JP2004146650A - Substrate for power module - Google Patents

Substrate for power module Download PDF

Info

Publication number
JP2004146650A
JP2004146650A JP2002310837A JP2002310837A JP2004146650A JP 2004146650 A JP2004146650 A JP 2004146650A JP 2002310837 A JP2002310837 A JP 2002310837A JP 2002310837 A JP2002310837 A JP 2002310837A JP 2004146650 A JP2004146650 A JP 2004146650A
Authority
JP
Japan
Prior art keywords
plate
substrate
power module
metal plate
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002310837A
Other languages
Japanese (ja)
Inventor
Akihiro Hidaka
日高 明弘
Ayafumi Ogami
大上 純史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2002310837A priority Critical patent/JP2004146650A/en
Publication of JP2004146650A publication Critical patent/JP2004146650A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable power module substrate at a low cost, which bends less while maintaining high heat radiation with small fatigue deterioration at a joint. <P>SOLUTION: The substrate 10 for a power module has a wiring metal plate 13 for mounting a semiconductor element 12 on the top surface side of an insulating substrate 11, and a metal plate 15 and a heat radiation plate 16 for radiating the heat generated by the semiconductor element 12 on the reverse surface side of the insulating substrate 11. The insulating substrate 11 is made of zirconia-based alumina ceramic and has the wiring metal plate 13 and a metal plate 16 made of Cu plates by joining, the metal plate 15 has the heat radiation plate 15 made of a Cu plate by soldering with a solder material 17, and a warpage correction plate 19 is joined and soldered to the reverse surface side of the heat radiation plate 16 with a soldering material 17. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、パワーモジュール用基板に係り、より詳細には、大量の熱を発する半導体素子を搭載した時の発熱を速やかに放熱させるためのパワーモジュール用基板に関する。
【0002】
【従来の技術】
従来より、大電力化、高速化、高集積化の進むパワートランジスタ等の高熱を発する半導体素子を搭載し、発熱を速やかに放熱させることができるためのパワーモジュール用基板は、民生機器用や、自動車、電気自動車等の車載用等に採用されている。
【0003】
図3に示すように、例えば、省エネルギーを目的としたハイブリッド自動車等に採用されているパワーモジュール用基板50は、窒化アルミニウム(AlN)や、アルミナ(Al)等からなる絶縁基材51の上表面に、アルミニウム(Al)板で回路状に形成した配線金属板52がAl−Si系、Al−Mg系等のろう材を用いて接合されている。絶縁基板51の下表面には、上表面の場合と同様に、Al板からなる金属板53が同様のろう材を用いて接合されている。この金属板53は、絶縁基板51とAl板との熱膨張係数の差から発生するパワーモジュール用基板50の反りの発生のバランスを保つと同時に、半導体素子からの発熱を下面側へ速やかに放熱させるために設けられている。更に、パワーモジュール用基板50は、金属板53に、モリブデン(Mo)にCuを含浸、あるいは、MoとCuを混合させる等の方法て形成する放熱板54を半田55で接合して有している。この放熱板54は、金属板53からの熱を、横方向に拡散させながら、更に下面側へ速やかに放熱させるために設けられている。なお、放熱板54の下面側には、通常、熱を放散させるための空冷方式用の放熱フィンからなる冷却器56や、水冷方式用の冷却水を内蔵する冷却器(図示せず)等が取り付けられ、速やかに熱をパワーモジュール用基板50の外に放熱させている。
【0004】
なお、従来のパワーモジュール用基板には、放熱板と放熱フィン等の冷却器との間の結合部の伝熱効果を向上させることを目的に、放熱板と、これに接合する筐体との熱膨張係数差を利用して放熱板に凸反りを発生させる製造方法が提案されている(例えば、特許文献1参照)。また、従来のパワーモジュール用基板には、絶縁基板の熱応力による負荷を抑制することを目的に、表面積が比較的大きな放熱板の熱膨張係数を、絶縁基板の熱膨張係数と冷却器の熱膨張係数の中間にすることが提案されている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開平11−177002号公報(弟1−4頁、第2図)
【特許文献2】
特開2001−148451号公報(弟1−7頁、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、前述したような従来のパワーモジュール用基板は、次のような問題がある。
(1)金属板と放熱板の接合は、半田を用いて行われているので、長期間にわたって温度変化が繰り返えされると、半田部分に掛かる熱応力によって半田が劣化し、放熱板への熱の移動が低下して放熱性が低下する。
(2)絶縁基板に、AlNを用いる場合は、コストが高く、これを用いて作製されたパワーモジュール用基板がコストアップとなる。
(3)絶縁基板に、Alを採用する場合は、コスト的にはAlNに比較して安価であるが、熱伝導率が低い(Alが21W/m・K程度、AlNが190W/m・K程度)ので高放熱特性が要求される製品には充分に要求に応えられない。また、放熱特性を補うために基板厚みを薄くして対応しようとすると、基板強度が低く(抗折強度で320MPa程度)破壊が発生するので、薄くすることには限界がある。
(4)放熱板に、MoにCuを含浸、あるいは、MoとCuを混合させて作製したものを用いる場合は、放熱板が高価であり、これを用いて作製されたパワーモジュール用基板がコストアップとなる。
(5)放熱板と冷却器との間の結合部の伝熱効果を向上させるために、放熱板に凸反りを発生させるのは、放熱板のみに凸反りを発生させることが難しく、パワーモジュール用基板全体に反りを発生させることなり、配線金属板にも反りが発生し、半導体素子を実装するさせることが難しくなる。
(6)放熱板の熱膨張係数を、絶縁基板の熱膨張係数と冷却器の熱膨張係数の中間にして、絶縁基板の熱応力による負荷を緩和させるのは、高放熱特性を確保しながら熱膨張係数を組み合わせる材料の選定が難しく熱伝導性と反りの両方を満足させることが難しい。
本発明は、かかる事情に鑑みてなされたものであって、高放熱特性を確保しながら反りが少なく、接合部の疲労劣化の少ない安価で信頼性の高いパワーモジュール用基板を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的に沿う本発明に係るパワーモジュール用基板は、絶縁基板の上面側に半導体素子を搭載するための配線金属板と、絶縁基板の下表面側に半導体素子から発生する熱を放熱させるための金属板、及び放熱板を有するパワーモジュール用基板において、絶縁基板がジルコニア系アルミナセラミックからなり、絶縁基板にCu板からなる配線金属板及び金属板を接合して有すると共に、金属板にCu板からなる放熱板をろう材でろう付け接合して有し、しかも、放熱板の裏面側に反り補正板がろう材でろう付け接合して設けられている。これにより、絶縁基板がジルコニア系アルミナセラミックからなり、AlNに比較しての熱伝導率の低さを抗折強度が高いことからの基板厚みを薄くすることで対応し、放熱特性をAlNと同じ程度に維持しながらAlNの場合と比較して安価であるので、AlNの場合の放熱特性を維持しながらパワーモジュール用基板を安価にすることができる。また、配線金属板、金属板、及び放熱板に、Cu板を用いているので、熱伝導率が高く、高放熱特性が得られと同時に、安価である。そして、金属板と放熱板の接合は、ろう付けで接合しているので、長期間にわたって温度変化が繰り返されても、ろう付け接合部の劣化がなく、放熱性の低下を防止することができる。また、放熱板の裏面側には、そり補正板をろう付け接合してパワーモジュール用基板全体の熱膨張係数の差のバランスを図っているので、反りの少ないパワーモジュール用基板全体が得られ、半導体素子を容易に実装することができる。更に、配線金属板、金属板、及び放熱板は、全てCu板を用いているので、異なる材料の組み合わせのような熱膨張係数差の調整を行う必要がなく、材料の選定の必要のない安価で信頼性の高いパワーモジュール用基板を得ることができる。
【0008】
ここで、絶縁基板が主成分のアルミナ(Al)にジルコニア(ZrO)を添加し、イットリア(Y)、カルシア(CaO)、マグネシア(MgO)、セリア(CeO)のいずれか1種以上の焼結助剤を添加した焼成体からなるのがよい。これにより、Al単体の基板と同等程度の焼成温度で作製できるジルコニア系アルミナセラミックからなり、熱伝導率はAl単体の基板と同じ程度であるが、抗折強度をAl単体の基板より高くできるので、放熱特性を基板厚みを薄くすることで対応でき、放熱特性をAlNと同じ程度に維持しながらAlNに比較して安価にすることができる。
【0009】
また、絶縁基板と、配線金属板及び金属板との接合がDBC法による直接接合、又は活性金属ろう材による接合であるであるのがよい。これにより、DBC法での接合、又は、活性金属ろう材での接合によって、絶縁基板にCu板を容易に強固に接合することができるので、放熱性のよいパワーモジュール用基板にすることができる。
【0010】
また、放熱板及び反り補正板のろう付け接合に使用するろう材が半田以外のろう材であるのがよい。これにより、熱応力劣化の激しい半田を用いず、接合部のろう材の劣化が発生しないので、接合部からの放熱性の低下を防止することができる。
【0011】
更に、反り補正板が金属製、又はセラミック製からなり、4〜12ppm/℃の熱膨張係数を有するのがよい。これにより、反り補正板の熱膨張係数を、ジルコニア系アルミナセラミックからなる絶縁基板の熱膨張係数に近似させることができるので、パワーモジュール用基板の反りの発生を小さく抑えることができる。
【0012】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係るパワーモジュール用基板の縦断面図、図2(A)、(B)はそれぞれ同パワーモジュール用基板の反り補正板の変形例の説明図である。
【0013】
図1に示すように、本発明の一実施の形態に係るパワーモジュール用基板10は、アルミナ(Al)にジルコニア(ZrO)を添加して形成するジルコニア系アルミナセラミックからなる絶縁基板11の上表面側に、上面に半導体素子12を搭載したりするための配線金属板13が接合されて設けられている。この配線金属板13は、熱伝導率の高いCu板からなり、エッチングや、打ち抜きプレス加工等によって配線回路状態になるように形成されており、所定の場所の配線回路部の上面に搭載される半導体素子12のパッド電極と他の配線回路部とをボンディングワイヤ14等で接続されるために設けられている。
【0014】
絶縁基板11の下表面側には、半導体素子12から発生する熱を放熱させるための金属板15が接合されて設けられている。この金属板15は、配線金属板13と同様に、Cu板からなり、エッチングや、打ち抜きプレス加工等によって実質的に板状態に形成されている。金属板15は、半導体素子12から発生する熱を放熱させるのに用いられる。また、配線金属板13と同じCu板を用いた金属板15を絶縁基板11に接合して、絶縁基板11を配線金属板13と金属板15とで両面からサンドイッチ状態とすることは、それぞれの絶縁基板11との接合面に発生する応力を相殺させることができ、絶縁基板11との熱膨張係数差から接合時に発生する反りや曲がりの発生を防止している。
【0015】
金属板15の下表面側には、金属板15から放熱された熱を、更に下側へ放熱させるための放熱板16がろう材17でろう付け接合されて設けられている。この放熱板16は、Cu板からなり、エッチングや、打ち抜きプレス加工、又は機械加工等によって形成されている。また、放熱板16の裏面側には、切削加工等によって形成された切り欠き部18が設けられており、この切り欠き部18に絶縁基板11と放熱板16との熱膨張係数差による反りや曲がりの発生を抑制するための反り補正板19がろう材17でろう付け接合されて設けられている。
【0016】
なお、パワーモジュール用基板10の放熱板16の下方には、通常、半導体素子12からの発熱を大気中に放熱させるための空冷式や、水冷式等からなる冷却器20が接合材を用いて接合したり、外部から締め付けたりして接続されて設けられている。
【0017】
ここで、絶縁基板11は、主成分のAlを70〜97wt%の範囲にして、これにZrOを2〜29.9wt%の範囲で添加し、イットリア(Y)、カルシア(CaO)、マグネシア(MgO)、セリア(CeO)のいずれか1種以上の焼結助剤を0.1〜2wt%の範囲で添加して大気中約1600℃で焼成して形成するジルコニア系アルミナセラミック基板の焼成体からなるのがよい。Alを主成分として、これに上記割合のZrOが添加された焼成体からなる絶縁基板11は、Al単体の基板と熱伝導率を同等程度に保ちながら機械的強度、特に曲げ強度(抗折強度)を大幅に高めることができる(Al単体では、3.1MPa・m0.5、ジルコニア系アルミナセラミックでは、4.4MPa・m0.5)。また、Y、CaO、MgO、CeOのいずれか1種以上を添加することで、基板の焼成温度をAl単体の基板と同等程度に抑えつつ、ZrO結晶粒の靭性を改善することができる。これらによって、絶縁基板11は、AlNの基板より熱伝導率が低下するものの、厚みを薄くすることで、熱伝導率の低さを補うことができ、Al単体の基板より優れ、AlNの基板に匹敵する優れた放熱性を有することができる。
【0018】
次いで、ジルコニア系アルミナセラミックからなる絶縁基板11とCu板からなる配線金属板13、あるいは、ジルコニア系アルミナセラミックからなる絶縁基板11とCu板からなる金属板15との接合は、DBC法での接合、又は活性金属ろう材で接合するのがよい。このDBC(Direct Bond Copper)法での接合とは、予め表面を酸化させたCu板を絶縁基板11の表面に当接させ、Cuの融点付近まで昇温してCuと微量の酸素との反応により生成するCu−O共晶液相を結合剤として焼成して直接絶縁基板11に接合する方法である。
【0019】
また、活性金属ろう材を用いて接合するには、チタン、ジルコニウム、ベリリウム等のような極めて反応性の大きい、いわゆる活性な金属をAg−Cu系ろう等に加えた活性金属ろう材を用いている。そして、接合方法は、この活性金属ろう材からなるペーストを絶縁基板11の表面にスクリーン印刷法で配線金属板13のパターンと実質的に同程度、又は若干大きめのパターンとなるように印刷し、その上に配線金属板13や、金属板15を当接させ、約750〜850℃程度で加熱してチタン等の酸素との親和力の強さを利用して、直接絶縁基板11に接合している。活性金属ろう材は、絶縁基板11がジルコニア系アルミナセラミックからなる場合には、例えば、ジルコニウム、チタン、フッ化水素、ニオブのいずれか1種以上をAg−Cu系ろうに含有させたものを用いるのがよく、絶縁基板11への親和力を高めることができ、接合反応強度を高めて強固に接合することができる。
【0020】
なお、絶縁基板11と、配線金属板13及び金属板15との接合は、DBC法、又は、活性金属ろう材による場合とも、1度に、あるいは、配線金属板13と金属板15のそれぞれを分けて行ってもよい。熱伝導率の極めて高いCu板を用いた配線金属板13及び金属板15は、DBC法、又は、活性金属ろう材による接合によって、絶縁基板11に容易に強固に接合することができるので、他の金属材料を用いたものに比較して極めて放熱性のよいパワーモジュール用基板10を構成することができる。
【0021】
次いで、Cu板からなる金属板15とCu板からなる放熱板16とのろう付け接合、及び放熱板16と反り補正板19とのろう付け接合に使用するろう材17は、半田以外の、例えば、Ag−Cu系、Ag−Cu−Ti系のろう材17であるのがよい。半田以外のこれらのろう材17は、熱応力による疲労劣化が少ないので、パワーモジュール用基板に高温と低温の繰り返しの温度サイクルがあっても放熱性の低下を防止することができる。また、放熱板16には、安価で熱伝導率の高いCu板を用いるので、放熱特性がよく、安価なパワーモジュール用基板10を構成することができる。
【0022】
次いで、放熱板16に接合する反り補正板19は、金属製又はセラミック製からなるのがよく、その熱膨張係数は、ジルコニア系アルミナセラミックからなる絶縁基板の熱膨張係数に近似する4〜12ppm/℃の範囲にあるのがよい。反り補正板19が金属製であれば、例えば、KV(Fe−Ni−Co系合金、商品名「Kovar(コバール」)が熱膨張係数9.9ppm/℃、42アロイ(Fe−Ni系合金)が熱膨張係数11ppm/℃で適しており、セラミック製であれば、例えば、絶縁基板11と同等のジルコニア系アルミナセラミックが熱膨張係数7.45ppm/℃でよく、AlNが4.8ppm/℃、Alも7.2ppm/℃で反りを抑制するのに優れている。なお、反り補正板19の熱膨張係数が4ppm/℃未満、又は、12ppm/℃を超えると反りの発生が大きくなり、半導体素子12を実装する時に、半導体素子12が搭載できない等の支障が発生する。
【0023】
反り補正板19の寸法は、特に限定されるものではなく、材料によって、厚さや、寸法が適宜最適なものに設計変更することができ、外形形状も矩形や、円形のものが適用できる。また、図2(A)、(B)に示すように、反り補正板は、円形や、矩形等からなるリング状の反り補正板19aに形成することもでき、この場合には、放熱板16の裏面側に切削加工等によって円形や、矩形等からなるリング状の切り欠き部18aを設け、この切り欠き部18aに反り補正板19aをろう材17でろう付け接合している。なお、放熱板16の裏面側にリング状の切り欠き部18aを設けた場合には、リング状の反り補正板19aで反りを補正すると同時に、放熱板16の中心部に切り欠き部18aが形成されなく、冷却器20に当接する部分が広くなるので、半導体素子12からの発熱を速やかに冷却器20で放熱させることができる。
【0024】
【発明の効果】
請求項1とこれに従属する請求項2〜5記載のパワーモジュール用基板は、絶縁基板がジルコニア系アルミナセラミックからなり、絶縁基板にCu板からなる配線金属板及び金属板を接合して有すると共に、金属板にCu板からなる放熱板をろう付け接合して有し、しかも、放熱板の裏面側に反り補正板がろう付け接合して設けられているので、絶縁基板の厚みを薄くでき、放熱特性を維持しながらパワーモジュール用基板を安価にしている。また、配線金属板、金属板、及び放熱板に、Cu板を用いているので、異種材料間の熱膨張係数差の調整が少なく、Cuの熱伝導率が高いので、高放熱特性が得られと同時に、パワーモジュール用基板を安価にしている。そして、金属板と放熱板は、ろう付けで接合しているので、長期間にわたって温度変化が繰り返されても、ろう付け接合部の劣化がなく、放熱性の低下を防止することができる。また、放熱板の裏面側には、そり補正板をろう付け接合してパワーモジュール用基板全体の熱膨張係数の差のバランスを図っているので、反りが少なく、半導体素子を容易に実装することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係るパワーモジュール用基板の縦断面である。
【図2】(A)、(B)はそれぞれ同パワーモジュール用基板の変形例の縦断面図、裏面側平面図である。
【図3】従来のパワーモジュール用基板の縦断面である。
【符号の説明】
10:パワーモジュール用基板、11:絶縁基板、12:半導体素子、13:配線金属板、14:ボンディングワイヤ、15:金属板、16:放熱板、17:ろう材、18、18a:切り欠き部、19、19a:反り補正板、20:冷却器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power module substrate, and more particularly, to a power module substrate for quickly radiating heat generated when a semiconductor element that generates a large amount of heat is mounted.
[0002]
[Prior art]
Conventionally, power module substrates for mounting high-heat, high-speed, highly integrated semiconductor elements such as power transistors, which are becoming increasingly integrated, and capable of quickly dissipating heat, have been used for consumer devices, It is used for vehicles such as automobiles and electric vehicles.
[0003]
As shown in FIG. 3, for example, a power module substrate 50 employed in a hybrid vehicle or the like for the purpose of energy saving includes an insulating base material 51 made of aluminum nitride (AlN), alumina (Al 2 O 3 ), or the like. A wiring metal plate 52 formed in a circuit shape from an aluminum (Al) plate is joined to the upper surface using a brazing material such as an Al-Si or Al-Mg material. As in the case of the upper surface, a metal plate 53 made of an Al plate is joined to the lower surface of the insulating substrate 51 using the same brazing material. The metal plate 53 maintains the balance of the warpage of the power module substrate 50 generated due to the difference in the thermal expansion coefficient between the insulating substrate 51 and the Al plate, and simultaneously radiates heat generated from the semiconductor element to the lower surface side. It is provided for the purpose. Further, the power module substrate 50 has a metal plate 53 and a heat radiating plate 54 formed by impregnating molybdenum (Mo) with Cu or mixing Mo and Cu, etc., by bonding with a solder 55. I have. The heat radiating plate 54 is provided for dissipating the heat from the metal plate 53 to the lower surface side while diffusing the heat in the horizontal direction. On the lower surface side of the heat radiating plate 54, a cooler 56 composed of a radiating fin for an air cooling system for dissipating heat, a cooler (not shown) containing a cooling water for a water cooling system, and the like are usually provided. It is attached and quickly radiates heat out of the power module substrate 50.
[0004]
In addition, a conventional power module substrate includes a heat sink and a housing joined thereto for the purpose of improving the heat transfer effect of a joint between the heat sink and a cooler such as a heat sink. A manufacturing method has been proposed in which a radiator plate has a convex warp utilizing a difference in thermal expansion coefficient (for example, see Patent Document 1). In addition, in order to suppress the load due to the thermal stress of the insulating substrate, the conventional power module substrate includes the thermal expansion coefficient of the heat sink having a relatively large surface area, the thermal expansion coefficient of the insulating substrate and the thermal expansion coefficient of the cooler. It has been proposed to set the expansion coefficient at an intermediate value (for example, see Patent Document 2).
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 11-177002 (Brother 1-4 pages, FIG. 2)
[Patent Document 2]
JP 2001-148451 A (Pupils 1-7, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, the conventional power module substrate as described above has the following problems.
(1) Since the joining of the metal plate and the heat radiating plate is performed using solder, if the temperature change is repeated over a long period of time, the solder is deteriorated by the thermal stress applied to the solder portion, and the solder to the heat radiating plate is deteriorated. Heat transfer is reduced, and heat dissipation is reduced.
(2) When AlN is used for the insulating substrate, the cost is high, and the cost of a power module substrate manufactured using the same increases.
(3) When Al 2 O 3 is used for the insulating substrate, the cost is lower than that of AlN, but the thermal conductivity is low (Al 2 O 3 is about 21 W / m · K, AlN Is about 190 W / m · K), so that it cannot sufficiently meet the requirements for products requiring high heat radiation characteristics. In addition, if the thickness of the substrate is reduced to compensate for the heat radiation characteristics, the strength of the substrate is low (the flexural strength is about 320 MPa), and breakage occurs.
(4) In the case where a heat radiating plate made of Mo impregnated with Cu or mixed with Mo and Cu is used, the heat radiating plate is expensive, and the power module substrate manufactured using this is costly. Be up.
(5) In order to improve the heat transfer effect of the joint between the heat sink and the cooler, it is difficult to generate a convex warp only in the heat sink because it is difficult to generate a convex warp only in the heat sink. The entire substrate is warped, and the wiring metal plate is also warped, making it difficult to mount a semiconductor element.
(6) The thermal expansion coefficient of the heat sink is set between the thermal expansion coefficient of the insulating substrate and the thermal expansion coefficient of the cooler to reduce the load due to the thermal stress of the insulating substrate. It is difficult to select a material to be combined with an expansion coefficient, and it is difficult to satisfy both thermal conductivity and warpage.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an inexpensive and highly reliable power module substrate which has high heat dissipation characteristics, has less warpage, and has less fatigue deterioration of a joint. And
[0007]
[Means for Solving the Problems]
A power module substrate according to the present invention, which meets the above object, has a wiring metal plate for mounting a semiconductor element on an upper surface side of an insulating substrate, and a heat dissipating heat generated from the semiconductor element on a lower surface side of the insulating substrate. In a power module substrate having a metal plate and a radiator plate, the insulating substrate is made of zirconia-based alumina ceramic, and the wiring substrate and the metal plate made of a Cu plate are joined to the insulating substrate, and the metal plate is made of a Cu plate. The heat radiation plate is brazed and joined with a brazing material, and a warp correcting plate is provided on the back side of the heat radiating plate by brazing and joining with a brazing material. As a result, the insulating substrate is made of zirconia-based alumina ceramic, and the lower thermal conductivity compared to AlN is achieved by reducing the thickness of the substrate due to the high bending strength, and the heat dissipation characteristics are the same as AlN. Since it is inexpensive compared to the case of AlN while maintaining the degree, the power module substrate can be inexpensive while maintaining the heat radiation characteristics of AlN. Further, since a Cu plate is used for the wiring metal plate, the metal plate, and the heat radiating plate, the heat conductivity is high, high heat radiation characteristics are obtained, and the cost is low. And since the joining of the metal plate and the heat sink is performed by brazing, even if the temperature change is repeated for a long period of time, there is no deterioration of the brazed joint, and it is possible to prevent a decrease in heat radiation. . Also, on the back side of the heat sink, a warp correction plate is brazed and joined to balance the difference in thermal expansion coefficient of the entire power module substrate, so that the entire power module substrate with less warpage is obtained. A semiconductor element can be easily mounted. Further, since the wiring metal plate, the metal plate, and the heat radiating plate are all made of Cu plates, there is no need to adjust the difference in thermal expansion coefficient as in the case of a combination of different materials, and there is no need to select a material, and it is inexpensive. Thus, a highly reliable power module substrate can be obtained.
[0008]
Here, zirconia (ZrO 2 ) is added to alumina (Al 2 O 3 ) whose main component is an insulating substrate, and yttria (Y 2 O 3 ), calcia (CaO), magnesia (MgO), and ceria (CeO 2 ) are added. It is preferable to use a fired body to which one or more sintering aids are added. Thereby, a zirconia-alumina ceramic can be manufactured with Al 2 O 3 single substrate and almost equal to the firing temperature, the thermal conductivity of the same order as the Al 2 O 3 single substrate, the bending strength Al 2 since O 3 can be made higher than a single substrate, the heat dissipation characteristics can respond by decreasing the substrate thickness, the heat dissipation characteristics can be cheaper than the AlN while maintaining the same degree as AlN.
[0009]
Further, it is preferable that the bonding between the insulating substrate and the wiring metal plate or the metal plate is direct bonding by a DBC method or bonding by an active metal brazing material. Thereby, the Cu plate can be easily and firmly bonded to the insulating substrate by the bonding using the DBC method or the bonding with the active metal brazing material, so that the power module substrate having good heat dissipation can be obtained. .
[0010]
Further, it is preferable that the brazing material used for brazing the heat sink and the warp correcting plate is a brazing material other than solder. As a result, since the solder which is significantly deteriorated in thermal stress is not used and the brazing material at the joint does not deteriorate, it is possible to prevent the heat radiation from the joint from lowering.
[0011]
Further, it is preferable that the warp correction plate is made of metal or ceramic and has a thermal expansion coefficient of 4 to 12 ppm / ° C. Accordingly, the coefficient of thermal expansion of the warp correction plate can be approximated to the coefficient of thermal expansion of the insulating substrate made of zirconia-based alumina ceramic, so that the occurrence of warpage of the power module substrate can be suppressed to a small value.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
Here, FIG. 1 is a longitudinal sectional view of a power module substrate according to an embodiment of the present invention, and FIGS. 2A and 2B are explanatory diagrams of a modification example of a warp correction plate of the power module substrate. It is.
[0013]
As shown in FIG. 1, a power module substrate 10 according to one embodiment of the present invention is an insulating substrate made of zirconia-based alumina ceramic formed by adding zirconia (ZrO 2 ) to alumina (Al 2 O 3 ). A wiring metal plate 13 for mounting the semiconductor element 12 on the upper surface is provided on the upper surface side of the substrate 11. The wiring metal plate 13 is made of a Cu plate having a high thermal conductivity, is formed in a wiring circuit state by etching, punching press processing, or the like, and is mounted on the upper surface of the wiring circuit portion at a predetermined location. It is provided for connecting a pad electrode of the semiconductor element 12 and another wiring circuit section with a bonding wire 14 or the like.
[0014]
On the lower surface side of the insulating substrate 11, a metal plate 15 for dissipating heat generated from the semiconductor element 12 is provided in a joined manner. The metal plate 15 is made of a Cu plate similarly to the wiring metal plate 13, and is formed in a substantially plate state by etching, punching press working, or the like. The metal plate 15 is used to radiate heat generated from the semiconductor element 12. Further, it is necessary to bond a metal plate 15 using the same Cu plate as the wiring metal plate 13 to the insulating substrate 11 so that the insulating substrate 11 is sandwiched between the wiring metal plate 13 and the metal plate 15 from both sides. The stress generated on the joint surface with the insulating substrate 11 can be offset, and the occurrence of warpage or bending at the time of joining due to the difference in thermal expansion coefficient with the insulating substrate 11 is prevented.
[0015]
On the lower surface side of the metal plate 15, a heat radiating plate 16 for further radiating the heat radiated from the metal plate 15 to the lower side is provided by brazing with a brazing material 17. The heat radiating plate 16 is made of a Cu plate, and is formed by etching, punching press working, mechanical working, or the like. Further, a notch 18 formed by cutting or the like is provided on the back surface side of the heat radiating plate 16, and the notch 18 may be warped due to a difference in thermal expansion coefficient between the insulating substrate 11 and the heat radiating plate 16. A warp correction plate 19 for suppressing the occurrence of bending is provided by brazing with a brazing material 17.
[0016]
In addition, a cooler 20 of an air-cooling type or a water-cooling type for dissipating heat from the semiconductor element 12 to the atmosphere is usually provided below the heat radiating plate 16 of the power module substrate 10 using a bonding material. It is provided by being joined or fastened from the outside.
[0017]
Here, the insulating substrate 11 has a main component of Al 2 O 3 in a range of 70 to 97 wt%, ZrO 2 is added in a range of 2 to 29.9 wt%, and yttria (Y 2 O 3 ) One or more sintering aids of at least one of calcia (CaO), magnesia (MgO), and ceria (CeO 2 ) are added in a range of 0.1 to 2 wt%, and fired at about 1600 ° C. in the atmosphere to form. It is preferable to use a sintered body of a zirconia-based alumina ceramic substrate. The insulating substrate 11 made of a fired body containing Al 2 O 3 as a main component and the above-mentioned ratio of ZrO 2 added thereto has a mechanical strength and a thermal conductivity while maintaining the same thermal conductivity as a substrate of Al 2 O 3 alone. especially the flexural strength (bending strength) can greatly increase the (in Al 2 O 3 alone, 3.1MPa · m 0.5, the zirconia alumina ceramic, 4.4MPa · m 0.5). Further, by adding at least one of Y 2 O 3 , CaO, MgO, and CeO 2 , the toughness of the ZrO 2 crystal grains is reduced while the firing temperature of the substrate is suppressed to about the same level as that of the Al 2 O 3 alone substrate. Can be improved. As a result, the thermal conductivity of the insulating substrate 11 is lower than that of the AlN substrate, but the thinner thickness can compensate for the lower thermal conductivity, and is superior to the substrate of Al 2 O 3 alone. Excellent heat dissipation comparable to that of the substrate.
[0018]
Next, the insulating substrate 11 made of zirconia alumina ceramic and the wiring metal plate 13 made of Cu plate, or the insulating substrate 11 made of zirconia alumina ceramic and the metal plate 15 made of Cu plate are joined by a DBC method. Or an active metal brazing material. The bonding by the DBC (Direct Bond Copper) method means that a Cu plate whose surface has been oxidized in advance is brought into contact with the surface of the insulating substrate 11, the temperature is raised to around the melting point of Cu, and the reaction between Cu and a trace amount of oxygen is performed. Is a method in which the Cu—O eutectic liquid phase generated by the above is fired as a binder and directly joined to the insulating substrate 11.
[0019]
In addition, in order to join using an active metal brazing material, an active metal brazing material in which a so-called active metal such as titanium, zirconium, beryllium, or the like having a high reactivity is added to an Ag-Cu-based brazing material or the like is used. I have. Then, the bonding method prints the paste made of the active metal brazing material on the surface of the insulating substrate 11 by screen printing so as to have a pattern substantially the same as or slightly larger than the pattern of the wiring metal plate 13, The wiring metal plate 13 or the metal plate 15 is brought into contact therewith, heated at about 750 to 850 ° C., and directly bonded to the insulating substrate 11 by utilizing the affinity with oxygen such as titanium. I have. When the insulating substrate 11 is made of a zirconia-based alumina ceramic, for example, an active metal brazing filler metal containing at least one of zirconium, titanium, hydrogen fluoride, and niobium in an Ag-Cu-based brazing filler metal is used. Therefore, the affinity for the insulating substrate 11 can be increased, the bonding reaction strength can be increased, and the bonding can be performed firmly.
[0020]
The bonding between the insulating substrate 11 and the wiring metal plate 13 and the metal plate 15 may be performed at one time, or each of the wiring metal plate 13 and the metal plate 15 by using the DBC method or the active metal brazing material. You may go separately. The wiring metal plate 13 and the metal plate 15 using the Cu plate having extremely high thermal conductivity can be easily and firmly joined to the insulating substrate 11 by the DBC method or the joining with the active metal brazing material. The power module substrate 10 having an extremely good heat radiation property as compared with the case using the above metal material can be constituted.
[0021]
Next, the brazing material 17 used for brazing the metal plate 15 made of a Cu plate and the heat radiating plate 16 made of a Cu plate and the brazing joint between the heat radiating plate 16 and the warp correction plate 19 is, for example, other than solder. , Ag-Cu-based, or Ag-Cu-Ti-based brazing material 17. Since these brazing materials 17 other than the solder are hardly deteriorated by fatigue due to thermal stress, even if the power module substrate is repeatedly subjected to a temperature cycle of a high temperature and a low temperature, it is possible to prevent a decrease in heat radiation. Further, since a Cu plate that is inexpensive and has high thermal conductivity is used as the heat radiating plate 16, the power module substrate 10 having good heat radiating characteristics and being inexpensive can be formed.
[0022]
Next, the warp correction plate 19 bonded to the heat radiating plate 16 is preferably made of metal or ceramic, and its thermal expansion coefficient is approximately 4 to 12 ppm / approximately that of an insulating substrate made of zirconia-based alumina ceramic. It should be in the range of ° C. If the warp correction plate 19 is made of metal, for example, KV (Fe—Ni—Co alloy, trade name “Kovar”) has a thermal expansion coefficient of 9.9 ppm / ° C., 42 alloy (Fe—Ni alloy) Is suitable at a thermal expansion coefficient of 11 ppm / ° C., and if made of ceramic, for example, a zirconia-based alumina ceramic equivalent to the insulating substrate 11 may have a thermal expansion coefficient of 7.45 ppm / ° C., and AlN of 4.8 ppm / ° C. Al 2 O 3 is also excellent in suppressing the warp at 7.2 ppm / ° C. Note that when the coefficient of thermal expansion of the warp correction plate 19 is less than 4 ppm / ° C. or exceeds 12 ppm / ° C., the occurrence of the warp is large. Therefore, when the semiconductor element 12 is mounted, troubles such as the inability to mount the semiconductor element 12 occur.
[0023]
The dimensions of the warpage correction plate 19 are not particularly limited, and the thickness and dimensions can be appropriately changed according to the material, and the design can be appropriately changed, and a rectangular or circular outer shape can be applied. Further, as shown in FIGS. 2A and 2B, the warp correction plate can be formed as a ring-shaped warp correction plate 19a made of a circle, a rectangle, or the like. A ring-shaped notch 18a made of a circle, a rectangle, or the like is provided on the back surface side by cutting or the like, and a warp correction plate 19a is brazed to the notch 18a with a brazing material 17. In the case where the ring-shaped notch 18a is provided on the back surface side of the heat radiating plate 16, the notch 18a is formed at the center of the heat radiating plate 16 at the same time as the warpage is corrected by the ring-shaped warp correcting plate 19a. However, since the portion in contact with the cooler 20 is widened, heat generated from the semiconductor element 12 can be quickly radiated by the cooler 20.
[0024]
【The invention's effect】
The power module substrate according to claim 1 and the dependent claims 2 to 5, wherein the insulating substrate is made of zirconia-based alumina ceramic, and the insulating substrate is formed by joining a wiring metal plate and a metal plate made of a Cu plate to the insulating substrate. Since the heat radiation plate made of a Cu plate is brazed to the metal plate, and the warp correction plate is brazed to the rear surface of the heat radiation plate, the thickness of the insulating substrate can be reduced. The power module substrate is inexpensive while maintaining the heat radiation characteristics. In addition, since the Cu plate is used for the wiring metal plate, the metal plate, and the heat radiating plate, the adjustment of the difference in thermal expansion coefficient between different materials is small, and the thermal conductivity of Cu is high, so that high heat radiation characteristics can be obtained. At the same time, the cost of the power module substrate is reduced. And since a metal plate and a heat sink are joined by brazing, even if a temperature change is repeated for a long period of time, there is no deterioration of a brazing joint part, and a fall in heat dissipation can be prevented. In addition, a warp correction plate is brazed to the back side of the heat sink to balance the difference in the coefficient of thermal expansion of the entire power module substrate, so that warpage is small and semiconductor elements can be easily mounted. Can be.
[Brief description of the drawings]
FIG. 1 is a longitudinal section of a power module substrate according to an embodiment of the present invention.
FIGS. 2A and 2B are a vertical sectional view and a rear side plan view of a modified example of the power module substrate, respectively.
FIG. 3 is a longitudinal section of a conventional power module substrate.
[Explanation of symbols]
10: Power module substrate, 11: Insulating substrate, 12: Semiconductor element, 13: Wiring metal plate, 14: Bonding wire, 15: Metal plate, 16: Heat sink, 17: Brazing material, 18, 18a: Notch , 19, 19a: Warpage correction plate, 20: Cooler

Claims (5)

絶縁基板の上面側に半導体素子を搭載するための配線金属板と、前記絶縁基板の下表面側に前記半導体素子から発生する熱を放熱させるための金属板、及び放熱板を有するパワーモジュール用基板において、
前記絶縁基板がジルコニア系アルミナセラミックからなり、該絶縁基板にCu板からなる前記配線金属板及び前記金属板を接合して有すると共に、該金属板にCu板からなる前記放熱板をろう材でろう付け接合して有し、しかも、該放熱板の裏面側に反り補正板が前記ろう材でろう付け接合して設けられていることを特徴とするパワーモジュール用基板。
A power metal substrate having a wiring metal plate for mounting a semiconductor element on the upper surface side of an insulating substrate, a metal plate for dissipating heat generated from the semiconductor element on a lower surface side of the insulating substrate, and a heat radiating plate At
The insulating substrate is made of zirconia-based alumina ceramic, and the wiring metal plate and the metal plate made of a Cu plate are joined to the insulating substrate, and the heat radiating plate made of the Cu plate is formed on the metal plate with a brazing material. A power module substrate, wherein the substrate is provided with a warp correcting plate provided on the back side of the heat sink by brazing with the brazing material.
請求項1記載のパワーモジュール用基板において、前記絶縁基板が主成分のアルミナ(Al)にジルコニア(ZrO)を添加し、イットリア(Y)、カルシア(CaO)、マグネシア(MgO)、セリア(CeO)のいずれか1種以上の焼結助剤を添加した焼成体からなることを特徴とするパワーモジュール用基板。2. The power module substrate according to claim 1, wherein the insulating substrate comprises zirconia (ZrO 2 ) added to alumina (Al 2 O 3 ) as a main component, and yttria (Y 2 O 3 ), calcia (CaO), and magnesia ( A substrate for a power module, comprising a fired body to which at least one sintering aid of MgO) or ceria (CeO 2 ) is added. 請求項1又は2記載のパワーモジュール用基板において、前記絶縁基板と、前記配線金属板及び前記金属板との接合がDBC法による直接接合、又は活性金属ろう材による接合であるであることを特徴とするパワーモジュール用基板。3. The power module substrate according to claim 1, wherein the bonding between the insulating substrate, the wiring metal plate, and the metal plate is direct bonding by a DBC method or bonding by an active metal brazing material. 4. Power module substrate. 請求項1〜3のいずれか1項記載のパワーモジュール用基板において、前記放熱板及び前記反り補正板のろう付け接合に使用するろう材が半田以外のろう材であることを特徴とするパワーモジュール用基板。The power module substrate according to any one of claims 1 to 3, wherein a brazing material used for brazing the heat sink and the warpage correction plate is a brazing material other than solder. Substrate. 請求項1〜4のいずれか1項記載のパワーモジュール用基板において、前記反り補正板が金属製、又はセラミック製からなり、4〜12ppm/℃の熱膨張係数を有することを特徴とするパワーモジュール用基板。The power module substrate according to any one of claims 1 to 4, wherein the warpage correction plate is made of metal or ceramic and has a thermal expansion coefficient of 4 to 12 ppm / ° C. Substrate.
JP2002310837A 2002-10-25 2002-10-25 Substrate for power module Pending JP2004146650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310837A JP2004146650A (en) 2002-10-25 2002-10-25 Substrate for power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310837A JP2004146650A (en) 2002-10-25 2002-10-25 Substrate for power module

Publications (1)

Publication Number Publication Date
JP2004146650A true JP2004146650A (en) 2004-05-20

Family

ID=32456229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310837A Pending JP2004146650A (en) 2002-10-25 2002-10-25 Substrate for power module

Country Status (1)

Country Link
JP (1) JP2004146650A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141932A (en) * 2005-11-15 2007-06-07 Toyota Industries Corp Power module base
CN101600292B (en) * 2008-06-02 2012-06-20 鸿富锦精密工业(深圳)有限公司 Circuit board
KR20160148529A (en) * 2014-04-25 2016-12-26 미쓰비시 마테리알 가부시키가이샤 Process for producing united object and process for producing substrate for power module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141932A (en) * 2005-11-15 2007-06-07 Toyota Industries Corp Power module base
CN101600292B (en) * 2008-06-02 2012-06-20 鸿富锦精密工业(深圳)有限公司 Circuit board
KR20160148529A (en) * 2014-04-25 2016-12-26 미쓰비시 마테리알 가부시키가이샤 Process for producing united object and process for producing substrate for power module
KR102330134B1 (en) * 2014-04-25 2021-11-22 미쓰비시 마테리알 가부시키가이샤 Process for producing united object and process for producing substrate for power module

Similar Documents

Publication Publication Date Title
EP1667508B1 (en) Ceramic circuit board, method for making the same, and power module
WO2009116439A1 (en) Substrate for power module with heat sink and method for producing the same, power module with heat sink, and substrate for power module
JP2007305962A (en) Power semiconductor module
JP2006294898A (en) Package for housing light emitting element
JP2006196565A (en) Package for housing light-emitting device
JP4044449B2 (en) Power module substrate
JP2013118299A (en) Substrate for power module
US20230075200A1 (en) Power module and method for manufacturing same
JP2001135758A (en) Heat-radiating structure for power module
JP5217015B2 (en) Power converter and manufacturing method thereof
JP2004146650A (en) Substrate for power module
JP2003197824A (en) Ceramic circuit board
JP2007096252A (en) Liquid-cooling circuit substrate and liquid cooling electronic device
JP2003133662A (en) Ceramic circuit board
JP3934966B2 (en) Ceramic circuit board
JP2003100965A (en) Reliability evaluating method of circuit board and circuit board
JP2019212809A (en) Semiconductor device
JP2010199373A (en) Thermoelectric module
JP2005328087A (en) Power module substrate
KR20230009737A (en) Ceramic substrate and manufacturing method thereof
JP6819385B2 (en) Manufacturing method of semiconductor devices
JP4667723B2 (en) Power module substrate
JP2004087927A (en) Ceramic substrate
JP2004296493A (en) Heat sink, method of manufacturing the same, power module, and method of manufacturing the same
JP3588315B2 (en) Semiconductor element module