JP2004138533A - Apparatus and method for measuring length of steel member - Google Patents

Apparatus and method for measuring length of steel member Download PDF

Info

Publication number
JP2004138533A
JP2004138533A JP2002304387A JP2002304387A JP2004138533A JP 2004138533 A JP2004138533 A JP 2004138533A JP 2002304387 A JP2002304387 A JP 2002304387A JP 2002304387 A JP2002304387 A JP 2002304387A JP 2004138533 A JP2004138533 A JP 2004138533A
Authority
JP
Japan
Prior art keywords
steel material
distance meter
distance
steel
laser doppler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002304387A
Other languages
Japanese (ja)
Inventor
Jiro Katayama
片山 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002304387A priority Critical patent/JP2004138533A/en
Publication of JP2004138533A publication Critical patent/JP2004138533A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the length of a steel plate with high precision by simple means, while conveying the steel plate. <P>SOLUTION: A conveyance speed V of a steel member is measured by a laser Doppler velocimeter, and along with detecting the tip of the steel member using a front range finder, the distance H<SB>F</SB>between the front range finder and the steel member is measured. Along with detecting the rear end of the steel member using a back range finder, the distance H<SB>B</SB>between the back range finder and the steel member is measured. On the basis of the distances H<SB>F</SB>and H<SB>B</SB>, the conveyance speed V is corrected. The length L of the steel member is computed from formula (1), using time of detection t<SB>1</SB>of the tip by the front range finder, time of detection t<SB>2</SB>of the rear end by the back range finder, the corrected value V<SB>R</SB>of the conveyance speed, and the distance D between the front and back range finders. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、鋼材を所定の長さに切断する切断装置の入側等で、鋼材を搬送しながらその長さを測定する装置および方法に関する。
【0002】
【従来の技術】
鋼材の製造工程においては、各工程の操業管理あるいは品質管理の観点から必要に応じて鋼材の長さを測定している。特に、鋼材を所定の長さに切断する切断装置の入側等では、長さ測定の精度が劣る場合は歩留りの低下を招く。このような理由から、鋼材の製造工程で鋼材の長さを測定する際には、高精度の測定が要求される。
【0003】
鋼材の長さを測定するにあたって、鋼材の搬送を停止し、静止した鋼材の長さを測定すると高精度の測定が可能である。しかしこの方法では、鋼材の搬送を停止することによって、生産性が低下するのは避けられない。
そこで鋼材を搬送しながら長さを測定する技術が種々検討されている。たとえば、搬送される鋼材に接触して回転するタッチロールと、そのタッチロールの回転数を計測するエンコーダとを組合せた長さ測定の技術が従来から知られている。しかし、このような接触式長さ測定技術では、鋼材表面とタッチロールの摩擦が小さい場合にはタッチロールが回転せず、大きい測定誤差が生じる。また、鋼材表面に凹凸が生じた場合にもタッチロールの回転が不安定となって、測定誤差が生じる。
【0004】
このような接触式長さ測定技術の問題点を解決するために、種々の非接触式長さ測定技術が提案されている。
非接触式長さ測定技術は、たとえば特開昭58−109807 号公報に、材料長測定装置が開示されている。この技術は、レーザ光干渉型速度計で鋼板の速度を測定するとともに鋼板通過検出器を2台設置して鋼板の先端と後端をそれぞれ検出し、さらにこれらのレーザ光干渉型速度計と鋼板通過検出器で測定したデータを演算して鋼板の長さを算出するものである。しかしながら特開昭58−109807 号公報に開示された技術は、ローラコンベア上で鋼板の位置が変化してレーザ光干渉型速度計と鋼板との距離が変動すると、鋼板速度の測定値に誤差が生じ、その鋼板速度を用いて算出した鋼板長さにも誤差を生じる。
【0005】
また特開昭62−240805 号公報には、測長計が開示されている。この技術は、レーザドップラ速度計で鋼板の速度を測定するとともに物体検出器を2台設置して鋼板の先端と後端をそれぞれ検出し、さらにこれらのレーザドップラ速度計と物体検出器で測定したデータを演算して鋼板の長さを算出するものである。しかしながら特開昭62−240805 号公報に開示された技術は、レーザ光干渉型速度計を用いる技術と比べて長さ測定の精度は改善されるものの、ローラコンベア上で鋼板の位置が変化してレーザドップラ速度計と鋼板との距離が変動すると、鋼板速度の測定値に誤差が生じ、その鋼板速度を用いて算出した鋼板長さにも誤差を生じる。
【0006】
特開昭62−127686 号公報には、レーザドップラ速度計が開示されている。この技術は、レーザドップラ速度計を用いて移動物体の速度を測定するにあたって変位計を1台設置して、移動物体と変位計との距離を測定し、その距離の変化に応じてレーザドップラ速度計の測定値を補正することによって、移動物体の速度の測定精度を向上するものである。
【0007】
この特開昭62−127686 号公報に開示された技術を用いて移動物体の長さを測定する場合は、特開昭62−127686 号公報に開示された変位計の他に、移動物体を検出する装置を設置する必要がある。したがって装置の構成が複雑になり、装置のコストが上昇するのみならず、メンテナンスの負荷が増大する。
【0008】
【特許文献1】
特開昭58−109807 号公報
【特許文献2】
特開昭62−240805 号公報
【特許文献3】
特開昭62−127686 号公報
【0009】
【発明が解決しようとする課題】
本発明は上記のような問題を解消し、鋼板を搬送しながらその長さを測定するにあたって、簡便な手段で高精度の測定を可能にする測定装置および測定方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、搬送される鋼材の搬送速度を測定するレーザドップラ速度計と、レーザドップラ速度計の下流側に配設されて鋼材の先端を検出するとともに鋼材との距離を測定する前部距離計と、レーザドップラ速度計の上流側に配設されて鋼材との距離を測定するとともに鋼材の後端を検出する後部距離計と、レーザドップラ速度計,前部距離計,後部距離計が測定したデータを入力信号として演算処理する演算装置とを有する長さ測定装置である。
【0011】
また本発明は、レーザドップラ速度計を用いて鋼材の搬送速度V(m/sec )を測定し、レーザドップラ速度計の下流側に配設される前部距離計を用いて鋼材の先端を検出するとともに前部距離計と鋼材との距離HF を測定し、レーザドップラ速度計の上流側に配設される後部距離計を用いて後部距離計と鋼材との距離HB を測定するとともに鋼材の後端を検出して、距離HF および距離HB に基づいて搬送速度V(m/sec )を補正し、前部距離計が先端を検出した時刻t1 ,後部距離計が後端を検出した時刻t2 ,搬送速度の補正値VR (m/sec ),前部距離計と後部距離計との間隔D(m)を用いて下記の (1)式から鋼材の長さL(m)を算出する長さ測定方法である。
【0012】
【数2】

Figure 2004138533
【0013】
L :鋼材の長さ(m)
D :前部距離計と後部距離計との間隔(m)
R :搬送速度の補正値(m/sec )
1 :前部距離計が鋼材の先端を検出した時刻
2 :後部距離計が鋼材の後端を検出した時刻
前記した長さ測定方法の発明においては、前部距離計が鋼材の先端を検出したときにレーザドップラ速度計による搬送速度の測定を開始し、後部距離計が鋼材の後端を検出したときにレーザドップラ速度計による搬送速度の測定を停止することが好ましい。
【0014】
【発明の実施の形態】
図1は、本発明の長さ測定装置の例を模式的に示す側面図である。図1中の矢印aは鋼材1の搬送方向を示す。
本発明では、図1に示すように、鋼材1をローラコンベア(図示せず)等で搬送しながら、レーザドップラ速度計2を用いて鋼材1の搬送速度V(m/sec )を測定する。レーザドップラ速度計2は、図2に示すように、2個のレーザ発光器6a,6bと1個のレーザ受光器7が配設される。
【0015】
レーザドップラ速度計2を用いて鋼材1の搬送速度V(m/sec )を高精度で測定するためには、図2に示すように、レーザ発光器6a,6bから照射されたレーザ照射光5a,5bが交差する範囲Mを、鋼材1が通過する必要がある。特にレーザ照射光5a,5bが交差する範囲Mの中心を鋼材1の上面が通過するように設定すると、搬送速度Vの測定精度が向上する。
【0016】
このようにして鋼材1の搬送速度V(m/sec )を高精度で測定するためには、レーザドップラ速度計2と鋼材1との距離Hの変動を抑制するとともに、鋼材1の搬送方向に対して直角な方向から搬送速度Vを測定する必要がある。ここで鋼材1の搬送方向に対して直角な方向から測定するとは、レーザ受光器7が鋼材1の搬送方向に対して直角な方向に配設され、鋼材1から垂直に反射されたレーザ反射光8を受光することを指す。
【0017】
なお、図1には鋼材1の上面に垂直な方向(すなわち鋼材1の搬送方向に対して直角な方向)から搬送速度Vを測定する例を示す。ただし本発明においては、鋼材1の側面に垂直な方向(すなわち鋼材1の搬送方向に対して直角な方向)から搬送速度を測定することも可能である。
鋼材1の製造工程では、通常、ローラコンベアを用いて鋼材1を搬送する。このとき、図1に示すように鋼材1の上面に垂直な方向から搬送速度Vを測定する場合には、鋼材1の上面が波状になっているとレーザドップラ速度計2と鋼材1との距離Hが変動する。
【0018】
あるいは鋼材1の側面に垂直な方向から搬送速度を測定する場合には、ローラコンベア上の鋼材1が位置を変位すると、レーザドップラ速度計2と鋼材1との距離Hが変動する。
このようにしてレーザドップラ速度計2と鋼材1との距離Hが変動すると、搬送速度Vを測定する角度も変化し、搬送速度Vの測定精度が低下する。
【0019】
そこで図1に示すように、レーザドップラ速度計2の下流側に前部距離計3を配設して、搬送される鋼材1の先端を検出するとともに、前部距離計3と鋼材1との距離HF (mm)を測定する。さらにレーザドップラ速度計2の上流側に後部距離計4を配設して、後部距離計4と鋼材1との距離HB (mm)を測定するとともに、搬送される鋼材1の後端を検出する。
【0020】
なお本発明では、搬送速度V,距離HF ,距離HB を連続測定する。
このようにして前部距離計3で測定した距離HF と後部距離計4で測定した距離HB に基づいて、搬送速度の測定値V(m/sec )を補正する。その搬送速度の測定値Vの補正方法の一例を図3に示す。すなわち図3は、図2中の範囲Mの中心に対する平均距離HAVE (mm)の変位と搬送速度の測定誤差(%)との関係を示すグラフであり、この図3から搬送速度の測定誤差(%)を読み取って搬送速度の測定値V(m/sec )を補正し、搬送速度の補正値VR (m/sec )を求める。なお平均距離HAVE (mm)は、距離HF (mm)と距離HB (mm)の平均値である。
【0021】
一方、レーザドップラ速度計2の下流側に配設される前部距離計3は、搬送される鋼材1の先端を検出する。その状態を図4に示す。前部距離計3と後部距離計4との間隔をD(m),鋼材1の長さをL(m)とすると、後部距離計4と鋼材1後端との距離I(m)は、下記の (2)式で表わされる。
I=L−D                 ・・・ (2)
L:鋼材の長さ(m)
D:前部距離計と後部距離計との間隔(m)
I:前部距離計が鋼材の先端を検出したときの後部距離計と鋼材後端との距離(m)
さらに鋼材1が矢印aの方向へ搬送されて、後部距離計4が鋼材1の後端を検出した状態を図5に示す。このとき、鋼材1先端と前部距離計3との距離は、上記した距離Iに等しく、 (2)式で表わされる。
【0022】
この距離Iは、前部距離計3が鋼材1先端を検出してから後部距離計4が鋼材1後端を検出するまでの間に鋼材1が搬送される距離に等しい。したがって距離Iは、前部距離計3が鋼材1先端を検出した時刻t1 ,後部距離計4が鋼材1後端を検出した時刻t2 ,搬送速度の補正値VR (m/sec )から下記の (3)式で算出される。
【0023】
【数3】
Figure 2004138533
【0024】
I :前部距離計が鋼材の先端を検出したときの後部距離計と鋼材後端との距離(m)
R :搬送速度の補正値(m/sec )
この (3)式を (2)式に代入すると (1)式が得られる。
【0025】
【数4】
Figure 2004138533
【0026】
この (1)式において、前部距離計3と後部距離計4との間隔Dは、一定に固定されるので誤差は生じない。誤差が生じる可能性があるのは搬送速度の補正値VR であるが、上記で説明したように、その精度は前部距離計3と後部距離計4の測定値を用いることで大幅に改善されている。
このようにして本発明では、鋼材1を搬送しながら高精度で長さを測定でき、搬送される鋼材1がローラコンベア上で位置を変位しても、高精度を維持できる。しかも前部距離計3と後部距離計4が、それぞれ鋼材1の先端と後端を検出し、かつ鋼材1との距離HF ,HB を測定するので、鋼材1先端の検出装置,鋼材1後端の検出装置,距離HF の測定装置,距離HB の測定装置を個別に設置する必要はない。したがって簡便な装置で鋼材1の長さを測定できる。
【0027】
なお本発明では、レーザドップラ速度計2で鋼材1の搬送速度を常時測定しても良いし、あるいは前部距離計3が鋼材1先端を検出してから後部距離計4が鋼材1後端を検出するまでの間のみ鋼材1の搬送速度を測定しても良い。いずれの場合も、同様の測定精度が得られる。
【0028】
【実施例】
ローラコンベアを用いて鋼材1を搬送しながら、図1の装置を用いて本発明を適用して鋼材1の長さL(m)を求めた。鋼材1の長さLは (1)式で求められる値である。
【0029】
【数5】
Figure 2004138533
【0030】
次いで鋼材1の長さを巻尺で実測し、実測値LM (m)を求めた。こうして求めた鋼材1の長さLと実測値LM を用いて、下記の (4)式から指標αを算出して誤差を評価した。これを発明例とする。なお、指標αが0%に近いほど誤差が小さい。
α(%)=100 ×(LM −L)/LM      ・・・ (4)
一方、比較例として、後部距離計4による鋼材1との距離の検出を停止して後端検出のみを行ない、前部距離計3で鋼材1の先端検出および距離測定を行なった。以上の測定値から鋼材1の搬送速度を補正してVR ’として、下記の (5)式で鋼材1の長さL’(m)を求めた。
【0031】
【数6】
Figure 2004138533
【0032】
次いで鋼材1の長さを巻尺で実測し、実測値LM (m)を求めた。こうして求めた鋼材1の長さL’と実測値LM を用いて、下記の (6)式から指標βを算出して誤差を評価した。なお、指標βが0%に近いほど誤差が小さい。
β(%)=100 ×(LM −L’)/LM     ・・・ (6)
発明例と比較例について、各々50本の鋼材1の長さL,L’を測定し、指標α,βを求めた。その結果、比較例では指標βが0.13〜0.21%であったのに対して、発明例では指標αが0.02〜0.03%であった。したがって本発明によって、鋼材1を搬送しながら、その長さを高精度で測定できることが確かめられた。
【0033】
【発明の効果】
本発明によれば、鋼板を搬送しながらその長さを測定するにあたって、簡便な手段で、しかも高精度で長さを測定できる。
【図面の簡単な説明】
【図1】本発明の長さ測定装置の例を模式的に示す側面図である。
【図2】レーザドップラ速度計の例を模式的に示す側面図である。
【図3】距離の変位と搬送速度の測定誤差との関係を示すグラフである。
【図4】前部距離計が鋼材の先端を検出した状態を示す側面図である。
【図5】後部距離計が鋼材の後端を検出した状態を示す側面図である。
【符号の説明】
1 鋼材
2 レーザドップラ速度計
3 前部距離計
4 後部距離計
5 レーザ照射光
5a レーザ照射光
5b レーザ照射光
6a レーザ発光器
6b レーザ発光器
7 レーザ受光器
8 レーザ反射光[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus and a method for measuring a length of a steel material while transporting the steel material at an entry side or the like of the cutting device for cutting the steel material to a predetermined length.
[0002]
[Prior art]
In the steel manufacturing process, the length of the steel is measured as necessary from the viewpoint of operation management or quality control in each process. In particular, on the entry side of a cutting device for cutting a steel material to a predetermined length, if the accuracy of length measurement is inferior, the yield is reduced. For these reasons, when measuring the length of a steel material in the steel manufacturing process, high-precision measurement is required.
[0003]
When measuring the length of a steel material, stopping the conveyance of the steel material and measuring the length of the stationary steel material enables highly accurate measurement. However, in this method, it is inevitable that the productivity is reduced by stopping the transfer of the steel material.
Therefore, various techniques for measuring the length while transporting the steel material have been studied. For example, a length measurement technique combining a touch roll that rotates in contact with a conveyed steel material and an encoder that measures the number of rotations of the touch roll is conventionally known. However, in such a contact-type length measuring technique, when the friction between the steel material surface and the touch roll is small, the touch roll does not rotate, and a large measurement error occurs. In addition, even when irregularities occur on the surface of the steel material, the rotation of the touch roll becomes unstable, and a measurement error occurs.
[0004]
In order to solve such a problem of the contact type length measuring technique, various non-contact type length measuring techniques have been proposed.
As a non-contact length measuring technique, a material length measuring apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 58-109807. This technology measures the speed of a steel sheet with a laser light interference type speedometer, and installs two steel plate passage detectors to detect the leading and trailing ends of the steel sheet, respectively. The length of the steel plate is calculated by calculating data measured by the passage detector. However, the technique disclosed in Japanese Patent Application Laid-Open No. 58-109807 discloses that when the position of a steel sheet changes on a roller conveyor and the distance between the laser light interference type speedometer and the steel sheet fluctuates, an error occurs in the measured value of the steel sheet speed. An error also occurs in the steel sheet length calculated using the steel sheet speed.
[0005]
Japanese Patent Application Laid-Open No. Sho 62-240805 discloses a length measuring instrument. This technology measures the speed of a steel plate with a laser Doppler velocimeter, detects the front and rear ends of the steel plate by installing two object detectors, and further measures with these laser Doppler velocimeter and an object detector. The length of the steel plate is calculated by calculating the data. However, in the technique disclosed in Japanese Patent Application Laid-Open No. Sho 62-240805, although the accuracy of length measurement is improved as compared with the technique using a laser light interferometer, the position of a steel sheet changes on a roller conveyor. When the distance between the laser Doppler velocimeter and the steel sheet fluctuates, an error occurs in the measured value of the steel sheet speed, and an error also occurs in the steel sheet length calculated using the steel sheet speed.
[0006]
Japanese Patent Laying-Open No. 62-127686 discloses a laser Doppler velocimeter. This technology uses a laser Doppler velocimeter to measure the speed of a moving object by installing one displacement meter, measuring the distance between the moving object and the displacement meter, and changing the laser Doppler velocity according to the change in the distance. The accuracy of measuring the speed of the moving object is improved by correcting the measurement value of the meter.
[0007]
When measuring the length of a moving object using the technique disclosed in Japanese Patent Application Laid-Open No. 62-127686, a moving object is detected in addition to the displacement meter disclosed in Japanese Patent Application Laid-Open No. 62-127686. Must be installed. Therefore, the configuration of the apparatus becomes complicated, which not only increases the cost of the apparatus but also increases the load of maintenance.
[0008]
[Patent Document 1]
JP-A-58-109807 [Patent Document 2]
JP-A-62-240805 [Patent Document 3]
Japanese Patent Application Laid-Open No. 62-127686
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems and to provide a measuring apparatus and a measuring method that enable high-precision measurement by simple means when measuring the length of a steel sheet while transporting the steel sheet. .
[0010]
[Means for Solving the Problems]
The present invention relates to a laser Doppler velocimeter for measuring a conveying speed of a steel material to be conveyed, and a front distance meter arranged downstream of the laser Doppler velocimeter for detecting a tip of the steel material and measuring a distance to the steel material. And a rear rangefinder that is located upstream of the laser Doppler velocimeter to measure the distance to the steel and detect the rear end of the steel, and a laser Doppler velocimeter, a front rangefinder, and a rear rangefinder And a computing device that performs computational processing using data as an input signal.
[0011]
Further, according to the present invention, the conveying speed V (m / sec) of the steel material is measured using a laser Doppler velocimeter, and the tip of the steel material is detected using a front distance meter disposed downstream of the laser Doppler velocimeter. steel with with measuring the distance H F of the front distance meter and a steel, to measure the distance H B of the rear distance meter and a steel material with a rear distance meter which is disposed upstream of the laser Doppler velocimeter to the rear end detects the distance H F and distance to correct the conveying speed V (m / sec) based on H B, the time t 1 the front distance meter detects the leading end, a rear distance meter a rear end detected time t 2, the correction value V R of the conveying speed (m / sec), the length of the steel material by using a distance D (m) between the front distance meter and a rear distance meter (1) below L ( This is a length measurement method for calculating m).
[0012]
(Equation 2)
Figure 2004138533
[0013]
L: Length of steel material (m)
D: Distance between front distance meter and rear distance meter (m)
V R: correction value of the transport speed (m / sec)
t 1 : Time when the front distance meter detects the tip of the steel material t 2 : Time when the rear distance meter detects the rear end of the steel material In the above-described invention of the length measuring method, the front distance meter measures the front end of the steel material. It is preferable that the measurement of the transport speed by the laser Doppler velocimeter is started when it is detected, and the measurement of the transport speed by the laser Doppler velocimeter is stopped when the rear distance meter detects the rear end of the steel material.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a side view schematically showing an example of the length measuring device of the present invention. The arrow a in FIG. 1 indicates the direction in which the steel material 1 is conveyed.
In the present invention, as shown in FIG. 1, while the steel material 1 is being conveyed by a roller conveyor (not shown) or the like, the conveying speed V (m / sec) of the steel material 1 is measured using the laser Doppler velocimeter 2. As shown in FIG. 2, the laser Doppler velocimeter 2 includes two laser light emitters 6a and 6b and one laser light receiver 7.
[0015]
In order to measure the transport speed V (m / sec) of the steel material 1 with high accuracy using the laser Doppler velocimeter 2, as shown in FIG. 2, the laser irradiation light 5a emitted from the laser emitters 6a and 6b. , 5b need to pass through the range M where the steel material 1 passes. In particular, when the upper surface of the steel material 1 is set so as to pass through the center of the range M where the laser irradiation lights 5a and 5b intersect, the measurement accuracy of the transport speed V is improved.
[0016]
In order to measure the transport speed V (m / sec) of the steel material 1 with high accuracy in this manner, the fluctuation of the distance H between the laser Doppler velocimeter 2 and the steel material 1 is suppressed and the steel material 1 is transported in the transport direction. It is necessary to measure the transport speed V from a direction perpendicular to the direction. Here, to measure from the direction perpendicular to the direction in which the steel material 1 is transported means that the laser receiver 7 is disposed in a direction perpendicular to the direction in which the steel material 1 is transported, and the laser reflected light reflected perpendicularly from the steel material 1 8 is received.
[0017]
FIG. 1 shows an example in which the transport speed V is measured from a direction perpendicular to the upper surface of the steel material 1 (that is, a direction perpendicular to the transport direction of the steel material 1). However, in the present invention, the transport speed can be measured from a direction perpendicular to the side surface of the steel material 1 (that is, a direction perpendicular to the transport direction of the steel material 1).
In the manufacturing process of the steel material 1, the steel material 1 is usually conveyed using a roller conveyor. At this time, when the transport speed V is measured from a direction perpendicular to the upper surface of the steel material 1 as shown in FIG. H fluctuates.
[0018]
Alternatively, when measuring the transport speed from a direction perpendicular to the side surface of the steel material 1, when the steel material 1 on the roller conveyor is displaced, the distance H between the laser Doppler velocimeter 2 and the steel material 1 changes.
When the distance H between the laser Doppler velocimeter 2 and the steel material 1 fluctuates in this way, the angle at which the transport speed V is measured also changes, and the measurement accuracy of the transport speed V decreases.
[0019]
Therefore, as shown in FIG. 1, a front distance meter 3 is disposed downstream of the laser Doppler velocimeter 2 to detect the tip of the steel material 1 to be conveyed and to connect the front distance meter 3 to the steel material 1. distance measuring H F a (mm). Further, a rear distance meter 4 is disposed upstream of the laser Doppler velocimeter 2 to measure a distance H B (mm) between the rear distance meter 4 and the steel material 1 and to detect a rear end of the conveyed steel material 1. I do.
[0020]
In the present invention, the conveyance velocity V, the distance H F, the continuously measured distance H B.
On the basis of the distance H B measured by the distance H F and a rear distance meter 4 as measured in the front distance meter 3, to correct the measured transport speed values V (m / sec). FIG. 3 shows an example of a method of correcting the measured value V of the transport speed. That is, FIG. 3 is a graph showing the relationship between the displacement of the average distance H AVE (mm) from the center of the range M in FIG. 2 and the measurement error (%) of the conveyance speed. (%) corrected measured conveying speed value V (m / sec) to read and obtain the correction value V R of the conveying speed (m / sec). The average distance H AVE (mm) is an average value of the distance H F (mm) and the distance H B (mm).
[0021]
On the other hand, a front distance meter 3 disposed downstream of the laser Doppler velocimeter 2 detects the tip of the conveyed steel material 1. FIG. 4 shows this state. Assuming that the distance between the front distance meter 3 and the rear distance meter 4 is D (m) and the length of the steel material 1 is L (m), the distance I (m) between the rear distance meter 4 and the rear end of the steel material 1 is It is represented by the following equation (2).
I = LD (2)
L: Length of steel material (m)
D: Distance between front distance meter and rear distance meter (m)
I: Distance between the rear distance meter and the rear end of the steel material when the front distance meter detects the front end of the steel material (m)
FIG. 5 shows a state in which the steel material 1 is further conveyed in the direction of arrow a and the rear distance meter 4 detects the rear end of the steel material 1. At this time, the distance between the tip of the steel material 1 and the front distance meter 3 is equal to the above-mentioned distance I and is expressed by the following equation (2).
[0022]
This distance I is equal to the distance that the steel material 1 is transported from when the front distance meter 3 detects the front end of the steel material 1 to when the rear distance meter 4 detects the rear end of the steel material 1. Thus the distance I, the time t 1 the front distance meter 3 detects the steel 1 tip, the time t 2 when the rear distance meter 4 detects a steel 1 rear, from the correction value V R of the conveying speed (m / sec) It is calculated by the following equation (3).
[0023]
[Equation 3]
Figure 2004138533
[0024]
I: Distance between the rear distance meter and the rear end of the steel material when the front distance meter detects the front end of the steel material (m)
V R: correction value of the transport speed (m / sec)
By substituting equation (3) into equation (2), equation (1) is obtained.
[0025]
(Equation 4)
Figure 2004138533
[0026]
In the equation (1), the distance D between the front distance meter 3 and the rear distance meter 4 is fixed to a fixed value, so that no error occurs. Although there is a possibility that an error occurs is the correction value V R of the transport speed, as described above, the accuracy greatly improved by using the measurement value of the front distance meter 3 and a rear distance meter 4 Have been.
In this way, in the present invention, the length can be measured with high accuracy while the steel material 1 is being conveyed, and high accuracy can be maintained even if the conveyed steel material 1 is displaced on the roller conveyor. Moreover front distance meter 3 and a rear distance meter 4, respectively detect the leading and trailing ends steel 1, and the distance H F of the steel product 1, since the measurement of H B, steel 1 tip of the detection device, steel 1 the rear end of the detection device, the measurement device of the distance H F, need not be installed separately measuring apparatus of the distance H B. Therefore, the length of the steel material 1 can be measured with a simple device.
[0027]
In the present invention, the conveying speed of the steel material 1 may be constantly measured by the laser Doppler velocimeter 2, or the rear distance meter 4 detects the rear end of the steel material 1 after the front distance meter 3 detects the front end of the steel material 1. The conveyance speed of the steel material 1 may be measured only until the detection. In any case, the same measurement accuracy can be obtained.
[0028]
【Example】
The length L (m) of the steel material 1 was obtained by applying the present invention using the apparatus of FIG. 1 while transporting the steel material 1 using a roller conveyor. The length L of the steel material 1 is a value obtained by Expression (1).
[0029]
(Equation 5)
Figure 2004138533
[0030]
Next, the length of the steel material 1 was actually measured with a tape measure, and an actually measured value L M (m) was obtained. Thus determined for steel 1 and the length L using measured values L M, was evaluated error by calculating an index α (4) below. This is an invention example. Note that the closer the index α is to 0%, the smaller the error is.
α (%) = 100 × ( L M -L) / L M ··· (4)
On the other hand, as a comparative example, the detection of the distance to the steel material 1 by the rear distance meter 4 was stopped and only the rear end detection was performed, and the front distance meter 3 detected the front end of the steel material 1 and measured the distance. 'As, (5) the length of the steel product 1 L in formula' V R by correcting the conveyance speed of the steel material 1 from the above measurements was determined (m).
[0031]
(Equation 6)
Figure 2004138533
[0032]
Next, the length of the steel material 1 was actually measured with a tape measure, and an actually measured value L M (m) was obtained. Thus steel 1 obtained length L 'using measured values L M, was evaluated error by calculating an index β from equation (6) below. The error is smaller as the index β is closer to 0%.
β (%) = 100 × ( L M -L ') / L M ··· (6)
The lengths L and L ′ of 50 steel materials 1 were measured for each of the invention examples and the comparative examples, and the indices α and β were obtained. As a result, the index β was 0.13 to 0.21% in the comparative example, whereas the index α was 0.02 to 0.03% in the invention example. Therefore, according to the present invention, it was confirmed that the length of the steel material 1 can be measured with high accuracy while being transported.
[0033]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, when measuring the length while conveying a steel plate, length can be measured with simple means and high precision.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing an example of a length measuring device of the present invention.
FIG. 2 is a side view schematically showing an example of a laser Doppler velocimeter.
FIG. 3 is a graph showing a relationship between a displacement of a distance and a measurement error of a transport speed.
FIG. 4 is a side view showing a state in which the front distance meter has detected the tip of a steel material.
FIG. 5 is a side view showing a state in which the rear distance meter has detected the rear end of the steel material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel material 2 Laser Doppler velocimeter 3 Front distance meter 4 Rear distance meter 5 Laser irradiation light 5a Laser irradiation light 5b Laser irradiation light 6a Laser light emitting device 6b Laser light emitting device 7 Laser light receiving device 8 Laser reflected light

Claims (3)

搬送される鋼材の搬送速度を測定するレーザドップラ速度計と、前記レーザドップラ速度計の下流側に配設されて前記鋼材の先端を検出するとともに前記鋼材との距離を測定する前部距離計と、前記レーザドップラ速度計の上流側に配設されて前記鋼材との距離を測定するとともに前記鋼材の後端を検出する後部距離計と、前記レーザドップラ速度計、前記前部距離計、前記後部距離計が測定したデータを入力信号として演算処理する演算装置とを有することを特徴とする長さ測定装置。A laser Doppler velocimeter that measures the transport speed of the steel material being conveyed, and a front distance meter that is disposed downstream of the laser Doppler velocimeter to detect the tip of the steel material and measure the distance to the steel material, A rear distance meter disposed upstream of the laser Doppler velocimeter to measure a distance to the steel material and detect a rear end of the steel material; and the laser Doppler velocimeter, the front distance meter, and the rear portion. An arithmetic unit for performing arithmetic processing on data measured by the range finder as an input signal. レーザドップラ速度計を用いて鋼材の搬送速度V(m/sec )を測定し、前記レーザドップラ速度計の下流側に配設される前部距離計を用いて前記鋼材の先端を検出するとともに前記前部距離計と前記鋼材との距離HF を測定し、前記レーザドップラ速度計の上流側に配設される後部距離計を用いて前記後部距離計と前記鋼材との距離HB を測定するとともに前記鋼材の後端を検出して、前記距離HF および前記距離HB に基づいて前記搬送速度V(m/sec )を補正し、前記前部距離計が前記先端を検出した時刻t1 、前記後部距離計が前記後端を検出した時刻t2 、前記搬送速度の補正値VR (m/sec )、前記前部距離計と前記後部距離計との間隔D(m)を用いて下記の (1)式から前記鋼材の長さL(m)を算出することを特徴とする長さ測定方法。
Figure 2004138533
L :鋼材の長さ(m)
D :前部距離計と後部距離計との間隔(m)
R :搬送速度の補正値(m/sec )
1 :前部距離計が鋼材の先端を検出した時刻
2 :後部距離計が鋼材の後端を検出した時刻
The conveying speed V (m / sec) of the steel material is measured using a laser Doppler velocimeter, and the tip of the steel material is detected using a front distance meter disposed downstream of the laser Doppler velocimeter. measure the distance H F of the front distance meter and the steel, to measure the distance H B between the steel and the rear distance meter using a rear distance meter which is disposed upstream of the laser Doppler velocimeter by detecting the trailing edge of the steel together with the distance H F and, based on the distance H B corrects the transport speed V (m / sec), the time t 1 when the front distance meter detects said tip the rear distance meter time t 2 which detects the trailing edge, the correction value V R of the conveying speed (m / sec), using the distance D (m) between the front distance meter and the rear distance meter The length L (m) of the steel material is calculated from the following equation (1). Length measurement method comprising Rukoto.
Figure 2004138533
L: Length of steel material (m)
D: Distance between front distance meter and rear distance meter (m)
V R: correction value of the transport speed (m / sec)
t 1 : Time when the front distance meter detected the front end of the steel material t 2 : Time when the rear distance meter detected the rear end of the steel material
前記前部距離計が前記鋼材の先端を検出したときに前記レーザドップラ速度計による搬送速度の測定を開始し、前記後部距離計が前記鋼材の後端を検出したときに前記レーザドップラ速度計による搬送速度の測定を停止することを特徴とする請求項2に記載の長さ測定方法。When the front distance meter detects the leading end of the steel material, it starts measuring the transport speed by the laser Doppler velocimeter, and when the rear distance meter detects the rear end of the steel material, the laser Doppler velocimeter starts measuring. 3. The length measuring method according to claim 2, wherein the measurement of the transport speed is stopped.
JP2002304387A 2002-10-18 2002-10-18 Apparatus and method for measuring length of steel member Pending JP2004138533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304387A JP2004138533A (en) 2002-10-18 2002-10-18 Apparatus and method for measuring length of steel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304387A JP2004138533A (en) 2002-10-18 2002-10-18 Apparatus and method for measuring length of steel member

Publications (1)

Publication Number Publication Date
JP2004138533A true JP2004138533A (en) 2004-05-13

Family

ID=32451824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304387A Pending JP2004138533A (en) 2002-10-18 2002-10-18 Apparatus and method for measuring length of steel member

Country Status (1)

Country Link
JP (1) JP2004138533A (en)

Similar Documents

Publication Publication Date Title
JP5544799B2 (en) Recording material length measuring apparatus, image forming apparatus, and program
US4944505A (en) Sheet length detector with skew compensation
JP5366007B2 (en) Recording material length measuring apparatus, image forming apparatus, and program
FI106627B (en) Method and apparatus for observing fault locations in a rock-shaped stream
JP2004138533A (en) Apparatus and method for measuring length of steel member
JP5013730B2 (en) Thickness measuring method and thickness measuring apparatus
JP4599728B2 (en) Non-contact film thickness measuring device
JPH07270436A (en) Length measuring apparatus for moving object
JP7335482B2 (en) Mass measuring device and mass measuring method for rubber member
KR101291053B1 (en) Carrage measurement system and method for the same
JP2002123811A (en) Detecting and counting method for moving object
JPS58191908A (en) Length measuring device of band-shaped material to be carried
JPH0545128A (en) Method for measuring length of moving object
JP6478437B1 (en) Conveyance state judgment device
JPS63243707A (en) Measuring apparatus for length of conveyed object
KR20190070661A (en) Slab carring apparatus
JP2000126926A (en) Shearing device and shearing method
JP4393696B2 (en) Measuring system
EP3020667A1 (en) Transportation apparatus and recording apparatus
JP2790782B2 (en) Length measuring device in fixed size cutting device
JPH05139589A (en) Running web control device
JP3533789B2 (en) Paper thickness detector
JPH07113541B2 (en) Moving object length meter
JPH0655614A (en) Device and method for measuring thickness of sheet-shaped component
JP2002286419A (en) End position detection method and apparatus for material to be carried

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318