JP2004127635A - Cell plate for solid oxide fuel cell and its manufacturing method - Google Patents

Cell plate for solid oxide fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2004127635A
JP2004127635A JP2002288183A JP2002288183A JP2004127635A JP 2004127635 A JP2004127635 A JP 2004127635A JP 2002288183 A JP2002288183 A JP 2002288183A JP 2002288183 A JP2002288183 A JP 2002288183A JP 2004127635 A JP2004127635 A JP 2004127635A
Authority
JP
Japan
Prior art keywords
fuel cell
solid oxide
oxide fuel
substrate
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002288183A
Other languages
Japanese (ja)
Other versions
JP3978603B2 (en
Inventor
Itaru Shibata
柴田 格
Hiromi Sugimoto
杉本 博美
Shigeo Ibuka
井深 重夫
Mitsugi Yamanaka
山中 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002288183A priority Critical patent/JP3978603B2/en
Publication of JP2004127635A publication Critical patent/JP2004127635A/en
Application granted granted Critical
Publication of JP3978603B2 publication Critical patent/JP3978603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell plate for a solid oxide fuel cell capable of forming a thin membrane-shaped cell element on a porous substrate having high gas permeability and high mechanical strength and operating at a low temperature, and to provide a method for manufacturing the cell plate. <P>SOLUTION: The porous substrate 2 for supporting the cell element is formed by filling a porous material 4 having gas permeability and electric conductivity in pores or voids 3a of a metallic substrate 3 such as foamed metal or mesh, and cell elements 5, 6 and 7 are formed on the porous substrate 2 by a PVD method, for example. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は固体酸化物形燃料電池(SOFC)に係わり、特に機械的強度に優れた薄肉成膜基板上に薄膜状の電池要素を形成することができ、作動温度の低温化と、薄型・小型化が可能な電池構造に関するものである。
【0002】
【従来の技術】
電解質としてジルコニアなどの酸化物からなる固体電解質を用いる固体酸化物形燃料電池においては、その動作温度が800〜1100℃程度と高温であることから、他の型式の燃料電池と比較して多くの特徴を備えている。すなわち、メタン等の内部改質ができるため発電装置としての構成の簡素化が可能、排熱利用による高効率化が可能、電解質の散逸の問題がないので取扱が容易、また、水素と共に一酸化炭素も燃料として使用できるため石炭ガスとの組合せに適するなどの特長を持っている。さらに、これらの特長に加えて、ガスタービン等と組合わせた高効率複合発電も期待されるなど、次世代型の燃料電池として有望視されている。
【0003】
一方、自動車などの移動体用の小型電源としては、起動−停止の多い使用条件下におけるヒートサイクルに対する耐久性を確保する観点から、運転温度の低温化が種々検討されている。
【0004】
例えば、特開平4−92369号公報には、無機多孔質基体上に、燃料極、厚さ20μm以下のセリア系固体電解質及び多孔質酸素極を形成し、無機多孔質基体を集電体、その空隙部を燃料ガス通路、多孔質酸素極の空隙部を酸化剤ガス通路とした低温作動固体電解質型燃料電池が提案されている。すなわち、当該燃料電池においては、固体電解質として酸素イオン伝導度の大きいセリア系セラミックスを用いると共にその薄膜化を図り、無機多孔質基体の表面に燃料極材料を成膜して燃料極の表面積を大きくして燃料ガスとの接触面積を増し、さらに多孔質状の酸素極を用いて酸化剤ガスとの接触面積を増すことによって、固体電解質の抵抗及び各電極反応の抵抗を減らして反応速度の低下を防止するようにしている。
【0005】
また、Plasma Sprayed Thin−Film for Reduced Operating Temperature, FuelCells Bulletin, pp597−600, 2000 には、燃料極/電解質/空気極を多孔質金属基体上に溶射法により成膜することによって、薄膜化を図ることが記載されている。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平4−92369号公報に記載された低温作動固体電解質型燃料電池においては、燃料極材料成膜後の無機多孔質基体の表面状態では、電解質を成膜できるだけの緻密性がないため、燃料極が成膜された無機多孔質基体に有機材料を塗布して乾燥した後、有機膜の表面をエッチングや精密研削などによって燃料極の表面が露出した平滑面を形成し、この平滑面に固体電解質を成膜するようにしている。そして、この固体電解質の表面に酸素極材料と有機材料とを同時に蒸着してこれら材料の混在膜を形成した後、燃料極/有機膜/固体電解質/(酸素極材料+有機材料)が成膜された無機多孔質基体を600〜1000℃に加熱して上記有機材料を除去するようにしていることから、工程数が増加するだけでなく、有機溶剤を除去する際の加熱によって多孔質基体が酸化されるために電気伝導性が劣化し、集電体として機能が低下すると共に、残留有機成分が電池特性を低下させる恐れがある。
【0007】
また、上記Fuel Cells Bulletinに記載の燃料電池においては、多孔質金属基体として十分なガス透過性を確保するには、粗な組織を有する金属焼結体を使用する必要があり、溶射成膜に耐え得るだけの強度を確保するには、厚板とせざるを得ず、薄板化が阻害されることとなる。
【0008】
本発明は、ガス通路及び集電体として機能する多孔質基体によって電池要素を支持して成る従来の固体酸化物形燃料電池における上記課題に着目してなされたものであって、ガス透過性及び機械的強度に優れた多孔質基板の上に薄膜状の電池要素を形成することができ、低温作動が可能な固体酸化物形燃料電池用セル板、およびこのようなセル板の製造方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明の固体酸化物形燃料電池用セル板は、複数の孔及び/又は空隙を備えた金属基体の前記孔及び/又は空隙内をガス透過性及び電気伝導性を有する多孔質材で充填して成る基板上に、燃料極及び空気極の一方又は両方と電解質が形成してある構成としたことを特徴としており、固体酸化物形燃料電池用セル板におけるこのような構成を前述した従来の課題を解決するための手段としている。
【0010】
また、本発明の固体酸化物形燃料電池用セル板の製造方法においては、金属基体の孔及び/又は空隙内に充填される多孔質材を湿式めっき法によって形成することができる。
【0011】
さらに、本発明の固体酸化物形燃料電池スタックは、本発明による上記固体酸化物形燃料電池用セル板をインターコネクタを介して積層してなる構成とし、本発明の固体酸化物形燃料電池は、上記本発明の固体酸化物形燃料電池スタックを備えた構成としたことを特徴としている。
【0012】
【発明の実施の形態】
多孔質基板上に電池要素を形成したタイプの固体酸化物形燃料電池において、多孔質基板は、薄膜電池要素の支持部材としての十分な強度と、この電池要素により発電出力される電力を損失なく取り出すのに十分な電気伝導度と、さらに電池要素に燃料ガスおよび酸化ガスを供給するのに十分なガス透過性を備えていることが必要である。
本発明の固体酸化物形燃料電池用セル板においては、燃料極層、電解質層及び空気極層から成る電池要素を支持するための多孔質基板として、複数の孔や空隙を備えた金属基体、例えば発泡金属、パンチングメタル、金属メッシュ(金網)、エキスパンデッドメタル、金属不織布などから形成され、その孔(不織布については、金属繊維間の空隙)内にガス透過性と電気伝導性を備えた多孔質材を充填したものを使用している。すなわち、金属基体が芯となって強度を確保すると共に、金属基体の孔や空隙部が多孔質材によって封止されて表面の平滑度が向上することから、電池要素の薄膜形成が容易なものとなるばかりでなく、支持基板としての強度が向上して薄板化が可能となると共に、集電体としての電気抵抗が減少し、熱伝導が向上するため、小型で低温作動及び高速起動が可能なセル板が得られることになる。
【0013】
本発明の固体酸化物形燃料電池用セル板において、上記金属基体としては、板厚が500μm以下であって、100μm以下の孔や空隙を備えたものを使用することが望ましい。すなわち、孔の径や空隙の幅寸法が100μmを超えると多孔質材による封止処理(充填)が困難となる傾向があると共に、板厚が500μmを超えると薄板化によるセル/セル板の小型化が難しくなることによる。
【0014】
また、上記金属基体の孔や空隙を充填するための多孔質材としては、例えばニッケルやニッケルサーメット、ランタンコバルト系酸化物、ランタンマンガン系酸化物などの多孔質材を使用することができ、当該多孔質材の微小孔や空隙の大きさとしては、1μmを超えるとその上に電池要素薄膜を成膜することが難しくなることから、1μm以下とすることが望ましい。
このような多孔質材は、スプレー法やスクリーン印刷法、スリップキャスト法等のスラリー塗布法によっても形成することができるが、低温での封孔処理(充填)が可能となり、金属基体の酸化に基づく電気や熱の伝導性劣化による性能低下が回避されることから、湿式めっき法、例えば無電解めっき法や、無電解めっき液中に機能性粉体を分散させることによって金属と粉体を同時に析出させる共析めっき法などを適用することが望ましい。
【0015】
本発明の固体酸化物形燃料電池用セル板における電解質の材料としては、酸素イオン伝導性などを有する公知の電解質材料、例えば酸化ネオウジム(Nd)、酸化サマリウム(Sm)、イットリア(Y)、酸化スカンジウム(Sc)、酸化ガドリニウム(Gd)などを固溶した安定化ジルコニアや、セリア(CeO)系固溶体、酸化ビスマス固溶体、LaGa固溶体ぺロブスカイトなどを好適に使用することができる。
そして、当該電解質層の膜厚としては、後述するPVD成膜が工業的に可能になり、しかも電池の内部抵抗が減少することから、20μm以下とすることが好ましい。
【0016】
燃料極材料としては、ニッケルやニッケルサーメット(Ni−SDCなど)、白金などを使用することができる。また、空気極材料としては、ランタンコバルト系酸化物(LSCなど)、ランタンマンガン系酸化物(LSM、LCMなど)、サマリウムコバルト酸化物(SSCなど)等を使用することができる。
なお、多孔質材として、ニッケルやニッケルサーメットなどの燃料極材料を用いて上記金属基体の孔や空隙を充填した場合には、当該多孔質材を燃料極として機能させることができ、新たに燃料極を成膜する必要がなくなる。また、同様にランタンコバルト系酸化物、ランタンマンガン系酸化物などの空気極材料を多孔質材として用いた場合には、これを空気極として機能させることができ、空気極の成膜を省略することができる。
【0017】
上記電池要素、すなわち、電解質、燃料極、空気極は、例えば、スパッタ法、蒸着法、イオンプレーティング法、プラズマ溶射法、AD法(エアロゾルデポジション法)、ガスデポジション法、レーザアブレーション法などのPVD法(物理的気相成長法)によって成膜することが望ましく、これによって、薄膜電池要素を低温で形成することができ、金属基体の酸化に基づく電池性能の低下が回避されるようになる。
【0018】
【実施例】
以下、本発明を実施例に基づいて具体的に説明する。
【0019】
(実施例1)
図1(a)に示すように、Ni粉末から成る焼結体であって、平均径50μmの孔3aを有する板厚0.5mmの金属板を金属基体3として使用し、まず、当該金属基体3を希塩酸で酸洗浄した後、脱脂処理を施すことによって表面の酸化皮膜を除去した。
一方、硫酸ニッケル25g、次亜リン酸ナトリウム20g、酢酸ナトリウム10gを1kgの水に溶解し、pH5に調整しためっき液を準備し、これを80℃に恒温保持した。
そして、被膜除去処理を施した金属基体3を80℃に保持した上記めっき液中に所定時間浸漬して無電解めっきすることによって、金属基体3の孔3a内にニッケルから成る多孔質材4を充填すると共に、金属基体3の表面に厚さ100μmの多孔質材4からなる層を形成し、図1(b)に示すような基板2を得た。この多孔質材4の微細孔の平均径は、0.1μmであった。
【0020】
次に、無電解めっき後の上記基板2を水洗・乾燥したのち、スパッタガスとしてガス圧1Paのアルゴンを用い、300Wのスパッタパワーのもとで、NiOからなるターゲットと、SDC(Sm0.15Ce0.85O)から成るターゲットを用いて、NiO:SDCが質量比で6:4となるようにで共スパッタリングを行い、図1(c)に示すように、上記基板2の表面に、ニッケル及びSDCから成る燃料極5を5μmの厚さに成膜した。
【0021】
次いで、スパッタガスとしてガス圧0.2Paのアルゴンのもとで、YSZ(8モル%Y−ZrO)のターゲットを用い、300Wのパワーのスパッタ法により700℃で加熱成膜を行い、図1(d)に示すように上記燃料極5の表面に、YSZからなる電解質6を4μmの厚さに形成した。
【0022】
そして、スパッタガスとしてガス圧1Paのアルゴンを用い、300Wのスパッタパワーのもとで、SSC(Sm0.8Sr0.2O)から成るターゲットを用いたスパッタ法によって、図1(e)に示すように上記電解質6の表面に、SSCから成る空気極7を10μmの厚さに成膜することによって、合計厚さ約0.62mmの燃料電池用セル板1を得た。
【0023】
(実施例2)
金属基体3として、フォトエッチングによって形成された平均径100μmの孔3aを有する板厚0.3mmのステンレス鋼を使用し、上記実施例と同様の被膜除去処理及び無電解めっきを施すことによって、金属基体3の孔3a内にニッケルから成る多孔質材4を充填すると共に、金属基体3の表面に厚さ200μmの多孔質材4からなる層を形成して、合計厚さ0.5mmの基板2を得た。この多孔質材4の微細孔の平均径は、同じく0.1μmであった。
【0024】
そして、上記実施例と同様の要領によって、当該基板2の上に、ニッケル及びSDCから成る厚さ10μmの燃料極5、YSZから成る厚さ4μmの電解質6及びSSCから成る厚さ10μmの空気極7をこの順序に成膜することによって、図1(e)に示したものと基本的に同様の構造を有する合計厚さ約0.52mmの燃料電池用セル板1を得た。
【0025】
(実施例3)
金属基体3として、フォトエッチングを施すことによって形成された平均径が100μmの孔3aを有する板厚0.3mmのニッケル板材を使用し、上記実施例と同様の被膜除去処理を施した後、上記めっき液中に粒径0.8〜1.2μmのSDC粉末を混合して分散させた処理液中に所定時間浸漬し、処理液をよく攪拌しながら無電解共析めっきすることによって、金属基体3の孔3a内にニッケルとSDCから成る多孔質材4を充填して基板2とした。この時の多孔質材4の微細孔の平均径は、0.2μmであった。
【0026】
そして、上記実施例1と同様の要領によって、当該基板2の上に、ニッケル及びSDCから成る厚さ5μmの燃料極5、YSZから成る厚さ4μmの電解質6及びSSCから成る厚さ10μmの空気極7をこの順序に成膜することによって、図2に示すように、合計厚さ約0.32mmの燃料電池用セル板1を得た。
【0027】
(実施例4)
金属基体3として、Fe−Cr−Al合金繊維から成る焼結体であって、平均50μmの空隙を有する板厚0.25mmの金属板を使用し、上記実施例3と同様の被膜除去処理及び無電解共析めっきを施すことによって、金属基体3の空隙内にニッケルとSDCから成る多孔質材4を充填して基板2とした。この多孔質材4の微細孔の平均径は、同じく0.2μmであった。
【0028】
そして、上記各実施例と同様の要領によって、当該基板2の上に、ニッケル及びSDCから成る厚さ10μmの燃料極5、YSZから成る厚さ4μmの電解質6及びSSCから成る厚さ10μmの空気極7をこの順序に成膜することによって、図2と基本的に同様の構造をなす合計厚さ約0.27mmの燃料電池用セル板1を得た。
【0029】
(実施例5)
上記実施例2で得られたものと同様の基板2を用い、当該基板2の上に、実施例2と同じ構成の電池要素を電子ビーム蒸着法によって成膜し、図1(e)と同様の構造の燃料電池用セル板1を得た。なお、この時の真空度は5×10−1Pa、電子ビームの出力パワーは300Wとした。
【0030】
(実施例6)
金属基体3として、フォトエッチングを施すことによって形成された平均径が100μmの孔3aを有する板厚0.3mmのステンレス鋼を使用し、当該金属基体3に上記実施例と同様の被膜除去処理を施した。
【0031】
そして、塩化スズ塩酸水溶液で前処理後、0.1mol/L硝酸銀80mL、2mol/L水酸化ナトリウム16mL、2mol/Lアンモニア水中に、粒径0.8〜1.2μmのSSC粉末を分散させためっき液中に上記金属基体3を所定時間浸漬し、よく攪拌しながら無電解共析めっきすることによって、金属基体3の孔3a内に銀とSSCから成る多孔質材4を充填して基板2とした。当該多孔質材4の微細孔の平均径は、0.2μmであった。
【0032】
次に、共析めっき後の上記基板2を水洗・乾燥したのち、スパッタガスとしてガス圧1Paのアルゴンを用い、300Wのスパッタパワーのもとで、SSC(Sm0.8Sr0.2O)のターゲットを用いたスパッタ法によって、上記基板2の表面に、SSCから成る空気極7を5μmの厚さに成膜した。
【0033】
次いで、スパッタガスとしてガス圧0.2Paのアルゴンのもとで、YSZ(8モル%Y−ZrO)から成るターゲットを用い、300Wのパワーのスパッタ法により700℃で加熱成膜を行い、上記空気極7の表面に、YSZからなる電解質6を4μmの厚さに形成した。
【0034】
そして、スパッタガスとしてガス圧1Paのアルゴンを用い、300Wのスパッタパワーのもとで、NiOから成るターゲットとSDC(Sm0.15Ce0.85O)から成るターゲットを用いて、NiO:SDCが質量比で6:4となるようにで共スパッタリングを行い、上記電解質6の表面上に、ニッケル及びSDCから成る燃料極5を10μmの厚さに成膜することによって、図3に示すように、合計厚さ約0.32mmの燃料電池用セル板1を得た。
【0035】
以上の実施例によって得られた各燃料電池用セル板1の仕様を表にまとめて示す。いずれの実施例においても、薄板の成膜基板2の上に電池要素5,6,7を薄膜状に安定に形成することができ、肉厚の薄い燃料電池用セル板1が得られることが確認された。このような構造を備えた固体酸化物形燃料電池用セル板1は、インターコネクタを介して積層し、スタックとして燃料電池に組み込むことができ、小型で高性能であって、特に低温作動及び高速起動が可能な固体酸化物形燃料電池が得られることになる。
【0036】
【表1】

Figure 2004127635
【0037】
【発明の効果】
以上説明したように、本発明に係わる固体酸化物形燃料電池用セル板は、電池要素を支持するための多孔質基板として、発泡金属やメッシュのような金属基体の孔や空隙内にガス透過性及び電気伝導性を備えた多孔質材を充填したものを使用しているいるので、金属基体が芯となって支持基板としての強度が確保されると共に、成膜基板としての表面平滑度が確保されることから、電池要素の薄膜形成が容易となると共に、支持基板の薄板化が可能となり、集電体としての電気伝導性、熱伝導性が向上するため、燃料電池用セル板の薄肉化、性能向上と共に、作動温度の低温化、起動時間の短縮が可能になるという極めて優れた効果をもたらすものである。
【0038】
また、本発明に係わる固体酸化物形燃料電池用セル板の製造方法においては、金属基体の孔や空隙内に多孔質材を形成するに際して湿式めっき法を採用したり、電池要素をスパッタ法や蒸着法などのPVD法によって成膜したりするようにしているので、比較的低温域で処理することができ、金属基体の酸化による種々の性能劣化を回避することができる。
【0039】
さらに、本発明に係わる固体酸化物形燃料電池スタックは、本発明よる上記固体酸化物形燃料電池用セル板をインターコネクタを介して積層してなる構成とし、本発明に係わる固体酸化物形燃料電池は、上記固体酸化物形燃料電池スタックを備えたものであるから、小型で高容量、しかも低温作動、高速起動が可能な燃料電池とすることができる。
【図面の簡単な説明】
【図1】(a)〜(e)は本発明の第1、第2および第5の実施例に係わる固体酸化物形燃料電池用セル板の製造工程を示す概略断面図である。
【図2】第3の実施例に係わる固体酸化物形燃料電池用セル板の構造を示す概略断面図である。
【図3】第6の実施例に係わる固体酸化物形燃料電池用セル板の構造を示す概略断面図である。
【符号の説明】
1 固体酸化物形燃料電池用セル板
2 基板
3 金属基体
3a 孔
4 多孔質材
5 燃料極
6 電解質
7 空気極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid oxide fuel cell (SOFC), in which a thin-film battery element can be formed on a thin film-forming substrate having excellent mechanical strength, and a lower operating temperature and a thinner and smaller size can be obtained. The present invention relates to a battery structure that can be converted.
[0002]
[Prior art]
In a solid oxide fuel cell using a solid electrolyte made of an oxide such as zirconia as an electrolyte, the operating temperature is as high as about 800 to 1100 ° C. Has features. In other words, internal reforming of methane and the like is possible, so that the configuration as a power generation device can be simplified, high efficiency can be achieved by using waste heat, and there is no problem of electrolyte dissipation, so handling is easy. Since carbon can also be used as a fuel, it has features such as being suitable for combination with coal gas. Further, in addition to these features, high-efficiency combined power generation combined with a gas turbine or the like is also expected.
[0003]
On the other hand, as a small power source for a mobile body such as an automobile, various studies have been made on lowering the operating temperature from the viewpoint of ensuring durability against a heat cycle under use conditions with many start-stops.
[0004]
For example, JP-A-4-92369 discloses that a fuel electrode, a ceria-based solid electrolyte having a thickness of 20 μm or less and a porous oxygen electrode are formed on an inorganic porous substrate, and the inorganic porous substrate is used as a current collector. There has been proposed a low-temperature operating solid electrolyte fuel cell in which a void is a fuel gas passage and a void of a porous oxygen electrode is an oxidant gas passage. That is, in the fuel cell, a ceria-based ceramic having a high oxygen ion conductivity is used as the solid electrolyte and the thickness thereof is reduced, and a fuel electrode material is formed on the surface of the inorganic porous substrate to increase the surface area of the fuel electrode. To increase the contact area with the fuel gas, and further increase the contact area with the oxidizing gas using a porous oxygen electrode, thereby reducing the resistance of the solid electrolyte and the resistance of each electrode reaction, thereby reducing the reaction rate. Try to prevent.
[0005]
Further, in Plasma Sprayed Thin-Film for Reduced Operating Temperature, FuelCells Bulletin, pp597-600, 2000, a fuel electrode / electrolyte / air electrode is formed on a porous metal substrate by a thermal spraying method. It is described.
[0006]
[Problems to be solved by the invention]
However, in the low-temperature operating solid electrolyte fuel cell described in JP-A-4-92369, the surface state of the inorganic porous substrate after the formation of the anode material is not dense enough to form the electrolyte. After coating and drying the inorganic material on the inorganic porous substrate on which the anode is formed, the surface of the anode is formed by etching or precision grinding to form a smooth surface where the anode surface is exposed. A solid electrolyte is formed on the substrate. Then, an oxygen electrode material and an organic material are simultaneously deposited on the surface of the solid electrolyte to form a mixed film of these materials, and then a fuel electrode / organic film / solid electrolyte / (oxygen electrode material + organic material) is formed. Since the organic material is removed by heating the inorganic porous substrate to 600 to 1000 ° C., not only the number of steps is increased, but also the porous substrate is heated by removing the organic solvent. Oxidation deteriorates electric conductivity, lowers the function as a current collector, and may cause residual organic components to deteriorate battery characteristics.
[0007]
Further, in the fuel cell described in the above Fuel Cells Bulletin, in order to secure sufficient gas permeability as a porous metal substrate, it is necessary to use a metal sintered body having a rough structure, In order to secure enough strength to withstand, a thick plate must be used, and thinning is hindered.
[0008]
The present invention has been made in view of the above-mentioned problems in a conventional solid oxide fuel cell in which a battery element is supported by a porous substrate functioning as a gas passage and a current collector, and has a gas permeability and a gas permeability. A cell plate for a solid oxide fuel cell capable of forming a thin-film cell element on a porous substrate having excellent mechanical strength and capable of operating at a low temperature, and a method for producing such a cell plate. It is intended to be.
[0009]
[Means for Solving the Problems]
The cell plate for a solid oxide fuel cell according to the present invention fills the pores and / or voids of a metal substrate having a plurality of pores and / or voids with a porous material having gas permeability and electrical conductivity. And the electrolyte is formed on one or both of the fuel electrode and the air electrode on the substrate having the structure described above. It is a means to solve the problem.
[0010]
In the method for manufacturing a cell plate for a solid oxide fuel cell according to the present invention, the porous material filled in the holes and / or voids of the metal substrate can be formed by a wet plating method.
[0011]
Furthermore, the solid oxide fuel cell stack of the present invention has a configuration in which the solid oxide fuel cell cell plates according to the present invention are stacked via an interconnector, and the solid oxide fuel cell of the present invention The solid oxide fuel cell stack according to the present invention is characterized in that the fuel cell stack is provided.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In a solid oxide fuel cell of the type in which a battery element is formed on a porous substrate, the porous substrate has sufficient strength as a support member for the thin-film battery element and does not lose power generated and output by the battery element without loss. It is necessary to have sufficient electric conductivity for taking out and sufficient gas permeability for supplying fuel gas and oxidizing gas to the battery element.
In the cell plate for a solid oxide fuel cell of the present invention, a metal substrate having a plurality of holes and voids as a porous substrate for supporting a battery element comprising a fuel electrode layer, an electrolyte layer and an air electrode layer, For example, it is formed of a foamed metal, a punching metal, a metal mesh (wire mesh), an expanded metal, a metal nonwoven fabric, etc., and has gas permeability and electric conductivity in its holes (for nonwoven fabrics, voids between metal fibers). A material filled with a porous material is used. That is, the metal substrate serves as a core to secure strength, and the holes and voids of the metal substrate are sealed with a porous material to improve the smoothness of the surface. Not only that, the strength as a supporting substrate is improved and the thickness can be reduced. In addition, the electric resistance as a current collector is reduced and heat conduction is improved. Thus, a simple cell plate can be obtained.
[0013]
In the cell plate for a solid oxide fuel cell of the present invention, it is desirable to use a metal substrate having a plate thickness of 500 μm or less and having holes and voids of 100 μm or less. That is, if the diameter of the hole or the width of the void exceeds 100 μm, the sealing treatment (filling) with a porous material tends to be difficult, and if the thickness exceeds 500 μm, the cell / cell plate becomes smaller due to thinning. It becomes difficult to make.
[0014]
Further, as the porous material for filling the pores and voids of the metal substrate, for example, a porous material such as nickel, nickel cermet, lanthanum cobalt-based oxide, and lanthanum manganese-based oxide can be used. If the size of the micropores or voids in the porous material exceeds 1 μm, it becomes difficult to form a battery element thin film thereon, so that the size is preferably 1 μm or less.
Such a porous material can be formed by a slurry coating method such as a spray method, a screen printing method, or a slip casting method. However, the sealing treatment (filling) can be performed at a low temperature, and the porous material is oxidized. Since the performance degradation due to the deterioration of electrical and thermal conductivity based on is avoided, the wet plating method, for example, the electroless plating method, or the metal and the powder can be simultaneously dispersed by dispersing the functional powder in the electroless plating solution. It is desirable to apply an eutectoid plating method for precipitation.
[0015]
As the electrolyte material in the cell plate for a solid oxide fuel cell of the present invention, known electrolyte materials having oxygen ion conductivity, such as neodymium oxide (Nd 2 O 3 ), samarium oxide (Sm 2 O 3 ), Stabilized zirconia in which yttria (Y 2 O 3 ), scandium oxide (Sc 2 O 3 ), gadolinium oxide (Gd 2 O 3 ) and the like are dissolved, ceria (CeO 2 ) -based solid solution, bismuth oxide solid solution, and LaGa solid solution Lobskite and the like can be suitably used.
The thickness of the electrolyte layer is preferably set to 20 μm or less, since the later-described PVD film formation becomes industrially possible and the internal resistance of the battery is reduced.
[0016]
As the fuel electrode material, nickel, nickel cermet (Ni-SDC or the like), platinum, or the like can be used. Further, as the air electrode material, a lanthanum cobalt-based oxide (such as LSC), a lanthanum manganese-based oxide (such as LSM or LCM), a samarium cobalt oxide (such as SSC), or the like can be used.
When the pores and voids of the metal substrate are filled with a fuel electrode material such as nickel or nickel cermet as a porous material, the porous material can function as a fuel electrode, and a new fuel material can be used. There is no need to form a pole. Similarly, when an air electrode material such as a lanthanum cobalt-based oxide or a lanthanum manganese-based oxide is used as a porous material, it can function as an air electrode, and the film formation of the air electrode is omitted. be able to.
[0017]
The above-mentioned battery elements, that is, the electrolyte, the fuel electrode, and the air electrode are, for example, a sputtering method, a vapor deposition method, an ion plating method, a plasma spraying method, an AD method (aerosol deposition method), a gas deposition method, a laser ablation method, and the like. It is desirable to form a film by a PVD method (physical vapor deposition method), so that a thin-film battery element can be formed at a low temperature and deterioration of battery performance due to oxidation of a metal substrate is avoided. Become.
[0018]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
[0019]
(Example 1)
As shown in FIG. 1 (a), a 0.5 mm thick metal plate having a hole 3a having an average diameter of 50 μm and being a sintered body made of Ni powder is used as the metal substrate 3. 3 was washed with dilute hydrochloric acid and then degreased to remove an oxide film on the surface.
On the other hand, 25 g of nickel sulfate, 20 g of sodium hypophosphite and 10 g of sodium acetate were dissolved in 1 kg of water to prepare a plating solution adjusted to pH 5, which was kept at a constant temperature of 80 ° C.
Then, the metal substrate 3 subjected to the film removal treatment is immersed in the above-mentioned plating solution maintained at 80 ° C. for a predetermined time and subjected to electroless plating, whereby the porous material 4 made of nickel is placed in the holes 3 a of the metal substrate 3. At the same time, a layer made of a porous material 4 having a thickness of 100 μm was formed on the surface of the metal substrate 3 to obtain a substrate 2 as shown in FIG. The average diameter of the fine pores of the porous material 4 was 0.1 μm.
[0020]
Next, the substrate 2 after the electroless plating is washed with water and dried, and a target made of NiO and an SDC (Sm 0.15) are used under a sputtering power of 300 W using argon having a gas pressure of 1 Pa as a sputtering gas. Using a target made of Ce 0.85 O), co-sputtering is performed so that the mass ratio of NiO: SDC becomes 6: 4, and as shown in FIG. A fuel electrode 5 made of nickel and SDC was formed to a thickness of 5 μm.
[0021]
Next, under an argon gas having a gas pressure of 0.2 Pa as a sputtering gas, a YSZ (8 mol% Y 2 O 3 —ZrO 2 ) target was used to form a film by heating at 700 ° C. by a sputtering method with a power of 300 W. As shown in FIG. 1D, an electrolyte 6 made of YSZ was formed on the surface of the fuel electrode 5 to a thickness of 4 μm.
[0022]
Then, as shown in FIG. 1E, a sputtering method using a target made of SSC (Sm 0.8 Sr 0.2 O) under a sputtering power of 300 W using argon of a gas pressure of 1 Pa as a sputtering gas. As shown in the figure, a 10 μm thick air electrode 7 made of SSC was formed on the surface of the electrolyte 6 to obtain a fuel cell plate 1 having a total thickness of about 0.62 mm.
[0023]
(Example 2)
As the metal substrate 3, a stainless steel plate having a thickness of 0.3 mm and having holes 3a having an average diameter of 100 μm formed by photoetching is used. The porous material 4 made of nickel is filled in the holes 3a of the base 3, and a layer made of the porous material 4 having a thickness of 200 μm is formed on the surface of the metal base 3, so that the substrate 2 having a total thickness of 0.5 mm is formed. Got. The average diameter of the fine pores of the porous material 4 was also 0.1 μm.
[0024]
Then, a fuel electrode 5 made of nickel and SDC and having a thickness of 10 μm, an electrolyte 6 made of YSZ having a thickness of 4 μm, and an air electrode made of SSC and having a thickness of 10 μm are formed on the substrate 2 in the same manner as in the above embodiment. 7 was formed in this order to obtain a fuel cell plate 1 having a total thickness of about 0.52 mm having a structure basically similar to that shown in FIG.
[0025]
(Example 3)
As the metal substrate 3, a nickel plate material having a thickness of 0.3 mm and having a hole 3a having an average diameter of 100 μm and formed by photo-etching is used. A metal substrate is immersed for a predetermined time in a processing solution in which SDC powder having a particle size of 0.8 to 1.2 μm is mixed and dispersed in a plating solution, and the processing solution is subjected to electroless eutectoid plating while stirring well. The porous material 4 made of nickel and SDC was filled in the hole 3a of No. 3 to obtain the substrate 2. At this time, the average diameter of the fine pores of the porous material 4 was 0.2 μm.
[0026]
Then, in the same manner as in the first embodiment, a fuel electrode 5 made of nickel and SDC having a thickness of 5 μm, an electrolyte 6 made of YSZ having a thickness of 4 μm, and air having a thickness of 10 μm made of SSC are formed on the substrate 2. By forming the poles 7 in this order, a cell plate 1 for a fuel cell having a total thickness of about 0.32 mm was obtained as shown in FIG.
[0027]
(Example 4)
As the metal substrate 3, a sintered body made of Fe—Cr—Al alloy fiber, a metal plate having a thickness of 0.25 mm having an average gap of 50 μm was used. By applying electroless eutectoid plating, a porous material 4 made of nickel and SDC was filled in the voids of the metal substrate 3 to obtain a substrate 2. The average diameter of the fine pores of the porous material 4 was also 0.2 μm.
[0028]
Then, a fuel electrode 5 made of nickel and SDC having a thickness of 10 μm, an electrolyte 6 made of YSZ having a thickness of 4 μm, and air having a thickness of 10 μm made of SSC are formed on the substrate 2 in the same manner as in the above embodiments. By forming the poles 7 in this order, a fuel cell panel 1 having a total thickness of about 0.27 mm and a structure basically similar to that of FIG. 2 was obtained.
[0029]
(Example 5)
Using a substrate 2 similar to that obtained in Example 2 above, a battery element having the same configuration as that of Example 2 was formed on the substrate 2 by an electron beam evaporation method, and the same as in FIG. The cell plate 1 for a fuel cell having the structure described above was obtained. At this time, the degree of vacuum was 5 × 10 −1 Pa, and the output power of the electron beam was 300 W.
[0030]
(Example 6)
As the metal substrate 3, a stainless steel plate having a thickness of 0.3 mm and having a hole 3a having an average diameter of 100 μm formed by performing photoetching is used. gave.
[0031]
Then, after pretreatment with an aqueous solution of tin chloride and hydrochloric acid, SSC powder having a particle size of 0.8 to 1.2 μm was dispersed in 80 mL of 0.1 mol / L silver nitrate, 16 mL of 2 mol / L sodium hydroxide, and 2 mol / L ammonia water. The metal substrate 3 is immersed in a plating solution for a predetermined time and subjected to electroless eutectoid plating while stirring well, thereby filling the porous material 4 made of silver and SSC into the holes 3a of the metal substrate 3 and And The average diameter of the fine pores of the porous material 4 was 0.2 μm.
[0032]
Next, after the above-mentioned substrate 2 after eutectoid plating is washed with water and dried, SSC (Sm 0.8 Sr 0.2 O) is used under a sputtering power of 300 W using argon having a gas pressure of 1 Pa as a sputtering gas. An air electrode 7 made of SSC was formed to a thickness of 5 μm on the surface of the substrate 2 by the sputtering method using the above target.
[0033]
Then, under argon at a gas pressure of 0.2 Pa as a sputtering gas, a target formed of YSZ (8 mol% Y 2 O 3 —ZrO 2 ) was used to form a film by heating at 700 ° C. by a sputtering method with a power of 300 W. The electrolyte 6 made of YSZ was formed on the surface of the air electrode 7 to a thickness of 4 μm.
[0034]
Then, NiO: SDC is formed by using a target made of NiO and a target made of SDC (Sm 0.15 Ce 0.85 O) under argon at a gas pressure of 1 Pa as a sputtering gas under a sputtering power of 300 W. By performing co-sputtering at a mass ratio of 6: 4 and forming a fuel electrode 5 made of nickel and SDC to a thickness of 10 μm on the surface of the electrolyte 6, as shown in FIG. Thus, a cell plate 1 for a fuel cell having a total thickness of about 0.32 mm was obtained.
[0035]
The specifications of each cell plate 1 for fuel cells obtained by the above examples are summarized in a table. In any of the embodiments, it is possible to stably form the battery elements 5, 6, and 7 on the thin film-forming substrate 2 in a thin film form, and to obtain the fuel cell panel 1 having a small thickness. confirmed. The cell plate 1 for a solid oxide fuel cell having such a structure can be laminated via an interconnector and incorporated into a fuel cell as a stack, and is small in size, high in performance, and particularly capable of operating at low temperatures and high speed. A solid oxide fuel cell that can be started can be obtained.
[0036]
[Table 1]
Figure 2004127635
[0037]
【The invention's effect】
As described above, the cell plate for a solid oxide fuel cell according to the present invention, as a porous substrate for supporting a cell element, has a gas permeation into a hole or a void of a metal base such as a foamed metal or a mesh. Is filled with a porous material having electrical and electrical conductivity, so that the metal substrate serves as a core, ensuring the strength as a support substrate and the surface smoothness as a film-forming substrate. As a result, the thin film of the cell element can be easily formed, and the thickness of the support substrate can be reduced, and the electric conductivity and heat conductivity of the current collector can be improved. This has an extremely excellent effect that the operating temperature can be lowered and the start-up time can be shortened as well as the performance and the performance are improved.
[0038]
Further, in the method for manufacturing a cell plate for a solid oxide fuel cell according to the present invention, a wet plating method is used when forming a porous material in holes or voids of a metal substrate, or a cell element is formed by a sputtering method or the like. Since the film is formed by a PVD method such as a vapor deposition method, the film can be processed in a relatively low temperature range, and various performance deteriorations due to oxidation of the metal substrate can be avoided.
[0039]
Furthermore, the solid oxide fuel cell stack according to the present invention has a configuration in which the above-described cell plates for a solid oxide fuel cell according to the present invention are laminated via an interconnector, and the solid oxide fuel cell according to the present invention Since the battery is provided with the solid oxide fuel cell stack, it can be a small, high-capacity fuel cell capable of operating at low temperatures and starting at high speed.
[Brief description of the drawings]
1 (a) to 1 (e) are schematic cross-sectional views showing steps for manufacturing a cell plate for a solid oxide fuel cell according to first, second and fifth embodiments of the present invention.
FIG. 2 is a schematic sectional view showing the structure of a cell plate for a solid oxide fuel cell according to a third embodiment.
FIG. 3 is a schematic sectional view showing the structure of a cell plate for a solid oxide fuel cell according to a sixth embodiment.
[Explanation of symbols]
Reference Signs List 1 Cell plate for solid oxide fuel cell 2 Substrate 3 Metal substrate 3a Hole 4 Porous material 5 Fuel electrode 6 Electrolyte 7 Air electrode

Claims (11)

複数の孔及び/又は空隙を備えた金属基体の前記孔及び/又は空隙内をガス透過性及び電気伝導性を有する多孔質材で充填して成る基板上に、燃料極及び空気極の少なくとも一方と電解質が形成してあることを特徴とする固体酸化物形燃料電池用セル板。At least one of a fuel electrode and an air electrode is provided on a substrate in which a plurality of holes and / or voids are filled with a porous material having gas permeability and electric conductivity in the holes and / or voids of the metal substrate. And a solid oxide fuel cell. 金属基体が100μm以下の孔及び/又は空隙を有する板厚500μm以下のものであることを特徴とする請求項1に記載の固体酸化物形燃料電池用セル板。2. The cell plate for a solid oxide fuel cell according to claim 1, wherein the metal substrate has a plate thickness of 500 μm or less having holes and / or voids of 100 μm or less. 多孔質材が1μm以下の微小孔及び/又は空隙を有していることを特徴とする請求項1又は2に記載の固体酸化物形燃料電池用セル板。3. The cell plate for a solid oxide fuel cell according to claim 1, wherein the porous material has micropores and / or voids of 1 μm or less. 4. 電解質が20μm以下の膜厚に形成してあることを特徴とする請求項1〜3のいずれか1つの項に記載の固体酸化物形燃料電池用セル板。The cell plate for a solid oxide fuel cell according to any one of claims 1 to 3, wherein the electrolyte is formed to a thickness of 20 µm or less. 前記基板上に、燃料極及び空気極が電解質を挟んだ状態に形成してあることを特徴とする請求項1〜4のいずれか1つの項に記載の固体酸化物形燃料電池用セル板。The cell plate for a solid oxide fuel cell according to any one of claims 1 to 4, wherein a fuel electrode and an air electrode are formed on the substrate so as to sandwich an electrolyte. 多孔質材が燃料極材料からなることを特徴とする請求項1〜4のいずれか1つの項に記載の固体酸化物形燃料電池用セル板。The cell plate for a solid oxide fuel cell according to any one of claims 1 to 4, wherein the porous material comprises a fuel electrode material. 多孔質材が空気極材料からなることを特徴とする請求項1〜4のいずれか1つの項に記載の固体酸化物形燃料電池用セル板。The cell plate for a solid oxide fuel cell according to any one of claims 1 to 4, wherein the porous material is made of an air electrode material. 金属基体の孔及び/又は空隙内に充填される多孔質材を湿式めっき法によって形成することを特徴とする請求項1〜7のいずれか1つの項に記載の固体酸化物形燃料電池用セル板の製造方法。The solid material for a solid oxide fuel cell according to any one of claims 1 to 7, wherein the porous material filled in the holes and / or voids of the metal substrate is formed by a wet plating method. Board manufacturing method. 前記基板上の電極及び電解質をPVD法によって形成することを特徴とする請求項8に記載の固体酸化物形燃料電池用セル板の製造方法。The method for manufacturing a cell plate for a solid oxide fuel cell according to claim 8, wherein the electrode and the electrolyte on the substrate are formed by a PVD method. 請求項1〜7のいずれか1つの項に記載の固体酸化物形燃料電池用セル板をインターコネクタを介して積層してなることを特徴とする固体酸化物形燃料電池スタック。A solid oxide fuel cell stack comprising the solid oxide fuel cell cell plates according to any one of claims 1 to 7 laminated via an interconnector. 請求項10に記載の固体酸化物形燃料電池スタックを備えたことを特徴とする固体酸化物形燃料電池。A solid oxide fuel cell comprising the solid oxide fuel cell stack according to claim 10.
JP2002288183A 2002-10-01 2002-10-01 Cell plate for solid oxide fuel cell and method for producing the same Expired - Fee Related JP3978603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288183A JP3978603B2 (en) 2002-10-01 2002-10-01 Cell plate for solid oxide fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288183A JP3978603B2 (en) 2002-10-01 2002-10-01 Cell plate for solid oxide fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004127635A true JP2004127635A (en) 2004-04-22
JP3978603B2 JP3978603B2 (en) 2007-09-19

Family

ID=32280753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288183A Expired - Fee Related JP3978603B2 (en) 2002-10-01 2002-10-01 Cell plate for solid oxide fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP3978603B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285599A (en) * 2004-03-30 2005-10-13 Masayuki Takashima Collector for fuel cell and electrolyte complex using the same
JP2006236850A (en) * 2005-02-25 2006-09-07 Dainippon Printing Co Ltd Electrode layer for solid oxide fuel cell and its manufacturing method
JP2006244913A (en) * 2005-03-04 2006-09-14 Nissan Motor Co Ltd Solid oxide fuel cell and its manufacturing method
JP2006286403A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Solid oxide fuel cell
KR100707117B1 (en) * 2005-12-27 2007-04-16 한국에너지기술연구원 Anode-supported solid oxide fuel cells using the same, and fabricating method thereof
KR100707118B1 (en) * 2005-12-27 2007-04-16 한국에너지기술연구원 Solid electrolyte thin film fabricated by eb-pvd and method thereof
JP2008251383A (en) * 2007-03-30 2008-10-16 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2009009737A (en) * 2007-06-26 2009-01-15 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2010541177A (en) * 2007-10-03 2010-12-24 ザ コート オブ エジンバラ ネピア ユニバーシティ Method for producing electrode for fuel cell
JP5152322B2 (en) * 2009-03-26 2013-02-27 トヨタ自動車株式会社 Method for forming electrolyte membrane, membrane electrode assembly, and method for manufacturing membrane electrode assembly
JP2013077450A (en) * 2011-09-30 2013-04-25 Nippon Shokubai Co Ltd Metal support type solid oxide fuel battery cell, and solid oxide fuel battery using the same
JP2013152945A (en) * 2007-09-28 2013-08-08 Dainippon Printing Co Ltd Solid oxide fuel cell and method for manufacturing the same
JP2015035350A (en) * 2013-08-09 2015-02-19 日産自動車株式会社 Solid oxide fuel cell and manufacturing method therefor
WO2015068223A1 (en) * 2013-11-06 2015-05-14 日産自動車株式会社 Collector, method for producing collector, solid electrolyte fuel cell electrode with collector, solid electrolyte fuel cell solid electrolyte fuel cell, and solid electrolyte fuel cell stack structure
JP2016024995A (en) * 2014-07-22 2016-02-08 株式会社日本自動車部品総合研究所 Solid oxide fuel battery cell and method for manufacturing the same
KR20160069819A (en) * 2014-12-09 2016-06-17 주식회사 엘지화학 Solid oxide fuel cell and method for manufacturing the same
JP2017195193A (en) * 2017-06-30 2017-10-26 日産自動車株式会社 Solid oxide fuel cell and method for manufacturing the same
WO2020166202A1 (en) * 2019-02-13 2020-08-20 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell
JP2022501777A (en) * 2018-09-21 2022-01-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Electrode carrier device for fuel cell unit and / or electrolytic cell unit

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285599A (en) * 2004-03-30 2005-10-13 Masayuki Takashima Collector for fuel cell and electrolyte complex using the same
JP4534033B2 (en) * 2004-03-30 2010-09-01 国立大学法人福井大学 Current collector for fuel cell and electrolyte composite using the same
JP2006236850A (en) * 2005-02-25 2006-09-07 Dainippon Printing Co Ltd Electrode layer for solid oxide fuel cell and its manufacturing method
JP2006244913A (en) * 2005-03-04 2006-09-14 Nissan Motor Co Ltd Solid oxide fuel cell and its manufacturing method
JP2006286403A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Solid oxide fuel cell
KR100707117B1 (en) * 2005-12-27 2007-04-16 한국에너지기술연구원 Anode-supported solid oxide fuel cells using the same, and fabricating method thereof
KR100707118B1 (en) * 2005-12-27 2007-04-16 한국에너지기술연구원 Solid electrolyte thin film fabricated by eb-pvd and method thereof
JP2008251383A (en) * 2007-03-30 2008-10-16 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2009009737A (en) * 2007-06-26 2009-01-15 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2013152945A (en) * 2007-09-28 2013-08-08 Dainippon Printing Co Ltd Solid oxide fuel cell and method for manufacturing the same
JP2010541177A (en) * 2007-10-03 2010-12-24 ザ コート オブ エジンバラ ネピア ユニバーシティ Method for producing electrode for fuel cell
JP5152322B2 (en) * 2009-03-26 2013-02-27 トヨタ自動車株式会社 Method for forming electrolyte membrane, membrane electrode assembly, and method for manufacturing membrane electrode assembly
JP2013077450A (en) * 2011-09-30 2013-04-25 Nippon Shokubai Co Ltd Metal support type solid oxide fuel battery cell, and solid oxide fuel battery using the same
JP2015035350A (en) * 2013-08-09 2015-02-19 日産自動車株式会社 Solid oxide fuel cell and manufacturing method therefor
JPWO2015068223A1 (en) * 2013-11-06 2017-03-09 日産自動車株式会社 Current collector and method for producing current collector, electrode for solid oxide fuel cell with current collector, solid oxide fuel cell single cell, solid oxide fuel cell stack structure
WO2015068223A1 (en) * 2013-11-06 2015-05-14 日産自動車株式会社 Collector, method for producing collector, solid electrolyte fuel cell electrode with collector, solid electrolyte fuel cell solid electrolyte fuel cell, and solid electrolyte fuel cell stack structure
JP2016024995A (en) * 2014-07-22 2016-02-08 株式会社日本自動車部品総合研究所 Solid oxide fuel battery cell and method for manufacturing the same
KR20160069819A (en) * 2014-12-09 2016-06-17 주식회사 엘지화학 Solid oxide fuel cell and method for manufacturing the same
JP2017195193A (en) * 2017-06-30 2017-10-26 日産自動車株式会社 Solid oxide fuel cell and method for manufacturing the same
JP2022501777A (en) * 2018-09-21 2022-01-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Electrode carrier device for fuel cell unit and / or electrolytic cell unit
JP7130859B2 (en) 2018-09-21 2022-09-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrode carrier device for fuel cell unit and/or electrolyser unit
WO2020166202A1 (en) * 2019-02-13 2020-08-20 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell
JPWO2020166202A1 (en) * 2019-02-13 2021-12-16 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell
JP7378040B2 (en) 2019-02-13 2023-11-13 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell

Also Published As

Publication number Publication date
JP3978603B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP3978603B2 (en) Cell plate for solid oxide fuel cell and method for producing the same
JP2004119108A (en) Unit cell for solid oxide fuel cell, and its manufacturing method
JP2004531857A (en) High performance cathode for solid oxide fuel cells
JP5608813B2 (en) Method for producing solid oxide fuel cell unit cell
JP4824916B2 (en) Current collector supported fuel cell
US8337939B2 (en) Method of processing a ceramic layer and related articles
US11283084B2 (en) Fabrication processes for solid state electrochemical devices
EP3021396B1 (en) Method for manufacturing fuel electrode support for solid oxide fuel cell and fuel electrode support for solid oxide fuel cell
KR20140057080A (en) Cathode for solid oxide fuel cell, method for preparing the same and solid oxide fuel cell including the same
AU2003229677B2 (en) High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
JP5110340B2 (en) Solid oxide fuel cell and method for producing the same
JPH10172590A (en) Solid electrolyte type fuel cell
JP6153666B2 (en) Method for producing anode support for solid oxide fuel cell and anode support for solid oxide fuel cell
JP4517589B2 (en) Solid oxide fuel cell and method for producing the same
US20100112196A1 (en) Thin film MEA structures for fuel cell and method for fabrication
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JP5550223B2 (en) Ceramic electrolyte processing method and related products
JP4342267B2 (en) Solid oxide fuel cell and method for producing the same
JP2003346818A (en) Electrode of fine structure with three-phase interface by porous ion-conductive ceria film coating, and method for manufacturing the same
JP2005005025A (en) Electrode for fuel cell, solid oxide fuel cell using this, and its manufacturing method
JP4426267B2 (en) SOFC fuel electrode resistant to carbon deposition and method for producing the same
JP5470281B2 (en) Solid oxide fuel cell and method for producing the same
KR101331689B1 (en) Fuel cell and method of manufacturing the same
JP2004165074A (en) Current collector material for solid oxide fuel cell
JP5275165B2 (en) Fuel cell components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees