JP7335482B2 - Mass measuring device and mass measuring method for rubber member - Google Patents

Mass measuring device and mass measuring method for rubber member Download PDF

Info

Publication number
JP7335482B2
JP7335482B2 JP2018180733A JP2018180733A JP7335482B2 JP 7335482 B2 JP7335482 B2 JP 7335482B2 JP 2018180733 A JP2018180733 A JP 2018180733A JP 2018180733 A JP2018180733 A JP 2018180733A JP 7335482 B2 JP7335482 B2 JP 7335482B2
Authority
JP
Japan
Prior art keywords
rubber member
mass
correction
sensor
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018180733A
Other languages
Japanese (ja)
Other versions
JP2020051862A (en
Inventor
美早紀 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2018180733A priority Critical patent/JP7335482B2/en
Publication of JP2020051862A publication Critical patent/JP2020051862A/en
Application granted granted Critical
Publication of JP7335482B2 publication Critical patent/JP7335482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、押出成形された帯状のゴム部材の質量を測定する装置及び方法に関し、更に詳しくは、測定対象となる帯状のゴム部材の断面形状の自由度を高めると共に、ゴム部材の質量を精度良く測定することを可能にしたゴム部材の質量測定装置及び質量測定方法に関する。 TECHNICAL FIELD The present invention relates to an apparatus and method for measuring the mass of an extruded strip-shaped rubber member, and more particularly, to increase the degree of freedom in the cross-sectional shape of the strip-shaped rubber member to be measured, and to accurately measure the mass of the rubber member. The present invention relates to a mass measuring device and a mass measuring method for a rubber member that enable good measurement.

空気入りタイヤに使用されるトレッド部材やサイド部材等のタイヤ構成部材は、押出成形された帯状のゴム部材を所定の長さに切断することで得られる。このように定尺に切断されたタイヤ構成部材は必ずしも目標値と一致する質量を有しているとは限らない。つまり、帯状のゴム部材を定尺に切断したとしても押出条件の変動やゴム部材の伸縮に伴って個々のタイヤ構成部材の質量が変動することがある。 Tire constituent members such as tread members and side members used in pneumatic tires are obtained by cutting extruded strip-shaped rubber members into predetermined lengths. Tire components cut to size in this manner do not always have a mass that matches the target value. In other words, even if the belt-shaped rubber member is cut into a fixed length, the mass of each tire component may vary due to variations in extrusion conditions and expansion and contraction of the rubber member.

これに対して、帯状のゴム部材の質量を計測する方法として、帯状のゴム部材を圧延する一対のローラーヘッドの間隔、ゴム部材のゴム幅及びローラーヘッドの形状に基づいてゴム部材の断面積を算出し、ローラーヘッドの回転速度に基づいてゴム部材の押出速度を算出すると共に、温度センサによりゴム部材の温度を計測し、これらゴム部材の断面積、押出速度及び温度に基づいてゴム部材の質量を検出することが提案されている(例えば、特許文献1参照)。 On the other hand, as a method for measuring the mass of a strip-shaped rubber member, the cross-sectional area of the rubber member is calculated based on the distance between a pair of roller heads that roll the strip-shaped rubber member, the rubber width of the rubber member, and the shape of the roller head. Calculate the extrusion speed of the rubber member based on the rotation speed of the roller head, measure the temperature of the rubber member with a temperature sensor, and measure the mass of the rubber member based on the cross-sectional area, extrusion speed and temperature of the rubber member (see, for example, Patent Document 1).

しかしながら、ゴム部材の押出速度を算出するためにローラーヘッドの回転速度を利用すると、ローラーヘッドとゴム部材との間に滑りが生じることで回転速度に測定誤差が生じる恐れがあり、これがゴム部材の質量の測定精度を低下させる要因となる。また、ゴム部材の断面積を算出するためにローラーヘッドの間隔や形状を利用する場合、測定対象となるゴム部材の断面形状がローラーヘッドの間隔や形状により制限されるため、その断面形状の自由度が低下するという欠点もある。 However, if the rotational speed of the roller head is used to calculate the extrusion speed of the rubber member, slippage between the roller head and the rubber member may cause measurement errors in the rotational speed. This is a factor that lowers the accuracy of mass measurement. In addition, when using the spacing and shape of the roller head to calculate the cross-sectional area of the rubber member, the cross-sectional shape of the rubber member to be measured is limited by the spacing and shape of the roller head. There is also a drawback that the degree is lowered.

特開2006-116835号公報JP 2006-116835 A

本発明の目的は、測定対象となる帯状のゴム部材の断面形状の自由度を高めると共に、ゴム部材の質量を精度良く測定することを可能にしたゴム部材の質量測定装置及び質量測定方法を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a rubber member mass measuring apparatus and a mass measuring method capable of increasing the degree of freedom in the cross-sectional shape of a band-shaped rubber member to be measured and capable of accurately measuring the mass of the rubber member. to do.

上記目的を達成するための本発明のゴム部材の質量測定装置は、帯状のゴム部材をその長手方向に沿って連続的に搬送する搬送装置と、前記ゴム部材の搬送経路において前記搬送装置が途切れた部位に設定された質量測定位置で前記ゴム部材を両側から挟み込むように配置されていて前記ゴム部材の断面積を計測する一対の非接触式のプロファイルセンサと、前記質量測定位置で前記ゴム部材の速度を計測する非接触式の速度センサと、前記質量測定位置で前記ゴム部材の温度を計測する非接触式の温度センサと、前記プロファイルセンサ、前記速度センサ及び前記温度センサの計測データに基づいて搬送状態にある前記ゴム部材の単位時間当たりの質量を経時的に演算し、該単位時間当たりの質量の積算値を演算する演算装置と、前記ゴム部材の搬送経路において前記質量測定位置よりも下流側に設置されていて前記積算値を利用して前記ゴム部材を所望の質量となるように切断する切断装置とを備えるゴム部材の質量測定装置であって、
前記ゴム部材の搬送経路において前記質量測定位置よりも上流側であって前記搬送装置が途切れた部位に設定された補正条件測定位置で前記ゴム部材を両側から挟み込むように配置されていて前記ゴム部材の断面積を計測する一対の非接触式の補正用プロファイルセンサと、前記補正条件測定位置で前記ゴム部材の速度を計測する非接触式の補正用速度センサと、前記補正条件測定位置で前記ゴム部材の温度を計測する非接触式の補正用温度センサとを備え、前記演算装置が、前記補正用プロファイルセンサ、前記補正用速度センサ及び前記補正用温度センサの計測データを補正項として、前記積算値の演算に供される前記ゴム部材の単位時間当たりの質量を補正することを特徴とするものである。
In order to achieve the above object, the rubber member mass measuring apparatus of the present invention comprises a conveying device that continuously conveys a band-shaped rubber member along its longitudinal direction, and the conveying device that is interrupted in the conveying route of the rubber member. a pair of non-contact type profile sensors arranged to sandwich the rubber member from both sides at a mass measurement position set at a position set to a position corresponding to the mass measurement position, and measuring the cross-sectional area of the rubber member; and the rubber member at the mass measurement position. a non-contact speed sensor for measuring the speed of, a non-contact temperature sensor for measuring the temperature of the rubber member at the mass measurement position, the profile sensor, the speed sensor, and the temperature sensor based on measurement data a computing device for temporally computing the mass per unit time of the rubber member in the conveying state and computing the integrated value of the mass per unit time; A rubber member mass measuring device comprising a cutting device that is installed downstream and uses the integrated value to cut the rubber member to a desired mass,
The rubber member is arranged to sandwich the rubber member from both sides at a correction condition measurement position set upstream of the mass measurement position in the transport path of the rubber member and at a portion where the transport device is interrupted. A pair of non-contact correction profile sensors for measuring the cross-sectional area of the rubber member, a non-contact correction speed sensor for measuring the speed of the rubber member at the correction condition measurement position, and the rubber at the correction condition measurement position and a non-contact correction temperature sensor for measuring the temperature of the member, and the calculation device calculates the integration using the measurement data of the correction profile sensor, the correction speed sensor, and the correction temperature sensor as correction terms. It is characterized by correcting the mass per unit time of the rubber member that is used in the calculation of the value .

また、上記目的を達成するための本発明のゴム部材の質量測定方法は、帯状のゴム部材をその長手方向に沿って連続的に搬送し、前記ゴム部材の搬送経路において前記搬送装置が途切れた部位に設定された質量測定位置で前記ゴム部材を両側から挟み込むように配置された一対の非接触式のプロファイルセンサにより前記ゴム部材の断面積を計測し、前記質量測定位置で非接触式の速度センサにより前記ゴム部材の速度を計測し、前記質量測定位置で非接触式の温度センサにより前記ゴム部材の温度を計測し、前記プロファイルセンサ、前記速度センサ及び前記温度センサの計測データに基づいて搬送状態にある前記ゴム部材の単位時間当たりの質量を経時的に演算し、該単位時間当たりの質量の積算値を演算し、前記ゴム部材の搬送経路において前記質量測定位置よりも下流側に設置された切断装置により前記積算値を利用して前記ゴム部材を所望の質量となるように切断するゴム部材の質量測定方法であって、
前記ゴム部材の搬送経路において前記質量測定位置よりも上流側であって前記搬送装置が途切れた部位に設定された補正条件測定位置で前記ゴム部材を両側から挟み込むように配置された一対の補正用プロファイルセンサにより前記ゴム部材の断面積を計測し、前記補正条件測定位置で非接触式の補正用速度センサにより前記ゴム部材の速度を計測し、前記補正条件測定位置で非接触式の補正用温度センサにより前記ゴム部材の温度を計測し、前記補正用プロファイルセンサ、前記補正用速度センサ及び前記補正用温度センサの計測データを補正項として、前記積算値の演算に供される前記ゴム部材の単位時間当たりの質量を補正することを特徴とするものである。
Further, the method for measuring the mass of a rubber member according to the present invention for achieving the above object is provided by continuously conveying a strip-shaped rubber member along its longitudinal direction, and the conveying device is interrupted in the conveying path of the rubber member. The cross-sectional area of the rubber member is measured by a pair of non-contact profile sensors arranged so as to sandwich the rubber member from both sides at the mass measurement position set at the site, and the non-contact velocity is measured at the mass measurement position. The speed of the rubber member is measured by a sensor, the temperature of the rubber member is measured by a non-contact temperature sensor at the mass measurement position, and transport is performed based on the measurement data of the profile sensor, the speed sensor, and the temperature sensor. The mass per unit time of the rubber member in the state is calculated over time, the integrated value of the mass per unit time is calculated, and the device is installed downstream of the mass measurement position in the conveying route of the rubber member. A method for measuring the mass of a rubber member by cutting the rubber member to a desired mass by using the integrated value with a cutting device,
A pair of corrective components arranged to sandwich the rubber member from both sides at a correction condition measuring position set upstream of the mass measuring position in the conveying path of the rubber member and at a portion where the conveying device is interrupted. A cross-sectional area of the rubber member is measured by a profile sensor, a speed of the rubber member is measured by a non-contact correction speed sensor at the correction condition measurement position, and a non-contact correction temperature is measured at the correction condition measurement position. The temperature of the rubber member is measured by a sensor, and the measurement data of the profile sensor for correction, the speed sensor for correction, and the temperature sensor for correction are used as correction terms, and the integrated value is calculated as a unit of the rubber member. It is characterized by correcting the mass per time .

本発明では、帯状のゴム部材をその長手方向に沿って連続的に搬送し、ゴム部材の搬送経路に設定された質量測定位置で非接触式のプロファイルセンサによりゴム部材の断面積を計測し、上記質量測定位置で非接触式の速度センサによりゴム部材の速度を計測し、上記質量測定位置で非接触式の温度センサによりゴム部材の温度を計測し、これらプロファイルセンサ、速度センサ及び温度センサの計測データに基づいて搬送状態にあるゴム部材の単位時間当たりの質量を経時的に演算し、該単位時間当たりの質量の積算値を演算することにより、帯状のゴム部材の質量を精度良く測定することができ、その積算値を利用して帯状のゴム部材を所望の質量となるように切断することができる。 In the present invention, a belt-shaped rubber member is continuously conveyed along its longitudinal direction, and the cross-sectional area of the rubber member is measured by a non-contact profile sensor at a mass measurement position set on the conveying path of the rubber member, The speed of the rubber member is measured by a non-contact speed sensor at the mass measurement position, and the temperature of the rubber member is measured by a non-contact temperature sensor at the mass measurement position. Accurately measures the mass of the belt-shaped rubber member by calculating the mass per unit time of the rubber member in the transported state over time based on the measurement data and calculating the integrated value of the mass per unit time. The integrated value can be used to cut the belt-like rubber member to a desired mass.

特に、ゴム部材の断面積の計測に非接触式のプロファイルセンサを使用し、ゴム部材の速度の計測に非接触式の速度センサを使用し、ゴム部材の温度の計測に非接触式の温度センサを使用するので、接触式のセンサに依存する場合とは異なって、測定対象となるゴム部材の断面形状が制限されることはなく、その断面形状の自由度を高めることができる。また、非接触式のプロファイルセンサや非接触式の速度センサの使用により、センサとゴム部材との間の滑りに起因する測定誤差を排除し、ゴム部材の質量の測定精度を高めることができる。 In particular, a non-contact profile sensor is used to measure the cross-sectional area of the rubber member, a non-contact speed sensor is used to measure the speed of the rubber member, and a non-contact temperature sensor is used to measure the temperature of the rubber member. is used, the cross-sectional shape of the rubber member to be measured is not restricted, unlike the case where a contact-type sensor is used, and the degree of freedom of the cross-sectional shape can be increased. In addition, by using a non-contact profile sensor or a non-contact speed sensor, it is possible to eliminate measurement errors caused by slippage between the sensor and the rubber member, and improve the accuracy of measuring the mass of the rubber member.

本発明のゴム部材の質量測定装置において、演算装置は、ゴム部材の単位時間当たりの質量として、プロファイルセンサにより計測されたゴム部材の断面積Aと、速度センサにより計測されたゴム部材の速度Vと、温度センサにより計測されたゴム部材の温度Tから換算されたゴム部材の密度ρとの積を算出することが好ましい。これにより、ゴム部材の単位時間当たりの質量を精度良く求めることができる。 In the rubber member mass measuring apparatus of the present invention, the arithmetic unit calculates the cross-sectional area A of the rubber member measured by the profile sensor and the velocity V of the rubber member measured by the velocity sensor as the mass of the rubber member per unit time. and the density ρ of the rubber member converted from the temperature T of the rubber member measured by the temperature sensor. As a result, the mass of the rubber member per unit time can be obtained with high accuracy.

また、本発明のゴム部材の質量測定装置において、演算装置は、ゴム部材の予め取得されたゴム物性を補正項としてゴム部材の密度ρを補正することが好ましい。測定対象となるゴム部材について、粘度や弾性率等のゴム物性を予め取得しておき、ゴム配合や加工条件のバラツキによってゴム物性が変化した場合には、予め取得されたゴム物性を補正項としてゴム部材の密度ρを補正することにより、ゴム部材の質量の測定精度を高めることができる。 Further, in the rubber member mass measuring apparatus of the present invention, it is preferable that the computing device corrects the density ρ of the rubber member using the previously obtained rubber physical properties of the rubber member as a correction term. The rubber physical properties such as viscosity and elastic modulus are acquired in advance for the rubber material to be measured, and if the rubber physical properties change due to variations in rubber compounding and processing conditions, the rubber physical properties acquired in advance are used as correction terms. By correcting the density ρ of the rubber member, it is possible to improve the measurement accuracy of the mass of the rubber member.

更に、本発明のゴム部材の質量測定装置は、ゴム部材の搬送経路において質量測定位置よりも上流側に設定された補正条件測定位置でゴム部材の断面積を計測する非接触式の補正用プロファイルセンサと、上記補正条件測定位置でゴム部材の速度を計測する非接触式の補正用速度センサと、上記補正条件測定位置でゴム部材の温度を計測する非接触式の補正用温度センサとを備え、演算装置が、補正用プロファイルセンサ、補正用速度センサ及び補正用温度センサの計測データを補正項としてゴム部材の単位時間当たりの質量を補正することが好ましい。このように補正条件測定位置において、補正用プロファイルセンサによりゴム部材の断面積を計測し、非接触式の補正用速度センサによりゴム部材の速度を計測し、非接触式の補正用温度センサによりゴム部材の温度を計測し、これら補正用プロファイルセンサ、補正用速度センサ及び補正用温度センサの計測データを補正項としてゴム部材の単位時間当たりの質量を補正することにより、搬送経路におけるゴム部材の伸縮等の影響に起因する測定誤差を補正し、ゴム部材の質量の測定精度を高めることができる。 Further, the rubber member mass measuring apparatus of the present invention is a non-contact correction profile for measuring the cross-sectional area of the rubber member at a correction condition measuring position set upstream of the mass measuring position in the rubber member conveying path. a sensor, a non-contact correction speed sensor for measuring the speed of the rubber member at the correction condition measurement position, and a non-contact correction temperature sensor for measuring the temperature of the rubber member at the correction condition measurement position. Preferably, the computing device corrects the mass per unit time of the rubber member using the measurement data of the correcting profile sensor, the correcting velocity sensor, and the correcting temperature sensor as correction terms. In this manner, at the correction condition measurement position, the cross-sectional area of the rubber member is measured by the correction profile sensor, the speed of the rubber member is measured by the non-contact correction speed sensor, and the rubber temperature is measured by the non-contact correction temperature sensor. By measuring the temperature of the member and correcting the mass of the rubber member per unit time using the measurement data of the profile sensor for correction, the speed sensor for correction and the temperature sensor for correction as a correction term, the expansion and contraction of the rubber member in the conveying route It is possible to correct the measurement error caused by such influences and improve the measurement accuracy of the mass of the rubber member.

本発明の実施形態(参考例)からなるゴム部材の質量測定装置を示す側面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view showing a rubber member mass measuring device according to an embodiment (reference example) of the present invention; 本発明の実施形態(参考例)からなるゴム部材の質量測定方法により得られる単位時間当たりの質量と時間との関係を示すグラフである。4 is a graph showing the relationship between mass per unit time and time obtained by the rubber member mass measuring method according to the embodiment (reference example) of the present invention. 本発明の他の実施形態からなるゴム部材の質量測定装置を示す側面図である。FIG. 3 is a side view showing a rubber member mass measuring device according to another embodiment of the present invention.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1は本発明の実施形態からなるゴム部材の質量測定装置を示すものである。 Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a rubber member mass measuring apparatus according to an embodiment of the present invention.

図1に示すように、本実施形態のゴム部材の質量測定装置は、押出機1から押し出された帯状のゴム部材2の質量を測定するための装置である。ここでは、帯状のゴム部材2が押出機1から直接供給される場合について説明するが、帯状のゴム部材2は押出後にドラムに一旦巻き取られ、そのドラムから巻き解かれたものであっても良い。 As shown in FIG. 1 , the rubber member mass measuring device of the present embodiment is a device for measuring the mass of a strip-shaped rubber member 2 extruded from an extruder 1 . Here, the case where the strip-shaped rubber member 2 is directly supplied from the extruder 1 will be described. good.

本実施形態のゴム部材の質量測定装置は、帯状のゴム部材2をその長手方向に沿って連続的に搬送する搬送装置3と、ゴム部材2の断面積Aを計測する一対の非接触式のプロファイルセンサ4,5と、ゴム部材2の速度Vを計測する非接触式の速度センサ6と、ゴム部材1の温度Tを計測する非接触式の温度センサ7とを備えている。搬送装置3としては、例えば、ベルトコンベアが使用される。プロファイルセンサ4,5は、被測定物の表面形状を光学的に検出する装置であり、ゴム部材2を上面側及び下面側から挟み込むように配置されている。これらプロファイルセンサ4,5で取得されたゴム部材2を両面の表面形状に基づいてゴム部材2の断面積Aが幾何学的に算出される。速度センサ6は、被測定物の移動速度を光学的に検出する装置である。温度センサ7は、例えば、被測定物から放射される赤外線を検出し、その赤外線量に基づいて温度を測定する装置である。これらプロファイルセンサ4,5、速度センサ6及び温度センサ7はいずれもゴム部材1の搬送経路に設定された質量測定位置P1において計測を行うようになっている。センサ4~7の測定点はゴム部材2の長手方向において互いに一致することが好ましいが、ゴム部材2の長手方向に若干ずれていても良い。また、ゴム部材2の搬送経路において質量測定位置P1よりも下流側には、ゴム部材2を切断するための切断装置8が設置されている。 The rubber member mass measuring apparatus of this embodiment includes a conveying device 3 that continuously conveys a band-shaped rubber member 2 along its longitudinal direction, and a pair of non-contact type measuring devices that measure the cross-sectional area A of the rubber member 2. It has profile sensors 4 and 5 , a non-contact speed sensor 6 for measuring the speed V of the rubber member 2 , and a non-contact temperature sensor 7 for measuring the temperature T of the rubber member 1 . As the conveying device 3, for example, a belt conveyor is used. The profile sensors 4 and 5 are devices for optically detecting the surface shape of the object to be measured, and are arranged so as to sandwich the rubber member 2 from the upper and lower surfaces. The cross-sectional area A of the rubber member 2 is geometrically calculated based on the surface shapes of both surfaces of the rubber member 2 acquired by these profile sensors 4 and 5 . The speed sensor 6 is a device that optically detects the moving speed of the object to be measured. The temperature sensor 7 is, for example, a device that detects infrared rays emitted from an object to be measured and measures the temperature based on the amount of infrared rays. These profile sensors 4 and 5, speed sensor 6, and temperature sensor 7 all perform measurement at a mass measurement position P1 set on the conveying path of the rubber member 1. As shown in FIG. It is preferable that the measuring points of the sensors 4 to 7 coincide with each other in the longitudinal direction of the rubber member 2, but they may be slightly shifted in the longitudinal direction of the rubber member 2. Further, a cutting device 8 for cutting the rubber member 2 is installed downstream of the mass measurement position P1 in the transport path of the rubber member 2 .

更に、本実施形態のゴム部材の質量測定装置は、プロファイルセンサ4,5、速度センサ6及び温度センサ7の計測データに基づいて搬送状態にあるゴム部材2の単位時間当たりの質量Mを経時的に演算し、該単位時間当たりの質量Mの積算値を演算する演算装置9を備え、演算装置9が制御装置10に内蔵されている。制御装置10は、演算装置9の演算結果に基づいて切断装置8を駆動してゴム部材2を所定の質量となるように切断する。また、制御装置10は、演算装置9の演算結果を押出機1へのフィードバックとしても利用する。例えば、ゴム部材2の単位時間当たりの質量Mが異常値を呈する場合、それに応じて押出機1の運転速度を制御する。 Furthermore, the rubber member mass measuring apparatus of the present embodiment measures the mass M per unit time of the rubber member 2 in the conveying state over time based on the measurement data of the profile sensors 4 and 5, the speed sensor 6 and the temperature sensor 7. , and an integrated value of the mass M per unit time. The control device 10 drives the cutting device 8 based on the calculation result of the calculation device 9 to cut the rubber member 2 to have a predetermined mass. The control device 10 also uses the calculation result of the calculation device 9 as feedback to the extruder 1 . For example, when the mass M of the rubber member 2 per unit time exhibits an abnormal value, the operating speed of the extruder 1 is controlled accordingly.

次に、上述したゴム部材の質量測定装置を用いてゴム部材2の質量を測定する方法について図2を用いて説明する。先ず、押出機1を駆動することにより、押出機1から帯状のゴム部材2を連続的に押し出し、搬送装置3により帯状のゴム部材2をその長手方向に沿って連続的に搬送する。その際、ゴム部材2の搬送経路に設定された質量測定位置P1において、非接触式のプロファイルセンサ4,5によりゴム部材2の断面積Aを計測し、非接触式の速度センサ6によりゴム部材2の速度Vを計測し、非接触式の温度センサ7によりゴム部材2の温度Tを計測し、演算装置9がプロファイルセンサ4,5、速度センサ6及び温度センサ7の計測データに基づいて搬送状態にあるゴム部材2の単位時間当たりの質量Mを経時的に演算し、該単位時間当たりの質量Mの積算値を演算する。 Next, a method for measuring the mass of the rubber member 2 using the rubber member mass measuring apparatus described above will be described with reference to FIG. First, by driving the extruder 1, the strip-shaped rubber member 2 is continuously extruded from the extruder 1, and the transport device 3 continuously transports the strip-shaped rubber member 2 along its longitudinal direction. At that time, the cross-sectional area A of the rubber member 2 is measured by the non-contact profile sensors 4 and 5 at the mass measurement position P1 set on the conveying path of the rubber member 2, and the non-contact speed sensor 6 measures the rubber member 2, the temperature T of the rubber member 2 is measured by the non-contact temperature sensor 7, and the computing device 9 conveys based on the measurement data of the profile sensors 4, 5, the speed sensor 6, and the temperature sensor 7. The mass M per unit time of the rubber member 2 in the state is calculated over time, and the integrated value of the mass M per unit time is calculated.

より具体的には、演算装置9は、M=A×V×ρの式に基づいて、図2に示すように、ゴム部材2の単位時間当たりの質量Mとして、プロファイルセンサ4,5により計測されたゴム部材2の断面積A(mm2)と、速度センサにより計測されたゴム部材2の速度V(mm/sec)と、温度センサにより計測されたゴム部材2の温度T(℃)から換算されたゴム部材2の密度ρ(g/mm3)との積を算出する。そして、単位時間当たりの質量M(g/sec)を所定の時間にわたって積算することにより積算値Xを算出する。 More specifically, the computing device 9 measures the mass M per unit time of the rubber member 2 by the profile sensors 4 and 5 as shown in FIG. From the measured cross-sectional area A (mm 2 ) of the rubber member 2, the speed V (mm/sec) of the rubber member 2 measured by the speed sensor, and the temperature T (°C) of the rubber member 2 measured by the temperature sensor The product with the converted density ρ (g/mm 3 ) of the rubber member 2 is calculated. Then, an integrated value X is calculated by integrating the mass M (g/sec) per unit time over a predetermined period of time.

上述したゴム部材の質量測定方法では、帯状のゴム部材2をその長手方向に沿って連続的に搬送し、ゴム部材2の搬送経路に設定された質量測定位置P1で非接触式のプロファイルセンサ4,5によりゴム部材2の断面積Aを計測し、質量測定位置P1で非接触式の速度センサ6によりゴム部材2の速度Vを計測し、質量測定位置P1で非接触式の温度センサ7によりゴム部材2の温度Tを計測し、これらの計測データに基づいて搬送状態にあるゴム部材2の単位時間当たりの質量Mを経時的に演算し、該単位時間当たりの質量Mの積算値Xを演算することにより、帯状のゴム部材2の質量を精度良く測定することができる。そして、積算値Xを利用して切断装置8により帯状のゴム部材2を所望の質量となるように切断することができる。 In the rubber member mass measuring method described above, the strip-shaped rubber member 2 is continuously transported along its longitudinal direction, and the non-contact profile sensor 4 is measured at the mass measuring position P1 set on the transport path of the rubber member 2. , 5 to measure the cross-sectional area A of the rubber member 2, measure the velocity V of the rubber member 2 by the non-contact velocity sensor 6 at the mass measurement position P1, and measure the velocity V of the rubber member 2 by the non-contact temperature sensor 7 at the mass measurement position P1. The temperature T of the rubber member 2 is measured, the mass M per unit time of the rubber member 2 in the conveying state is calculated over time based on the measured data, and the integrated value X of the mass M per unit time is calculated. By calculating, the mass of the strip-shaped rubber member 2 can be measured with high accuracy. Then, using the integrated value X, the cutting device 8 can cut the belt-like rubber member 2 so as to have a desired mass.

特に、ゴム部材2の断面積Aの計測に非接触式のプロファイルセンサ4,5を使用し、ゴム部材2の速度Vの計測に非接触式の速度センサ6を使用し、ゴム部材2の温度Tの計測に非接触式の温度センサ7を使用するので、接触式のセンサに依存する場合とは異なって、測定対象となるゴム部材2の断面形状が制限されることはなく、その断面形状の自由度を高めることができる。また、非接触式のプロファイルセンサ4,5や非接触式の速度センサ6の使用により、ゴム部材2の滑りに起因する測定誤差を排除し、ゴム部材2の質量の測定精度を高めることができる。 In particular, the non-contact profile sensors 4 and 5 are used to measure the cross-sectional area A of the rubber member 2, the non-contact speed sensor 6 is used to measure the speed V of the rubber member 2, and the temperature of the rubber member 2 is Since the non-contact temperature sensor 7 is used to measure T, the cross-sectional shape of the rubber member 2 to be measured is not restricted, unlike the case of relying on a contact-type sensor. degree of freedom can be increased. In addition, by using the non-contact profile sensors 4 and 5 and the non-contact speed sensor 6, it is possible to eliminate measurement errors caused by the slippage of the rubber member 2 and improve the measurement accuracy of the mass of the rubber member 2. .

温度センサ7により計測されたゴム部材2の温度Tからゴム部材2の密度ρを換算するにあたって、演算装置9にはゴム部材2の温度Tと密度ρとの相関関係が事前に入力される。つまり、特定のゴム組成物からなるゴム部材2は温度Tが上昇するに連れて密度ρが低下する傾向があるので、その相関関係を参照することにより、ゴム部材2の温度Tから密度ρを換算することができる。 When converting the density ρ of the rubber member 2 from the temperature T of the rubber member 2 measured by the temperature sensor 7 , the correlation between the temperature T and the density ρ of the rubber member 2 is input in advance to the computing device 9 . That is, since the rubber member 2 made of a specific rubber composition tends to have a lower density ρ as the temperature T rises, the density ρ can be calculated from the temperature T of the rubber member 2 by referring to the correlation. can be converted.

ここで、演算装置9は、ゴム部材2の予め取得されたゴム物性を補正項としてゴム部材2の密度ρを補正するように構成されることが望ましい。つまり、演算装置9に入力されるゴム部材2の温度Tと密度ρとの相関関係に関する参照情報は、特定のゴム物性(粘度や弾性率等)を有する基準試料に基づいて決定されるものであるが、実際に測定対象となるゴム部材2のゴム物性(粘度や弾性率等)は製造時のゴム配合や加工条件のバラツキにより変動することがある。そのため、測定対象となるゴム部材2について、粘度や弾性率等のゴム物性を予め取得しておき、ゴム配合や加工条件のバラツキに起因してゴム物性が基準試料に比べて変化した場合には、予め取得されたゴム物性を補正項としてゴム部材2の密度ρを補正することにより、ゴム部材2の質量の測定精度を高めることができる。例えば、実際に測定対象となるゴム部材2の粘度が基準試料の粘度よりも高い場合には、密度ρが小さくなるように補正を行う。また、実際に測定対象となるゴム部材2の弾性率が基準試料の弾性率よりも高い場合には、密度ρが小さくなるように補正を行う。このような補正項となるゴム物性は特に限定されるものではなく、ゴム部材2の温度Tと密度ρとの相関関係に影響を与えるものであれば適宜採用することができる。 Here, the computing device 9 is desirably configured to correct the density ρ of the rubber member 2 using the previously obtained rubber physical property of the rubber member 2 as a correction term. That is, the reference information regarding the correlation between the temperature T and the density ρ of the rubber member 2 input to the arithmetic unit 9 is determined based on a reference sample having specific rubber physical properties (viscosity, elastic modulus, etc.). However, the rubber physical properties (viscosity, elastic modulus, etc.) of the rubber member 2 to be actually measured may fluctuate due to variations in rubber compounding and processing conditions at the time of manufacture. Therefore, the physical properties of the rubber member 2 to be measured, such as viscosity and elastic modulus, are obtained in advance, and if the physical properties of the rubber change from those of the reference sample due to variations in rubber compounding and processing conditions, By correcting the density ρ of the rubber member 2 using the rubber physical properties obtained in advance as a correction term, the measurement accuracy of the mass of the rubber member 2 can be improved. For example, when the viscosity of the rubber member 2 to be actually measured is higher than the viscosity of the reference sample, correction is performed so that the density ρ becomes smaller. Further, when the elastic modulus of the rubber member 2 to be actually measured is higher than the elastic modulus of the reference sample, correction is performed so that the density ρ becomes smaller. The physical properties of the rubber used as such a correction term are not particularly limited, and any property that affects the correlation between the temperature T and the density ρ of the rubber member 2 can be used as appropriate.

図3は本発明の他の実施形態からなるゴム部材の質量測定装置を示すものである。図3において図1と同一物には同一符号を付してその部分の詳細な説明は省略する。 FIG. 3 shows a rubber member mass measuring apparatus according to another embodiment of the present invention. In FIG. 3, the same reference numerals are given to the same parts as in FIG. 1, and detailed description of those parts will be omitted.

図3に示すように、本実施形態のゴム部材の質量測定装置は、ゴム部材2の搬送経路において質量測定位置P1よりも上流側に設定された補正条件測定位置P2でゴム部材2の断面積A′を計測する非接触式の補正用プロファイルセンサ14,15と、補正条件測定位置P2でゴム部材2の速度V′を計測する非接触式の補正用速度センサ16と、補正条件測定位置P2でゴム部材2の温度T′を計測する非接触式の補正用温度センサ17とを備えている。補正用プロファイルセンサ14,15、補正用速度センサ16及び補正用温度センサ17としては、前述のプロファイルセンサ4,5、速度センサ6及び温度センサ7と同様のものを使用することができる。センサ14~17の測定点はゴム部材2の長手方向において互いに一致することが好ましいが、ゴム部材2の長手方向に若干ずれていても良い。 As shown in FIG. 3, in the rubber member mass measuring apparatus of the present embodiment, the cross-sectional area of the rubber member 2 is measured at a correction condition measuring position P2 set upstream of the mass measuring position P1 in the transport path of the rubber member 2. Non-contact correction profile sensors 14 and 15 for measuring A', a non-contact correction speed sensor 16 for measuring the speed V' of the rubber member 2 at the correction condition measurement position P2, and the correction condition measurement position P2. is provided with a non-contact correction temperature sensor 17 for measuring the temperature T' of the rubber member 2 at. As the correction profile sensors 14 and 15, the correction speed sensor 16 and the correction temperature sensor 17, the same sensors as the profile sensors 4 and 5, the speed sensor 6 and the temperature sensor 7 can be used. It is preferable that the measuring points of the sensors 14 to 17 coincide with each other in the longitudinal direction of the rubber member 2, but they may be slightly shifted in the longitudinal direction of the rubber member 2.

演算装置9は、補正用プロファイルセンサ14,15、補正用速度センサ16及び補正用温度センサ17の計測データを補正項としてゴム部材2の単位時間当たりの質量Mを補正する。即ち、ゴム部材2が搬送中に収縮した場合、それに起因して測定誤差が生じる場合がある。そこで、質量測定位置P1よりも上流側に設定された補正条件測定位置P2において、補正用プロファイルセンサ14,15によりゴム部材2の断面積A′を計測し、非接触式の補正用速度センサ16によりゴム部材2の速度V′を計測し、非接触式の補正用温度センサ17によりゴム部材2の温度T′を計測し、これら計測データを補正項としてゴム部材2の単位時間当たりの質量Mを補正することにより、搬送経路におけるゴム部材2の伸縮等の影響に起因する測定誤差を補正し、ゴム部材2の質量の測定精度を高めることができる。 The calculation device 9 corrects the mass M of the rubber member 2 per unit time using the measurement data of the correction profile sensors 14 and 15, the correction speed sensor 16, and the correction temperature sensor 17 as correction terms. That is, if the rubber member 2 shrinks during transportation, it may cause a measurement error. Therefore, at the correction condition measurement position P2 set upstream of the mass measurement position P1, the cross-sectional area A' of the rubber member 2 is measured by the correction profile sensors 14 and 15, and the non-contact correction speed sensor 16 is used. The velocity V' of the rubber member 2 is measured by the non-contact correction temperature sensor 17, and the temperature T' of the rubber member 2 is measured by the non-contact correction temperature sensor 17. Using these measured data as a correction term, the mass M By correcting , it is possible to correct the measurement error caused by the influence of expansion and contraction of the rubber member 2 in the transport path, and improve the measurement accuracy of the mass of the rubber member 2 .

例えば、演算装置9は、M′=A′×V′×ρ′の式に基づいて、補正条件測定位置P2におけるゴム部材2の単位時間当たりの質量M′を算出することができる。ゴム部材2の特定の部分が補正条件測定位置P2から質量測定位置P1に移動する際に収縮を全く生じなかった場合、ゴム部材2の単位時間当たりの質量Mは単位時間当たりの質量M′と一致する。しかしながら、ゴム部材2の特定の部分が補正条件測定位置P2から質量測定位置P1に移動する際に収縮を生じた場合、ゴム部材2の単位時間当たりの質量Mと単位時間当たりの質量M′との間には質量差ΔMを生じることになる。そして、このような傾向はゴム部材2の特定の部分が質量測定位置P1から切断位置に移動する際にも引き続き表れる。そこで、切断位置におけるゴム部材2の単位時間当たりの質量M″が適正化されるように差ΔMに基づいてゴム部材2の単位時間当たりの質量Mを補正することができる。例えば、補正条件測定位置P2から質量測定位置P1までの距離と質量測定位置P1から切断位置までの距離が等しい場合、M″=M+ΔMとなる。補正条件測定位置P2から質量測定位置P1までの距離と質量測定位置P1から切断位置までの距離が異なる場合、その距離の比に応じて質量差ΔMによる影響を調整すれば良い。 For example, the computing device 9 can calculate the mass M' of the rubber member 2 per unit time at the correction condition measurement position P2 based on the formula M'=A'.times.V'.times..rho.'. If the specific portion of the rubber member 2 does not shrink at all when moving from the correction condition measurement position P2 to the mass measurement position P1, the mass M per unit time of the rubber member 2 is equal to the mass M' per unit time. match. However, if a specific portion of the rubber member 2 contracts when moving from the correction condition measurement position P2 to the mass measurement position P1, the mass M per unit time of the rubber member 2 and the mass M' per unit time There will be a mass difference ΔM between Such a tendency continues to appear even when a specific portion of the rubber member 2 moves from the mass measurement position P1 to the cutting position. Therefore, it is possible to correct the mass M of the rubber member 2 per unit time based on the difference ΔM so that the mass M″ of the rubber member 2 per unit time at the cutting position is optimized. If the distance from the position P2 to the mass measurement position P1 is equal to the distance from the mass measurement position P1 to the cutting position, M″=M+ΔM. Correction condition If the distance from the measurement position P2 to the mass measurement position P1 is different from the distance from the mass measurement position P1 to the cutting position, the influence of the mass difference ΔM may be adjusted according to the ratio of the distances.

補正用プロファイルセンサ14,15、補正用速度センサ16及び補正用温度センサ17の計測データを補正項としてゴム部材2の単位時間当たりの質量Mを補正するにあたって、上述のように計測データの全てを必ずしも利用する必要はない。例えば、質量測定位置P1におけるゴム部材2の断面積Aと補正条件測定位置P2におけるゴム部材2の断面積A′との差ΔAを求め、この差ΔAの単体を補正項として利用することが可能である。また、質量測定位置P1におけるゴム部材2の速度Vと補正条件測定位置P2におけるゴム部材2の速度V′との差ΔVを求め、この差ΔVの単体を補正項として利用することが可能である。更に、質量測定位置P1におけるゴム部材2の温度Tと補正条件測定位置P2におけるゴム部材2の温度T′との差ΔTを求め、この差ΔTを補正項として利用することが可能である。 In correcting the mass M per unit time of the rubber member 2 using the measurement data of the correction profile sensors 14 and 15, the correction speed sensor 16, and the correction temperature sensor 17 as correction terms, all of the measurement data are used as described above. You don't necessarily have to use it. For example, it is possible to obtain the difference ΔA between the cross-sectional area A of the rubber member 2 at the mass measurement position P1 and the cross-sectional area A′ of the rubber member 2 at the correction condition measurement position P2, and use this difference ΔA alone as a correction term. is. Further, it is possible to obtain the difference ΔV between the speed V of the rubber member 2 at the mass measurement position P1 and the speed V′ of the rubber member 2 at the correction condition measurement position P2, and use this difference ΔV alone as a correction term. . Furthermore, it is possible to find the difference ΔT between the temperature T of the rubber member 2 at the mass measurement position P1 and the temperature T' of the rubber member 2 at the correction condition measurement position P2, and use this difference ΔT as a correction term.

上述したゴム部材の質量測定方法では、帯状のゴム部材2の質量を精度良く測定することができることに加えて、図2に示すように、連続的に搬送されるゴム部材2の質量分布を時間軸(即ち、ゴム部材2の長手方向)に沿って把握することが可能である。そのため、例えば、帯状のゴム部材を切断することで得られるタイヤ構成部材(例えば、トレッド部材、サイド部材)をタイヤ成形ドラムに巻き付ける際に、タイヤ構成部材の搬送装置の移動速度と成形ドラムの回転速度をタイヤ構成部材の長手方向の質量分布に基づいて制御することにより、タイヤ構成部材の質量分布がドラム周上で均一となるように巻き付け作業を行うことが可能になる。 In the rubber member mass measuring method described above, in addition to being able to accurately measure the mass of the belt-shaped rubber member 2, as shown in FIG. It is possible to grasp along the axis (that is, the longitudinal direction of the rubber member 2). Therefore, for example, when a tire constituent member (e.g., tread member, side member) obtained by cutting a band-shaped rubber member is wound around the tire forming drum, the moving speed of the conveying device for the tire constituent member and the rotation of the forming drum By controlling the speed based on the longitudinal mass distribution of the tire component, it is possible to perform the winding operation in such a way that the mass distribution of the tire component is uniform around the circumference of the drum.

1 押出機
2 ゴム部材
3 搬送装置
4,5 プロファイルセンサ
6 速度センサ
7 温度センサ
8 切断装置
9 演算装置
10 制御装置
14,15 補正用プロファイルセンサ
16 補正用速度センサ
17 補正用温度センサ
REFERENCE SIGNS LIST 1 extruder 2 rubber member 3 conveying device 4, 5 profile sensor 6 speed sensor 7 temperature sensor 8 cutting device 9 computing device 10 control device 14, 15 profile sensor for correction 16 speed sensor for correction 17 temperature sensor for correction

Claims (6)

帯状のゴム部材をその長手方向に沿って連続的に搬送する搬送装置と、前記ゴム部材の搬送経路において前記搬送装置が途切れた部位に設定された質量測定位置で前記ゴム部材を両側から挟み込むように配置されていて前記ゴム部材の断面積を計測する一対の非接触式のプロファイルセンサと、前記質量測定位置で前記ゴム部材の速度を計測する非接触式の速度センサと、前記質量測定位置で前記ゴム部材の温度を計測する非接触式の温度センサと、前記プロファイルセンサ、前記速度センサ及び前記温度センサの計測データに基づいて搬送状態にある前記ゴム部材の単位時間当たりの質量を経時的に演算し、該単位時間当たりの質量の積算値を演算する演算装置と、前記ゴム部材の搬送経路において前記質量測定位置よりも下流側に設置されていて前記積算値を利用して前記ゴム部材を所望の質量となるように切断する切断装置とを備えるゴム部材の質量測定装置であって、
前記ゴム部材の搬送経路において前記質量測定位置よりも上流側であって前記搬送装置が途切れた部位に設定された補正条件測定位置で前記ゴム部材を両側から挟み込むように配置されていて前記ゴム部材の断面積を計測する一対の非接触式の補正用プロファイルセンサと、前記補正条件測定位置で前記ゴム部材の速度を計測する非接触式の補正用速度センサと、前記補正条件測定位置で前記ゴム部材の温度を計測する非接触式の補正用温度センサとを備え、前記演算装置が、前記補正用プロファイルセンサ、前記補正用速度センサ及び前記補正用温度センサの計測データを補正項として、前記積算値の演算に供される前記ゴム部材の単位時間当たりの質量を補正することを特徴とするゴム部材の質量測定装置。
A conveying device for continuously conveying a band-shaped rubber member along its longitudinal direction, and a mass measurement position set at a portion where the conveying device is interrupted in the conveying path of the rubber member so as to sandwich the rubber member from both sides. a pair of non-contact profile sensors for measuring the cross-sectional area of the rubber member, a non-contact speed sensor for measuring the speed of the rubber member at the mass measurement position, and A non-contact temperature sensor for measuring the temperature of the rubber member, and mass per unit time of the rubber member being conveyed over time based on measurement data of the profile sensor, the speed sensor, and the temperature sensor. and an arithmetic device for calculating an integrated value of the mass per unit time; A rubber member mass measuring device comprising a cutting device for cutting to a desired mass ,
The rubber member is arranged to sandwich the rubber member from both sides at a correction condition measurement position set upstream of the mass measurement position in the transport path of the rubber member and at a portion where the transport device is interrupted. A pair of non-contact correction profile sensors for measuring the cross-sectional area of the rubber member, a non-contact correction speed sensor for measuring the speed of the rubber member at the correction condition measurement position, and the rubber at the correction condition measurement position and a non-contact correction temperature sensor for measuring the temperature of the member, and the calculation device calculates the integration using the measurement data of the correction profile sensor, the correction speed sensor, and the correction temperature sensor as correction terms. A mass measuring device for a rubber member, characterized in that the mass per unit time of the rubber member used for calculation of the value is corrected .
前記演算装置が、前記ゴム部材の単位時間当たりの質量として、前記プロファイルセンサにより計測された前記ゴム部材の断面積Aと、前記速度センサにより計測された前記ゴム部材の速度Vと、前記温度センサにより計測された前記ゴム部材の温度Tから換算された前記ゴム部材の密度ρとの積を算出することを特徴とする請求項1に記載のゴム部材の質量測定装置。 The arithmetic unit calculates the cross-sectional area A of the rubber member measured by the profile sensor, the speed V of the rubber member measured by the speed sensor, and the temperature sensor as the mass of the rubber member per unit time. 2. A mass measuring apparatus for a rubber member according to claim 1, wherein the product of the density ρ of the rubber member converted from the temperature T of the rubber member measured by . 前記演算装置が、前記ゴム部材の予め取得されたゴム物性を補正項として前記ゴム部材の密度ρを補正することを特徴とする請求項1又は2に記載のゴム部材の質量測定装置。 3. The apparatus for measuring the mass of a rubber member according to claim 1, wherein the calculating device corrects the density ρ of the rubber member using a rubber physical property obtained in advance of the rubber member as a correction term. 帯状のゴム部材をその長手方向に沿って連続的に搬送し、前記ゴム部材の搬送経路において前記搬送装置が途切れた部位に設定された質量測定位置で前記ゴム部材を両側から挟み込むように配置された一対の非接触式のプロファイルセンサにより前記ゴム部材の断面積を計測し、前記質量測定位置で非接触式の速度センサにより前記ゴム部材の速度を計測し、前記質量測定位置で非接触式の温度センサにより前記ゴム部材の温度を計測し、前記プロファイルセンサ、前記速度センサ及び前記温度センサの計測データに基づいて搬送状態にある前記ゴム部材の単位時間当たりの質量を経時的に演算し、該単位時間当たりの質量の積算値を演算し、前記ゴム部材の搬送経路において前記質量測定位置よりも下流側に設置された切断装置により前記積算値を利用して前記ゴム部材を所望の質量となるように切断するゴム部材の質量測定方法であって、
前記ゴム部材の搬送経路において前記質量測定位置よりも上流側であって前記搬送装置が途切れた部位に設定された補正条件測定位置で前記ゴム部材を両側から挟み込むように配置された一対の補正用プロファイルセンサにより前記ゴム部材の断面積を計測し、前記補正条件測定位置で非接触式の補正用速度センサにより前記ゴム部材の速度を計測し、前記補正条件測定位置で非接触式の補正用温度センサにより前記ゴム部材の温度を計測し、前記補正用プロファイルセンサ、前記補正用速度センサ及び前記補正用温度センサの計測データを補正項として、前記積算値の演算に供される前記ゴム部材の単位時間当たりの質量を補正することを特徴とするゴム部材の質量測定方法。
A belt-shaped rubber member is continuously conveyed along its longitudinal direction, and is arranged so as to sandwich the rubber member from both sides at a mass measurement position set at a portion where the conveying device is interrupted in the conveying path of the rubber member. The cross-sectional area of the rubber member is measured by a pair of non-contact profile sensors, the velocity of the rubber member is measured by a non-contact velocity sensor at the mass measurement position, and the non-contact velocity sensor is measured at the mass measurement position. measuring the temperature of the rubber member with a temperature sensor, calculating over time the mass per unit time of the rubber member in a conveying state based on the measurement data of the profile sensor, the speed sensor and the temperature sensor; An integrated value of mass per unit time is calculated, and the rubber member is cut to a desired mass using the integrated value by a cutting device installed downstream of the mass measurement position in the conveying path of the rubber member. A method for measuring the mass of a rubber member cut like
A pair of corrective components arranged to sandwich the rubber member from both sides at a correction condition measuring position set upstream of the mass measuring position in the conveying path of the rubber member and at a portion where the conveying device is interrupted. A cross-sectional area of the rubber member is measured by a profile sensor, a speed of the rubber member is measured by a non-contact correction speed sensor at the correction condition measurement position, and a non-contact correction temperature is measured at the correction condition measurement position. The temperature of the rubber member is measured by a sensor, and the measurement data of the profile sensor for correction, the speed sensor for correction, and the temperature sensor for correction are used as correction terms, and the integrated value is calculated as a unit of the rubber member. A method for measuring the mass of a rubber member, comprising correcting the mass per hour .
前記ゴム部材の単位時間当たりの質量として、前記プロファイルセンサにより計測された前記ゴム部材の断面積Aと、前記速度センサにより計測された前記ゴム部材の速度Vと、前記温度センサにより計測された前記ゴム部材の温度Tから換算された前記ゴム部材の密度ρとの積を算出することを特徴とする請求項に記載のゴム部材の質量測定方法。 As the mass of the rubber member per unit time, the cross-sectional area A of the rubber member measured by the profile sensor, the speed V of the rubber member measured by the speed sensor, and the 5. The method of measuring the mass of a rubber member according to claim 4 , wherein the product of the density ρ of the rubber member converted from the temperature T of the rubber member and the density ρ of the rubber member is calculated. 前記ゴム部材の予め取得されたゴム物性を補正項として前記ゴム部材の密度ρを補正することを特徴とする請求項又はに記載のゴム部材の質量測定方法。 6. The method for measuring the mass of a rubber member according to claim 4 , wherein the density [rho] of the rubber member is corrected using a rubber physical property obtained in advance of the rubber member as a correction term.
JP2018180733A 2018-09-26 2018-09-26 Mass measuring device and mass measuring method for rubber member Active JP7335482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018180733A JP7335482B2 (en) 2018-09-26 2018-09-26 Mass measuring device and mass measuring method for rubber member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018180733A JP7335482B2 (en) 2018-09-26 2018-09-26 Mass measuring device and mass measuring method for rubber member

Publications (2)

Publication Number Publication Date
JP2020051862A JP2020051862A (en) 2020-04-02
JP7335482B2 true JP7335482B2 (en) 2023-08-30

Family

ID=69996750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018180733A Active JP7335482B2 (en) 2018-09-26 2018-09-26 Mass measuring device and mass measuring method for rubber member

Country Status (1)

Country Link
JP (1) JP7335482B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375337B2 (en) * 2019-06-05 2023-11-08 住友ゴム工業株式会社 Shape measuring device and shape measuring method for molded products

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199111A1 (en) 1999-04-20 2005-09-15 Formax, Inc. Automated product profiling apparatus and product slicing system using same
JP2006116835A (en) 2004-10-22 2006-05-11 Bridgestone Corp Rubber weight detection system and weight detection method
JP2007263818A (en) 2006-03-29 2007-10-11 Jfe Steel Kk Adjusting method for thickness measuring instrument, and device therefor
JP2008137361A (en) 2006-12-05 2008-06-19 Sumitomo Rubber Ind Ltd Manufacturing method of rubber-like sheet
US20110154969A1 (en) 2009-12-21 2011-06-30 Weber Maschinenbau Gmbh Breidenbach Scanning Device
JP2012103182A (en) 2010-11-12 2012-05-31 Yamato Scale Co Ltd Conveyor scale
JP2012251816A (en) 2011-06-01 2012-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Shape measurement device
JP2014106084A (en) 2012-11-27 2014-06-09 Furukawa Industrial Machinery Systems Co Ltd Device and method for inspecting granulated substance
JP2017053789A (en) 2015-09-11 2017-03-16 アズビル株式会社 Velocity measurement device and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3015214B2 (en) * 1992-12-25 2000-03-06 東レ・ダウコーニング・シリコーン株式会社 Method and apparatus for controlling weight of rubber veil
JPH071558A (en) * 1993-06-14 1995-01-06 Yokohama Rubber Co Ltd:The Extrusion control of strip like rubber material
JP3031529B2 (en) * 1995-03-31 2000-04-10 川崎製鉄株式会社 Method and apparatus for measuring sectional dimensions of H-section steel
JPH1029240A (en) * 1996-07-16 1998-02-03 Yokohama Rubber Co Ltd:The Control of extrusion weight of striplike rubber material
US5960104A (en) * 1996-08-16 1999-09-28 Virginia Polytechnic & State University Defect detection system for lumber
GB9805445D0 (en) * 1998-03-16 1998-05-13 Whitehouse John A Product scanner
KR101032759B1 (en) * 2008-11-13 2011-05-06 금호타이어 주식회사 Device of controlling extruder of non-product strip for tire and method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199111A1 (en) 1999-04-20 2005-09-15 Formax, Inc. Automated product profiling apparatus and product slicing system using same
JP2006116835A (en) 2004-10-22 2006-05-11 Bridgestone Corp Rubber weight detection system and weight detection method
JP2007263818A (en) 2006-03-29 2007-10-11 Jfe Steel Kk Adjusting method for thickness measuring instrument, and device therefor
JP2008137361A (en) 2006-12-05 2008-06-19 Sumitomo Rubber Ind Ltd Manufacturing method of rubber-like sheet
US20110154969A1 (en) 2009-12-21 2011-06-30 Weber Maschinenbau Gmbh Breidenbach Scanning Device
JP2012103182A (en) 2010-11-12 2012-05-31 Yamato Scale Co Ltd Conveyor scale
JP2012251816A (en) 2011-06-01 2012-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Shape measurement device
JP2014106084A (en) 2012-11-27 2014-06-09 Furukawa Industrial Machinery Systems Co Ltd Device and method for inspecting granulated substance
JP2017053789A (en) 2015-09-11 2017-03-16 アズビル株式会社 Velocity measurement device and method

Also Published As

Publication number Publication date
JP2020051862A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US20110218760A1 (en) Displacement detection apparatus and method of correcting error of scale used for displacement detection apparatus
JP5322764B2 (en) Tire molding equipment
JP7335482B2 (en) Mass measuring device and mass measuring method for rubber member
JP4818924B2 (en) Length measuring method and apparatus for belt-shaped member
US9064740B2 (en) Measurement device and method for vapour deposition applications
JP2014077977A5 (en)
JP2012061855A5 (en) Image forming system
JP6373676B2 (en) Rubber sheet thickness distribution measuring apparatus and measuring method
JP2008007246A (en) Belt adjusting device, belt adjusting method, and belt conveyance device
JP2016132207A (en) Printing position correction method and printer with use of same
US9704076B2 (en) Rotary encoder correcting method for a transport apparatus, and a transport apparatus using same
US8355658B2 (en) Image forming apparatus having a mechanism for detecting a mark on a belt
JP2017151376A (en) Image forming apparatus, image forming method, and program
JP2012121741A (en) Device for detecting conveyance amount of plate-shaped object, device for cutting plate-shaped object, method for detecting conveyance amount of plate-shaped object, device for forming cutting line on plate-shaped object, and method for forming cutting line on plate-shaped object
KR101813111B1 (en) Apparatus for measuring state of moving object
CN103213295A (en) A transporting conveyer equipped with a rubber component and a transporting method
US9592684B2 (en) Recording apparatus and recording method
KR101291053B1 (en) Carrage measurement system and method for the same
JP5816039B2 (en) Method and apparatus for correcting deformation of belt-shaped rubber member
JP2012161997A (en) Device for manufacturing moldings including belt member and method for manufacturing these moldings
JP2004000301A (en) Method for supplying weighed dough
JP2013003117A (en) Thickness measuring method of sheet-like material, and conveyance device of sheet-like material
JP6390189B2 (en) Belt conveying apparatus and image forming apparatus
JP5449469B2 (en) Image forming apparatus
JP3987422B2 (en) Tire member thickness measuring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230731

R150 Certificate of patent or registration of utility model

Ref document number: 7335482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150