JP2004147086A - 光伝送システム、光合波器および光分波器 - Google Patents

光伝送システム、光合波器および光分波器 Download PDF

Info

Publication number
JP2004147086A
JP2004147086A JP2002309852A JP2002309852A JP2004147086A JP 2004147086 A JP2004147086 A JP 2004147086A JP 2002309852 A JP2002309852 A JP 2002309852A JP 2002309852 A JP2002309852 A JP 2002309852A JP 2004147086 A JP2004147086 A JP 2004147086A
Authority
JP
Japan
Prior art keywords
optical
wavelength
signal light
loss
wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002309852A
Other languages
English (en)
Inventor
Toshiaki Okuno
奥野 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002309852A priority Critical patent/JP2004147086A/ja
Priority to US10/671,794 priority patent/US7280759B2/en
Publication of JP2004147086A publication Critical patent/JP2004147086A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02216Power control, e.g. to keep the total optical power constant by gain equalization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】信号光波長帯域が広くても多波長の信号光それぞれを高品質で伝送することができ特にCWDM光伝送に好適な光伝送システムを提供する。
【解決手段】光送信器11〜11より出力されたN波長の信号光は、光合波器12により合波され、光ファイバ伝送路20により伝送されて、光分波器32に到達し、光分波器32より波長毎に分波され、波長λの信号光が光受信器31により受信される。光ファイバ伝送路20の長さが150km以下である。N波長のうちの何れかの2波長λ,λについて、光ファイバ伝送路20の全伝送損失が波長λより波長λで小さく、光合波器12および光分波器32それぞれの挿入損失が波長λより波長λで大きい。光ファイバ伝送路20の2波長λ,λでの全伝送損失の差より、光受信器31,31に到達する2波長λ,λの信号光のパワーの差が小さい。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、多波長の信号光を伝送する光伝送システム、多波長の信号光を合波する光合波器、および、多波長の信号光を分波する光分波器に関するものである。
【0002】
【従来の技術】
波長分割多重(WDM: Wavelength Division Multiplexing)光伝送システムは、多波長の信号光を多重化して光ファイバ伝送路により伝送するものであり、大容量の情報を高速に送受信することができる。通信需要が旺盛な幹線系の光伝送システムでは、多波長の信号光の光周波数間隔を狭くすることで多重度を大きくして、これにより更なる大容量化を図ることが検討されている。このような多重度が大きいWDMは、DWDM(Dense WDM)と呼ばれる。
【0003】
一方、それほど通信需要が大きくない光伝送システムでは、多波長の信号光の光周波数間隔を広くすることで多重度を小さくして、これによりシステムコストの低減が図られている(例えば特許文献1を参照)。このような多重度が小さいWDMは、CWDM(Coarse WDM)と呼ばれる。CWDM光伝送システムでは、信号光の波数の低減に伴って光部品(例えば、信号光源、受光素子、等)の数を削減し、また、光周波数間隔が大きいことに因り波長精度要求値が低い安価な光部品(例えば、光合波器、光分波器、等)を使用することで、システムコストの低減を図ることができる。
【0004】
【特許文献1】
特開2000−156702号公報
【0005】
【発明が解決しようとする課題】
しかし、CWDM光伝送システムでは、光周波数間隔が大きいことから、多波長の信号光を含む信号光波長帯域の幅が広くなり、例えば、この帯域幅が100nm程度になる場合もある。帯域幅が100nm程度もあると、その信号光波長帯域内の短波長側と長波長側とでは、光ファイバ伝送路の伝送損失が大きく異なり、これに因り、光受信器に到達する信号光のパワーは波長により大きく異なる。
【0006】
ところで、多波長の信号光を光増幅する光増幅器が信号光伝送経路上に設けられていれば、その光増幅器内の利得等化器の作用により、光受信器に到達する信号光のパワーを波長によらず略一定とすることができる。しかし、CWDM光伝送システムは、システムコスト低減を図るために、高価な光増幅器を設けないことが要求されている。それ故、光増幅器を備えていないCWDM光伝送システムは、信号光波長帯域内の多波長の信号光それぞれを高品質で伝送することが困難である。
【0007】
本発明は、上記問題点を解消する為になされたものであり、信号光波長帯域が広くても多波長の信号光それぞれを高品質で伝送することができ特にCWDM光伝送に好適な光伝送システム、ならびに、この光伝送システムにおいて好適に用いられる光合波器および光分波器を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る光伝送システムは、多波長の信号光を光送信器より出力し、その出力した信号光を光ファイバ伝送路により伝送して、その伝送した信号光を光受信器により受信する光伝送システムであって、光ファイバ伝送路の長さが150km以下であり、光送信器と光受信器との間の信号光伝送経路上に設けられ信号光に損失を与える光部品を備え、多波長のうちの何れかの2波長λ,λについて、光ファイバ伝送路の全伝送損失が波長λより波長λで小さく、光部品の挿入損失が波長λより波長λで大きく、光ファイバ伝送路の2波長λ,λでの全伝送損失の差より、光受信器に到達する2波長λ,λの信号光のパワーの差が小さいことを特徴とする。このように構成される光伝送システムは、信号光波長帯域が広くても多波長の信号光それぞれを高品質で伝送することができ、特にCWDM光伝送に好適なものとなる。
【0009】
本発明に係る光伝送システムは、光送信器と光受信器との間の信号光伝送経路上に、信号光を光増幅する光増幅器が設けられていないのが好適である。多波長のうちの何れかの波長が1520nm以下であり、他の何れかの波長が1570nm以上であるのが好適である。信号光の帯域幅が20nm以上であるのが好適である。信号光の波長間隔が10nm以上であるのが好適である。伝送速度が10Gb/s以下であるのが好適である。光ファイバ伝送路の波長1.38μmでの伝送損失が0.4dB/km以下であるのが好適である。光受信器がアバランシェフォトダイオードまたはPINフォトダイオードを含むのが好適である。
【0010】
本発明に係る光伝送システムは、光部品が信号光を合波する光合波器であるのが好適であり、光部品が信号光を分波する光分波器であるのが好適であり、光部品が信号光に損失を与える可変減衰器であるのが好適である。また、信号光を合波する光合波器の後段に可変減衰器が設けられているのが好適であり、信号光を分波する光分波器の前段に可変減衰器が設けられているのが好適であり、可変減衰器の損失波長依存性が可変であるのが好適である。
【0011】
本発明に係る光合波器は、多波長の信号光を合波する光合波器であって、合波する多波長それぞれの中心波長が長波長ほど、その中心波長での挿入損失が大きいことを特徴とする。また、本発明に係る光分波器は、多波長の信号光を分波する光分波器であって、分波する多波長それぞれの中心波長が長波長ほど、その中心波長での挿入損失が大きいことを特徴とする。このような光合波器または光分波器を用いることにより、信号光波長帯域が広くても信号光を高品質で伝送することができ、特にCWDM光伝送に好適なものとなる。また、設計が容易で、製造性にも優れており、低コスト化可能、システム適用性が良い等の利点も有する。
【0012】
本発明に係る光合波器または光分波器は、多波長それぞれの中心波長の間隔が10nm以上であるのが好適である。多波長のうちの何れかの中心波長が1530nm以下であり、他の何れかの中心波長が1570nm以上であるのが好適である。或いは、多波長のうちの何れかの中心波長が1410nm以下であり、他の何れかの中心波長が1570nm以上であるのが好適である。或いは、多波長のうちの何れかの中心波長が1310nm以下であり、他の何れかの中心波長が1590nm以上であるのが好適である。
【0013】
本発明に係る光合波器は、多波長の信号光を合波する光合波器であって、中心波長における挿入損失が、用いられているシステム中の伝送路の損失波長特性と逆特性になっていることを特徴とする。また、本発明に係る光分波器は、多波長の信号光を分波する光分波器であって、中心波長における挿入損失が、用いられているシステム中の伝送路の損失波長特性と逆特性になっていることを特徴とする。このような光合波器または光分波器を用いることで、伝送路の損失波長特性を補償する・平坦化する方向で光合波器または光分波器の損失波長特性を設計することにより、余計な部品を付加することなく、すなわち、システムのコストが増加することなく、短波長側のチャンネルのロスバジェットを改善し、システムの信頼性を向上することができる。
【0014】
本発明に係る光合波器は、多波長の信号光を合波する光合波器であって、中心波長における挿入損失が、光合分波器以外の当該用いられているシステム全体の信号パワーの波長特性と略逆の傾向を示す波長特性になっていることを特徴とする。また、本発明に係る光分波器は、多波長の信号光を分波する光分波器であって、中心波長における挿入損失が、光合分波器以外の当該用いられているシステム全体の信号パワーの波長特性と略逆の傾向を示す波長特性になっていることを特徴とする。このような光合波器または光分波器を用いることで、システム全体の損失波長特性を補償する・平坦化する方向で光合波器または光分波器の損失波長特性を設計することにより、余計な部品を付加することなく、すなわち、システムのコストが増加することなく、短波長側のチャンネルのロスバジェットを改善し、システムの信頼性を向上することができる。
【0015】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0016】
先ず、本発明に係る光伝送システムの第1実施形態について説明する。図1は、第1実施形態に係る光伝送システム1の構成図である。この図に示される光伝送システム1は、N個の光送信器11〜11、光合波器12、光ファイバ伝送路20、N個の光受信器31〜31および光分波器32を備える(ただし、Nは2以上の整数)。光送信器11〜11と光受信器31〜31との間の信号光伝送経路上に、信号光を光増幅する光増幅器は設けられていない。
【0017】
各光送信器11は波長λの信号光を出力する(ただし、nは1以上N以下の任意の整数)。光合波器12は、N個の光送信器11〜11より出力されたN波長λ〜λの信号光を合波して、その合波した多波長の信号光を光ファイバ伝送路20へ送出する。光分波器32は、光ファイバ伝送路20により伝送されてきて到達した多波長の信号光を波長毎に分波して、各波長λの信号光を光受信器31へ出力する。光受信器31は、光分波器32より出力された波長λの信号光を受信する。
【0018】
この光伝送システム1は以下のように動作する。N個の光送信器11〜11より出力されたN波長λ〜λの信号光は、光合波器12により合波され、光ファイバ伝送路20により伝送されて、光分波器32に到達する。光分波器32に到達したN波長λ〜λの信号光は、光分波器32より波長毎に分波され、波長λの信号光が光受信器31により受信される。光送信器11から出力された波長λの信号光は光受信器31へ至るまでに光増幅されることは無い。
【0019】
この光伝送システム1において、光送信器11から光受信器31へ至るまでに波長λの信号光が被る損失α(dB)は、光合波器12の波長λでの挿入損失α1,n(dB)と、光ファイバ伝送路20の波長λでの全伝送損失α2,n(dB)と、光分波器32の波長λでの挿入損失α3,n(dB)との和に略等しい。
【0020】
【数1】
Figure 2004147086
【0021】
また、光送信器11より出力される波長λの信号光のパワーが波長によらず一定値P(dBm)であるとすると、光受信器31に到達する波長λの信号光のパワーP(dBm)は、以下の式で表される。
【0022】
【数2】
Figure 2004147086
【0023】
第1実施形態に係る光伝送システム1は、光ファイバ伝送路20の長さが150km以下であり、N波長λ〜λのうちの何れかの2波長λ,λについて以下のように設定されている(ただし、1≦a≦N、1≦b≦N)。すなわち、光ファイバ伝送路20の全伝送損失が波長λより波長λで小さく、光合波器12および光分波器32それぞれの挿入損失が波長λより波長λで大きい。
【0024】
【数3】
Figure 2004147086
【0025】
そして、光ファイバ伝送路20の2波長λ,λでの全伝送損失の差より、光受信器31,31に到達する2波長λ,λの信号光のパワーの差が小さい。
【0026】
【数4】
Figure 2004147086
【0027】
以上のように構成される光伝送システム1は、信号光波長帯域が広くても多波長の信号光それぞれを高品質で伝送することができ、特にCWDM光伝送に好適なものとなる。
【0028】
光送信器11〜11と光受信器31〜31との間の信号光伝送経路上に光増幅器が設けられていないのが好適であり、この場合には、光伝送システム1は、安価なものとなり、また、信頼性を向上させることができる。
【0029】
N波長λ〜λのうちの何れかの波長は1520nm以下であり、他の何れかの波長は1570nm以上である。或いは、N波長λ〜λの信号光の帯域幅は20nm以上である。或いは、N波長λ〜λの信号光の波長間隔は10nm以上である。このように信号光波長帯域が広帯域であると、或いは、波長間隔が広いと、信号光波長帯域内で光ファイバ伝送路20の伝送損失の偏差が大きいが、本実施形態に係る光伝送システム1は所期の効果を奏することができる。
【0030】
伝送速度は10Gb/s以下であるのが好適である。このように伝送速度が遅いと、本実施形態に係る光伝送システム1は、分散補償手段を有するまでも無く高品質の信号光伝送が可能であり、また、分散補償手段を有する必要が無いので光伝送システム1が安価なものとなる。
【0031】
光ファイバ伝送路20の波長1.38μmでの伝送損失は0.4dB/km以下であるのが好適である。このような光ファイバ伝送路20を用いることにより、波長1.38μm付近の波長の信号光をも利用することができる。
【0032】
光受信器31〜31それぞれはアバランシェフォトダイオードを含むのが好適であり、この場合には、光受信器31〜31それぞれの受信感度が高く、それ故、システム設計のマージンを充分に確保することができ、また、信号光伝送距離を長くすることができる。
【0033】
光受信器31〜31それぞれはPINフォトダイオードを含むのが好適であり、この場合には、光受信器31〜31それぞれを安価に構成することができ、光伝送システム1も安価なものとなる。
【0034】
図2は、第1実施形態に係る光伝送システム1の動作を説明する図である。同図は、光送信器から光受信器へ至るまでの信号光経路上の2波長λ,λの信号光それぞれのパワー分布を示す。同図(a)は比較例の場合を示し、同図(b)は本実施形態の場合を示す。
【0035】
比較例および本実施形態の何れの場合にも、一方の波長λの信号光のパワーは、光送信器11より出力された当初にはPであり、光合波器12の位置Xで損失α1,aを被り、光ファイバ伝送路20により伝送される間に損失α2,aを被り、光分波器32の位置Yで損失α3,aを被り、光受信器31に到達するときにはPとなる。他方の波長λの信号光のパワーは、光送信器11より出力された当初にはPであり、光合波器12の位置Xで損失α1,bを被り、光ファイバ伝送路20により伝送される間に損失α2,bを被り、光分波器32の位置Yで損失α3,bを被り、光受信器31に到達するときにはPとなる。
【0036】
比較例(同図(a))では、上記(3a)式の不等号の向きがそのままで、上記(3b)式および(3c)式それぞれの不等号の向きが逆となっている。すなわち、光合波器12の挿入損失、光ファイバ伝送路20の伝送損失、および、光分波器32の挿入損失の何れも、波長λより波長λで小さい。このことから、光送信器から光受信器へ信号光が伝送されていくに従い、2波長λ,λの信号光のパワーの差は拡大していく一方である。
【0037】
これに対して、本実施形態(同図(b))では、上記(3a)式〜(3c)式の不等式の関係がある。すなわち、光ファイバ伝送路20の伝送損失と、光合波器12および光分波器32それぞれの挿入損失とは、2波長λ,λで値の大小関係が逆になっている。このことから、光送信器から光受信器へ信号光が伝送されていくに従い、2波長λ,λの信号光のパワーは、位置Xでは差が生じるものの、光ファイバ伝送路20により伝送される間に差が逆転し、位置Yでは差が小さくなる。したがって、上記(4)式が成り立ち得る。
【0038】
以上のような比較例と本実施形態との動作の相違に因り、光受信器31に到達したときの波長λの信号光のパワーは、比較例では光受信器31の受信感度Pthより小さくなる場合であっても、本実施形態では受信感度Pthより大きくなり得る。具体的には以下のとおりである。
【0039】
比較例および本実施形態の何れの場合にも、光ファイバ伝送路20は、波長1.3μm付近に零分散波長を有するシングルモード光ファイバであるとし、長さが150kmであるとする。伝送速度が2.5Gb/sであるとし、2波長の信号光を伝送するものとして、λ=1.45μm、λ=1.55μm、α2,a=0.26dB×150km、α2,b=0.20dB×150km とする。光受信器31,31は、アバランシェフォトダイオードを含むものとし、受信感度Pth=−34dBm(BER=10−9) とする。また、光送信器11,11より出力される各波長の信号光のパワーPは7dBmとする。
【0040】
比較例(同図(a))では、α1,a=1.5dB、α1,b=0.5dB、α3,a=1.5dB、α3,b=0.5dB とする。このとき、光受信器31に到達する波長λの信号光のパワーPは、−35dBm(=7dBm−1.5dB−0.26dB/km×150km−1.5dB)となる。一方、光受信器31に到達する波長λの信号光のパワーPは、−24dBm(=7dBm−0.5dB−0.20dB/km×150km−0.5dB)となる。光受信器31に到達する波長λの信号光は、受信感度Pthより小さいパワーであるので、受信エラーが多発することになる。
【0041】
これに対して、本実施形態(同図(b))では、α1,a=0.5dB、α1,b=1.5dB、α3,a=0.5dB、α3,b=1.5dB とする。このとき、光受信器31に到達する波長λの信号光のパワーPは、−33dBm(=7dBm−0.5dB−0.26dB/km×150km−0.5dB)となる。一方、光受信器31に到達する波長λの信号光のパワーPは、−26dBm(=7dBm−1.5dB−0.20dB/km×150km−1.5dB)となる。光受信器31,31に到達する2波長の信号光の何れも、受信感度Pthより大きいパワーであるので、受信エラー発生頻度が充分に小さい。
【0042】
以上のように、本実施形態では、信号光波長帯域が広くても多波長の信号光それぞれを高品質で伝送することができ、特にCWDM光伝送に好適なものである。
【0043】
次に、本発明に係る光伝送システムの第2実施形態について説明する。図3は、第2実施形態に係る光伝送システム2の構成図である。この図に示される光伝送システム2は、光合波器13、光ファイバ伝送路21〜23、可変減衰器40、N個の光受信器31〜31および光分波器32を備える(ただし、Nは2以上の整数)。また、この光伝送システム2は、光ファイバ伝送路21〜23それぞれに接続された複数の光送信器(図示せず)をも備える。なお、これら複数の光送信器それぞれと光合波器13との間に光ネットワークが構成されていてもよい。ただし、光送信器と光受信器31〜31との間の信号光伝送経路上に、信号光を光増幅する光増幅器は設けられていない。
【0044】
光ファイバ伝送路21〜23それぞれに接続された光送信器は波長λの信号光を出力する(ただし、nは1以上N以下の任意の整数)。光合波器13は、光送信器より出力され光ファイバ伝送路21〜23により伝送されてきて到達したN波長λ〜λの信号光を合波して、その合波した多波長の信号光を光ファイバ伝送路20へ送出する。可変減衰器40は、光ファイバ伝送路20により伝送されてきて到達した多波長の信号光を入力し、各波長の信号光に損失を与えて出力する。光分波器32は、可変減衰器40より出力された多波長の信号光を波長毎に分波して、各波長λの信号光を光受信器31へ出力する。光受信器31は、光分波器32より出力された波長λの信号光を受信する。
【0045】
この光伝送システム2は以下のように動作する。光送信器より出力されたN波長λ〜λの信号光は、光ファイバ伝送路21〜23の何れかにより伝送された後に光合波器13により合波され、光ファイバ伝送路20により伝送され、可変減衰器40により波長に応じた損失が与えられて、光分波器32に到達する。光分波器32に到達したN波長λ〜λの信号光は、光分波器32より波長毎に分波され、波長λの信号光が光受信器31により受信される。光送信器11から出力された波長λの信号光は光受信器31へ至るまでに光増幅されることは無い。
【0046】
この光伝送システム2において、光送信器から光受信器31へ至るまでに波長λの信号光が被る損失α(dB)は、光合波器13の波長λでの挿入損失α1,n(dB)と、光ファイバ伝送路21〜23のうちの何れか及び光ファイバ伝送路20の波長λでの全伝送損失α2,n(dB)と、光分波器32の波長λでの挿入損失α3,n(dB)と、可変減衰器40の波長λでの挿入損失α4,n(dB)との和に略等しい。
【0047】
【数5】
Figure 2004147086
【0048】
また、光送信器より出力される波長λの信号光のパワーが波長によらず一定値P(dBm)であるとすると、光受信器31に到達する波長λの信号光のパワーP(dBm)は、上記(2)式で表される。
【0049】
第2実施形態に係る光伝送システム2は、光ファイバ伝送路21〜23それぞれと光ファイバ伝送路20との長さの和が150km以下であり、N波長λ〜λのうちの何れかの2波長λ,λについて以下のように設定されている(ただし、1≦a≦N、1≦b≦N)。すなわち、光ファイバ伝送路の全伝送損失が波長λより波長λで小さく、光合波器13、光分波器32および可変減衰器40それぞれの挿入損失が波長λより波長λで大きい。
【0050】
【数6】
Figure 2004147086
【0051】
そして、光ファイバ伝送路20の2波長λ,λでの全伝送損失の差より、光受信器31,31に到達する2波長λ,λの信号光のパワーの差が小さい。すなわち、上記(4)式が成り立つ。
【0052】
以上のように構成される光伝送システム2は、信号光波長帯域が広くても多波長の信号光それぞれを高品質で伝送することができ、特にCWDM光伝送に好適なものとなる。
【0053】
光送信器と光受信器31〜31との間の信号光伝送経路上に光増幅器が設けられていないのが好適であり、この場合には、光伝送システム2は、安価なものとなり、また、信頼性を向上させることができる。
【0054】
N波長λ〜λのうちの何れかの波長は1520nm以下であり、他の何れかの波長は1570nm以上である。或いは、N波長λ〜λの信号光の帯域幅は20nm以上である。或いは、N波長λ〜λの信号光の波長間隔は10nm以上である。このように信号光波長帯域が広帯域であると、或いは、波長間隔が広いと、信号光波長帯域内で光ファイバ伝送路の伝送損失の偏差が大きいが、本実施形態に係る光伝送システム2は所期の効果を奏することができる。
【0055】
伝送速度は10Gb/s以下であるのが好適である。このように伝送速度が遅いと、本実施形態に係る光伝送システム2は、分散補償手段を有するまでも無く高品質の信号光伝送が可能であり、また、分散補償手段を有する必要が無いので光伝送システム2が安価なものとなる。
【0056】
光ファイバ伝送路20〜23それぞれの波長1.38μmでの伝送損失は0.4dB/km以下であるのが好適である。このような光ファイバ伝送路を用いることにより、波長1.38μm付近の波長の信号光をも利用することができる。
【0057】
光受信器31〜31それぞれはアバランシェフォトダイオードを含むのが好適であり、この場合には、光受信器31〜31それぞれの受信感度が高く、それ故、システム設計のマージンを充分に確保することができ、また、信号光伝送距離を長くすることができる。
【0058】
光受信器31〜31それぞれはPINフォトダイオードを含むのが好適であり、この場合には、光受信器31〜31それぞれを安価に構成することができ、光伝送システム2も安価なものとなる。
【0059】
可変減衰器40は、光合波器13の後段で光分波器32の前段に設けられているのが好適であり、この場合には、N波長の信号光の損失を一括して調整することができるので、光伝送システム2を安価に構成することができる。
【0060】
可変減衰器40は損失波長依存性が可変であるのが好適であり、この場合には、光送信器と光合波器13との間の各波長の伝送損失が変動したときにも対処することができる。
【0061】
次に、本発明に係る光合波器および光分波器の実施形態について説明する。以下に説明する本実施形態に係る光合波器および光分波器は、図1,図3に示された光伝送システム1,2に含まれる光合波器12,13および光分波器32として好適に用いられ得るものである。
【0062】
ここでは、図1に示された光伝送システム1の構成を想定し、この光伝送システム1に含まれる光合波器12および光分波器32について説明する。図4は、光伝送システム1に含まれる光ファイバ伝送路20の伝送損失ならびに光合波器12および光分波器32それぞれの挿入損失などを説明する図である。同図(a)は、光ファイバ伝送路20の伝送損失の波長依存性を示し、同図(b)は、光合波器12および光分波器32それぞれの挿入損失の波長依存性を示す。同図(c)は、光合波器12および光分波器32それぞれの挿入損失が波長によらず一定である場合に、光受信器に到達する各波長の信号光のパワーを示す。同図(d)は、光合波器12および光分波器32それぞれの挿入損失が波長によって異なる場合に、光受信器に到達する各波長の信号光のパワーを示す。
【0063】
同図(a)に示されるように、光ファイバ伝送路20の伝送損失は波長1.55μm付近で最小となり、波長1.55μm以下の波長域では、波長が長いほど伝送伝送損失が小さい。それ故、同図(c)に示されるように、光合波器12および光分波器32それぞれの挿入損失が波長によらず一定である場合には、波長1.55μm以下の波長域では、波長が長いほど、光受信器に到達する信号光のパワーは大きい。これに対して、同図(b)に示されるように、合分波の中心波長が長いほど挿入損失が大きい光合波器12および光分波器32を用いることにより、同図(d)に示されるように、光受信器に到達する信号光のパワーの波長依存性を低減することができ、信号光波長帯域が広くても多波長の信号光それぞれを高品質で伝送することができ、特にCWDM光伝送に好適なものとなる。
【0064】
光合波器12および光分波器32それぞれが合分波する多波長それぞれの中心波長の間隔が10nm以上であるのが好適である。合分波する多波長のうちの何れかの中心波長が1530nm以下であり、他の何れかの中心波長が1570nm以上であるのが好適である。或いは、合分波する多波長のうちの何れかの中心波長が1410nm以下であり、他の何れかの中心波長が1570nm以上であるのが好適である。或いは、合分波する多波長のうちの何れかの中心波長が1310nm以下であり、他の何れかの中心波長が1590nm以上であるのが好適である。このように信号光波長帯域が広帯域であると、或いは、波長間隔が広いと、信号光波長帯域内で光ファイバ伝送路の伝送損失の偏差が大きいが、本実施形態に係る光伝送システム2は所期の効果を奏することができる。
【0065】
合分波する多波長のうちの何れかの中心波長が1530nm以下であり、他の何れかの中心波長が1570nm以上である場合には、光ファイバ伝送路20の伝送損失が小さく、光送信器に含まれる光源が安価である。合分波する多波長のうちの何れかの中心波長が1410nm以下であり、他の何れかの中心波長が1570nm以上である場合には、OH基損失の直接の影響が小さい波長域を有効に利用することができる。また、合分波する多波長のうちの何れかの中心波長が1310nm以下であり、他の何れかの中心波長が1590nm以上である場合には、最も広帯域で光ファイバ伝送路20の低損失波長域の全域を有効に利用することができる。
【0066】
以下では具体的な実施例について説明する。
【0067】
実施例1では、図5に示された構成の光伝送システムを想定した。図5は、実施例1の光伝送システムの構成図である。図6は、実施例1の光合波器の挿入損失等を示す図表である。実施例1では、N個の光送信器11〜11から出力されたN波の信号光を光合波器12により合波し、その合波したN波の信号光を光ファイバ伝送路20により伝送し、バンドパスフィルタ50を経た後に光受信器31により受信した。実施例1では、波長1510nmから1570nmまでの20nm間隔の4波とし、光ファイバ伝送路20を長さ50kmのシングルモード光ファイバとした。図6には、各波長における光ファイバ伝送路20の全伝送損失、光合波器12の挿入損失、および、トータルの損失、それぞれが示されている。この図から判るように、波長域1510nm〜1570nmにおいて、光ファイバ伝送路20の全伝送損失の偏差が0.9dBもあるのに対して、波長が長いほど挿入損失が大きい光合波器12を用いたことにより、トータル損失の偏差は0.2dBまで低減された。
【0068】
実施例2では、図1に示された構成の光伝送システムを想定した。図7は、実施例2の光合波器の挿入損失等を示す図表である。実施例2では、波長1410nmから1570nmまでの20nm間隔の9波とし、光ファイバ伝送路20を長さ50kmの非零分散シフト光ファイバとした。図7には、各波長における光ファイバ伝送路20の全伝送損失、光合波器12の挿入損失、光分波器32の挿入損失、および、トータルの損失、それぞれが示されている。この図から判るように、波長域1410nm〜1570nmにおいて、光ファイバ伝送路20の全伝送損失の偏差が3.72dBもあるのに対して、波長が長いほど挿入損失が大きい光合波器12および光分波器32を用いたことにより、トータル損失の偏差は1.5dBまで低減された。
【0069】
実施例3では、図1に示された構成の光伝送システムを想定した。図8は、実施例3の光合波器の挿入損失等を示す図表である。実施例3では、波長1310nmから1610nmまでの20nm間隔の16波とし、光ファイバ伝送路20を波長1.38μmでのOH損失が抑制された長さ100kmのシングルモード光ファイバとした。図8には、各波長における光ファイバ伝送路20の全伝送損失、光合波器12の挿入損失、光分波器32の挿入損失、および、トータルの損失、それぞれが示されている。この図から判るように、波長域1310nm〜1610nmにおいて、光ファイバ伝送路20の全伝送損失の偏差が14.16dBもあるのに対して、光合波器12および光分波器32を用いたことにより、トータル損失の偏差は6.3dBまで低減された。しかも、光ファイバ伝送路20の全伝送損失の波長特性にあわせて、光合波器12および光分波器32の損失波長特性をあわせることで、挿入損失が波長に対して単調に変化する場合に比べ、より偏差を小さくすることができた。
【0070】
実施例4では、図5に示された構成の光伝送システムを想定した。図9は、実施例4の光合波器の挿入損失等を示す図表である。実施例4では、波長1510nmから1560nmまでの10nm間隔の6波とし、光ファイバ伝送路20を長さ50kmの分散シフト光ファイバとした。実施例4では、波長が長いほど挿入損失が大きい光合波器12を用いたのに対して、比較例では、挿入損失の波長依存性がランダムである光合波器を用いた。図9には、実施例4および比較例それぞれについて、各波長における光ファイバ伝送路20の全伝送損失、光合波器12の挿入損失、および、トータルの損失、それぞれが示されている。この図から判るように、波長域1510nm〜1560nmにおいて、光ファイバ伝送路20の全伝送損失の偏差が0.55dBであるのに対して、挿入損失の波長依存性がランダムである光合波器を用いた比較例では、トータル損失の偏差は1.4dBとなって寧ろ大きくなり、一方、波長が長いほど挿入損失が大きい光合波器12を用いた実施例4では、トータル損失の偏差は1.1dBであった。
【0071】
実施例5では、図5に示された構成の光伝送システムを想定した。図10は、実施例5の光合波器の挿入損失等を示す図表である。実施例5では、波長1520nmから1545nmまでの5nm間隔の6波とし、光ファイバ伝送路20を長さ50kmの分散シフト光ファイバとした。実施例5では、波長が長いほど挿入損失が大きい光合波器12を用いたのに対して、比較例では、挿入損失の波長依存性がランダムである光合波器を用いた。図10には、実施例5および比較例それぞれについて、各波長における光ファイバ伝送路20の全伝送損失、光合波器12の挿入損失、および、トータルの損失、それぞれが示されている。この図から判るように、波長域1520nm〜1545nmにおいて、光ファイバ伝送路20の全伝送損失の偏差が0.29dBであるのに対して、挿入損失の波長依存性がランダムである光合波器を用いた比較例では、トータル損失の偏差は1.4dBであり、また、波長が長いほど挿入損失が大きい光合波器12を用いた実施例5でも、トータル損失の偏差は1.4dBであった。実施例5では、信号光波長間隔が狭いことから、光ファイバ伝送路20の伝送損失波長特性が、光合波器の挿入損失波長特性と比べて無視できる場合が多いことから、実施例5と比較例とでは、トータル損失の偏差が同程度であった。
【0072】
【発明の効果】
以上、詳細に説明したとおり、本発明によれば、光伝送システムは、信号光波長帯域が広くても多波長の信号光それぞれを高品質で伝送することができ、特にCWDM光伝送に好適なものとなる。
【図面の簡単な説明】
【図1】第1実施形態に係る光伝送システム1の構成図である。
【図2】第1実施形態に係る光伝送システム1の動作を説明する図である。
【図3】第2実施形態に係る光伝送システム2の構成図である。
【図4】光伝送システム1に含まれる光ファイバ伝送路20の伝送損失ならびに光合波器12および光分波器32それぞれの挿入損失などを説明する図である。
【図5】実施例1の光伝送システムの構成図である。
【図6】実施例1の光合波器の挿入損失等を示す図表である。
【図7】実施例2の光合波器の挿入損失等を示す図表である。
【図8】実施例3の光合波器の挿入損失等を示す図表である。
【図9】実施例4の光合波器の挿入損失等を示す図表である。
【図10】実施例5の光合波器の挿入損失等を示す図表である。
【符号の説明】
1,2…光伝送システム、11…光送信器、12,13…光合波器、20〜23…光ファイバ伝送路、31…光受信器、32…光分波器、40…可変減衰器、50…バンドパスフィルタ。

Claims (26)

  1. 多波長の信号光を光送信器より出力し、その出力した前記信号光を光ファイバ伝送路により伝送して、その伝送した前記信号光を光受信器により受信する光伝送システムであって、
    前記光ファイバ伝送路の長さが150km以下であり、
    前記光送信器と前記光受信器との間の信号光伝送経路上に設けられ前記信号光に損失を与える光部品を備え、
    前記多波長のうちの何れかの2波長λ,λについて、前記光ファイバ伝送路の全伝送損失が波長λより波長λで小さく、前記光部品の挿入損失が波長λより波長λで大きく、前記光ファイバ伝送路の2波長λ,λでの全伝送損失の差より、前記光受信器に到達する2波長λ,λの信号光のパワーの差が小さい
    ことを特徴とする光伝送システム。
  2. 前記光送信器と前記光受信器との間の信号光伝送経路上に、信号光を光増幅する光増幅器が設けられていないことを特徴とする請求項1記載の光伝送システム。
  3. 前記多波長のうちの何れかの波長が1520nm以下であり、他の何れかの波長が1570nm以上であることを特徴とする請求項1記載の光伝送システム。
  4. 前記信号光の帯域幅が20nm以上であることを特徴とする請求項1記載の光伝送システム。
  5. 前記信号光の波長間隔が10nm以上であることを特徴とする請求項1記載の光伝送システム。
  6. 前記光ファイバ伝送路の波長1.38μmでの伝送損失が0.4dB/km以下であることを特徴とする請求項1記載の光伝送システム。
  7. 前記光受信器がアバランシェフォトダイオードを含むことを特徴とする請求項1記載の光伝送システム。
  8. 前記光受信器がPINフォトダイオードを含むことを特徴とする請求項1記載の光伝送システム。
  9. 前記光部品が、前記信号光を合波する光合波器、または、前記信号光を分波する光分波器であることを特徴とする請求項1記載の光伝送システム。
  10. 前記光部品が前記信号光に損失を与える可変減衰器であることを特徴とする請求項1記載の光伝送システム。
  11. 前記可変減衰器が、前記信号光を合波する光合波器の後段に、または、前記信号光を分波する光分波器の前段に、設けられていることを特徴とする請求項10記載の光伝送システム。
  12. 前記可変減衰器の損失波長依存性が可変であることを特徴とする請求項10記載の光伝送システム。
  13. 多波長の信号光を合波する光合波器であって、合波する前記多波長それぞれの中心波長が長波長ほど、その中心波長での挿入損失が大きいことを特徴とする光合波器。
  14. 前記多波長それぞれの中心波長の間隔が10nm以上であることを特徴とする請求項13記載の光合波器。
  15. 前記多波長のうちの何れかの中心波長が1530nm以下であり、他の何れかの中心波長が1570nm以上であることを特徴とする請求項13記載の光合波器。
  16. 前記多波長のうちの何れかの中心波長が1410nm以下であり、他の何れかの中心波長が1570nm以上であることを特徴とする請求項13記載の光合波器。
  17. 前記多波長のうちの何れかの中心波長が1310nm以下であり、他の何れかの中心波長が1590nm以上であることを特徴とする請求項13記載の光合波器。
  18. 多波長の信号光を分波する光分波器であって、分波する前記多波長それぞれの中心波長が長波長ほど、その中心波長での挿入損失が大きいことを特徴とする光分波器。
  19. 前記多波長それぞれの中心波長の間隔が10nm以上であることを特徴とする請求項18記載の光分波器。
  20. 前記多波長のうちの何れかの中心波長が1530nm以下であり、他の何れかの中心波長が1570nm以上であることを特徴とする請求項18記載の光分波器。
  21. 前記多波長のうちの何れかの中心波長が1410nm以下であり、他の何れかの中心波長が1570nm以上であることを特徴とする請求項18記載の光分波器。
  22. 前記多波長のうちの何れかの中心波長が1310nm以下であり、他の何れかの中心波長が1590nm以上であることを特徴とする請求項18記載の光分波器。
  23. 多波長の信号光を合波する光合波器であって、中心波長における挿入損失が、用いられているシステム中の伝送路の損失波長特性と逆特性になっていることを特徴とする光合波器。
  24. 多波長の信号光を分波する光分波器であって、中心波長における挿入損失が、用いられているシステム中の伝送路の損失波長特性と逆特性になっていることを特徴とする光分波器。
  25. 多波長の信号光を合波する光合波器であって、中心波長における挿入損失が、光合分波器以外の当該用いられているシステム全体の信号パワーの波長特性と略逆の傾向を示す波長特性になっていることを特徴とする光合波器。
  26. 多波長の信号光を分波する光分波器であって、中心波長における挿入損失が、光合分波器以外の当該用いられているシステム全体の信号パワーの波長特性と略逆の傾向を示す波長特性になっていることを特徴とする光分波器。
JP2002309852A 2002-10-24 2002-10-24 光伝送システム、光合波器および光分波器 Pending JP2004147086A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002309852A JP2004147086A (ja) 2002-10-24 2002-10-24 光伝送システム、光合波器および光分波器
US10/671,794 US7280759B2 (en) 2002-10-24 2003-09-29 Optical transmission system, optical multiplexer, and optical demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309852A JP2004147086A (ja) 2002-10-24 2002-10-24 光伝送システム、光合波器および光分波器

Publications (1)

Publication Number Publication Date
JP2004147086A true JP2004147086A (ja) 2004-05-20

Family

ID=32211573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309852A Pending JP2004147086A (ja) 2002-10-24 2002-10-24 光伝送システム、光合波器および光分波器

Country Status (2)

Country Link
US (1) US7280759B2 (ja)
JP (1) JP2004147086A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036607A (ja) * 2005-07-26 2007-02-08 Sumitomo Electric Ind Ltd 光通信システム
JP2016096191A (ja) * 2014-11-12 2016-05-26 住友電気工業株式会社 光送信器及び駆動電流制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080279A1 (ja) * 2005-01-28 2006-08-03 Kabushiki Kaisha Route Lamda 光信号伝送装置及び光通信ネットワーク
TWI396033B (zh) * 2008-11-07 2013-05-11 Univ Nat Chiao Tung Multi - frequency electrical signal of the photoelectric device
JP6536699B2 (ja) * 2016-02-02 2019-07-03 日本電気株式会社 帯域特定回路、波長多重光信号送信装置、波長多重光信号伝送システムおよび帯域特定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330030A (ja) 1986-07-23 1988-02-08 Toshiba Corp 光波長多重伝送方式
US6212310B1 (en) * 1996-10-22 2001-04-03 Sdl, Inc. High power fiber gain media system achieved through power scaling via multiplexing
JPH10173597A (ja) 1996-12-06 1998-06-26 Nec Corp 光イコライザ
US6400498B1 (en) * 1997-05-29 2002-06-04 Nec Corporation Optical signal repeating and amplifying device and optical level adjusting device
JPH11275020A (ja) 1998-03-19 1999-10-08 Fujitsu Ltd 波長多重光伝送システム及び波長多重光伝送システムに使用される光デバイス用損失差補償器の設計方法並びに波長多重光伝送システムの構築方法
EP0991217A2 (en) 1998-10-02 2000-04-05 Lucent Technologies Inc. Low cost WDM system
JP2002204207A (ja) 2000-12-28 2002-07-19 Toshiba Corp 波長多重伝送システム
US6862391B2 (en) * 2001-03-30 2005-03-01 Sumitomo Electric Industries, Ltd. Optical transmission line, and optical fiber and dispersion compensating module employed in the same
JP2003124881A (ja) * 2001-10-15 2003-04-25 Fujitsu Ltd 光伝送装置および光伝送システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036607A (ja) * 2005-07-26 2007-02-08 Sumitomo Electric Ind Ltd 光通信システム
JP2016096191A (ja) * 2014-11-12 2016-05-26 住友電気工業株式会社 光送信器及び駆動電流制御方法

Also Published As

Publication number Publication date
US7280759B2 (en) 2007-10-09
US20040091266A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US7831118B2 (en) Coarse wavelength division multiplexing optical transmission system, and coarse wavelength division multiplexing optical transmission method
US6359730B2 (en) Amplification of an optical WDM signal
US7062173B2 (en) Optical device and wavelength division multiplexing communication system using same
US6173094B1 (en) Optical-transmission system having a split-gain amplifier and a signal-modifying device
KR100334432B1 (ko) 하나의도파관열격자다중화기를이용한양방향애드/드롭광증폭기모듈
JPH10173597A (ja) 光イコライザ
US8032028B2 (en) Optical add/drop device
US6904240B1 (en) Optical multiplexing apparatus and optical multiplexing method
US7725032B2 (en) Optical transmission apparatus
US20030180045A1 (en) System and method for optical transmission
JP2004147086A (ja) 光伝送システム、光合波器および光分波器
US7130542B2 (en) Modular multiplexing/demultiplexing units in optical transmission systems
US20020159119A1 (en) Method and system for providing dispersion and dispersion slope compensation
JP4246644B2 (ja) 光受信器及び光伝送装置
JP2004147289A (ja) 光伝送システム
US7221872B2 (en) On-line dispersion compensation device for a wavelength division optical transmission system
US20040161241A1 (en) Apparatus for compensating for dispersion and wavelength division multiplexing communications system using the apparatus
US6684004B1 (en) Optical demultiplexer circuit and demultiplexer device and optical wavelength division multiplex circuit
US6522455B1 (en) WDM optical communication system having a dispersion slope compensating element
JP2004086143A (ja) 光伝送システム
JP2000312185A (ja) 波長多重光伝送用光中継増幅器およびこれを用いた波長多重光伝送装置
US6577424B1 (en) Chromatic dispersion compensator providing dispersion compensation to select channels of a wavelength division multiplexed signal
JP2002009707A (ja) 光伝送システムおよび光伝送方法
Pfeiffer et al. Optical CDMA transmission for robust realization of complex and flexible multiple access networks
JPH10163978A (ja) 双方向増幅伝送方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030