JPS58191908A - Length measuring device of band-shaped material to be carried - Google Patents

Length measuring device of band-shaped material to be carried

Info

Publication number
JPS58191908A
JPS58191908A JP7498682A JP7498682A JPS58191908A JP S58191908 A JPS58191908 A JP S58191908A JP 7498682 A JP7498682 A JP 7498682A JP 7498682 A JP7498682 A JP 7498682A JP S58191908 A JPS58191908 A JP S58191908A
Authority
JP
Japan
Prior art keywords
length
strip
band
conveyor
shaped material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7498682A
Other languages
Japanese (ja)
Other versions
JPH0116363B2 (en
Inventor
Tsutomu Kitamura
北村 務
Tatsuo Furuichi
古市 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP7498682A priority Critical patent/JPS58191908A/en
Publication of JPS58191908A publication Critical patent/JPS58191908A/en
Publication of JPH0116363B2 publication Critical patent/JPH0116363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/043Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve the precision of length measurement, by using two photodiode array cameras and selecting measured values at the time when the difference between the timing of acquisition of the front edge of a band-shaped material due to the lower-side camera and that of the rear edge of the band- shaped material due to the upper-side camera is minimum and defining the addition value as a length measured value. CONSTITUTION:Photodiode array cameras 1 and 2 are arranged along a carrying path of a band-shaped material T1 above a conveyor 6, and an operating device 5 is provided. Measurement signals or the like issued from both cameras 1 and 2 are operated to select measured values at the time when the difference between the timing of acquisition of the front edge of the band-shaped material T1 due to the lower-side camera 1 and that of the rear edge of the band-shaped material T1 due to the upper-side camera 2 is minimum, namely, at the time when both edges are acquired almost simultaneously, and the addition value based on these measured values is defined as a length measured value L of the band-shaped material T1. Thus, the inevitable error due to movement of the moving band-shaped material T1 is reduced to the minimum.

Description

【発明の詳細な説明】 本発明はコンベア上を高速で搬送される帯状体の長さを
光電変換的な無接触下で正確に計測する副長袋++It
の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a sub-length bag that accurately measures the length of a strip conveyed at high speed on a conveyor without contact using photoelectric conversion.
Regarding the configuration of

移動中の帯状体の長さを計測するのに、最近はフォトダ
イオードアレイカメラが屡々使用される。
Recently, photodiode array cameras are often used to measure the length of moving strips.

例えばタイヤ生産ラインにおけるトレッド押出し工程で
押出装置から押出され定寸長に切断されたトレッド部材
がコンベア上に間隔を存して搬送される過程で、各トレ
ッド部材を移送を停止することなく測長する場合などに
利用されるものである。
For example, in the tread extrusion process on a tire production line, tread members are extruded from an extrusion device and cut into fixed lengths, and as they are transported on a conveyor at intervals, the length of each tread member is measured without stopping the transport. It is used when

この種の測長装置はカメラの分解能が高いので可成り高
精I隻で測長可能であるが、フォトダイオードカメラ(
以下カメラと略称する)での1走査期間中に帯状体が移
動しているために、その移動量を最大とする測定誤差の
発生を避けることは不可能であって、その誤差を如何に
小さくするかが重大な課題として採り」二げられていた
This type of length measuring device has a high resolution camera, so it is possible to measure length with a fairly high-precision I boat, but a photodiode camera (
Since the strip moves during one scanning period with the camera (hereinafter abbreviated as camera), it is impossible to avoid the measurement error caused by the maximum amount of movement. The question of whether to do so was considered a serious issue.

従来のこの種測長装置はカメラを1基使用するもの(第
3図参照)と2基使用するもの(第4図参照)との2種
があり、前者の装置はコンベア(6)上を搬送されてき
た帯状体(T2)の前端縁を光直変換形検出手段(,2
,0:’iで検出すると(第3図ビ)参照)該検出手段
a、3u■のフォトスイッチα葎はカメラ(]])に信
号を送って走査を開始させ測長するようになっている(
第3図(へ))参照)。
There are two types of conventional length measuring devices of this type: one that uses one camera (see Figure 3) and one that uses two cameras (see Figure 4). The front edge of the conveyed strip (T2) is detected by the optical direct conversion type detection means (,2
, 0: 'i (see Figure 3 B)) The photoswitch α of the detection means a and 3u sends a signal to the camera (]]) to start scanning and measure the length. There is (
(See Figure 3(f))).

この測長の際に、帯状体(T2)は常に(財)の速度で
移動しているので、検出が行われてから走査が開始され
るまでの時間遅れをΔ【とすると、この間に帯状体(T
2)はll−Δtvだけ移動する。
During this length measurement, the strip (T2) is always moving at a speed of Body (T
2) moves by ll-Δtv.

走査を開始したカメラ(11)が帯状体(T2)の後端
縁を検出1〜て光電変換素子群のうち遮光されている素
子の数を図示せぬ処理器に送信することによって該処理
器はこの値と予め入力されているオフセット量(4o’
)とを和算し、これを帯状体(T2)の計測長として出
力する。
The camera (11) that started scanning detects the trailing edge of the strip (T2) and sends the number of light-shielded elements in the group of photoelectric conversion elements to a processor (not shown). is this value and the offset amount input in advance (4o'
) and output this as the measured length of the strip (T2).

ところで第3図(0)と第3図(ハ)を対照すれば明ら
かな通り、カメラq1)が走査を開始してから帯状体(
T2)の後端縁を検出する間に、該帯状体(T2)は(
el′−e+)たけillするので、計測した値は実1
4の長さに比しその分短くなり、これが誤差となる。
By the way, if you compare Figure 3 (0) and Figure 3 (C), it is clear that the band-shaped body (
While detecting the trailing edge of T2), the strip (T2)
el'-e+), so the measured value is actually 1
It is shorter than the length of 4, and this becomes an error.

今、カメラ(11)の走査速度を(v)とすれば、前記
誤差の最大値は ■ 一方、後首の装置は、投光J ’2:3)の投射光が移
動する帯状体(T3)の前端縁で遮光されると、フオト
ス・イツチ124)は信号を発しく第4図(イ)参11
.<1. )、カメラ(211゜2諾の走龜を開始させ
るが、その走査方向は第4図(ロ)に示す通り、下手側
のカメラ処l)は帯状体(T3)の進行方向であり、上
手側のカメラ(四は帯状体(T3)の進行と逆方向であ
る。
Now, if the scanning speed of the camera (11) is (v), the maximum value of the error is ), the photo switch 124) emits a signal when the light is blocked by the front edge of the
.. <1. ), the camera (211°2) starts scanning, as shown in Fig. 4 (b), the camera processing on the lower side (l) is in the advancing direction of the strip (T3), and the scanning direction on the lower side is in the direction of movement of the strip (T3). The side camera (four is in the opposite direction to the movement of the strip (T3)).

カメラ:22)が帯状体(T3)の後端縁を捕捉すると
、カメラ(′2zはその時点で遮光された内蔵の光′直
変換素子の数を図示せぬ処理器に入力し、該処理器はそ
れにより第4図(ロ)に示す長さく42’)を算出する
When the camera (22) captures the rear edge of the strip (T3), the camera (22) inputs the number of built-in optical direct conversion elements that are blocked at that time to a processor (not shown), and processes the The vessel thereby calculates the length 42') shown in Figure 4 (b).

一方、カメラ処)が帯状体(T8)の前端縁を捕えると
、該カメラ1.21)はその時点における遮光された光
4変換素子の数を処理器に入力し、該処理器はこれによ
り第4図(ハ)に示される長さくlt’)を算出し、さ
らにこの値をlu記(1?2’)と、予め入力されてい
るオフセット長さくl!o)とに合算してその和を帯状
体(T3)の測定値として出力するようになっている。
On the other hand, when the camera 1.21) captures the front edge of the strip (T8), the camera 1.21) inputs the number of light 4 conversion elements that are blocked at that time into the processor; The length lt') shown in FIG. 4(c) is calculated, and this value is expressed as lu (1?2'), and the offset length lt', which has been input in advance, is calculated. o) and outputs the sum as the measured value of the strip (T3).

この場合の帯状体の長さの測定値は、 7?1′モ#o+12’=≠’yv十lo+evであっ
て、誤差の最大値は、 一例を挙げると 帯状体の移動速度 60m7んc (V= 1run/
m5ec )カメラ、21i、 122)の計測範囲 
 100mmカメラ+21)、 1:22)の素子数 
  1,000個走査周期         1m五/
走査フォトスイッチ(24)の応答遅れ  △を二2m
5etの場合について前記誤差の値は、カメラ(21)
、・22)の計測範囲、素子数、走査周期の値から走査
速度は、V=100朋/m五 となり、 目n記両式(イ)、(0)より、 カメラ1基の場合の最大誤差は−2,99ma+となり
、一方、カメラ2基の場合の最大誤差は、lL −12
= −5()−50+u+ 、 lL + 772 =
 5ト15軸mのときて九0゜5朋となる。
In this case, the measured value of the length of the strip is 7?1'mo#o+12'=≠'yv1lo+ev, and the maximum value of the error is, for example, the moving speed of the strip 60m7c ( V= 1run/
m5ec) camera, 21i, 122) measurement range
100mm camera + 21), 1:22) number of elements
1,000 pieces scanning cycle 1m5/
Scanning photoswitch (24) response delay △22m
The value of the error for the case of 5et is the camera (21)
,・22) From the values of measurement range, number of elements, and scanning period, the scanning speed is V = 100 m/m5, and from equations (a) and (0) in item n, the maximum for one camera is The error is -2,99ma+, while the maximum error with two cameras is lL -12
= -5()-50+u+, 1L+772=
When 5 points and 15 axes m, it becomes 90 degrees 5 degrees.

このように従来の装置では呵成りの大きさの測定誤差を
回避することができなかった事実に鑑みて、本発明はか
\る欠点を解消するべくなされたものであって、計測時
の不可避とされる誤差を格段に小さくし得る測長装置を
提供することを目的とする1、 しかして本発明は上記目的を十分に達成するべく、特に
2個のダイオードフォトアレイカメラと、演算装置dと
から形成し、2個の前記カメラは帯状体の搬送経路の上
方においてコンベアの走行方向に対し上手および下手と
なる前後にかつ走査方向を前記コンベアの前記走行方向
に平行せしめて設けると共に、コンベア上で前後する2
つの測長領域の間に帯状体の長さに関連した値の所定間
隔が′保持される如く配置して、下手側の前記カメラで
測長領域内に存する帯状体の前端縁に連る部分の長さを
計測し、上手側の前記カメラで測長領域内に存する帯状
体の後端縁に連る部分の長さを計測する一方、前記演算
装置は前記両カメラが夫々発する計測(M号および前記
所定間隙に対応する信号の3つの値の和算を、+iil
記両カメラに送る同期作動指令による1回の走査毎に行
うと共に、この和算結果のうちで帯状体の前端縁、後端
縁を捕捉したタイミングの差が最小のときの和算値を選
択した構成を特徴としており、かくして可及的に測長誤
差を小さくし精度を高めるに至ったものである。
In view of the fact that conventional devices have been unable to avoid measurement errors of a certain magnitude, the present invention has been made in order to eliminate such drawbacks, and to avoid the unavoidable measurement errors during measurement. An object of the present invention is to provide a length measuring device that can significantly reduce the error caused by the above-described problems. The two cameras are provided above the conveyance path of the strip, at the upper and lower sides of the conveyor in the running direction of the conveyor, and with the scanning direction parallel to the conveyor's running direction, and Back and forth above 2
The length measurement area is arranged such that a predetermined interval of values related to the length of the strip is maintained between the two length measurement regions, and the portion connected to the front edge of the strip that exists within the length measurement region with the camera on the lower side. The length is measured, and the upper camera measures the length of the portion extending to the rear end edge of the band existing within the length measurement area, while the arithmetic unit uses the measurement (M The sum of the three values of the signal corresponding to the signal and the predetermined gap is +iil
This is done every scan based on the synchronized operation command sent to both recording cameras, and among the summation results, the summation value when the difference in the timing of capturing the front edge and rear edge of the strip is the smallest is selected. The structure is characterized by the following structure, thus reducing length measurement errors as much as possible and increasing accuracy.

以下、本発明装置の1例について添付図面にもとづき詳
細に説明するっ 第1図において(Tl)は帯状体であり、長手側をコン
ベア(6)の走行線(白抜矢示の方向線)に合致させて
該コンベア(6)により高速度(財)の下で搬送される
、 (1)、(2)はフォトダイオードカメラで、帯状体(
T1)の搬送経路の上方においてコンベア(6)の走行
方向に対し下手と上手となる前後に配設せしめて、1」
汀1、」搬送経路における各測長領域(ml )、 (
m2 )を撮像し得る。
Hereinafter, one example of the device of the present invention will be explained in detail based on the attached drawings. In Fig. 1, (Tl) is a strip-shaped body, and the longitudinal side is the traveling line of the conveyor (6) (the direction line indicated by the white arrow). (1) and (2) are photodiode cameras, which are conveyed by the conveyor (6) at high speed.
above the conveyor path of the conveyor (6), the conveyor (6) is arranged in front and behind the lower and upper sides in the running direction of the conveyor (6).
1, "Each length measurement area (ml) in the conveyance path, (
m2) can be imaged.

+3)、 (4)はそれぞれ前記カメラ(1)、 (2
)の信号処理器、(5)は演算装置例えばマイクロコン
ピュータである。(1!o)は前記測長領d (ml 
)、 (77Z2 )の間に介在ぜしめてなる所定間隔
で帯状体(T1)の長さにより決められるオフセット長
である。
+3) and (4) are the cameras (1) and (2), respectively.
) is a signal processor, and (5) is an arithmetic device such as a microcomputer. (1!o) is the measurement area d (ml
), (77Z2) at a predetermined interval determined by the length of the strip (T1).

また、(I)I )、 (D2 )はカメラ(t)、(
2)内の光直変換素子群のうち遮光された素子の数であ
り、(αl)。
Also, (I) I ), (D2 ) are camera (t), (
2) is the number of light-shielded elements among the optical direct conversion element group, and is (αl).

(α2)はそれぞれカメラ(1)、(2)のスゲ−リン
グ係数である。
(α2) are the scaling coefficients of cameras (1) and (2), respectively.

前記カメラ(1)、 (2)は同時に起動し、かつ帯状
体(T1)の速度Mに比し逼るかに速い等速度(v)で
走査させるようにしており、この各走査方向をコンベア
(6)の前記走行方向に平行させて設けて、下手側のカ
メラ(1)は帯状体(Tl)の前端縁に連る部分の長さ
を遮光されている光電変換素子の数(Dl)として計測
するようになっており、従って走査方向は帯状体(Tl
)の走行方向に順じている。
The cameras (1) and (2) are activated at the same time and are scanned at a constant speed (v) much faster than the speed M of the strip (T1), and each scanning direction is controlled by the conveyor. The camera (1) on the lower side is installed parallel to the traveling direction of (6), and the length of the portion connected to the front edge of the strip (Tl) is determined by the number of photoelectric conversion elements (Dl) that are shielded from light. Therefore, the scanning direction is set to the band-shaped body (Tl
) according to the running direction.

一方、上手側のカメラ(2)は帯状体(TI ’)の後
端縁に連る部分の長さを遮光されている光電変換素子の
数(D2)として計測するようになっており、従って走
査方向は帯状体(T1)の走行とは逆方向をなしている
On the other hand, the upper camera (2) is designed to measure the length of the part extending to the rear edge of the strip (TI') as the number of photoelectric conversion elements (D2) that are shielded from light. The scanning direction is opposite to the traveling direction of the strip (T1).

なお、前記カメラ(1) 、 (2)は図示しない制御
器からの同期作動指令によって同時に起動して走査を開
始し、かつ走査が一巡すると、再び始めの位置から走査
を反復して(1)1 :)、 (D2 )を連続的に測
長するよう形成しているっ 一方、前記所定間隔(lO)は、帯状体(T1.)の前
端縁と後端縁とが夫々測長領域(ml)および(m2)
内に同時に存し、かつこの状態が比較的長い時間保持さ
れることが望ましい点から帯状体(T1)の長さくL)
との間に、 L >lo > L −(ml 十m2 )なる関係が
成立するものである。
Note that the cameras (1) and (2) are activated simultaneously and start scanning by a synchronous operation command from a controller (not shown), and once the scanning has completed one cycle, the scanning is repeated again from the starting position (1). 1:), (D2) are formed so as to measure the length continuously, while the predetermined interval (lO) is such that the front edge and the rear edge of the strip (T1.) are formed so that the length measurement area ( ml) and (m2)
The length of the band-shaped body (T1) is L) since it is desirable that the band-shaped body (T1) simultaneously exist in
The following relationship holds true: L > lo > L - (ml 10 m2).

次に14U記演算装置(5)は、第2図に示す演算フロ
ーシートにより、信号処理器(3)、(4)からの計測
信号を演算処理するが、カメラ(1) 、 (2)の1
回の走査期間中にカメラ(1)の計測信号(Dl)に(
αl)を乗じた数と、カメラ(2)の計測信号(D2)
に(α2)を乗じた数と、前記オフセット長(lo)と
の和算を行ってこの値を帯状体(T1)の長さとして記
憶し、この記憶値の中で最も適切なものを選択してこれ
を計測値とする演算処理を行うよう形成していて、この
適切な値としては、カメラ(1)が前端縁を捕捉した時
間とカメラ(2)が後端縁を捕捉した時間とのずれが最
も小さ・いときの和算値が該当するものであって、例え
ば第4図(イ)において11と12が等しい状態すなわ
ち前端縁と後端縁とを同時に検出したときには、測長の
タイミングのずれが生じなくて測定誤差が最小となるこ
とは容易に理解されるところである。
Next, the calculation device (5) in 14U processes the measurement signals from the signal processors (3) and (4) according to the calculation flow sheet shown in FIG. 1
During the scanning period, the measurement signal (Dl) of the camera (1) is (
αl) and the measurement signal of camera (2) (D2)
(α2) multiplied by the offset length (lo), this value is stored as the length of the strip (T1), and the most appropriate one is selected from these stored values. The camera is configured to perform arithmetic processing using this as a measured value, and the appropriate values include the time when camera (1) captured the leading edge, the time when camera (2) captured the trailing edge, and so on. The sum value when the deviation is the smallest is the corresponding value. For example, in Figure 4 (a), when 11 and 12 are equal, that is, when the front edge and the rear edge are detected at the same time, the length measurement It is easily understood that the measurement error is minimized because no timing deviation occurs.

上述の構成になる測長装置はカメラ(1)、 (2)に
対して走査開始(31)の同期作動指令を発すると、走
査が1回行われる毎にカメラ(1)、 (2)から計測
信号(Dl)(D2)が発せられて演算装置(5)に入
力される・34゜帯状体(T1)の前端縁がカメラ(1
)の測長領域(ml)内に到来したことをDI’:>0
により判断(33)すると共に、この帯状体(T1)の
後端縁がカメラ(2)の測長領M(m2)内に到来した
ことをD2 <カメラ(2)のセンサビット数により判
断(圓し、さらにID1→21〈β(βは定数)の条件
が満足されることを判i :35)すると、αlDl+
α2D2 +1.の和算j36)を行ってこれを記憶し
ておく。
When the length measuring device configured as described above issues a synchronized operation command to start scanning (31) to cameras (1) and (2), every time scanning is performed, the length measuring device Measurement signals (Dl) (D2) are emitted and input to the arithmetic unit (5). The front edge of the 34° strip (T1)
) has arrived within the length measurement area (ml) of DI':>0
Judgment (33) is made based on D2<number of sensor bits of camera (2) to determine that the trailing edge of this strip (T1) has arrived within the length measurement area M (m2) of camera (2) ( Then, if we further determine that the condition ID1→21<β (β is a constant) is satisfied, then αlDl+
α2D2 +1. Perform the summation j36) and memorize it.

この演算を走査が繰り返される毎に行って、そのうちの
Dlを計測した時間とDIG計測した時間との差が最小
(DI−=−D2 )となるものを選択してこれを帯状
体(Tl)の計測長とするものである。
This calculation is performed every time scanning is repeated, and the one with the smallest difference between the time when Dl is measured and the time when DIG is measured is selected (DI-=-D2), and this is used as the strip (Tl). The measurement length shall be .

このことは前記(0)式においてll−12を最小とす
ることができるので誤差を大きく減少させることが可能
となる。
This allows ll-12 to be minimized in the above equation (0), making it possible to greatly reduce the error.

例えば前述した(至))式による計算例に対応する場合
について計算してみると、1111−12−=1トする
ことは容易であるから、11.12を測長範囲一杯にと
りll +12 = 200 mmとしても(ロ))式
より、誤差は+0.03mmおよび−0,01711+
I+となる。
For example, if we calculate the case corresponding to the calculation example using the formula (to) above, it is easy to calculate 1111-12-=1, so we take 11.12 to the full length measurement range and ll +12 = 200. Even if it is mm, from formula (b)), the error is +0.03mm and -0,01711+
It becomes I+.

ここでカメラ(1)、(2)の分解能によるが、実用的
にはto、1nrm以下に抑えることは容易であって、
従来の2基力メラ方式の最大誤差±O,”rmmに比較
して2000以下となり測長精度を向上し得る。
Although it depends on the resolution of cameras (1) and (2), in practical terms it is easy to keep to below 1nrm.
Compared to the maximum error of ±O,"rmm in the conventional two-force mela method, it is less than 2000, which improves the length measurement accuracy.

本発明は以上述べた説明により明らかな如く、2基のフ
ォトダイオードアレイカメラ(1)、 (2)を用いて
下手側のカメラ(1)により前端縁を捕捉したときの時
間と、上手側のカメラ(2)により後端縁を捕捉したと
きの時間とを較べてその差が最小のときすなわち殆ど同
時に前端縁、後端縁を捕捉したときの計測値を選択して
、この値にもとづく和算値をもって帯状体(TI)の測
長値とするようにしたから、帯状物(Tl )が移動し
ているにもか\わらず、この移動による測長の不可避誤
差を最小にとどめることが可能となり、測長精度を格段
に向上し得るものであり、前述例の如く誤差範囲を±0
.1fl程度とする高精度の測長が可能である。
As is clear from the above description, the present invention uses two photodiode array cameras (1) and (2) to determine the time taken to capture the front edge by the lower camera (1) and the time taken to capture the front edge by the lower camera (1). Compare the time when the trailing edge is captured by camera (2) and select the measured value when the difference is the smallest, that is, when the leading edge and trailing edge are captured almost simultaneously, and calculate the sum based on this value. Since the calculated value is used as the length measurement value of the strip (TI), even though the strip (Tl) is moving, it is possible to minimize the inevitable error in length measurement due to this movement. This makes it possible to significantly improve length measurement accuracy, and as in the previous example, the error range can be reduced to ±0.
.. Highly accurate length measurement of approximately 1 fl is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置例の概要示構造図、第2図は第1図
々示装置に用いる演算装置のフローチャート、第3図げ
)〜(ハ)は従来の測長装置の例の概要示説明図、第4
図ピ)〜(ハ)は従来の測長値dの別の例の概要示説明
図である。 (1)、 (2)・・・フォトダイオードカメ5.  
(5)・・・演算装置、(6)・・・コンベア、(T1
)・・・帯状本第1図 第2図 第3− (八) 第4図 (イ) (0) (八)
Fig. 1 is a schematic structural diagram of an example of the device of the present invention, Fig. 2 is a flowchart of the arithmetic unit used in the device shown in Fig. 1, and Figs. Illustration diagram, 4th
Figures P) to (C) are schematic explanatory diagrams of other examples of conventional length measurement values d. (1), (2)...Photodiode camera5.
(5)...Arithmetic unit, (6)...Conveyor, (T1
)...Band Book Figure 1 Figure 2 Figure 3- (8) Figure 4 (A) (0) (8)

Claims (1)

【特許請求の範囲】 1、長手側をコンベア(6)の走行線に合致させて該コ
ンベア(6)により高速下で搬送される帯状体(TI)
の長さを計測する装置であって、同時に起動し、かつ帯
状体(T1)の搬送速度に比し混るかに速い等速度で走
査を行わしめるための同期作動指令を反復して受ける2
個のフォトダイオードアレイカメラ(1) 、 (2)
と、それ等両カメラ(1)、(2)が発する計測信号を
受けて所定の演算処理を行う演算装置(5)とからなり
、2個のフォトダイオードアレイカメラ(1)。 (2)は、帯状体(T1)の搬送経路の上方においてコ
ンベア(6)の走行方向に対し上手および下手となる前
後に、かつ走査方向をコンベア(6)の前記走行方向に
平行させて設けると共に、コンベア(6)上で前後する
2つの測長領域(ml )、 (m2 )の間に、L>
eo> L −−(7711モm2)(但しL:帯状体
(T1)の長さ)の範囲内の所定間隔(io)が保持さ
れる如く配置して、下手側の前記カメラ(1)で帯状体
(Tz )の前端縁に連る部分の長さを遮光されている
光電変換素子の数として計測する如くなし、上手側の前
記カメラ(2)で帯状体(T1)の後端縁に連る部分の
長さを遮光されている光電変換素子の数として計測する
如くなし、一方、前記演算装置(5)は前記両カメラ(
1)。 (2)が夫々発する計測信号および前記所定間隔(/!
o)に対応する信号の3つの値の和算を前記同期作動指
令による1回の走査毎に行うと共に、この和算結果のう
ちで、前記帯状体(T1)の前端縁、後端縁を捕捉した
タイミングの差が最小のときの和算値を選択してこれを
計測値とする演算処理を行わせる如くなしたことを特徴
とする被搬送帯状体の測長装置、。
[Claims] 1. A strip (TI) whose longitudinal side matches the running line of the conveyor (6) and is conveyed at high speed by the conveyor (6).
It is a device that measures the length of the strips (T1), and is started at the same time and repeatedly receives a synchronous operation command to scan at a uniform speed that is much faster than the transport speed of the strip (T1).
photodiode array cameras (1), (2)
and an arithmetic unit (5) that receives measurement signals emitted by both cameras (1) and (2) and performs predetermined arithmetic processing, and consists of two photodiode array cameras (1). (2) are provided above the transport path of the strip (T1) at the upper and lower sides of the conveyor (6) in the running direction, and with the scanning direction parallel to the running direction of the conveyor (6). At the same time, L>
The camera (1) on the lower side is arranged so that a predetermined interval (io) is maintained within the range of eo > L -- (7711 mm2) (L: length of the strip (T1)). The length of the part that extends to the front edge of the strip (Tz) is measured as the number of photoelectric conversion elements that are shielded from light. The length of the continuous portion is measured as the number of photoelectric conversion elements that are shielded from light. On the other hand, the arithmetic unit (5)
1). (2) respectively emit measurement signals and the predetermined interval (/!
The summation of the three values of the signals corresponding to o) is performed every scan by the synchronous operation command, and among the summation results, the front edge and rear edge of the band-shaped body (T1) are calculated. 1. A length measuring device for a belt-shaped object to be conveyed, characterized in that the summed value when the difference in captured timing is the smallest is selected and arithmetic processing is performed to use this as the measured value.
JP7498682A 1982-05-04 1982-05-04 Length measuring device of band-shaped material to be carried Granted JPS58191908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7498682A JPS58191908A (en) 1982-05-04 1982-05-04 Length measuring device of band-shaped material to be carried

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7498682A JPS58191908A (en) 1982-05-04 1982-05-04 Length measuring device of band-shaped material to be carried

Publications (2)

Publication Number Publication Date
JPS58191908A true JPS58191908A (en) 1983-11-09
JPH0116363B2 JPH0116363B2 (en) 1989-03-24

Family

ID=13563104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7498682A Granted JPS58191908A (en) 1982-05-04 1982-05-04 Length measuring device of band-shaped material to be carried

Country Status (1)

Country Link
JP (1) JPS58191908A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171310A (en) * 1984-09-14 1986-04-12 Daifuku Co Ltd Measuring apparatus of length of object
US4913551A (en) * 1987-07-28 1990-04-03 Davis Richard B Log measuring method and apparatus
JPH02114106A (en) * 1988-10-24 1990-04-26 Fuji Photo Film Co Ltd Apparatus for measuring length of sheet material
US4974077A (en) * 1988-08-05 1990-11-27 Bridgestone Corporation Apparatus for detecting edge position of elongated article
JPH05197329A (en) * 1991-05-13 1993-08-06 Hughes Aircraft Co Back-face projection type polygonal surface dome
JP2009150765A (en) * 2007-12-20 2009-07-09 Toppan Printing Co Ltd Cutting dimension inspecting device
CN104482861A (en) * 2014-12-08 2015-04-01 苏州市计量测试研究所 High-precision long-distance moving measurement system and method for measuring displacement, deformation and length by using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171310A (en) * 1984-09-14 1986-04-12 Daifuku Co Ltd Measuring apparatus of length of object
US4913551A (en) * 1987-07-28 1990-04-03 Davis Richard B Log measuring method and apparatus
US4974077A (en) * 1988-08-05 1990-11-27 Bridgestone Corporation Apparatus for detecting edge position of elongated article
JPH02114106A (en) * 1988-10-24 1990-04-26 Fuji Photo Film Co Ltd Apparatus for measuring length of sheet material
US5007739A (en) * 1988-10-24 1991-04-16 Fuji Photo Film Co., Ltd. Length measuring apparatus
JPH05197329A (en) * 1991-05-13 1993-08-06 Hughes Aircraft Co Back-face projection type polygonal surface dome
JP2009150765A (en) * 2007-12-20 2009-07-09 Toppan Printing Co Ltd Cutting dimension inspecting device
CN104482861A (en) * 2014-12-08 2015-04-01 苏州市计量测试研究所 High-precision long-distance moving measurement system and method for measuring displacement, deformation and length by using same

Also Published As

Publication number Publication date
JPH0116363B2 (en) 1989-03-24

Similar Documents

Publication Publication Date Title
US4274783A (en) Chain measuring and conveyor control system
US4944505A (en) Sheet length detector with skew compensation
US4506969A (en) Film-width and transmittance scanner system
JPS58191908A (en) Length measuring device of band-shaped material to be carried
JPH0626821A (en) Length measuring device
JPH02114106A (en) Apparatus for measuring length of sheet material
JPH01149052A (en) Processing method and apparatus for film exposed and developed
JPS5858405A (en) Measuring device for plate body
JP3205007B2 (en) How to detect misalignment and defective shape of conveyed objects
JPS63243707A (en) Measuring apparatus for length of conveyed object
WO2023166814A1 (en) Imaging device and imaging method
JPS59107242A (en) Device for measuring blackened amount of film
EP0452666B1 (en) Cross scanning method and equipment for measuring the thickness of a film coating
JPS593207A (en) Method for measuring length of long material
JP2540160B2 (en) Printing pitch measuring device for synthetic resin film for packaging bags
JPH0344793A (en) Sheet paper or the like discriminating device
JPS6124112B2 (en)
JP3533789B2 (en) Paper thickness detector
JPH09273912A (en) Apparatus for measuring thickness
JPS6220000B2 (en)
JP2602339B2 (en) Conveyed material retention detector
JPH0859047A (en) Paper sheet conveyance branching mechanism of paper sheet processing device
JP3317245B2 (en) Article length measurement method
JPS6250016A (en) Measuring device for rolling length
JPS61242712A (en) Device for controlling width of rolling material