などが挙げられる。エアロガスデポジッション法は、微粒子原料粉にガスを導入してエアロゾル化し、ノズルを介して基材上に噴射させ所定量を堆積させて、成膜を行う方法である。他方、溶射法は、原料粉をガスによって搬送し、溶射ガン部において、プラズマやアーク放電などにより原料粉粒を加熱して溶融状態とし、これを基板上に噴射して成膜する方法である。
【0030】
さらに、柱状構造の層の形成方法としては、蒸着法、スパッタ法、イオンプレーティング法、イオンクラスタービーム法、及びレーザビームアブレーション法などのPVD法(物理的気相成膜法)を用いることができる。この柱状構造は、基板温度や成膜速度などの成膜条件により制御することができる。
【0031】
【実施例】
(実施例1)
支持基板兼燃料極層として、気孔率30%、平均気孔径2μmのNi−YSZサーメットの焼結体を用いた。焼結体にエポキシ樹脂を含浸して硬化させた後、表面粗さRa=0.1μmに研磨をした。これを大気中で600℃で焼成し、エポキシ樹脂を焼失させた。その後、表面研磨した焼結体を2元スパッタ装置に設置し、スパッタ圧力を2Paとし、スパッタガスにArガスを用いて、NiとYSZを共にスパッタした。Ni又はYSZを単独で夫々成膜する際に、成膜速度比が4:6となるようにスパッタ電源出力を調整して2元同時にスパッタを行い、燃料極層として柱状構造の層を2μm成膜した。
【0032】
次に、エアロゾルデポジッション法を用いて電解質層を形成した。上記燃料極層を成膜した焼結体基板をエアロゾルデポジッション装置に設置した。平均粒径0.2μmのYSZ原料粉を原料ボトルに入れ、これにゾル化ガスとしてHeガスを6L/minで吹き込んでエアロゾル化する。エアロゾルを搬送チューブで搬送し、装置チャンバー内に設置したノズルから基板へ噴出させ、チャンパー圧力を93Paとして成膜を行った。これにより、YSZの電解質層を5μm形成した。
【0033】
電解質層を形成した焼結体基板に再びスパッタ法を用いて空気極層を形成した。スパッタ装置に基板を設置し、基板温度を700℃に加熱すると共に、スパッタガスとしてArガスを用い、スパッタ圧力を2Paとして、ランタン−コバルト系酸化物(La0.8 Sr0.2CoO3)を1μm成膜した。
【0034】
このようにして形成した燃料電池セルは、断面SEM写真により、スパッタ成膜したNi−YSZ層及びランタン−コバルト系酸化物層が柱状構造を示しており、エアロゾルデポジッション法により成膜したYSZの電解質層がラメラ構造を示していることが観察された。
【0035】
上記の燃料電池セルについて、公知の発電出力評価装置を用い、空気極層側に空気を導入し、基板兼燃料極層側に水素ガスを導入して出力を評価した。その際、評価装置に燃料電池セルを設置し、炉の昇温速度を550℃/10minで昇温し、550℃に保持して測定を行った。その結果、発電出力密度0.05W/cmが得られた。このように急加熱を行った後においても、発電三相を破壊することなく発電出力を測定することができた。
【0036】
(実施例2)
図1は、固体電解質型燃料電池セルの各製造工程における部分断面図である。なお、燃料電池セルは、最小の発電要素であって、複数個を配列してセル板を構成している。セル板は、例えば、2cm角のSi基板1に2mm角程度の開口部を有する燃料電池セルを2個×2個有するものである。
【0037】
先ず、図1(a)に示すように、Si基板1の両面に、マスク層2,2として例えばシリコン窒化膜を減圧CVD法により2000Å程度成膜した。
【0038】
次に、図1(b)に示すように、基板1の裏面(下面)におけるマスク層2の所望の領域をフォトリソグラフィ及びCF4 ガスを用いたケミカルドライエッチングによって除去し、エッチングパターンを形成した。
【0039】
次に、図1(c)に示すように、下側電解質層3aとして、EB蒸着法によりYSZ層を1μmの厚さに形成した。
【0040】
次に、図1(d)に示すように、実施例1と同様にエアロデポジッション法を用い、原料粉として平均粒径0.3μmの(La0.9Sr0.1)(Ga0.8Mg0.2)O2.85を用いて上側電解質層3bを5μmの厚さに形成した。
【0041】
次に、図1(e)に示すように、シリコンエッチング液として例えばヒドラジンを用いて80℃程度の温度でシリコンエッチングを行い、基板1の裏面から表面(上面)に至る開口部4を形成すると共に、マスク層2と下側電解質層3aと上側電解質層3bから成るダイアフラムを形成した。
【0042】
次に、図1(f)に示すように、再びCF4 ガスを用いたケミカルドライエッチングにより基板1の裏面からエッチングを行い、下側電解質層3aの裏面と接する開口部4のマスク層2を除去し、下側電解質層3aの裏面を露出させた。これと同時に基板1の裏面に残るマスク層2も除去した。
【0043】
次に、図1(g)に示すように、基板1の表面に、EB蒸着法により、蒸着マスクを用いて少なくとも上側電解質層3bを覆うようにして、Ag層を1μm程度成膜して空気極層5を形成した。
【0044】
そして、図1(h)に示すように、基板1の裏面より、EB蒸着法によりNi膜を500nm程度成膜し、基板1の裏面側から開口部4を覆うとともに下側電解質層3aの裏面に直接接触する燃料極層6を形成した。これにより燃料電池セルは完成となる。
【0045】
図1(d)に示す工程において下側電解質層3a及び上側電解質層3bの形成が完了した後、そのサンプルの膜断面を撮影した。その断面SEM写真を示す図2から明らかなように、下側電解質層3aが柱状構造を示し、上側電解質層3bがラメラ構造を示しているのが観察された。
【0046】
以上の各工程を経て形成した固体電解質型燃料電池セルについて、実施例1と同様に急加熱した後に発電出力を測定した。その結果、600℃において発電出力0.1W/cmが得られた。このようにして、上記実施例では、耐熱衝撃性に優れた燃料電池セルを形成することができた。
【図面の簡単な説明】
【図1】本発明に係わる固体電解質型燃料電池セルの製造過程を説明する各々断面図(a)〜(h)である。
【図2】実施例2工程(d)後の電解質層の断面SEM写真である。
【符号の説明】
1 基板
3a 下側電解質層
3b 上側電解質層
5 空気極層
6 燃料極層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is an electrolyte material used in a solid electrolyte fuel cell that obtains electric energy by an electrochemical reaction using a solid electrolyte, a fuel cell using the electrolyte material and constituting a power generation element of the solid electrolyte fuel cell, And a method for producing them.
[0002]
[Prior art]
As this type of solid oxide fuel cell, for example, there is one in which a thin-film electrolyte layer and the other electrode layer are formed on a porous support substrate also serving as one electrode layer. In order for the electrolyte layer to function as a gas partition, it is desirable that its properties be more dense, and in order for the electrolyte layer to function as an ion-conducting membrane, its thickness should be reduced. desirable.
[0003]
For example, the following methods (1) to (3) were used to form the electrolyte layer.
(1) There is a method of applying a slurry such as a screen printing method and baking the slurry. In this method, a dense electrolyte layer can be formed, and sintering is generally performed at 1200 to 1700 ° C. At this time, it is important to adjust the sintering shrinkage of the supporting substrate and the film to prevent the substrate from being damaged and to densely sinter the film. For example, Japanese Patent Application Laid-Open No. 2001-23653 discloses that, by applying a slurry containing a plurality of powders having different specific surface areas (average particle diameters), it is easy to apply to a large area by a method excellent in economy and mass productivity. A method for forming a suitable electrolyte layer is disclosed. JP-A-2002-15757 discloses a slurry capable of forming a homogeneous and dense electrolyte layer.
[0004]
(2) JP-A-61-91880 discloses a method in which a substrate is formed from zirconia stabilized with calcia and an electrolyte layer is formed by a chemical vapor deposition method (EVD method) at a substrate temperature of 1000 to 1500 ° C. It has been disclosed. In this case, there is a feature that a dense and thin electrolyte layer can be formed.
[0005]
(3) There is a method of forming an electrolyte layer on a porous supporting substrate by a thermal spraying method. The thermal spraying method is characterized in that by optimizing the raw material powder particle size and film forming conditions, it is possible to form a film while performing sealing processing to some extent, and the film forming speed is high. However, a sprayed film usually formed has a few percent of pores, and the film is not sufficiently dense. Therefore, Japanese Patent Application Laid-Open No. 9-50818 proposes a method in which an electrolyte layer is formed by a thermal spraying method, and then an organic metal solution containing a constituent element of the electrolyte is applied to perform a sealing treatment to densify the electrolyte. ing. By using such a thermal spraying method, the electrolyte layer can be formed without a heat treatment step exceeding 1000 ° C., so that a heat-resistant metal material such as a non-brittle Ni—Cr alloy can be used as the porous support substrate. become.
[0006]
[Problems to be solved by the invention]
However, the conventional solid oxide fuel cells provided with the electrolyte layers described in (1) to (3) have the following problems (a) to (c).
[0007]
(A) When a stationary large fuel cell is configured, it is characterized by excellent mass productivity. However, when mounted on a moving body such as an automobile, miniaturization is an important issue. In addition, in order to reduce the deformation and warpage of the power generation cell plate, which is a laminate, the porous support substrate is thickened, so that it is difficult to increase the number of layers per volume. Furthermore, the firing at a high temperature causes warpage and distortion of the power generation cell plate, and the size of a mechanism for tightening the stacked body in order to secure gas sealing by stacking a plurality of these is increased. Further, since the supporting substrate is made of ceramics, there is a possibility that the substrate will be broken if the tightening load is large.
[0008]
(B) The electrolyte layer formed by the chemical vapor deposition method is dense and has sufficient heat resistance to a stationary fuel cell that is continuously operated at a high temperature of about 1000 ° C. However, since it is necessary to use a ceramic support substrate as in (1), it has been difficult to make the power generation cell plate thinner and secure gas sealing with a simplified stack fastening structure.
[0009]
(C) The electrolyte layer formed by the thermal spraying method generally tends to have a lamellar structure. However, since the raw material powder particles in a molten state by plasma or the like are sprayed onto the substrate or the film surface, the film is formed during the film forming process. The temperature rises locally. Therefore, when directly formed on a supporting substrate without an intermediate layer having a mechanism for relaxing thermal stress, cracks may be generated between the substrate and the electrolyte layer, whereby the adhesion is reduced and the yield is poor. Met.
[0010]
[Object of the invention]
The present invention has been made in view of the above-described conventional situation, and has an electrolyte material for a solid oxide fuel cell capable of improving thermal shock resistance, and a solid electrolyte fuel cell using the electrolyte material. A manufacturing method capable of providing an electrolyte material and a solid oxide fuel cell inexpensively and with good productivity by using a metal or the like without the need for a heat treatment process at more than 1200 ° C. It is intended to provide.
[0011]
[Means for Solving the Problems]
An electrolyte material for a solid oxide fuel cell according to the present invention has a lamella structure. Further, the method for producing an electrolyte material for a solid oxide fuel cell according to the present invention is characterized in that a lamellar structure is formed by an aerosol deposition method.
[0012]
The solid oxide fuel cell according to the present invention is a solid oxide fuel cell having a laminated structure in which at least an electrolyte layer and one electrode layer are formed on a substrate, and an electrolyte material having a lamellar structure is used as an electrolyte layer. It is characterized in that the electrolyte layer is sandwiched between one electrode layer and the other electrode layer. One embodiment is characterized in that one electrode layer has a columnar structure. Further, the method of manufacturing a solid oxide fuel cell according to the present invention includes forming an electrolyte layer having a lamella structure by an aerosol deposition method, and forming an electrode layer having a columnar structure by a physical vapor deposition method. It is characterized by.
[0013]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the electrolyte material for solid oxide fuel cells according to the present invention, the thermal shock resistance can be enhanced by adopting a structure having a lamellar structure. That is, when the electrolyte layer of the fuel cell is formed with the electrolyte material, thermal stress due to frequent start / stop can be reduced, and the entire electrolyte layer may be cracked or may not be able to generate power due to membrane destruction. Therefore, it is possible to form a solid oxide fuel cell having excellent thermal shock resistance.
[0014]
ADVANTAGE OF THE INVENTION According to the solid oxide fuel cell of the present invention, the thermal shock resistance of the electrolyte layer can be improved, and the gas can be sufficiently diffused to the three-phase interface where a catalytic reaction required for power generation occurs. Output can be improved. In addition, when stacking a plurality of cell plates using the fuel cell unit as a power generation element to form a stack, it is possible to easily assemble joints around the cell plates, connect gas manifolds, and assemble electric output wiring. Substrates can be used, which has the effect of facilitating the formation of small stacks.
[0015]
According to the method for manufacturing an electrolyte material for a solid oxide fuel cell and the method for manufacturing a solid oxide fuel cell according to the present invention, an electrolyte material and a solid oxide fuel cell having excellent thermal shock resistance can be obtained. Furthermore, since a post-process of heat treatment exceeding 1200 ° C. can be omitted, a solid oxide fuel cell using a metal supporting substrate can be formed at low cost. This makes it possible to manufacture a stack that is easy to assemble and is excellent in mass productivity, and can manufacture a stack that is less likely to crack or break due to thermal shock, mechanical vibration, or the like.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The electrolyte material for a solid oxide fuel cell according to the present invention has at least a lamella structure out of a lamella structure and a columnar structure. In addition, the solid oxide fuel cell has a laminated structure in which at least an electrolyte layer and one electrode layer (air electrode layer) are formed on a substrate, and an electrolyte layer made of the above-described electrolyte material is connected to one electrode layer and the other. (Electrode layer).
[0017]
The lamella structure is a layered structure, in which the crystal bonding force is strong in the layers and weaker between the layers than in the layers. The inside of the layer may have a microcrystalline structure or exhibit crystal orientation. The columnar structure is a structure in which columns stand in the thickness direction. In each column, the crystal bonding force is strong, and between the columns is weaker than in the column. Each column may have a microcrystalline structure, a crystal orientation, or a single crystal. In addition, each pillar may be gradually thicker in the thickness direction from the vicinity of the substrate, or may be constant in the thickness direction.
[0018]
In a fuel cell using an electrolyte material, the electrolyte layer contains at least a lamellar structure. In other words, by including at least a lamella structure of a lamellar structure having a relaxation mechanism in the direction perpendicular to the film thickness direction and a columnar structure having a relaxation mechanism in the film thickness direction, the thermal stress generated by a thermal shock is reduced. In addition to this, it is possible to prevent cracking of the power generation three-layer portion composed of both electrode layers and the electrolyte layer. In addition, the electrolyte layer can be composed of not only a single layer having a lamella structure alone but also a plurality of layers including a layer having a homogeneous crystal structure of a lamella structure and a columnar structure.
[0019]
Here, the thickness of the layer having a lamella structure is desirably 0.1 μm or more and 100 μm or less, and the thickness of the layer having a columnar structure is desirably 0.1 μm or more and 100 μm or less. The optimum film thickness of the lamella structure layer and the columnar structure layer is the required thermal shock resistance, the film characteristics such as the thermal expansion coefficient and Young's modulus of the substrate, electrode layer and electrolyte layer, and the three layers of power generation. Depends on configuration. Note that the thickness of each layer of the lamella structure and the columnar structure is set to the above range, for example, when the thickness of the layer of the lamella structure is greater than 100 μm, the ionic conductivity decreases and the power generation output decreases. It is. In addition, when the thickness of the columnar structure layer is less than 0.1 μm, the thermal stress relaxation effect is small, which is not preferable. This is because it takes time and there is a problem that mass productivity is reduced.
[0020]
The material of the electrolyte material (electrolyte layer) is a conventionally known material having oxygen ion conductivity, for example, neodymium oxide (Nd2O3), samarium oxide (Sm2O3), yttria (Y2O3), gadolinium oxide (Gd2O3), and scandium oxide ( At least one material selected from the group consisting of stabilized zirconia in which at least one of Sc2O3) is dissolved, ceria (CeO2) -based solid solution, bismuth oxide, and LaGaO3 doped with a dopant can be used. It is not limited to these. When the electrolyte layer is composed of a plurality of layers, the electrolyte layers may be formed of materials having different compositions.
[0021]
Further, as a preferable form of the fuel cell, there is a fuel cell in which the electrolyte layer has only a lamellar structure, and at least one of the air electrode layer and the fuel electrode layer has only a columnar structure. For example, one electrode layer including a columnar structure is formed on a support substrate that also serves as an electrode, and an electrolyte layer including a lamella structure is formed thereon.
[0022]
Further, for example, a columnar structure of Ni-YSZ cermet may be formed on a support substrate made of a Ni-YSZ cermet sintered body also serving as a fuel electrode layer, and an electrolyte layer including a lamella structure may be formed thereon. Thereby, the thermal stress caused by the coefficient of thermal expansion between the supporting substrate and the electrolyte layer can be reduced.
[0023]
Further, the other electrode layer formed on the electrolyte layer may have a columnar structure. Since the columnar structure layer can be formed to have a structure in which the film density between the columnar structures is sparse, especially when the electrode layer has a columnar structure, oxygen gas molecules or the like are transferred to a three-phase interface where a catalytic reaction required for power generation occurs. It is suitable for diffusing fuel gas molecules, and at the same time, can reduce thermal stress.
[0024]
In the fuel cell according to the present invention, the above-described effect is obtained if the electrolyte layer has a lamellar structure and one of the electrode layers has a columnar structure. More preferably, the electrode layer formed on the substrate has a columnar structure. If the electrolyte layer has a lamellar structure, the effect of relieving thermal stress is further enhanced.
[0025]
A known material can be used for the electrode layer, and a cermet of Ni or Cu and an electrolyte material can be used for the fuel electrode layer. As the air electrode layer, a transition metal perovskite oxide such as a known lanthanum-manganese oxide or a lanthanum-cobalt oxide can be used.
[0026]
A known sintered body of a fuel electrode layer material or a sintered body of an air electrode layer material can be used for the support substrate of the fuel cell. In addition, as a supporting substrate that does not double as an electrode, calcia-stabilized zirconia, a Si substrate, a porous Ni—Cr alloy, SUS, or the like can be used.
[0027]
The columnar structure in the electrode preferably has a layer thickness of 0.1 μm or more and 100 μm or less. The optimum thickness of the columnar structure layer depends on the required thermal shock resistance characteristics, the film characteristics such as the thermal expansion coefficient and Young's modulus of the substrate, the electrode layer and the electrolyte layer, and the layer configuration of the three power generation layers. The reason why the thickness of the layer is set to the above range is that when the thickness is less than 0.1 μm, the thermal stress relaxation effect is small, which is not preferable. And there is a problem that mass productivity is reduced.
[0028]
As a preferable manufacturing method of the electrolyte material, there is a method in which a layer having a lamellar structure is formed by an aerosol deposition method, and a layer having a columnar structure is formed by a physical vapor deposition method (PVD method). Further, as a preferable manufacturing method of the fuel cell, an electrolyte layer having a layer having a lamella structure is formed by an aerosol deposition method, and an electrode layer having a layer having a columnar structure is formed by a physical vapor deposition method (PVD method). Is formed.
[0029]
Examples of a method for forming a layer having a lamellar structure include an aerogas deposition method and a thermal spraying method. The aerogas deposition method is a method in which a gas is introduced into fine particle raw material powder to form an aerosol, which is sprayed onto a base material through a nozzle to deposit a predetermined amount to form a film. On the other hand, the thermal spraying method is a method in which a raw material powder is transported by a gas, and the raw material powder is heated to a molten state by plasma or arc discharge in a spraying gun portion, and is sprayed onto a substrate to form a film. .
[0030]
Further, as a method for forming a layer having a columnar structure, a PVD method (physical vapor deposition method) such as an evaporation method, a sputtering method, an ion plating method, an ion cluster beam method, and a laser beam ablation method may be used. it can. This columnar structure can be controlled by film forming conditions such as a substrate temperature and a film forming rate.
[0031]
【Example】
(Example 1)
As the support substrate / fuel electrode layer, a sintered body of Ni-YSZ cermet having a porosity of 30% and an average pore diameter of 2 μm was used. After the sintered body was impregnated with an epoxy resin and cured, it was polished to a surface roughness Ra of 0.1 μm. This was fired at 600 ° C. in the air to burn off the epoxy resin. Thereafter, the sintered body whose surface was polished was set in a binary sputtering apparatus, the sputtering pressure was set to 2 Pa, and Ni and YSZ were sputtered together using Ar gas as a sputtering gas. When Ni or YSZ is formed independently, the sputtering power source output is adjusted so that the film forming speed ratio becomes 4: 6, and the two sources are simultaneously sputtered to form a columnar structure layer having a thickness of 2 μm as a fuel electrode layer. Filmed.
[0032]
Next, an electrolyte layer was formed using an aerosol deposition method. The sintered substrate on which the fuel electrode layer was formed was set in an aerosol deposition apparatus. A YSZ raw material powder having an average particle size of 0.2 μm is placed in a raw material bottle, and He gas is blown into the raw material bottle at 6 L / min as a sol-forming gas to form an aerosol. The aerosol was transported by a transport tube, and was ejected to a substrate from a nozzle installed in the apparatus chamber, and a film was formed at a champer pressure of 93 Pa. Thus, a 5 μm YSZ electrolyte layer was formed.
[0033]
An air electrode layer was formed again on the sintered body substrate on which the electrolyte layer was formed by using the sputtering method. A substrate was placed in a sputtering apparatus, and a substrate temperature was heated to 700 ° C., an Ar gas was used as a sputtering gas, a sputtering pressure was 2 Pa, and a lanthanum-cobalt-based oxide (La 0.8 Sr 0.2 CoO 3) was formed to a thickness of 1 μm. did.
[0034]
In the fuel cell thus formed, the Ni-YSZ layer and the lanthanum-cobalt-based oxide layer formed by sputtering show a columnar structure in the cross-sectional SEM photograph, and the YSZ film formed by the aerosol deposition method has a columnar structure. It was observed that the electrolyte layer had a lamellar structure.
[0035]
Using a known power generation output evaluation device, air was introduced into the air electrode layer side and hydrogen gas was introduced into the substrate / fuel electrode layer side to evaluate the output of the above fuel cell. At that time, the fuel cell was installed in the evaluation device, the temperature of the furnace was increased at a rate of 550 ° C./10 min, and the measurement was performed while maintaining the temperature at 550 ° C. As a result, a power generation output density of 0.05 W / cm 2 was obtained. Even after such rapid heating, the power generation output could be measured without destroying the three phases of power generation.
[0036]
(Example 2)
FIG. 1 is a partial cross-sectional view in each manufacturing step of a solid oxide fuel cell. The fuel cell is the smallest power generating element, and a plurality of fuel cells are arranged to form a cell plate. The cell plate has, for example, 2 × 2 fuel cells having an opening of about 2 mm square in a 2 cm square Si substrate 1.
[0037]
First, as shown in FIG. 1A, for example, a silicon nitride film was formed on both surfaces of a Si substrate 1 as mask layers 2 and 2 by a low pressure CVD method at about 2000 °.
[0038]
Next, as shown in FIG. 1B, a desired region of the mask layer 2 on the back surface (lower surface) of the substrate 1 was removed by photolithography and chemical dry etching using CF4 gas to form an etching pattern.
[0039]
Next, as shown in FIG. 1C, a YSZ layer having a thickness of 1 μm was formed as the lower electrolyte layer 3a by the EB evaporation method.
[0040]
Next, as shown in FIG. 1 (d), an aero deposition method was used in the same manner as in Example 1, and (La0.9Sr0.1) (Ga0.8Mg0.2) having an average particle diameter of 0.3 μm was used as a raw material powder. The upper electrolyte layer 3b was formed to a thickness of 5 μm using O2.85.
[0041]
Next, as shown in FIG. 1E, silicon etching is performed at a temperature of about 80 ° C. using, for example, hydrazine as a silicon etching liquid to form an opening 4 extending from the back surface of the substrate 1 to the front surface (upper surface). At the same time, a diaphragm composed of the mask layer 2, the lower electrolyte layer 3a, and the upper electrolyte layer 3b was formed.
[0042]
Next, as shown in FIG. 1 (f), etching is again performed from the back surface of the substrate 1 by chemical dry etching using CF4 gas to remove the mask layer 2 in the opening 4 which is in contact with the back surface of the lower electrolyte layer 3a. Then, the back surface of the lower electrolyte layer 3a was exposed. At the same time, the mask layer 2 remaining on the back surface of the substrate 1 was also removed.
[0043]
Next, as shown in FIG. 1G, an Ag layer is formed to a thickness of about 1 μm on the surface of the substrate 1 by EB evaporation using an evaporation mask so as to cover at least the upper electrolyte layer 3b. The pole layer 5 was formed.
[0044]
Then, as shown in FIG. 1H, a Ni film having a thickness of about 500 nm is formed from the back surface of the substrate 1 by the EB vapor deposition method, and covers the opening 4 from the back surface side of the substrate 1 and the back surface of the lower electrolyte layer 3a. The fuel electrode layer 6 was formed so as to be in direct contact with. Thereby, the fuel cell unit is completed.
[0045]
After the formation of the lower electrolyte layer 3a and the upper electrolyte layer 3b was completed in the step shown in FIG. 1D, the film cross section of the sample was photographed. As is clear from FIG. 2 showing the cross-sectional SEM photograph, it was observed that the lower electrolyte layer 3a had a columnar structure and the upper electrolyte layer 3b had a lamellar structure.
[0046]
With respect to the solid oxide fuel cell formed through each of the above steps, the power generation output was measured after being rapidly heated as in Example 1. As a result, a power generation output of 0.1 W / cm 2 was obtained at 600 ° C. Thus, in the above-described example, a fuel cell having excellent thermal shock resistance could be formed.
[Brief description of the drawings]
FIGS. 1A to 1H are cross-sectional views (a) to (h) illustrating a manufacturing process of a solid oxide fuel cell according to the present invention.
FIG. 2 is a cross-sectional SEM photograph of an electrolyte layer after a step (d) in Example 2.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 3a Lower electrolyte layer 3b Upper electrolyte layer 5 Air electrode layer 6 Fuel electrode layer

Claims (15)

ラメラ構造から成ることを特徴とする固体電解質型燃料電池用電解質材料。An electrolyte material for a solid oxide fuel cell, comprising a lamellar structure. ラメラ構造の層の厚さが、0.1μm以上100μm以下であることを特徴とする請求項1に記載の固体電解質型燃料電池用電解質材料。The electrolyte material for a solid oxide fuel cell according to claim 1, wherein the thickness of the layer having a lamella structure is 0.1 µm or more and 100 µm or less. 酸化ネオジウム(Nd2O3)、酸化サマリウム(Sm2O3)、イットリア(Y2O3)、酸化ガドリニウム(Gd2O3)、及び酸化スカンジウム(Sc2O3)の少なくとも一方を固溶した安定化ジルコニア、セリア(CeO2)系固溶体、酸化ビスマス、並びにドーパントをドープしたLaGaO3から成る群より選ばれた少なくとも1種以上の材料から成ることを特徴とする請求項1又は2に記載の固体電解質型燃料電池用電解質材料。Stabilized zirconia in which at least one of neodymium oxide (Nd2O3), samarium oxide (Sm2O3), yttria (Y2O3), gadolinium oxide (Gd2O3), and scandium oxide (Sc2O3) is dissolved, ceria (CeO2) -based solid solution, bismuth oxide, 3. The electrolyte material for a solid oxide fuel cell according to claim 1, wherein the electrolyte material is at least one material selected from the group consisting of LaGaO3 doped with a dopant. ラメラ構造と柱状構造から成ることを特徴とする固体電解質型燃料電池用電解質材料。An electrolyte material for a solid oxide fuel cell, comprising a lamella structure and a columnar structure. ラメラ構造の層の厚さが、0.1μm以上100μm以下であることを特徴とする請求項4に記載の固体電解質型燃料電池用電解質材料。The electrolyte material for a solid oxide fuel cell according to claim 4, wherein the thickness of the layer having a lamella structure is 0.1 µm or more and 100 µm or less. 柱状構造の層の厚さが、0.1μm以上100μm以下であることを特徴とする請求項4又は5に記載の固体電解質型燃料電池用電解質材料。The electrolyte material for a solid oxide fuel cell according to claim 4, wherein the thickness of the layer having the columnar structure is 0.1 μm or more and 100 μm or less. 酸化ネオジウム(Nd2O3)、酸化サマリウム(Sm2O3)、イットリア(Y2O3)、酸化ガドリニウム(Gd2O3)、及び酸化スカンジウム(Sc2O3)の少なくとも一方を固溶した安定化ジルコニア、セリア(CeO2)系固溶体、酸化ビスマス、並びにドーパントをドープしたLaGaO3から成る群より選ばれた少なくとも1種以上の材料から成ることを特徴とする請求項4〜6のいずれかに記載の固体電解質型燃料電池用電解質材料。Stabilized zirconia in which at least one of neodymium oxide (Nd2O3), samarium oxide (Sm2O3), yttria (Y2O3), gadolinium oxide (Gd2O3), and scandium oxide (Sc2O3) is dissolved, ceria (CeO2) -based solid solution, bismuth oxide, The electrolyte material for a solid oxide fuel cell according to any one of claims 4 to 6, comprising at least one material selected from the group consisting of LaGaO3 doped with a dopant. 基板上に少なくとも電解質層と一方の電極層を形成した積層構造を有する固体電解質型燃料電池セルであって、請求項1〜3のいずれかに記載の固体電解質型燃料電池用電解質材料を電解質層に用いて、この電解質層を一方の電極層と他方の電極層で挟持したことを特徴とする固体電解質型燃料電池セル。A solid oxide fuel cell having a laminated structure in which at least an electrolyte layer and one electrode layer are formed on a substrate, wherein the electrolyte material for a solid oxide fuel cell according to claim 1 is an electrolyte layer. Wherein the electrolyte layer is sandwiched between one electrode layer and the other electrode layer. 一方の電極層が柱状構造から成ることを特徴とする請求項8に記載の固体電解質型燃料電池セル。9. The solid oxide fuel cell according to claim 8, wherein one of the electrode layers has a columnar structure. 柱状構造の層の厚さが、0.1μm以上100μm以下であることを特徴とする請求項9に記載の固体電解質型燃料電池セル。The solid oxide fuel cell according to claim 9, wherein the thickness of the columnar structure layer is 0.1 μm or more and 100 μm or less. 基板上に少なくとも電解質層と一方の電極層を形成した積層構造を有する固体電解質型燃料電池セルであって、請求項4〜7のいずれかに記載の固体電解質型燃料電池用電解質材料を電解質層に用いて、この電解質層を一方の電極層と他方の電極層で挟持したことを特徴とする固体電解質型燃料電池セル。A solid oxide fuel cell having a laminated structure in which at least an electrolyte layer and one electrode layer are formed on a substrate, wherein the electrolyte material for a solid oxide fuel cell according to any one of claims 4 to 7 is an electrolyte layer. Wherein the electrolyte layer is sandwiched between one electrode layer and the other electrode layer. 請求項1〜3のいずれかに記載の電解質材料を製造するに際し、ラメラ構造をエアロゾルデポジション法により形成することを特徴とする固体電解質型燃料電池用電解質材料の製造方法。A method for producing an electrolyte material for a solid oxide fuel cell, comprising: forming a lamella structure by an aerosol deposition method when producing the electrolyte material according to claim 1. 請求項4〜7のいずれかに記載の電解質材料を製造するに際し、ラメラ構造をエアロゾルデポジション法又は溶射法により形成し、柱状構造を物理的気相成膜法(PVD法)により形成することを特徴とする固体電解質型燃料電池用電解質材料の製造方法。In producing the electrolyte material according to any one of claims 4 to 7, a lamella structure is formed by an aerosol deposition method or a thermal spraying method, and a columnar structure is formed by a physical vapor deposition method (PVD method). A method for producing an electrolyte material for a solid oxide fuel cell, comprising: 請求項9又は10に記載の固体電解質型燃料電池セルを製造するに際し、ラメラ構造を有する電解質層をエアロゾルデポジション法により形成し、柱状構造を有する電極層を物理的気相成膜法により形成することを特徴とする固体電解質型燃料電池セルの製造方法。In producing the solid oxide fuel cell according to claim 9 or 10, an electrolyte layer having a lamella structure is formed by an aerosol deposition method, and an electrode layer having a columnar structure is formed by a physical vapor deposition method. A method for manufacturing a solid oxide fuel cell. 請求項11に記載の固体電解質型燃料電池セルを製造するに際し、電解質層のラメラ構造をエアロゾルデポジション法又は溶射法により形成し、電解質層の柱状構造を物理的気相成膜法(PVD法)により形成することを特徴とする固体電解質型燃料電池セルの製造方法。In producing the solid oxide fuel cell according to claim 11, the lamella structure of the electrolyte layer is formed by an aerosol deposition method or a thermal spraying method, and the columnar structure of the electrolyte layer is formed by a physical vapor deposition method (PVD method). A) a method for producing a solid oxide fuel cell.
JP2002323362A 2002-11-07 2002-11-07 Method for producing electrolyte material for solid oxide fuel cell and method for producing solid oxide fuel cell Expired - Lifetime JP4135891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323362A JP4135891B2 (en) 2002-11-07 2002-11-07 Method for producing electrolyte material for solid oxide fuel cell and method for producing solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323362A JP4135891B2 (en) 2002-11-07 2002-11-07 Method for producing electrolyte material for solid oxide fuel cell and method for producing solid oxide fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007186688A Division JP4140652B2 (en) 2007-07-18 2007-07-18 ELECTROLYTE FOR SOLID ELECTROLYTE FUEL CELL, SOLID ELECTROLYTE FUEL CELL AND METHOD FOR PRODUCING THEM

Publications (2)

Publication Number Publication Date
JP2004158313A true JP2004158313A (en) 2004-06-03
JP4135891B2 JP4135891B2 (en) 2008-08-20

Family

ID=32803240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323362A Expired - Lifetime JP4135891B2 (en) 2002-11-07 2002-11-07 Method for producing electrolyte material for solid oxide fuel cell and method for producing solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4135891B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222006A (en) * 2005-02-14 2006-08-24 Nissan Motor Co Ltd Cell for solid oxide type fuel battery and its manufacturing method
JP2007299767A (en) * 2007-07-18 2007-11-15 National Institute Of Advanced Industrial & Technology Electrolyte material for solid electrolyte fuel cells, solid electrolyte fuel cell and method for fabrication thereof
KR101353642B1 (en) * 2011-12-09 2014-01-21 주식회사 포스코 Solid oxide fuel cell having reaction preventing layer and method for manufacturing the same
CN105493327A (en) * 2013-05-21 2016-04-13 攀时复合材料有限公司 Multi-layer sandwich structure for a solid-state electrolyte
JP2016531834A (en) * 2013-08-30 2016-10-13 ゼネラル・エレクトリック・カンパニイ Method for removing barrier coatings, bond coats and oxide layers from ceramic matrix composites
JPWO2021090441A1 (en) * 2019-11-07 2021-05-14
JPWO2021090475A1 (en) * 2019-11-08 2021-05-14
EP3961778A4 (en) * 2019-04-26 2022-12-07 Hitachi High-Tech Corporation Fuel battery cell, fuel battery system, leak detection method
TWI811984B (en) * 2021-03-31 2023-08-11 日商日立全球先端科技股份有限公司 Fuel cell and manufacturing method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222006A (en) * 2005-02-14 2006-08-24 Nissan Motor Co Ltd Cell for solid oxide type fuel battery and its manufacturing method
JP2007299767A (en) * 2007-07-18 2007-11-15 National Institute Of Advanced Industrial & Technology Electrolyte material for solid electrolyte fuel cells, solid electrolyte fuel cell and method for fabrication thereof
KR101353642B1 (en) * 2011-12-09 2014-01-21 주식회사 포스코 Solid oxide fuel cell having reaction preventing layer and method for manufacturing the same
CN105493327A (en) * 2013-05-21 2016-04-13 攀时复合材料有限公司 Multi-layer sandwich structure for a solid-state electrolyte
JP2016531834A (en) * 2013-08-30 2016-10-13 ゼネラル・エレクトリック・カンパニイ Method for removing barrier coatings, bond coats and oxide layers from ceramic matrix composites
US10363584B2 (en) 2013-08-30 2019-07-30 General Electric Company Methods for removing barrier coatings, bondcoat and oxide layers from ceramic matrix composites
EP3961778A4 (en) * 2019-04-26 2022-12-07 Hitachi High-Tech Corporation Fuel battery cell, fuel battery system, leak detection method
JP7279183B2 (en) 2019-11-07 2023-05-22 株式会社日立ハイテク Fuel cell, fuel cell system, fuel cell manufacturing method
WO2021090441A1 (en) * 2019-11-07 2021-05-14 株式会社日立ハイテク Fuel cell, fuel cell system and method for producing fuel cell
JPWO2021090441A1 (en) * 2019-11-07 2021-05-14
JPWO2021090475A1 (en) * 2019-11-08 2021-05-14
WO2021090475A1 (en) * 2019-11-08 2021-05-14 株式会社日立ハイテク Fuel cell and method for producing fuel cell
CN114667621A (en) * 2019-11-08 2022-06-24 株式会社日立高新技术 Fuel cell unit and fuel cell unit manufacturing method
JP7332708B2 (en) 2019-11-08 2023-08-23 株式会社日立ハイテク FUEL BATTERY CELL, FUEL BATTERY CELL MANUFACTURING METHOD
CN114667621B (en) * 2019-11-08 2023-12-05 株式会社日立高新技术 Fuel cell and method for manufacturing fuel cell
TWI811984B (en) * 2021-03-31 2023-08-11 日商日立全球先端科技股份有限公司 Fuel cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP4135891B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP3997874B2 (en) Single cell for solid oxide fuel cell and method for producing the same
JP3858261B2 (en) Cell plate for fuel cell, method for producing the same, and solid oxide fuel cell
US20080246194A1 (en) Method of producing a ceramic sintered body
JPH09223508A (en) High temperature fuel cell having thin film electrolyte
JP4029321B2 (en) Porous oxide film, method for producing the same, and fuel cell using the same
JP4840718B2 (en) Solid oxide fuel cell
JP2004127635A (en) Cell plate for solid oxide fuel cell and its manufacturing method
US20080206618A1 (en) Electrochemical devices and electrochemical apparatus
JPH09277226A (en) Manufacture of solid electrolyte type fuel cell
JP2004158313A (en) Electrolyte material for solid electrolyte fuel cell, cell of solid electrolyte fuel cell, and manufacturing method of these
JP5061408B2 (en) STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JP5343836B2 (en) Solid oxide fuel cell and method for producing the same
JP2004111145A (en) Unit cell for solid oxide fuel cell and its manufacturing method
JP2013065518A (en) Metal support-type electrolyte-electrode assembly and manufacturing method thereof
JP4192481B2 (en) Flat plate type solid oxide fuel cell and its manufacturing method
JP6207420B2 (en) FUEL CELL STACK STRUCTURE AND METHOD FOR PRODUCING FUEL CELL STACK STRUCTURE
JP4140652B2 (en) ELECTROLYTE FOR SOLID ELECTROLYTE FUEL CELL, SOLID ELECTROLYTE FUEL CELL AND METHOD FOR PRODUCING THEM
JP4232614B2 (en) Solid oxide fuel cell
JP4468678B2 (en) Method for producing solid oxide fuel cell
JP4342267B2 (en) Solid oxide fuel cell and method for producing the same
JP2005166455A (en) Solid oxide fuel battery cell, cell plate, and its manufacturing method
JPH06283178A (en) Manufacture of electrolytic film for solid electrolytic fuel cell
JPH08195216A (en) Manufacture of solid-electrolyte fuel cell
JP2002358976A (en) Solid electrolyte fuel cell
JP2005071948A (en) Hybrid porous tube, and manufacturing method of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

R150 Certificate of patent or registration of utility model

Ref document number: 4135891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term