JP4534033B2 - Current collector for fuel cell and electrolyte composite using the same - Google Patents

Current collector for fuel cell and electrolyte composite using the same Download PDF

Info

Publication number
JP4534033B2
JP4534033B2 JP2004098886A JP2004098886A JP4534033B2 JP 4534033 B2 JP4534033 B2 JP 4534033B2 JP 2004098886 A JP2004098886 A JP 2004098886A JP 2004098886 A JP2004098886 A JP 2004098886A JP 4534033 B2 JP4534033 B2 JP 4534033B2
Authority
JP
Japan
Prior art keywords
fuel cell
current collector
metal
electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004098886A
Other languages
Japanese (ja)
Other versions
JP2005285599A (en
Inventor
正之 高島
晋 米沢
肇 清川
臼井  猛
才英 塚谷
昌道 毛塚
良平 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiyokawa Plating Industries Co Ltd
University of Fukui
Original Assignee
Kiyokawa Plating Industries Co Ltd
University of Fukui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiyokawa Plating Industries Co Ltd, University of Fukui filed Critical Kiyokawa Plating Industries Co Ltd
Priority to JP2004098886A priority Critical patent/JP4534033B2/en
Publication of JP2005285599A publication Critical patent/JP2005285599A/en
Application granted granted Critical
Publication of JP4534033B2 publication Critical patent/JP4534033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、ガス透過性及び導電性が求められる燃料電池用集電体に関し、特に固体高分子電解質型燃料電池に好適の集電体及びそれを用いた電解質複合体に関する。   The present invention relates to a current collector for a fuel cell that requires gas permeability and conductivity, and particularly relates to a current collector suitable for a solid polymer electrolyte fuel cell and an electrolyte composite using the current collector.

燃料電池は、環境への影響の少ないクリーンなエネルギーを発生させる装置として近年注目されている技術である。燃料電池には、用いられる電解質の種類から、りん酸型、固体高分子型、溶融炭酸型及び固体酸化物型の4種類が主に開発されている。   The fuel cell is a technology that has been attracting attention in recent years as a device that generates clean energy with little environmental impact. Four types of fuel cells have been developed, mainly phosphoric acid type, solid polymer type, molten carbonate type and solid oxide type, depending on the type of electrolyte used.

燃料電池の基本構造は、図3に示すように、電解質101両側に燃料極102(アノードとして機能)及び空気極103(カソードとして機能)が接合されており、燃料極102には水素(H2)が供給され、空気極103には酸素(O2)を含む空気が供給される。各電極は、電解質101との間に反応の触媒である白金が分散された触媒層が形成されている。燃料極102側では、水素、触媒及び電解質が存在することで、プロトン(H+)及び電子(e-)が生じ、電子は、燃料極102から外部に取り出されて負荷104に供給され、プロトンは電解質101内を移動して空気極103側に向かう。一方、空気極103側では、酸素、触媒及び電解質が存在することで、負荷104から空気極103に供給された電子、電解質101内を移動してきたプロトン及び空気中の酸素が反応して水を生成するようになる。 As shown in FIG. 3, the basic structure of the fuel cell is such that a fuel electrode 102 (functioning as an anode) and an air electrode 103 (functioning as a cathode) are joined to both sides of the electrolyte 101, and hydrogen (H 2 ) is connected to the fuel electrode 102. ) And air containing oxygen (O 2 ) is supplied to the air electrode 103. Each electrode is formed with a catalyst layer in which platinum as a reaction catalyst is dispersed between the electrode 101 and the electrolyte 101. On the fuel electrode 102 side, the presence of hydrogen, catalyst, and electrolyte generates protons (H + ) and electrons (e −). The electrons are taken out from the fuel electrode 102 and supplied to the load 104, Moves in the electrolyte 101 and moves toward the air electrode 103 side. On the other hand, on the air electrode 103 side, oxygen, a catalyst, and an electrolyte exist, so that electrons supplied from the load 104 to the air electrode 103, protons that have moved in the electrolyte 101, and oxygen in the air react to water. Will be generated.

こうし反応を効率よく行うためには、燃料極102及び空気極103は、それぞれ水素及び空気が電解質101及び触媒と接触するためのガス透過性が必要であり、また、反応により生じた電子が移動するための導電性が必要である。こうした観点からさまざまな電極が提案されている。例えば、特許文献1では、固体高分子電解質の両側に設けられる燃料極と酸化極とにおいて、ガス供給側に設けられる集電体をニッケル発泡体のような多孔質金属材料で形成すると共に、該集電体と触媒層との間にカーボン層を介在させる点が記載されている。また、特許文献2では、3次元網目状構造体ニッケルと熱膨張黒鉛とを圧縮成形し、構造体ニッケルの表面には凹凸による流路溝が形成されその内部の空隙には熱膨張黒鉛が圧縮充填される点が記載されている。また、特許文献3では、繊維状導電性物質を主たる構成材とする多孔質構造のシート状物を電極基材として用いる点が記載されている。
特開平6−223836号公報 特開平8−213035号公報 特開2001−283878号公報
In order to perform the reaction efficiently, the fuel electrode 102 and the air electrode 103 need to have gas permeability so that hydrogen and air can come into contact with the electrolyte 101 and the catalyst, respectively. Conductivity is necessary to move. Various electrodes have been proposed from this viewpoint. For example, in Patent Document 1, in the fuel electrode and the oxidation electrode provided on both sides of the solid polymer electrolyte, the current collector provided on the gas supply side is formed of a porous metal material such as nickel foam, It describes that a carbon layer is interposed between the current collector and the catalyst layer. Further, in Patent Document 2, three-dimensional network structure nickel and thermally expanded graphite are compression-molded, and uneven grooves are formed on the surface of the structured nickel, and thermally expanded graphite is compressed in the voids inside. The point to be filled is described. Patent Document 3 describes that a sheet material having a porous structure mainly composed of a fibrous conductive material is used as an electrode substrate.
JP-A-6-223836 JP-A-8-213035 JP 2001-283878 A

上述した先行文献では、触媒層を集電体と別に成形したり(特許文献1参照)、触媒である白金を電解質と混合したペーストを集電体に塗布して触媒層として形成したり(特許文献2、3参照)しているが、いずれも触媒層での触媒の均一な分散が行われるか、またガス透過性が良好に保たれるか問題がある。また、その製造工程においても、触媒層を別途調製する必要がある等複雑な工程となっている。   In the above-described prior art, the catalyst layer is formed separately from the current collector (see Patent Document 1), or a paste in which platinum as a catalyst is mixed with an electrolyte is applied to the current collector to form a catalyst layer (patent However, there is a problem whether the catalyst is uniformly dispersed in the catalyst layer and whether gas permeability is kept good. In addition, the manufacturing process is a complicated process, such as the need to prepare a catalyst layer separately.

そこで、本発明は、燃料電池の電極に好適なガス透過性及び導電性を有すると共に製造工程が簡略化できる燃料電池用集電体及びそれを用いた電解質複合体を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a current collector for a fuel cell that has gas permeability and conductivity suitable for an electrode of a fuel cell and can simplify the manufacturing process, and an electrolyte composite using the same. Is.

本発明に係る燃料電池用集電体は、多孔質ニッケル材料又は多孔質ニッケル系合金材料からなる基材と、該基材の内面を含む表面を被覆するように形成されるとともに撥水性の大きいフッ素系樹脂からなる微粒子を含む金属メッキ層とを備え、前記金属メッキ層が形成された前記基材を加圧成形して流路となる溝が形成されていることを特徴とする。さらに、前記金属メッキ層の金属は、Ni、Ni系合金、Cu、Cu系合金、Sn、Cr、Zn、Co、Ti、Al、Au、Ag、Pt、Pt系合金、Pd、Rh、Ruの群の中から選択されるひとつの金属である。さらに、前記金属メッキ層の金属は、Ni−P、Ni−B、Ni−Cu−P、Ni−Co−P、Ni−Cu−Bの群の中から選択されるひとつの金属である。 A fuel cell current collector according to the present invention is formed so as to cover a base material made of a porous nickel material or a porous nickel-based alloy material, and a surface including the inner surface of the base material, and has high water repellency. And a metal plating layer containing fine particles made of a fluorine-based resin, and the substrate on which the metal plating layer is formed is pressure-molded to form a groove serving as a flow path . Further, the metal of the metal plating layer is made of Ni, Ni alloy, Cu, Cu alloy, Sn, Cr, Zn, Co, Ti, Al, Au, Ag, Pt, Pt alloy, Pd, Rh, Ru. One metal selected from the group. Furthermore, the metal of the metal plating layer is one metal selected from the group consisting of Ni-P, Ni-B, Ni-Cu-P, Ni-Co-P, and Ni-Cu-B.

本発明に係る燃料電池用電極は、上記の燃料電池用集電体及び当該燃料電池用集電体の前記溝が形成された面とは反対側の面に形成された電極触媒層を備えていることを特徴とする。 An electrode for a fuel cell according to the present invention comprises the current collector for a fuel cell and an electrode catalyst layer formed on a surface opposite to the surface on which the groove of the current collector for the fuel cell is formed. It is characterized by being.

本発明に係る電解質複合体は、上記の燃料電池用電極及び当該燃料電池用電極の前記電極触媒層の上に形成された固体電解質膜を備えていることを特徴とする。 An electrolyte composite according to the present invention includes the above-described fuel cell electrode and a solid electrolyte membrane formed on the electrode catalyst layer of the fuel cell electrode .

本発明に係る燃料電池用集電体は、多孔質ニッケル材料又は多孔質ニッケル系合金材料を用いているので、全体に満遍なくガス透過性及び導電性を確保できると共に金属メッキ層によりその特性を調整することが可能となる。例えば、基材の内面を含む表面に金属メッキ層が被覆されるので、基材の空隙率を容易に調整することができ、さらに金属メッキ層を基材の一部分で変化させることで、基材の一部分について空隙率を変更することも可能となる。   Since the current collector for a fuel cell according to the present invention uses a porous nickel material or a porous nickel-based alloy material, gas permeability and conductivity can be ensured evenly throughout and the characteristics can be adjusted by a metal plating layer. It becomes possible to do. For example, since the metal plating layer is coated on the surface including the inner surface of the substrate, the porosity of the substrate can be easily adjusted, and further, the substrate can be changed by changing the metal plating layer in a part of the substrate. It is also possible to change the porosity for a part of.

また、金属メッキ層の金属及び金属以外の微粒子の材料を適宜選択することで、集電体に必要な特性を付与することができる。例えば、集電体の耐食性を向上させたり、他の部材との接着性を高めたりすることが可能となる。   In addition, by appropriately selecting the metal of the metal plating layer and the material of fine particles other than the metal, it is possible to impart necessary characteristics to the current collector. For example, it becomes possible to improve the corrosion resistance of the current collector or to improve the adhesion to other members.

以上のように、集電体に予め必要な特性を金属メッキ層により付与しておくことができるので、電極の製造及び電解質複合体の製造を容易に行うことができる。例えば、電解質との接着性を高めるように特性を付与しておけば、電解質複合体の製造が容易になるとともに、その際に触媒を予めメッキ等により集電体に均一に分散させておけばよく、予め触媒と電解質とを混合して接着性を高めるような工程は不要となる。   As described above, since necessary characteristics can be imparted to the current collector in advance by the metal plating layer, it is possible to easily manufacture the electrode and the electrolyte composite. For example, if characteristics are imparted so as to enhance the adhesion to the electrolyte, the production of the electrolyte composite is facilitated, and at that time, the catalyst should be uniformly dispersed in the current collector by plating or the like in advance. Well, it is not necessary to mix the catalyst and the electrolyte in advance to improve the adhesion.

以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described in detail. The embodiments described below are preferable specific examples for carrying out the present invention, and thus various technical limitations are made. However, the present invention is particularly limited in the following description. Unless otherwise specified, the present invention is not limited to these forms.

図1は、本発明の実施形態を備えた固体高分子型燃料電池のひとつのセルを示している。層状に形成された固体高分子型の電解質膜1の両面には、全体に触媒を分散させた触媒層2及び12が形成されて集電体3及び13が接合されている。そして、集電体3及び13の外面にはセパレータ4及び14が接合されている。集電体3及び13のセパレータ4及び14との接合部分には複数の溝が形成されており、これらの溝によりガスが流通する流路5及び15が形成される。   FIG. 1 shows one cell of a polymer electrolyte fuel cell equipped with an embodiment of the present invention. On both surfaces of the solid polymer electrolyte membrane 1 formed in layers, catalyst layers 2 and 12 in which a catalyst is dispersed are formed, and current collectors 3 and 13 are joined. The separators 4 and 14 are joined to the outer surfaces of the current collectors 3 and 13. A plurality of grooves are formed in the joint portions of the current collectors 3 and 13 with the separators 4 and 14, and flow paths 5 and 15 through which gas flows are formed by these grooves.

そして、図示しない外部の供給装置より流路5には水素ガスが供給され、流路15には酸素を含む空気が供給されることで、触媒層2及び集電体3が燃料極として機能し、触媒層12及び集電体13が空気極として機能する。したがって、公知の燃料電池と同様に、集電体3からは電子が外部に取り出されて、集電体13に電子が供給されるようになる。 集電体3及び13は、多孔質ニッケル材料、例えば、ニッケルフォーム、ニッケルエキスパンドメッシュといった材料、又は、多孔質ニッケル系合金材料、例えば、ステンレス系金属多孔体といった材料に、金属メッキ層が形成されている。金属メッキ層の金属としては、Ni、Ni系合金、Cu、Cu系合金、Sn、Cr、Zn、Co、Ti、Al、Au、Ag、Pt、Pt系合金、Pd、Rh、Ruの群の中から選択したり、又は、Ni−P、Ni−B、Ni−Cu−P、Ni−Co−P、Ni−Cu−Bの合金から選択して用いればよい。特に、これらの合金は、電解質に用いられるナフィオン(デュポン社製)等が有するスルホン酸基に対する耐食性に優れている。   Then, hydrogen gas is supplied to the flow path 5 from an external supply device (not shown), and air containing oxygen is supplied to the flow path 15 so that the catalyst layer 2 and the current collector 3 function as a fuel electrode. The catalyst layer 12 and the current collector 13 function as an air electrode. Therefore, similarly to the known fuel cell, electrons are taken out from the current collector 3 and supplied to the current collector 13. The current collectors 3 and 13 are formed by forming a metal plating layer on a material such as a porous nickel material, for example, nickel foam, nickel expanded mesh, or a porous nickel-based alloy material, for example, a stainless steel metal porous body. ing. The metal of the metal plating layer includes Ni, Ni alloy, Cu, Cu alloy, Sn, Cr, Zn, Co, Ti, Al, Au, Ag, Pt, Pt alloy, Pd, Rh, Ru. It may be selected from among these, or may be selected from alloys of Ni—P, Ni—B, Ni—Cu—P, Ni—Co—P, and Ni—Cu—B. In particular, these alloys are excellent in corrosion resistance to sulfonic acid groups possessed by Nafion (manufactured by DuPont) used in electrolytes.

また、上述した金属メッキ層に金属以外の微粒子を含ませることで、様々な特性を付与することができる。微粒子としては、ポリテトラフルオロエチレン(PTFE)、ポリエチレン(PE)、ポリプロピレン(PP)、ABS樹脂、ポリアミド(PA)、ポリスルフォン(PSU)、AS樹脂、ポリスチレン(PS)、塩化ビニリデン樹脂(PVDC)、フッ化ビニリデン樹脂、PFA樹脂、ポリフェニレンエーテル(PFE)、メチルペンテン樹脂、メタクリル酸樹脂、炭素(C)、触媒担持微粒子、及び、熱硬化性樹脂の群の中から選択すればよい。例えば、集電体13の金属メッキ層に微粒子として撥水性の大きいものを選択すると、空気極に生じた水が集電体13から効率よく排出されるようになる。また、PTFEといったフッ素系樹脂を用いると、ナフィオン等のフッ素系樹脂を電解質として用いた場合、集電体の電解質との接合面においてフッ素系樹脂同士が接着して良好な接合状態を得ることができる。   Moreover, various characteristics can be provided by including fine particles other than metal in the metal plating layer described above. As fine particles, polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), ABS resin, polyamide (PA), polysulfone (PSU), AS resin, polystyrene (PS), vinylidene chloride resin (PVDC) , Vinylidene fluoride resin, PFA resin, polyphenylene ether (PFE), methylpentene resin, methacrylic acid resin, carbon (C), catalyst-supporting fine particles, and thermosetting resin. For example, if a metal plating layer of the current collector 13 having a large water repellency is selected as fine particles, water generated at the air electrode can be efficiently discharged from the current collector 13. In addition, when a fluorine resin such as PTFE is used, when a fluorine resin such as Nafion is used as the electrolyte, the fluorine resin can be bonded to each other on the bonding surface with the electrolyte of the current collector to obtain a good bonded state. it can.

多孔質ニッケル材料又は多孔質ニッケル系合金材料にメッキ処理を行う場合に、集電体の電解質側よりもセパレータ側の金属メッキ層の層厚が薄くなるように処理すれば、セパレータ側の空隙率が大きく設定されてガス透過性が良好となり、電解質側の金属メッキ層の層厚を厚くすれば、より耐食性を向上させることができる。   When plating a porous nickel material or a porous nickel-based alloy material, if the thickness of the metal plating layer on the separator side is thinner than the electrolyte side of the current collector, the porosity on the separator side Is set large to improve gas permeability, and if the thickness of the metal plating layer on the electrolyte side is increased, the corrosion resistance can be further improved.

さらに、多孔質ニッケル材料又は多孔質ニッケル系合金材料にメッキ処理したものを複数積層して加圧成形することで、金属メッキ層の微粒子同士が接着して容易に一体成形することができる。例えば、微粒子としてPTFEを用いた場合200〜400℃で1MPa程度の圧力で一体成形できる。さらに、微粒子が含まれる金属メッキ層の表面は多孔質に形成されているため、圧接面で多数の突起状に形成された金属同士が絡み合い導電性も十分確保されるようになる。このように、複数積層して容易に加圧成形できるので、様々な厚さのものが成形でき、また、溝の形成といった様々な形状を成形することも容易に行うことができる。   Further, by stacking a plurality of porous nickel materials or porous nickel-based alloy materials plated and press-molding, the fine particles of the metal plating layer can be bonded together and easily formed integrally. For example, when PTFE is used as the fine particles, it can be integrally molded at a pressure of about 1 MPa at 200 to 400 ° C. Furthermore, since the surface of the metal plating layer containing the fine particles is formed to be porous, the metal formed in a large number of protrusions on the pressure contact surface is entangled with each other, so that sufficient electrical conductivity is ensured. As described above, since a plurality of layers can be easily pressure-formed, various thicknesses can be formed, and various shapes such as formation of grooves can be easily formed.

触媒層2及び12に用いられる触媒としては、公知の触媒を用いることができ、特に限定されないが、白金、金、パラジウム、ルテニウム、イリジウム等が挙げられる。こうした触媒は、集電体3及び13の電解質膜1側の表面全体に分散して付着される。付着方法としては、メッキ処理、塗布処理等様々な方法があるが、メッキ処理により付着することでより均一に薄く付着させることができる。   As the catalyst used for the catalyst layers 2 and 12, a known catalyst can be used, and is not particularly limited, and examples thereof include platinum, gold, palladium, ruthenium, and iridium. Such a catalyst is dispersed and attached to the entire surface of the current collectors 3 and 13 on the electrolyte membrane 1 side. There are various adhesion methods such as plating and coating, but it is possible to deposit uniformly and thinly by depositing by plating.

電解質膜1の材料としては、公知の電解質を用いることができ、上述したナフィオンのようにプロトン交換基としてスルホン酸基を有するもの、カルボン酸基を有するもの、リン酸基を有するもの等が挙げられる。電解質膜は、予め膜状に形成されたものや不織布等で補強したものを用いてもよいが、触媒層が形成された集電体表面に直接塗布するようにしてもよい。   As the material of the electrolyte membrane 1, a known electrolyte can be used, and examples thereof include those having a sulfonic acid group as a proton exchange group, those having a carboxylic acid group, and those having a phosphoric acid group, such as Nafion described above. It is done. The electrolyte membrane may be a membrane formed in advance or reinforced with a nonwoven fabric or the like, but may be directly applied to the current collector surface on which the catalyst layer is formed.

図1に示すセルを製造する場合には、まず多孔質ニッケル材料又は多孔質ニッケル系合金材料をメッキ処理して金属メッキ層を形成した後加圧成形により流路となる溝を形成した形状に成形する。形成された集電体の溝が形成された面とは反対側の面全体に触媒を分散して付着させて触媒層を形成して電極を作成する。触媒層の上に電解質の溶液を塗布して電解質膜を形成すると、図2に示すような構造のものが出来上がる。そして、この構造のものを2つ電解質膜同士を接合して圧着させることで、図1に記載の電解質複合体が製造される。   When the cell shown in FIG. 1 is manufactured, a porous nickel material or a porous nickel-based alloy material is first plated to form a metal plating layer, and then a groove is formed by pressure forming to form a channel serving as a flow path. Mold. An electrode is formed by forming a catalyst layer by dispersing and adhering the catalyst to the entire surface opposite to the surface on which the groove of the current collector is formed. When an electrolyte solution is formed on the catalyst layer to form an electrolyte membrane, a structure as shown in FIG. 2 is completed. And the electrolyte composite_body | complex shown in FIG. 1 is manufactured by joining two electrolyte membranes of this structure, and crimping | bonding them.

多孔質ニッケル材料として、住友電気工業社製の3次元の網目状金属多孔体(商品名;セルメット、型番No.7)を用いた。まず、多孔質ニッケル材料の表面処理(脱脂処理等)を行い、電解メッキにより金属メッキ層を形成する。   As the porous nickel material, a three-dimensional mesh metal porous body (trade name; Celmet, model No. 7) manufactured by Sumitomo Electric Industries, Ltd. was used. First, the surface treatment (degreasing etc.) of porous nickel material is performed, and a metal plating layer is formed by electrolytic plating.

電解メッキしたときのメッキ浴の組成、メッキ条件および得られた金属メッキ層の厚みなどを以下に示す。   The composition of the plating bath, the plating conditions, the thickness of the obtained metal plating layer, etc. when electrolytic plating is shown below.

[例1]電解ニッケルメッキ(ワット浴)
NiSO4・6H2O 250g/リットル
NiCl2・6H2O 45g/リットル
3BO3 40g/リットル
界面活性剤 1.0g/リットル
PTFE 100g/リットル
pH 4.0
陰極電流密度 10A/dm2
温度 50℃
陽極 Ni板
攪拌 循環
メッキ時間 30分(通電時間15分)
層厚 3μm
[Example 1] Electrolytic nickel plating (Watt bath)
NiSO 4 · 6H 2 O 250 g / liter NiCl 2 · 6H 2 O 45 g / liter H 3 BO 3 40 g / liter Surfactant 1.0 g / liter PTFE 100 g / liter pH 4.0
Cathode current density 10A / dm 2
Temperature 50 ℃
Anode Ni plate
Stirring circulation
Plating time 30 minutes (energization time 15 minutes)
Layer thickness 3μm

[例2]電解ニッケルメッキ(スルファミン酸浴)
Ni(NH2SO32・4H2O 350g/リットル
NiCl2・6H2O 45g/リットル
3BO3 40g/リットル
界面活性剤 1.0g/リットル
PTFE 100g/リットル
pH 4.0
陰極電流密度 10A/dm2
温度 50℃
陽極 Ni板
攪拌 循環
メッキ時間 30分(通電時間15分)
膜厚 3μm
[Example 2] Electrolytic nickel plating (sulfamic acid bath)
Ni (NH 2 SO 3) 2 · 4H 2 O 350g / l NiCl 2 · 6H 2 O 45g / l H 3 BO 3 40g / l surfactant 1.0 g / l PTFE 100 g / l pH 4.0
Cathode current density 10A / dm 2
Temperature 50 ℃
Anode Ni plate
Stirring circulation
Plating time 30 minutes (energization time 15 minutes)
Film thickness 3μm

[例3]電解銅メッキ
Cu227・3H2O 80g/リットル
427 300g/リットル
界面活性剤 1.0g/リットル
PTFE 100g/リットル
pH 8.5
陰極電流密度 4A/dm2
温度 50℃
陽極 Cu板
攪拌 循環
メッキ時間 75分(通電時間37.5分)
膜厚 3μm
[Example 3] Electrolytic copper plating
Cu 2 P 2 O 7 .3H 2 O 80 g / liter K 4 P 2 O 7 300 g / liter Surfactant 1.0 g / liter PTFE 100 g / liter pH 8.5
Cathode current density 4A / dm 2
Temperature 50 ℃
Anode Cu plate
Stirring circulation
Plating time 75 minutes (energization time 37.5 minutes)
Film thickness 3μm

[例4]電解Ni−Pメッキ
NiSO4・6H2O 250g/リットル
NiCl2・6H2O 45g/リットル
3BO3 40g/リットル
3PO4 40g/リットル
界面活性剤 1.0g/リットル
PTFE 100g/リットル
pH 1.5
陰極電流密度 4A/dm2
温度 50℃
陽極 Ni板
攪拌 循環
メッキ時間 150分(通電時間75分)
膜厚 3μm
[Example 4] Electrolytic Ni-P plating
NiSO 4 · 6H 2 O 250 g / liter NiCl 2 · 6H 2 O 45 g / liter H 3 BO 3 40 g / liter H 3 PO 4 40 g / liter Surfactant 1.0 g / liter PTFE 100 g / liter pH 1.5
Cathode current density 4A / dm 2
Temperature 50 ℃
Anode Ni plate
Stirring circulation
Plating time 150 minutes (energization time 75 minutes)
Film thickness 3μm

[例5]電解Coメッキ
CoSO4・7H2O 250g/リットル
CoCl2・6H2O 45g/リットル
3BO3 40g/リットル
界面活性剤 1.0g/リットル
PTFE 100g/リットル
pH 4.0
陰極電流密度 10A/dm2
温度 50℃
陽極 Co板
攪拌 循環
メッキ時間 30分(通電時間15分)
膜厚 3μm
[Example 5] Electrolytic Co plating
CoSO 4 .7H 2 O 250 g / liter CoCl 2 .6H 2 O 45 g / liter H 3 BO 3 40 g / liter Surfactant 1.0 g / liter PTFE 100 g / liter pH 4.0
Cathode current density 10A / dm 2
Temperature 50 ℃
Anode Co plate
Stirring circulation
Plating time 30 minutes (energization time 15 minutes)
Film thickness 3μm

次に、無電解メッキにより金属メッキ層を形成する例を以下に示す。   Next, an example in which a metal plating layer is formed by electroless plating will be described below.

[例6]無電解Ni−Pメッキ
NiSO4・6H2O 30g/リットル
次亜リン酸ナトリウム 10g/リットル
クエン酸ナトリウム 10g/リットル
界面活性剤 0.5g/リットル
PTFE 50g/リットル
pH 5
温度 90℃
攪拌 循環
メッキ時間 20分
膜厚 3μm
[Example 6] Electroless Ni-P plated NiSO 4 .6H 2 O 30 g / liter Sodium hypophosphite 10 g / liter Sodium citrate 10 g / liter Surfactant 0.5 g / liter PTFE 50 g / liter pH 5
Temperature 90 ° C
Stirring Circulating plating time 20 minutes Film thickness 3μm

[例7]無電解Ni−Bメッキ
NiSO4・6H2O 30g/リットル
ジメチルアミンボラン 10g/リットル
クエン酸ナトリウム 20g/リットル
界面活性剤 0.5g/リットル
PTFE 50g/リットル
pH 5.5
温度 60℃
攪拌 循環
メッキ時間 15分
膜厚 3μm
[Example 7] Electroless Ni-B plating NiSO 4 .6H 2 O 30 g / liter Dimethylamine borane 10 g / liter Sodium citrate 20 g / liter Surfactant 0.5 g / liter PTFE 50 g / liter pH 5.5
60 ° C
Stirring Circulating plating time 15 minutes Film thickness 3μm

以上の例によって得られた金属メッキ層中のPTFEの含有割合は約40容量%であった。メッキ処理を行った後、十分水洗して真空減圧乾燥を5時間行った。   The content ratio of PTFE in the metal plating layer obtained by the above example was about 40% by volume. After the plating treatment, the plate was sufficiently washed with water and vacuum-dried under reduced pressure for 5 hours.

こうしてメッキ処理されて作成された集電体を金型を用いて平板プレスして加圧成形し、片面側に流路用の溝を形成した。そして、反対側の面全体に白金を電解メッキ処理により付着させた後、ナフィオン(スルホン酸基を有するフッ素系固体電解樹脂;デュポン社製)のアルコール分散液を塗布して電解質膜を形成した。   The current collector thus prepared by plating was flat pressed using a mold and pressure-molded to form a channel groove on one side. And after making platinum adhere to the whole surface of the other side by an electroplating process, the alcohol dispersion liquid of Nafion (fluorine-type solid electrolyte resin which has a sulfonic acid group; Du Pont company) was apply | coated, and the electrolyte membrane was formed.

以上の工程により図2に示すような構造のものが作成され、この構造のものを2つ電解質膜側を接合し、接合されたものの両側からカーボン製のセパレータで圧着して図1に示す単セルを製造した。   The structure shown in FIG. 2 is produced by the above steps, and two electrolyte membranes having this structure are joined to each other, and crimped with carbon separators from both sides of the joined parts, as shown in FIG. A cell was manufactured.

この単セルを用いて、燃料極に水素ガスを供給し空気極に空気を供給し、電池としての性能を試験したところ、約0.9Vの起電力を得ることができた。   Using this single cell, hydrogen gas was supplied to the fuel electrode, air was supplied to the air electrode, and the performance as a battery was tested. As a result, an electromotive force of about 0.9 V was obtained.

固体高分子電解質型の燃料電池に用いられる集電体及び電解質複合体として好適である。   It is suitable as a current collector and electrolyte composite used in a solid polymer electrolyte fuel cell.

本発明に係る実施形態を備えた固体高分子電解質型燃料電池のセル構造を模式的に示す断面図である。It is sectional drawing which shows typically the cell structure of the solid polymer electrolyte fuel cell provided with embodiment which concerns on this invention. 図1のセルに用いられる電極構造を示す断面図である。It is sectional drawing which shows the electrode structure used for the cell of FIG. 燃料電池の原理を説明する図である。It is a figure explaining the principle of a fuel cell.

符号の説明Explanation of symbols

1 電解質膜
2、12 触媒層
3、13 集電体
4、14 セパレータ
5、15 流路
1 Electrolyte membrane 2, 12 Catalyst layer 3, 13 Current collector 4, 14 Separator 5, 15 Flow path

Claims (5)

多孔質ニッケル材料又は多孔質ニッケル系合金材料からなる基材と、該基材の内面を含む表面を被覆するように形成されるとともに撥水性の大きいフッ素系樹脂からなる微粒子を含む金属メッキ層とを備え、前記金属メッキ層が形成された前記基材を加圧成形して流路となる溝が形成されていることを特徴とする燃料電池用集電体。 A base material made of a porous nickel material or a porous nickel-based alloy material, and a metal plating layer formed so as to cover the surface including the inner surface of the base material and containing fine particles made of a fluorine-based resin having high water repellency ; And a groove for forming a flow path is formed by pressure-molding the base material on which the metal plating layer is formed . 前記金属メッキ層の金属は、Ni、Ni系合金、Cu、Cu系合金、Sn、Cr、Zn、Co、Ti、Al、Au、Ag、Pt、Pt系合金、Pd、Rh、Ruの群の中から選択されるひとつの金属である請求項1に記載の複合シート体。   The metal of the metal plating layer is made of Ni, Ni alloy, Cu, Cu alloy, Sn, Cr, Zn, Co, Ti, Al, Au, Ag, Pt, Pt alloy, Pd, Rh, Ru. The composite sheet body according to claim 1, wherein the composite sheet body is one metal selected from the inside. 前記金属メッキ層の金属は、Ni−P、Ni−B、Ni−Cu−P、Ni−Co−P、Ni−Cu−Bの群の中から選択されるひとつの金属である請求項1に記載の燃料電池用集電体。   The metal of the metal plating layer is one metal selected from the group consisting of Ni-P, Ni-B, Ni-Cu-P, Ni-Co-P, and Ni-Cu-B. The collector for fuel cells as described. 請求項1から3のいずれかに記載の燃料電池用集電体及び当該燃料電池用集電体の前記溝が形成された面とは反対側の面に形成された電極触媒層を備えていることを特徴とする燃料電池用電極。4. A fuel cell current collector according to claim 1, and an electrode catalyst layer formed on a surface of the fuel cell current collector opposite to the surface on which the groove is formed. An electrode for a fuel cell. 請求項4に記載の燃料電池用電極及び当該燃料電池用電極の前記電極触媒層の上に形成された固体電解質膜を備えていることを特徴とする電解質複合体。An electrolyte composite comprising the fuel cell electrode according to claim 4 and a solid electrolyte membrane formed on the electrode catalyst layer of the fuel cell electrode.
JP2004098886A 2004-03-30 2004-03-30 Current collector for fuel cell and electrolyte composite using the same Expired - Fee Related JP4534033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098886A JP4534033B2 (en) 2004-03-30 2004-03-30 Current collector for fuel cell and electrolyte composite using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098886A JP4534033B2 (en) 2004-03-30 2004-03-30 Current collector for fuel cell and electrolyte composite using the same

Publications (2)

Publication Number Publication Date
JP2005285599A JP2005285599A (en) 2005-10-13
JP4534033B2 true JP4534033B2 (en) 2010-09-01

Family

ID=35183746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098886A Expired - Fee Related JP4534033B2 (en) 2004-03-30 2004-03-30 Current collector for fuel cell and electrolyte composite using the same

Country Status (1)

Country Link
JP (1) JP4534033B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077550A1 (en) 2010-12-08 2012-06-14 住友電気工業株式会社 Metallic porous body having high corrosion resistance and method for manufacturing same
EP2644722A2 (en) 2010-12-08 2013-10-02 Sumitomo Electric Industries, Ltd. Highly corrosion-resistant porous metal body and method for producing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2919760B1 (en) * 2007-08-02 2009-10-09 Commissariat Energie Atomique METHOD FOR MANUFACTURING A FUEL CELL ON A POROUS CARRIER
JP5521329B2 (en) * 2009-01-09 2014-06-11 住友電気工業株式会社 NOx decomposition element
EP2665117A4 (en) 2011-01-14 2014-08-13 Showa Denko Kk Current collector
CN104428934B (en) * 2012-07-13 2017-12-08 东洋钢钣株式会社 Separator for fuel battery, cell of fuel cell, the manufacture method of fuel cell pack and separator for fuel battery
JP2014089893A (en) * 2012-10-30 2014-05-15 Sumitomo Electric Ind Ltd Fuel cell
JP7076693B2 (en) * 2017-11-29 2022-05-30 住友電気工業株式会社 Method for manufacturing metal porous body, fuel cell and metal porous body
CN110148758A (en) * 2018-12-28 2019-08-20 广州钰芯传感科技有限公司 It is a kind of using carbohydrate as the porous gold electrode of fuel cell electro-catalysis and preparation method of raw material and its application in artificial intelligence sensor
CN113328112B (en) * 2021-05-13 2022-10-14 深圳先进储能材料国家工程研究中心有限公司 Base material for gas diffusion layer of polymer electrolyte membrane fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036309A (en) * 1998-07-17 2000-02-02 C Uyemura & Co Ltd Metal separator for fuel cell
JP2004047125A (en) * 2002-05-14 2004-02-12 Mitsubishi Materials Corp Porous metal gas diffusing sheet for solid high polymer fuel cell exhibiting superior contact surface conductivity for long period
JP2004127635A (en) * 2002-10-01 2004-04-22 Nissan Motor Co Ltd Cell plate for solid oxide fuel cell and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58669B2 (en) * 1976-08-05 1983-01-07 株式会社ユアサコーポレーション battery
JPH01274361A (en) * 1988-04-25 1989-11-02 Mitsubishi Electric Corp Manufacture of electrode for fused carbonate fuel cell
JP3171642B2 (en) * 1992-02-28 2001-05-28 田中貴金属工業株式会社 Gas diffusion electrode
JPH08148142A (en) * 1994-11-25 1996-06-07 Katayama Tokushu Kogyo Kk Manufacture of metal porous body for battery electrode plate and metal porous body for battery electrode plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036309A (en) * 1998-07-17 2000-02-02 C Uyemura & Co Ltd Metal separator for fuel cell
JP2004047125A (en) * 2002-05-14 2004-02-12 Mitsubishi Materials Corp Porous metal gas diffusing sheet for solid high polymer fuel cell exhibiting superior contact surface conductivity for long period
JP2004127635A (en) * 2002-10-01 2004-04-22 Nissan Motor Co Ltd Cell plate for solid oxide fuel cell and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077550A1 (en) 2010-12-08 2012-06-14 住友電気工業株式会社 Metallic porous body having high corrosion resistance and method for manufacturing same
EP2644722A2 (en) 2010-12-08 2013-10-02 Sumitomo Electric Industries, Ltd. Highly corrosion-resistant porous metal body and method for producing the same
EP2644721A2 (en) 2010-12-08 2013-10-02 Sumitomo Electric Industries, Ltd. Highly corrosion-resistant porous metal body and method for producing the same
US10164262B2 (en) 2010-12-08 2018-12-25 Sumitomo Electric Industries, Ltd. Method for producing a porous metal body

Also Published As

Publication number Publication date
JP2005285599A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US7875387B2 (en) Electrode for use in electrochemical device, solid electrolyte/electrode assembly, and production method thereof
JP6981524B2 (en) Hydrogen production equipment and hydrogen production method
JP4626514B2 (en) ELECTRODE FOR FUEL CELL, FUEL CELL, AND METHOD FOR PRODUCING THE SAME
JP6047380B2 (en) Noble metal catalyst layer for fuel cell or electrolysis, membrane electrode assembly and fuel cell or electrolysis cell
US20110114496A1 (en) Electrochemical Devices, Systems, and Methods
JP6143663B2 (en) Porous catalyst layer, method for producing the same, membrane electrode assembly, and electrochemical cell
JP6729586B2 (en) Fuel cell
JP6701601B2 (en) Metal porous body, fuel cell, and method for producing metal porous body
JP6614131B2 (en) Porous current collector, fuel cell, and method for producing porous current collector
JP2017033917A (en) Metal porous body, fuel cell, and manufacturing method of metal porous body
JP6628057B2 (en) Porous metal body, fuel cell, and method for manufacturing porous metal body
JP4534033B2 (en) Current collector for fuel cell and electrolyte composite using the same
JP2000100452A (en) Solid high polymer electrolyte fuel cell and manufacture therefor
US20030134177A1 (en) Gas diffusion electrode, method for manufacturing the same and fuel cell using it
EP1724863A1 (en) Metal foam materials in alkaline fuel cells and alkaline electrolysers
CA2867066C (en) Gas diffusion layer with flowpath
JP4128064B2 (en) Metal resin composite and production method thereof
JP4378202B2 (en) Composite sheet for hydrogen storage and method for producing the same
JP2012052202A (en) Member for electrolysis cell and hydrogen production device using the same
KR101335431B1 (en) Redox flow secondary cell
JP2005190702A (en) Manufacturing method of film/electrode joined material for fuel cell
JP4870328B2 (en) Method for manufacturing membrane-electrode assembly
JP4355822B2 (en) Process for producing fuel cell electrode and electrolyte composite
JP3078570B2 (en) Electrochemical electrode
CN100373678C (en) Integrated membrane electrode for electrochemical apparatus and mfg. method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4534033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees