JP2004156258A - トンネル換気制御方法および装置 - Google Patents

トンネル換気制御方法および装置 Download PDF

Info

Publication number
JP2004156258A
JP2004156258A JP2002321633A JP2002321633A JP2004156258A JP 2004156258 A JP2004156258 A JP 2004156258A JP 2002321633 A JP2002321633 A JP 2002321633A JP 2002321633 A JP2002321633 A JP 2002321633A JP 2004156258 A JP2004156258 A JP 2004156258A
Authority
JP
Japan
Prior art keywords
prediction
error
trend
tunnel
prediction error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002321633A
Other languages
English (en)
Other versions
JP3904506B2 (ja
Inventor
Masahiro Shikayama
昌宏 鹿山
Masaru Endo
勝 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002321633A priority Critical patent/JP3904506B2/ja
Publication of JP2004156258A publication Critical patent/JP2004156258A/ja
Application granted granted Critical
Publication of JP3904506B2 publication Critical patent/JP3904506B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)
  • Feedback Control In General (AREA)

Abstract

【課題】トンネル換気制御において、煤煙濃度やCO濃度の予測値が、測定不能な自然風や車の汚染物質排出量の影響で不正確になり、適切な運転が難しい。
【解決手段】直近の予測結果と対応した実績値のみに着目して予測誤差の時系列を生成し、これに従って予測演算部の予測結果を補正する。また予測誤差時系列の自己相関を算出し、この自己相関を評価し予測誤差算出部の出力に乗じるゲインを決定する。
【効果】直近の予測誤差のみに着目して予測演算部の出力を補正するため、高精度な予測が可能となり、適切な運転案の選択を行うことができる。また、予測誤差の補償結果が予測演算部内に蓄えられることがないため、検出値のバラツキ等が後々の予測結果に悪影響を与えることがはなく、安定した制御を継続することができる。また補償の応答性も高くなる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、トンネル内を換気する制御装置の制御方法に係り、とりわけ制御モデルを用いた予測制御の高度化により制御精度を向上させる手法に関する。
【0002】
【従来の技術】
トンネル内の換気挙動を記述した物理モデルを用いてトンネル換気制御を高精度に行う従来手法として、例えば特開平5−321598に示されているように、物理モデルを用いて将来のトンネル内部の汚染状態を予測し、予測結果をファジィ推論で評価した結果から排風機やジェットファンの運転状態を決定する方法があった。特開平5−321598記載の手法では、物理モデルが実際のトンネル内の物理挙動に対応している場合には精度の良い制御が行えるが、対応の度合いが低下している場合には、この度合いに応じて制御精度が低下する問題がある。測定できない自然風の影響を始め、車の汚染物質排気量のバラツキ等、種々の不確定要素があるため、モデルに依存した制御では良好な制御が継続できない場合が多い。
【0003】
さらに特開平5−141200記載に示されているように様に、ニューラルネットを用いた学習によりトンネルプロセス特性の経年変化に対してもモデル精度を維持することで制御精度を向上させる手法があった。モデルを学習することで性能向上を図る特開平5−141200記載の手法では、学習によるモデルと制御対象の合わせ込みでモデル誤差を低減できる場合がある。しかしながら上述したバラツキの効果も同様に学習してしまう場合がある。この場合は学習によりモデルの特性を変えることが逆に長期間に渡って制御精度を悪化させてしまう場合がある。
【0004】
【特許文献1】
特開平5−321598号公報
【特許文献2】
特開平5−141200号公報
【0005】
【発明が解決しようとする課題】
制御モデルを用いて算出した予測結果は、たとえ精緻な制御モデルが使われていても、モデル化されていない要因や測定不能な種々の影響、外乱等により、必ずしも常に高精度な結果が得られるとは限らない。
【0006】
また、制御モデルに学習機能が組み込まれている場合には、モデル化対象(実体)の経年変化に対応した制御モデルのパラメータ変更がある程度は可能であるが、勿論完璧ではなく、また何らかの一時的な変化があった場合にはこれにも対応してしまい、一時的変化が解消し通常状態に復帰した後の制御モデルの算出した予測精度は著しく低下してしまう。
【0007】
本発明の目的は、制御モデルを用いて算出した予測結果の予測精度向上させ、これを制御に用いることにより、トンネル換気制御装置における制御精度の劣化を防止させることにある。
【0008】
【課題を解決するための手段】
この発明に係る請求項1のトンネル換気制御装置は、トンネル内の煤煙濃度及び一酸化炭素濃度等の状態量の振舞いを予測演算部にて予測し、この予測結果を用いてジェットファン及び排風機等の望ましい運転方法を決定するトンネル換気制御装置において、該トンネルから検出した煤煙濃度及び一酸化炭素濃度等の状態量の実績値とジェットファンや排風機等の運転実績から予測結果に含まれる誤差の大きさを算出し、該予測演算部の出力を補償して制御に用いるものである。
【0009】
またこの発明に係る請求項3のトンネル換気制御装置は、予測誤差算出部に、トンネルから検出した煤煙濃度や一酸化炭素濃度等の状態量の実績値と該予測演算部の演算により煤煙濃度や一酸化炭素濃度等の状態量を推定するオブザーバと、オブザーバの出力を時系列トレンドとして編集する推定トレンド生成部と、該推定値に対応した煤煙濃度や一酸化炭素濃度の実績値を時系列トレンドとして編集する実績トレンド生成部と、実績トレンドと推定トレンドの差分を算出しトレンドとして編集する誤差トレンド算出部と、誤差トレンドの情報から予測誤差を推定する予測誤差推定部を備えているものである。
【0010】
また、この発明に係る請求項4のトンネル換気制御装置は、前記誤差トレンドの各誤差の値を重み付け加算することで予測誤差を算出する予測誤差推定部を設けているものである。
【0011】
また、この発明に係る請求項5のトンネル換気制御装置の予測誤差算出部は、誤差トレンドの自己相関を算出する自己相関算出部を備え、算出された自己相関の大きさにしたがって該予測誤差算出部の出力を制限するものである。
【0012】
また、この発明に係る請求項6のトンネル換気制御装置の予測誤差算出部は、誤差トレンドの自己相関を算出する自己相関算出部を備え、算出された自己相関があらかじめ定められた値より小さい場合には該予測誤差算出部の出力を無効とするものである。
【0013】
また、この発明に係る請求項7のトンネル換気制御装置の予測誤差算出部は、車両の通行量や大型車比の変化量を判定する通行量変化量判定部を備え、車両の通行量や大型車比の変化量が大きい場合には該予測誤差算出部の出力を制限するかあるいは無効とするものである。
【0014】
【発明の実施の形態】
以下、本発明の実施例を図にしたがって詳細に説明する。
【0015】
図1に本発明の第1の実施例を示す。
【0016】
本実施例では、ジェットファン154や排風機155の運転形態にしたがってトンネル151内の風向・風速や煤煙濃度の状態量を予測する予測演算部102、得られた予測結果の望ましさに加えてエネルギ消費量や機器(ジェットファン154、排風機155)の起動/停止回数の小ささを定量的に評価する運転案評価部105、評価結果を総合的に加味して運転方式を決定する運転方式決定部106を備えたトンネル換気制御装置100に、直近の予測結果と対応した状態量の実績値のみに着目して予測誤差の時系列を生成し、これにしたがって予測演算部の予測結果を補正する予測誤差算出部104を設けた。以下詳細に説明する。
【0017】
制御装置100は何通りかの次回の運転案(ジェットファン154、排風機155の起動の有無、風量等)を決定し出力する運転案生成部101、運転案生成部101の出力した運転案を採用した場合にどのような風向・風速、煤煙濃度、CO濃度になるかを予測し、さらにエネルギー消費量、ジェットファン154、排風機155の起動停止回数を予測モデル103を用いて算出する予測演算部102、運転案生成部101の出力した運転案および制御対象150から検出した検出値を用いてモデル誤差を演算し補償する予測誤差算出部104、予測演算部102の結果を予測誤差算出部104で補償した結果にしたがって運転案を評価する運転案評価部105、運転案の評価結果にしたがって次回の運転方式を決定する運転方式決定部106から構成される。
【0018】
また制御の目的はトンネル151の内部の空気を適切に換気することであり、本実施例では一方通行のトンネルに対して、縦流式と呼ばれるトンネルの長手方向に空気の流れを作り換気するシステムを例に説明する。
【0019】
空気の流れを作るためにジェットファン154、排風機155が取り付けられている。いずれも複数台取りつけられることが多い。汚染気体をトンネル151の外に出す操作は、主として排風機155が行う。すなわち排風機155は上向きに風を送り、トンネル151内の空気を立杭153を通してトンネル外に排出する。一方ジェットファン154は車の進行方向に対して逆方向の風を送ることにより、杭口152からの汚染空気の漏れだし量を最小化する。
【0020】
本実施例でトンネル内には、以下の検出器が取り付けられている。トンネル内に侵入する車両の台数、速度、大型車混入比はトラフィックカウンター162で事前に検出する。また風向、風力はAV計156、157で、煤煙濃度はVI計158、159で、さらにCO濃度はCO計160、161で検出する。以下風向、風力の値をAV値と称する。一般のトンネルではこの程度の検出器が取りつけられている。
【0021】
制御装置100は、検出器からの信号でトンネル内の現在の状態を検出しつつ、予測モデル103を用いて将来の状態を予測し、適切な排風機155、ジェットファン154の運転形態を決定する。
【0022】
図2に運転案生成部101が実行するアルゴリズムを示す。まずS2−1で運転方式決定部106から現在の運転方式を取りこむ。これをもとに可能となる次回の運転案を複数生成する。たとえば「排風機1台運転、風量200m3/分、ジェットファン2台高速運転」のような案をいくつか生成する。通常は現在の運転方式近傍の運転方式を運転案として生成すれば良いが、煤煙濃度が大きく変化した場合には、広い範囲で多くの運転案を生成し、選択範囲を広げる必要性が生じる場合もある。
【0023】
図3に予測演算部102が実行するアルゴリズムを示す。S3−1で制御対象150の各センサから現在の状態量の実績値を取りこむ。また運転案生成部101から次回の運転案を取りこむ。運転案は通常複数生成されているが、その場合は各運転案に対して以下の処理を同じく行うことになる。S3−2でトンネル内各部の風速を算出する。計算方法は例えば「道路トンネル技術基準(換気編)・同解説」(社団法人 日本道路境界編、昭和60年12月)に詳しいが、トンネル内をいくつかのメッシュに分割した上でトンネル内の気体流れのダイナミクスを記述した(数1)を用いることで数値解析的に解くことができる。
【0024】
【数1】
Figure 2004156258
S3−3でトンネル内部の煤煙濃度(VI値)、CO濃度(CO値)を算出する。各濃度は(数2)の対流拡散方程式に従うことが知られている。
【数2】
Figure 2004156258
同様にトンネル内をいくつかのメッシュに分割した上で、S3−2で得た風速をuに適用し、さらに境界条件として杭口152のVI、CO値を0とすることで、トンネル各部位のVI、CO濃度を得ることが解くことができる。
【0025】
さらにS3−4で取りこんだ運転案に対して、ジェットファン154、排風機155を動作させるのに必要な電力消費量を算出する。(数3)に示すように出力を用いた簡単な数式で表すことができる。
【0026】
また取りこんだ運転案に対して、ジェットファン154、排風機155の運転台数が変化するかどうかを調べ、起動停止回数を算出する。ジェットファン154の運転台数を現在の運転台数に対して1台起動もしくは停止させる必要がある場合には、起動回数を1とする等で、簡単に対応付けることができる。
【0027】
以上のようにして運転案生成部101が提示した運転案について、これを採用したときの制御結果の状態量の予測値およびエネルギー消費量等を算出する。運転案は通常複数提示されるが、その場合には各運転案毎に同様の処理を繰り返し、対応した制御結果の状態量の予測値およびエネルギー消費量等を算出する必要がある。
【0028】
図4に本発明で実現された予測誤差算出部104の構成を示す。予測誤差算出部104はオブザーバ401、推定トレンド生成部402、実績トレンド生成部404、誤差系列算出部406、予測誤差推定部407、を備えている。本実施例では煤煙濃度(VI)の予測値を補償する場合を例に説明する。
【0029】
オブザーバ401は、予測演算部102と同様の演算を行うことでVI推定値を算出する。すなわち制御対象150から取りこんだ風速やVIの実績値を初期条件に設定し、運転案生成部101から取りこんだ排風機155およびジェットファン154の運転方式が実現された場合にVI値がどうなるかを、(数1)にしたがって風速を求めた後、(数2)に従った演算で推定する。
【0030】
推定トレンド生成部402は、オブザーバ401の出力を時系列に編集し推定値のトレンドである推定トレンド403を生成する。
【0031】
同様に実績トレンド生成部404は、制御量の実績を取りこみ実績トレンド405を編集する。図に示すように、実績トレンド405および推定トレンド403は、現在時刻の値を最新とし、制御周期を過去に遡った値(−2、−3、・・・)をトレンドとして蓄えている。
【0032】
さらに実績トレンド405と推定トレンド403の差分を計算し誤差のトレンドを算出する誤差系列算出部406、誤差系列を取りこみ、予測演算部102が予測した次回のVI予測値が含んでいると予想される誤差の値を算定する予測誤差推定部407を備えている。
【0033】
予測誤差推定部407は、(数3)で現される誤差系列に対して、例えば(数4)のような線形演算を行い、VI推定誤差の値VIerrを推定する。
【0034】
【数3】
Figure 2004156258
【数4】
Figure 2004156258
算定されたVI推定誤差(Vlerr)には(数5)に示すようにゲイン408(G1)が乗じられ、最終的なVI推定値補正量(VIcomp)として予測誤差算出部104から出力される。
【0035】
【数5】
Figure 2004156258
最終的には図1に示したように、予測演算部102の出力から予測誤差算出部104の出力を減じた値が予測制御に用いられる。
【0036】
図1ではVI検出計が2つ備えられているが、この場合はおのおのについて同様の演算を行うことで対応する。またオブザーバ401の演算は共通化することができる。本実施例ではVIの予測誤差を補償する場合を例に説明したが、CO値の予測誤差を補償する場合も同様の考え方で行うことができる。またAV値予測誤差の補償値は、(数2)に基づいた演算を省略することで得ることができる。
【0037】
図5に運転案評価部105が行う処理を示す。運転案評価部105では、運転案生成部101が生成した複数の運転案のそれぞれについて、実現される制御量(AV値、VI値、CO値)、エネルギー消費量等の適切性を評価し、運転案選択の基準を生成する。
【0038】
本実施例では予見ファジィ推論を用いて運転案を評価し、運転方式を決定する場合を示す。予見ファジィは図6に示すルールとメンバシップ関数の組み合わせからなり、ルールは「IF 運転案AによりVI値が満足 THEN 運転案Aを採用」のような、予見ファジィ特有の形態となっている。
【0039】
まずS5−1で、図1の流れに従って各制御量やエネルギー消費量の予測値を取りこむ。次にS5−2でメンバシップ関数を用いて予測値の適合度を算出する。適合度が大きいほど望ましい制御結果が実現されたことを示している。
【0040】
第6図にメンバシップ関数を用いてVIの予測値に対する適合度を算出する例を示す。予測VI値が37%、メンバシップ関数(満足度関数)の形状として図6を仮定すると、適合度は図のような操作で0.4となる。同様の操作で、VI値、AV値、エネルギ消費量等の適合度も得ることができる。
【0041】
最後にS5−3で各運転案jの総合満足度Wjを算出する。総合満足度Wjは例えば(数6)で算出する。β1、β2、β3、β4、・・・・・・は各評価ファクターの適合度に乗じる重みで、各評価ファクターの重要度に対応する。例えばAV値とエネルギー消費量を重要視する場合には、β1、β2、β6、β7を相対的に大きくすれば良い。あるいは重要度の高いファクターのみを選択的に用いて総合満足度の評価の対象にしても良い。
【0042】
【数6】
Figure 2004156258
このようにして運転案に対応した総合満足度を算出できる。同様にして他の運転案の総合満足度を算出する。
【0043】
図7に運転方式決定部106が実行する処理を示す。S7−1で各運転案について総合満足度を計算した結果から最も望ましい運転案を選択する。そしてS7−2で、選択した運転方法に沿った操作量を各機器(ジェットファン154、排風機155)に出力する。本実施例では、S7−1で最も望ましい運転案を選択したが、望ましいいくつかの運転案に対して按分処理を行い、新たな運転案を生成し運転方式として出力しても良い。
【0044】
本実施例では、運転案生成部101は運転方式決定部106の出力を用いて現在の運転方式を取りこんだが、制御対象150のジェットファン154、排風機155の出力を直接取りこんで、現在の運転方式として認識しても良い。またトンネルの換気方式として縦流式の場合を例に説明したが、横流式や半横流式等の他の方式にも同様の手法が適用できる。
また特殊な例として、トレンドに含まれるデータ数が1の場合でも、(数4)の線形演算を省略することで本発明をそのまま適用できる。
【0045】
図8に本発明の第2の実施例として、予測誤差算出部104に、モデル誤差時系列の自己相関を算出する自己相関算出部801と自己相関を評価し予測誤差推定部407の出力に乗じるゲインの値を決定する自己相関評価/ゲイン決定部802を備えた例を示す。
【0046】
本実施例における予測誤差算出部104では、風向・風力、煤煙濃度、CO値等の状態量の予測結果に対して、これが有する誤差の値を推定し、この値を予測値から差し引くことにより、予測モデルのパラメータを修正することなく予測演算部の出力を高精度化する。
【0047】
以下詳細に説明する。
【0048】
自己相関算出部801は(数3)の誤差系列の自己相関係数を算出する。自己相関係数Coは、Δiをxi、Δi+1をyiとおいたxiとyiの時系列を用いて、例えば(数7)で算出すれば良い。
【0049】
【数7】
Figure 2004156258
ここでCoは、隣接したΔの関連性の大きさを表しており、Coが大きいことは隣接した誤差の相関が大きいことを意味している。Coが大きい場合には直近の誤差を用いた予測誤差の推定が高精度であることが期待できる。一方、Coが小さい場合には誤差の規則性が乏しく、予測誤差の推定が困難なことを示している。
【0050】
自己相関評価/ゲイン決定部802では、得られたCoを用いてゲイン408の値を決定する。
【0051】
図9に自己相関評価/ゲイン決定部802が行う処理を示す。
【0052】
S9−1で算出された自己相関Coを取りこむ。一般にCoが大きいことは誤差時系列の相関が大きいことを意味し、次回の予測誤差が高精度に推定可能なことと対応している。したがって1に近い大きなゲインを設定可能となる。一方、Coが小さいときには誤差時系列の相関が乏しいので、ゲインを小さくするかあるいは予測誤差算出部の出力を制御に用いない様にする(ゲインを0にする)必要がある。
【0053】
S9−2ではこのような観点でゲインの決定を行う。一例としては、自己相関の値Coをそのままゲインの値に対応付けることも考えられるが、Coが一定値以下の場合はゲインを0にしても良い。
【0054】
本実施例では誤差トレンドの自己相関を用いたが、自己相関の代わりに推定トレンドと実績トレンドの相互相関を用いても同様の効果を得ることができる。この場合は推定トレンドの各値をxi、実績トレンドの各値をyiとおけばほぼ同様の演算で実現できる。
【0055】
図10に本発明のその他の実施例として、トラフィックカウンタ162の出力から車両の通行量や大型車比の変化量を判定し、ゲイン408を変化させる例を示す。通行量変化量判定部1001はトラフィックカウンタ162の出力を時系列に蓄積し、車両の通行量、大型車比が変化したかどうかを判定する。両者の変化が少ない場合にはゲイン408を大きな値とし、変化が大きい場合にはゲイン408を小さな値にするか、無効化する。車両通行台数が激変したタイミングではモデル誤差の補償精度が低下する場合があるが高いが、このような処理の結果、補償精度低下の影響を最小化できる。
【0056】
以上述べたように、本発明により、高精度な状態量の予測結果を用いて運転案の評価、運転方式の決定が行えるため、適切な運転案の選択が可能となる。
【0057】
また状態量の実績値のバラツキやノイズはモデル誤差時系列の自己相関を低下させるが、自己相関の大きさにしたがって予測誤差算出部の出力を制限することにより、バラツキやノイズの影響を最小化できる。
【0058】
また本発明では学習等によりモデルのパラメータを変化させることをしないので、学習制御で問題となる実績値のバラツキやノイズがモデルパラメータに悪影響を与える問題が生じない。また誤差推定値を次回の制御で速やかに補償できるので、補償の応答性を高めることもできる。
【0059】
【発明の効果】
本発明によれば、直近のモデル誤差のみに着目して予測モデルの出力を補正する予測誤差算出部を設けたことにより、誤差を補正された高精度な予測結果を用いて運転案の選択を行うことができる。したがって運転案の選択を適切に行うことができ、制御精度を向上できる。またモデルパラメータ学習と異なり、モデル誤差の補償結果がモデル内に蓄えられることはない。したがって検出値のバラツキ等が後々の予測結果に悪影響を与えることはなく、安定した制御を継続することができる。
【図面の簡単な説明】
【図1】本発明の代表的な構成図である。
【図2】運転案生成部の処理である。
【図3】予測演算部の処理である。
【図4】本発明で実現された予測誤差算出部の構成例である。
【図5】運転案評価部の処理である。
【図6】メンバシップ関数を用いて適合度を評価する方法の一例である。
【図7】運転方式決定部の処理である。
【図8】予測誤差補償部の第2の構成例である。
【図9】自己相関評価/ゲイン決定部の処理である。
【図10】予測誤差算出部の構成例である。
【符号の説明】
100・・・制御装置、
101・・・運転案生成部、
102・・・予測演算部、
103・・・予測モデル、
104・・・予測誤差算出部、
105・・・運転案評価部、
106・・・運転方式決定部、
150・・・制御対象、
151・・・トンネル、
152・・・坑口、
153・・・立坑、
154・・・ジェットファン、
155・・・排風機、
156、157・・・AV計、
158、159・・・VI計、
160、161・・・CO計、
162・・・トラフィックカウンタ、
401・・・オブザーバ、
402・・・推定トレンド生成部、
403・・・推定トレンド、
404・・・実績トレンド生成部、
405・・・実績トレンド、
406・・・誤差トレンド系列算出部、
407・・・予測誤差推定部、
408・・・ゲイン、
801・・・自己相関算出部、
802・・・自己相関評価/ゲイン決定部、
1001・・通行量変化量判定部。

Claims (9)

  1. トンネル内の煤煙濃度及び一酸化炭素濃度等の状態量を予測する予測演算部と、該予測結果を用いてジェットファン及び排風機等の運転量を決定する運転決定部を備えたトンネル換気制御装置において、該トンネルから検出した煤煙濃度及び一酸化炭素濃度等の状態量の実績値とジェットファンや排風機等の運転実績から予測結果に含まれる誤差の大きさを算出する予測誤差算出部を備え、該算出した予測誤差を用いて該予測演算部の出力を補償して制御に用いることを特徴としたトンネル換気制御装置。
  2. 前記予測演算部は、該トンネル内の煤煙濃度及び一酸化炭素濃度等の状態量の振舞いを記述した予測モデルを用いて該煤煙濃度及び一酸化炭素濃度等の状態量を予測することを特徴とする請求項1記載のトンネル換気制御装置。
  3. 前記予測誤差算出部は、該トンネルから検出した煤煙濃度や一酸化炭素濃度等の状態量の実績値と該予測演算部の演算により煤煙濃度や一酸化炭素濃度等の状態量を推定するオブザーバと、オブザーバの出力を時系列トレンドとして編集する推定トレンド生成部と、該推定値に対応した煤煙濃度や一酸化炭素濃度等の状態量の実績値を時系列トレンドとして編集する実績トレンド生成部と、実績トレンドと推定トレンドの差分を算出しトレンドとして編集する誤差トレンド算出部と、誤差トレンドの情報から予測誤差を推定する予測誤差推定部を備えていることを特徴とする請求項1〜2項のいずれか一記載のトンネル換気制御装置。
  4. 前記予測誤差推定部は、前記誤差トレンドの各誤差の値を重み付け加算することで予測誤差を算出することを特徴とする請求項1〜3項のいずれか一記載のトンネル換気制御装置。
  5. 前記予測誤差算出部は、前記誤差トレンドの自己相関を算出する自己相関算出部を備え、算出された自己相関の大きさにしたがって該予測誤差算出部の出力を制限することを特徴とする請求項1〜4項のいずれか一記載のトンネル換気制御装置。
  6. 前記予測誤差算出部は、前記誤差トレンドの自己相関を算出する自己相関算出部を備え、算出された自己相関があらかじめ定められた値より小さい場合には該予測誤差算出部の出力を無効とすることを特徴とする請求項1〜4項のいずれか一記載のトンネル換気制御装置。
  7. 前記予測誤差算出部は、車両の通行量や大型車比の変化量を判定する通行量変化量判定部を備え、車両の通行量や大型車比の変化量が大きい場合には該予測誤差算出部の出力を制限するか無効化することを特徴とする請求項1〜6項のいずれか一記載のトンネル換気制御装置。
  8. トンネル内の煤煙濃度及び一酸化炭素濃度等の状態量の振舞いを予測するとともに、該トンネルから検出した煤煙濃度や一酸化炭素濃度の状態量の実績値とジェットファンや排風機等の運転実績から予測結果の誤差を算出し、予測値を誤差で補償した結果にしたがってジェットファン及び排風機等の運転量を決定するトンネル換気制御方法。
  9. 該トンネルから検出した煤煙濃度や一酸化炭素濃度等の状態量の実績値と該予測演算部で算出した煤煙濃度や一酸化炭素濃度等の状態量の推定値を時系列トレンドとして編集するとともに、該推定値に対応した煤煙濃度や一酸化炭素濃度等の状態量の実績値を時系列トレンドとして編集し、実績トレンドと推定トレンドの差分を誤差トレンドとして編集し、誤差トレンドの情報から予測演算結果の誤差を推定することを特徴とする請求項8記載のトンネル換気制御方法。
JP2002321633A 2002-11-05 2002-11-05 トンネル換気制御方法および装置 Expired - Fee Related JP3904506B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321633A JP3904506B2 (ja) 2002-11-05 2002-11-05 トンネル換気制御方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321633A JP3904506B2 (ja) 2002-11-05 2002-11-05 トンネル換気制御方法および装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006298513A Division JP4109303B2 (ja) 2006-11-02 2006-11-02 トンネル換気制御方法および装置

Publications (2)

Publication Number Publication Date
JP2004156258A true JP2004156258A (ja) 2004-06-03
JP3904506B2 JP3904506B2 (ja) 2007-04-11

Family

ID=32802116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321633A Expired - Fee Related JP3904506B2 (ja) 2002-11-05 2002-11-05 トンネル換気制御方法および装置

Country Status (1)

Country Link
JP (1) JP3904506B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243244A (ja) * 2008-03-31 2009-10-22 Sohatsu System Kenkyusho:Kk 対面通行トンネルのジェットファンによるトンネル換気制御システム
CN101930214A (zh) * 2009-06-24 2010-12-29 株式会社日立制作所 控制装置、控制模型调整装置及控制模型调整方法
KR101027108B1 (ko) 2008-12-16 2011-04-05 (주)비엔텍아이엔씨 터널 공사시 송풍기 운전방법 및 이를 포함하는 터널 공사시 환기시스템
WO2011042980A1 (ja) * 2009-10-05 2011-04-14 株式会社創発システム研究所 対面通行トンネルのジェットファンによるトンネル換気制御システム
JP2015028804A (ja) * 2008-01-31 2015-02-12 フィッシャー−ローズマウント システムズ,インコーポレイテッド モデル不一致を補償するためのチューニングを有する頑健な適応モデル予測コントローラ
CN112529240A (zh) * 2020-09-14 2021-03-19 桂林电子科技大学 一种大气环境数据的预测方法、系统、装置及存储介质

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028804A (ja) * 2008-01-31 2015-02-12 フィッシャー−ローズマウント システムズ,インコーポレイテッド モデル不一致を補償するためのチューニングを有する頑健な適応モデル予測コントローラ
US9904257B2 (en) 2008-01-31 2018-02-27 Fisher-Rosemount Systems, Inc. Using autocorrelation to detect model mismatch in a process controller
JP2009243244A (ja) * 2008-03-31 2009-10-22 Sohatsu System Kenkyusho:Kk 対面通行トンネルのジェットファンによるトンネル換気制御システム
KR101027108B1 (ko) 2008-12-16 2011-04-05 (주)비엔텍아이엔씨 터널 공사시 송풍기 운전방법 및 이를 포함하는 터널 공사시 환기시스템
CN101930214A (zh) * 2009-06-24 2010-12-29 株式会社日立制作所 控制装置、控制模型调整装置及控制模型调整方法
JP2011008437A (ja) * 2009-06-24 2011-01-13 Hitachi Ltd 制御装置、制御モデル調整装置及び制御モデル調整方法
WO2011042980A1 (ja) * 2009-10-05 2011-04-14 株式会社創発システム研究所 対面通行トンネルのジェットファンによるトンネル換気制御システム
CN112529240A (zh) * 2020-09-14 2021-03-19 桂林电子科技大学 一种大气环境数据的预测方法、系统、装置及存储介质
CN112529240B (zh) * 2020-09-14 2024-05-07 桂林电子科技大学 一种大气环境数据的预测方法、系统、装置及存储介质

Also Published As

Publication number Publication date
JP3904506B2 (ja) 2007-04-11

Similar Documents

Publication Publication Date Title
DK2993779T3 (en) SYSTEM AND PROCEDURE FOR A LOAD EXPECTATION FUNCTION AND ITS SETTING PROCEDURE FOR A GENERATOR DEVICE
US7216061B2 (en) Apparatus and methods for detecting system faults using hidden process drivers
Papathanasopoulou et al. Online calibration for microscopic traffic simulation and dynamic multi-step prediction of traffic speed
AU2017317610A1 (en) Method and device for detecting equivalent load of wind turbine
WO2019150721A1 (ja) 気象予測補正手法および気象予測システム
KR20170127430A (ko) 센서 오차를 검출, 분류 및/또는 완화하는 방법 및 시스템
JP2005163608A (ja) 風力発電出力予測方法
Adnan et al. 5 hours flood prediction modeling using improved NNARX structure: case study Kuala Lumpur
JP2004156258A (ja) トンネル換気制御方法および装置
JP2022061969A (ja) 燃料電池システムの状態を特定するための装置及びコンピュータ実装方法
US20080288213A1 (en) Machine condition monitoring using discontinuity detection
JP4109303B2 (ja) トンネル換気制御方法および装置
JP4094648B2 (ja) トンネル換気制御方法および装置
JP5738140B2 (ja) 物質の放出量推定装置及びその方法並びにプログラム
KR101663348B1 (ko) 증기 발전소의 제어를 위한 모델 변수들을 결정하는 방법 및 장치, 증기 발생기용 제어 유닛 및 컴퓨터 프로그램 제품
US20220292521A1 (en) Computer-Assisted Method for Generating Training Data for a Neural Network for Predicting a Concentration of Pollutants
JP2008249187A (ja) 火力発電プラントの制御装置、及び火力発電プラントの制御方法
KR101956530B1 (ko) Mpc 기반의 풍력 터빈 요 제어 방법
JP3978117B2 (ja) トンネル換気制御方法および装置
KR102124425B1 (ko) 시계열 데이터 예측 모델 평가 방법 및 장치
US20230184730A1 (en) Computer-Assisted Method for Generating Training Data for a Neural Network for Predicting a Concentration of Pollutants at a Measuring Station
KR20100071343A (ko) 뉴럴 네트워크와 유전 알고리즘에 의한 펌프 유량 예측 장치 및 방법
CN113994276A (zh) 用于验证能量系统的系统参数的方法、用于运行能量系统的方法以及用于能量系统的能量管理系统
JP4183963B2 (ja) ダム水位制御方法、ダム水位制御システム、及びダム水位制御プログラム
JP2006045892A (ja) 配水量予測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees