JP2004135705A - 超音波診断装置及び超音波診断方法 - Google Patents
超音波診断装置及び超音波診断方法 Download PDFInfo
- Publication number
- JP2004135705A JP2004135705A JP2002300957A JP2002300957A JP2004135705A JP 2004135705 A JP2004135705 A JP 2004135705A JP 2002300957 A JP2002300957 A JP 2002300957A JP 2002300957 A JP2002300957 A JP 2002300957A JP 2004135705 A JP2004135705 A JP 2004135705A
- Authority
- JP
- Japan
- Prior art keywords
- power
- signal
- frequency component
- calculating
- electric signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52036—Details of receivers using analysis of echo signal for target characterisation
- G01S7/52038—Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52077—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging with means for elimination of unwanted signals, e.g. noise or interference
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/024—Mixtures
- G01N2291/02491—Materials with nonlinear acoustic properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52046—Techniques for image enhancement involving transmitter or receiver
- G01S7/52047—Techniques for image enhancement involving transmitter or receiver for elimination of side lobes or of grating lobes; for increasing resolving power
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Nonlinear Science (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
【課題】超音波パルスのサイドローブによって発生するアーチファクト(虚像)を低減し得る超音波診断装置を提供する。
【解決手段】整相加算部14は、超音波パルスのサイドローブによる反射を含むエコー信号を受信して、そのフォーカシングを行なう。基本波用BPF部151及び基本波用検波部161は、エコー信号から基本波成分を抽出し、信号パワーを算出する。高調波用BPF部152及び高調波用検波部162は、エコー信号から高調波成分を抽出し、信号パワーを算出する。パワー比演算部17及びパワー比比較部19は、算出された2つの信号パワーの比を算出し、このパワー比とパワー比参照メモリ18に格納されているパワー比しきい値とを比較し、その比較結果を検波信号抑制部110に通知する。検波信号抑制部110は、通知内容に応じてエコー信号を抑制して出力する。表示部111は、出力されたエコー信号に基づいて断層像を生成して表示する。
【選択図】 図2
【解決手段】整相加算部14は、超音波パルスのサイドローブによる反射を含むエコー信号を受信して、そのフォーカシングを行なう。基本波用BPF部151及び基本波用検波部161は、エコー信号から基本波成分を抽出し、信号パワーを算出する。高調波用BPF部152及び高調波用検波部162は、エコー信号から高調波成分を抽出し、信号パワーを算出する。パワー比演算部17及びパワー比比較部19は、算出された2つの信号パワーの比を算出し、このパワー比とパワー比参照メモリ18に格納されているパワー比しきい値とを比較し、その比較結果を検波信号抑制部110に通知する。検波信号抑制部110は、通知内容に応じてエコー信号を抑制して出力する。表示部111は、出力されたエコー信号に基づいて断層像を生成して表示する。
【選択図】 図2
Description
【0001】
【発明の属する技術分野】
本発明は、超音波診断装置に関し、特に超音波断層像内に含まれるアーチファクト(虚像)を低減させる技術に関する。
【0002】
【従来の技術】
非侵襲、かつリアルタイムで被検体の観測が可能である超音波診断装置は、医療分野において欠かせない存在になりつつある。この超音波診断装置は、プローブ(探触子)で発生させた超音波パルスを被検体に送信し、反射してきた超音波エコーに基づいて被検体内の様子を画像化する装置である(非特許文献1参照)。
【0003】
ここで、従来の超音波診断装置の構成およびその動作について説明する。
図10は、従来の超音波診断装置70の機能構成を示すブロック図である。
図10に示されるように、従来の超音波診断装置70は、探触子71、送受信切替部72、送信部73、整相加算部74、フィルタ部75、検波部76および表示部77を備えている。
【0004】
探触子71は、被検体に対して超音波パルスを送信すると共に、被検体から反射してきた超音波(以下、「超音波エコー」という。)の受信を行なう装置である。探触子71は、超音波パルスの送信時においては、送信部73から超音波パルスを発生させるためのパルス信号(以下、「送信パルス信号」という。)を受信し、これに基づいて超音波パルスを生成する。一方、超音波エコーの受信時においては、被検体から反射してきた超音波エコーを電気信号(以下、「受信エコー信号」という。)に変換し、送受信切替部72に出力する。
【0005】
送受信切替部72は、超音波パルスの送信時には探触子71と送信部73とを接続させ、超音波エコーの受信時には探触子71と整相加算部74とを接続するように切り替える。送信部73は、超音波パルスの送信時に送信パルス信号を生成して送受信切替部72に出力する。
【0006】
整相加算部74は、送受信切替部72を介して探触子71から受信した受信エコー信号に対してフォーカシングおよび必要な整相加算を行ない、フィルタ部75に出力する。フィルタ部75は、整相加算部74から出力された受信エコー信号に対してフィルタ処理を施す。検波部76は、フィルタ部75から出力されたフィルタ処理後の受信エコー信号に対して包絡線検波を行ない、検波後の受信エコー信号(以下、「受信検波信号」という。)を表示部77に出力する。表示部77は、検波部76から出力された受信検波信号に基づいて断層像を生成し、その表示を行なう。
【0007】
次に、従来の超音波診断装置70における動作について説明する。被検体に超音波パルスを送信するために、送信部73において送信パルス信号が生成され、この送信パルス信号に基づいて生成された超音波パルスが探触子71から被検体に送信される。被検体に送信された超音波パルスは、被検体内の音響インピーダンス境界において反射され、送信開始時刻から反射深度に応じた時間分だけ遅れて探触子71に戻ってくる。探触子71は、受信した超音波エコーを電気的な受信エコー信号に変換して整相加算部74に出力する。整相加算部74は、探触子71を構成する各振動子が超音波エコーを受信した場合の受信時刻の差の補正を行ない、受信エコー信号のフォーカシングを行なう。
【0008】
さらに、整相加算後の受信エコー信号には、ノイズ成分も含まれているため、フィルタ部75において中心周波数あるいは中心周波数の2倍となる高調波周波数における受信エコー信号を効率的に抽出するために、バンドパスフィルタ(BPF)によってフィルタリングが施される。フィルタ部75を通過した受信エコー信号は、検波部76においてヒルベルト変換フィルタなどを用いて複素化された後、包絡線検波が施されることで、断層像を生成するための輝度等を示す受信検波信号に変換される。最後に、表示部77は、受信検波信号に基づいて断層像を生成し、ディスプレイ装置等に表示する。
【0009】
なお、超音波診断装置においては、断層像の画質改善を図るため、所望の指向性(例えば、正面方向がより強い音圧を有する特性)をもった超音波パルスが使用される。
【0010】
【非特許文献1】
伊東・平田編著、「超音波医学TEXT 基礎超音波医学」1998年4月、
医歯薬出版株式会社
p.7−20、p.24−25
【0011】
【発明が解決しようとする課題】
しかしながら、実際に送信される超音波パルスは、所望する方向(正面方向)に送信されるメインローブ以外に、所望としない方向(例えば、左右に45°)に送信される複数のサイドローブを有している。
【0012】
図11は、メインローブ81の両脇に発生し、かつ所望しない方向(左右の斜め方向。以下、「サイドローブ方向」という。)に送信される複数のサイドローブ82、83の概要を示す図である。これらのサイドローブのため、サイドローブ方向にある物体に超音波パルスのサイドローブが送信され、超音波診断装置70が超音波エコーを受信すると、断層像として表示させたい超音波が反射する物体から反射される超音波パルスのメインローブ以外に、サイドローブ方向にある物体から反射される超音波エコーも同時に受信することになる。その結果、サイドローブ方向からの超音波エコーがアーチファクト(虚像)を生成することになり、アーチファクトを含む断層像によって誤った診断を招いてしまうという問題がある(非特許文献1参照)。
【0013】
図12は、上記のサイドローブ82、83によって生成されたアーチファクト(虚像)が断層像として表示されるまでの過程を模式的に示した図である。図12に示されるように、メインローブ方向には、断層像として表示させたい超音波が反射し得る物体91、92があり、超音波パルスのメインローブがこれらの物体に反射し、受信エコー信号96、97が生成される。しかし、この超音波パルスはサイドローブを有しているため、左右のサイドローブ方向には、断層像として表示させたくない、超音波が反射し得る物体93〜95があり、サイドローブがこれらの物体に反射し、受信エコー信号93a〜95aが生成されてしまう。その結果として、受信検波信号においても上記サイドローブによる信号93a〜95aが残留してしまい、これがアーチファクトとして現われる。
【0014】
そこで、本発明では、上記課題に鑑みてなされたものであり、サイドローブによって発生するアーチファクト(虚像)による誤診断を防止し得る超音波診断装置および超音波診断方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る超音波診断装置は、メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断装置であって、前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信手段と、前記変換された電気信号に対して、基本波周波数成分を抽出し、当該信号のパワーを算出する第1算出手段と、前記変換された電気信号に対して、高調波周波数成分を抽出し、当該信号のパワーを算出する第2算出手段と、前記算出された基本波周波数成分に係る信号のパワーと高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算手段と、前記算出された比の値に基づいて、前記基本波周波数成分の電気信号を制御して出力する出力制御手段と、前記出力された電気信号に基づいて、断層像を生成して表示する画像表示手段とを備える。
【0016】
さらに、上記目的を達成するために、本発明に係る超音波診断装置は、メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断装置であって、前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信手段と、前記変換された電気信号に対して、基本波周波数成分を抽出し、当該信号のパワーを算出する第1算出手段と、前記変換された電気信号に対して、高調波周波数成分を抽出し、当該信号のパワーを算出する第2算出手段と、前記算出された基本波周波数成分に係る信号のパワーと高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算手段と、前記算出された比の値に基づいて、前記高調波周波数成分の電気信号を制御して出力する出力制御手段と、前記出力された電気信号に基づいて、断層像を生成して表示する画像表示手段とを備える。
【0017】
なお、上記目的を達成するために、本発明は、上記超音波診断装置の特徴的な構成手段をステップとする方法として実現したり、それらのステップの全てを含むプログラムとして実現することもできる。そして、そのプログラムは、超音波診断装置が備えるROM等に格納しておくだけでなく、CD−ROM等の記録媒体や通信ネットワーク等の伝送媒体を介して流通させることも可能である。
【0018】
【発明の実施の形態】
以下、本発明に係る実施の形態について、図面を参照しながら説明を行なう。
(実施の形態1)
図1は、本実施の形態における超音波診断装置10の外観図である。本装置10は、単に断層像を生成するだけでなく、サイドローブによって発生するアーチファクト(虚像)を低減して、より正確な診断が可能な超音波診断装置であり、主に表示装置10a、本体装置10bおよびプローブ10cから構成されている。
【0019】
表示装置10aは、超音波エコー法等により得られた断層像や必要な情報を表示させるための液晶又はCRT等によるディスプレイ装置であり、オペレータからの入力を受け付けるタッチパネル等を有している。
【0020】
本体装置10bは、プローブ10cにおける超音波の送受信を制御するための送受信回路、各種の信号や画像を処理するためにDSP(Digital Signal Processor)やRAM等からなる信号・画像処理回路、オペレータからの操作を受け付けるスイッチ群やマウス、タッチパネルを有する液晶ディスプレイ等を備える。
【0021】
プローブ10cは、超音波を送受信するための超音波振動子や音響レンズ等からなる探触子である。
【0022】
図2は、本実施の形態における超音波診断装置10の機能構成を示すブロック図である。図2に示されるように、本装置10は、探触子11、送受信切替部12、送信部13、整相加算部14、基本波用BPF(バンドパスフィルタ)部151、高調波用BPF(バンドパスフィルタ)部152、基本波用検波部161、高調波用検波部162、パワー比演算部17、パワー比参照メモリ18、パワー比比較部19、操作入力部20、検波信号抑制部110および表示部111を備えている。
【0023】
探触子11は、超音波パルスの生成および被検体から反射してきた超音波エコーの受信を行なう装置である(上記図1のプローブ10cに該当)。この探触子11は、超音波パルスの送信時においては、送信部13から受信した送信パルス信号に基づいて超音波パルスを生成する。一方、超音波エコーの受信時においては、被検体から反射してきた超音波エコーを受信エコー信号に変換し、この受信エコー信号を送受信切替部12に出力する。
【0024】
送受信切替部12は、超音波パルスの送信時には探触子11と送信部13とを接続させ、超音波エコーの受信時には探触子11と整相加算部14とが接続するように切り替える。
【0025】
送信部13は、超音波パルスの送信時に、送信パルス信号を生成し、送受信切替部12に出力する。整相加算部14は、送受信切替部12を介して探触子11から受信した受信エコー信号に対してフォーカシングを行ない、必要な整相加算を行なう。
【0026】
基本波用BPF部151は、整相加算部14から出力された受信エコー信号に対して、超音波パルスの基本波に対応する中心周波数に係る信号成分を抽出するためのフィルタ処理を施す。高調波用BPF部152は、整相加算部14から出力された受信エコー信号に対して、超音波パルスの基本波が被検体内を伝播する際に発生した非線形歪を構成する高調波周波数に係る信号成分を抽出するためのフィルタ処理を施す。
【0027】
基本波用検波部161は、基本波用BPF部151から出力された受信エコー信号の中心周波数に係る信号成分に対して検波を行なう。高調波用検波部162は、高調波用BPF部152から出力された受信エコー信号の高調波周波数に係る信号成分に対して検波を行なう。
【0028】
パワー比演算部17は、基本波用検波部161および高調波用検波部162からそれぞれ出力された受信検波信号におけるパワー比(例えば、高調波の受信検波信号の最大振幅値/基本波の受信検波信号の最大振幅値)を算出する。
【0029】
パワー比参照メモリ18は、被検体内における伝播距離(または、「深度」ともいう。)毎に設定されている「パワー比しきい値」を格納する。この「パワー比しきい値」とは、受信検波信号がメインローブに基づくものかサイドローブに基づくものかを判断する際の基準値であり、この値を下回るパワー比の場合は、その受信検波信号はサイドローブに基づく受信検波信号であると判断する。例えば、伝播距離(深度)が「5cm」の時のパワー比しきい値は「0.3」、伝播距離(深度)が「10cm」の時のパワー比しきい値は「0.35」というように双方が対応付けられて記憶されている。なお、このパワー比しきい値は、操作入力部20を介してユーザによって変更され得る。
【0030】
パワー比比較部19は、パワー比演算部17の出力である「パワー比」とこれに対応するパワー比参照メモリ18に格納されている伝播距離(深度)毎の「パワー比しきい値」とを比較し、その結果(「アーチファクトである」、「アーチファクトでない」等)を検波信号抑制部110に通知する。例えば、伝播距離(深度)が「5cm」の場合のパワー比の値が「0.1」で、これに対応するパワー比しきい値の値が「0.3」の場合は、サイドローブに基づくアーチファクトであると判断する。
【0031】
検波信号抑制部110は、パワー比比較部19から受信した通知に基づいて、基本波用検波部161の出力を制御する。例えば、パワー比比較部19から「サイドローブである」旨の通知を受けた場合は、その基本波に係る受信検波信号を「20パーセントに低減して出力」するとか、「全く出力しない」というように制御する。
【0032】
表示部111は、基本波用検波部161の出力であるエコー信号に基づいて断層像を生成し、その表示を行なう。
【0033】
次に、本実施の形態の超音波診断装置10における動作について説明する。
まず、被検体に超音波パルスを送信するためには、送信部13が送信パルス信号を生成して探触子11に送信する。さらに、探触子11がこの送信パルス信号に基づいて超音波パルスを生成して被検体に送信する。
この際、上記発明が解決しようとする課題でも述べたように、探触子11から送信される超音波パルスは、メインローブおよびサイドローブを有している。このため、サイドローブ方向にある物体にも超音波パルス(サイドローブ)が送信されるので、超音波診断装置10が超音波エコーを受信した場合は、メインローブ方向にある断層像として表示させたい物体から反射された超音波エコー以外に、サイドローブ方向にある物体から反射された超音波エコーも同時に受信することになる。その結果としてサイドローブ方向からの超音波パルスがアーチファクト(虚像)として表示されることになる。
【0034】
ここで注目すべき点は2つある。1点目は、送信される超音波パルスにおけるメインローブ方向の送信パワーとサイドローブ方向の送信パワーとの違いである。すなわち、上記図11から明らかなように、メインローブ方向の送信パワーは、サイドローブ方向の送信パワーよりも大きい点である。2点目は、被検体を超音波パルスが通過した場合の非線形伝播歪み現象である。この現象は、送信された超音波パルスが被検体内を伝播するにつれて超音波パルスの波形が次第に歪んでいく現象であり、超音波パルスは伝播距離(深度)に従って本来の送信周波数(基本波周波数)のN倍(2倍、3倍等)の高調波周波数成分が増大する。
【0035】
図3は、超音波パルスが被検体内を伝播する際の非線形伝播歪み現象を模式的に表わした図であり、(a)は、送信される超音波パルスのパワーが大きい場合(即ち、メインローブの場合)の受信エコー信号波形の例示であり、(b)は、送信される超音波パルスのパワーが小さい場合(即ち、サイドローブの場合)の受信エコー信号波形の例示である。図3(特に、図3(a))に示されるように、伝播距離が長く(深度が深く)なるに従って、受信エコー信号の波形が鋸歯状になっていく。これは、超音波が媒質(被検体の内部)を進む場合は、超音波のパワーが大きい(音圧の大きい)部分は速く、逆にパワーが小さい(音圧の小さい)部分は遅く進むため、波形が鋸歯状になり、図3に示されるような歪みを生ずるのである。
さらに、図3(a)および(b)に示されるように、この非線形伝播歪み現象は、送信される超音波パルスのパワーの大小にも密接に関係しており、上記と同様の理由から、超音波パルスのパワーが大きい場合は、パワーが小さい場合に比べて短い伝播距離(深度)で非線形伝播歪みを生じてしまう。言い換えると、パワーが大きい場合は、短い伝播距離(深度)で大きな高調波を有することとなる。
【0036】
図4は、上記図3の非線形伝播歪み現象における受信検波信号の周波数スペクトルを模式的に表わした図であり、(a)は、送信される超音波パルスのパワーが大きい場合(即ち、メインローブの場合)の受信検波信号の周波数スペクトル例であり、(b)は、送信される超音波パルスのパワーが小さい場合(即ち、サイドローブの場合)の受信検波信号の周波数スペクトル例示である。
より詳細に説明すると、図4(a)には、送信される超音波パルスのパワーが大きい場合の、伝播距離がZ0とZ1における受信エコー信号の信号パワー分布が示されており、伝播距離が長くなると(Z1>Z0)、高調波周波数(F1=2F0)における信号パワーが際立って大きくなる様子が示されている。
【0037】
一方、図4(b)には、送信される超音波パルスのパワーが小さい場合の、伝播距離がZ0とZ1における受信検波信号の信号パワー分布が示されているが、この場合は、伝播距離が長くなっても高調波周波数における信号パワーが際立って大きくなることはない。
【0038】
以上の注目すべき2点から、基本波周波数成分および高調波周波数成分のパワー比(高調波パワー/基本波パワー)を考慮すると、アーチファクト(虚像)の原因となるサイドローブ方向から受信された超音波エコーは、メインローブ方向から受信した超音波エコーよりもパワー比が小さくなる傾向がある。したがって、このパワー比に基づいて受信検波信号の出力を抑制すればアーチファクトを低減させることが可能となる。
【0039】
次に、以上のことを踏まえ、実施の形態1に係る超音波診断装置10における動作について、図5を参照しながら説明する。図5は、超音波診断装置10の動作の流れを示すフローチャートである。
【0040】
最初に、超音波パルスが被検体に送信されると(S401)、その超音波パルスは被検体内の音響インピーダンス境界において反射され、送信開始時間から反射深度に応じた遅延時間分だけ遅れて探触子11に戻ってくる(S402)。この探触子11で受信される超音波エコーには、メインローブ方向およびサイドローブ方向からの反射波が重ね合わされて受信されることになる。探触子11で受信された超音波エコーは、受信エコー信号に変換されて整相加算部14に送られる。整相加算部14は、探触子11を構成する各振動子間での受信エコー信号の到達時間の差の補正を行ない、受信エコー信号のフォーカシングを行なう。整相加算後の受信エコー信号は、メインローブから反射してきた超音波エコーに基づく受信エコー信号なのかサイドローブから反射したきた超音波エコーに基づく受信エコー信号なのかが不明であると共に、ノイズ成分も含んでいるため、基本波用BPF部151および基本波用検波部161を用いて基本波周波数成分を抽出し、その信号パワーを算出する(S403、S404)。一方、高調波用BPF部152および高調波用検波部162を用いて高調波周波数成分を抽出し、その信号パワーを算出する(S403、S404)。
【0041】
そして、パワー比演算部17は、基本波用検波部161及び高調波用検波部162によって算出されたそれぞれの信号パワーの比Rpを算出する(S405)。ここで、ユーザから上記パワー比しきい値Rsについて変更がある場合は(S406)、パワー比参照メモリ18に格納されているパワー比しきい値Rsの値を更新する(S407)。
【0042】
さらに、パワー比比較部19は、パワー比演算部17で算出されたパワー比Rpとパワー比参照メモリ18に格納されている伝播距離(深度)毎に記憶されているパワー比しきい値Rsとを比較し、その比較結果に基づく通知を検波信号抑制部110に行なう。
【0043】
検波信号抑制部110は、パワー比比較部19から受信した通知が「アーチファクトである」旨であれば基本波用検波部161から出力された受信検波信号の信号レベルを抑制(例えば、20パーセントに抑制)し(S410)、そうでない場合は基本波用検波部161から出力された受信検波信号の信号レベルをそのまま出力する(S409)。
【0044】
最後に、表示部111は、検波信号抑制部110から出力された受信検波信号に基づいて断層像を生成し、これを表示する(S411)。以上の処理を超音波診断装置による診断が終了するまで継続する(S401〜S412)。
なお、上記の説明では、検波信号抑制部110に入力される受信検波信号は、基本波用検波部161から出力された受信エコー信号としているが、高調波による断層像表示モード(Tissue Harmonics Imaging Mode)を用いる場合は、高調波用検波部162から出力された受信検波信号を入力として用いることとする。
【0045】
以上のように、本実施の形態に係る超音波診断装置10によれば、受信検波信号における「高調波パワー/基本波パワー」のパワー比を算出して比較することによって、超音波エコーに含まれるアーチファクトの原因となるサイドローブによって生じた受信エコー信号の検出およびその抑制を行なうので、表示部111に表示される断層像をアーチファクトの少ない鮮明な断層像を生成することが可能となり、誤診断を防止することができる。
【0046】
(実施の形態2)
実施の形態2における超音波診断装置は、上記実施の形態1における超音波診断装置10と同様に、超音波パルスにおけるサイドローブによって生じた受信検波信号のレベルを抑制させることによって、アーチファクトを軽減し得る超音波診断装置であるが、特に、基本波周波数成分又は高調波周波数成分を抽出するためのバンドパスフィルタとして、ダイナミックバンドパスフィルタを用いる点で上記実施の形態1における超音波診断装置と異なる。
【0047】
図6は、本実施の形態における超音波診断装置40の機能構成を示すブロック図である。図6に示されるように、超音波診断装置40は、探触子41、送受信切替部42、送信部43、整相加算部44、基本波用DBPF(ダイナミックバンドパスフィルタ)部451、高調波用DBPF(ダイナミックバンドパスフィルタ)部452、基本波用検波部461、高調波用検波部462、パワー比演算部47、パワー比参照メモリ48、パワー比比較部49、検波信号抑制部410、表示部411を備えている。
【0048】
なお、実施の形態2における超音波診断装置の構成については、上記実施の形態1の場合とほぼ同様であるため、異なる構成について重点的に説明する。図6における探触子41、送受信切替部42、送信部43、整相加算部44、基本波用検波部461、高調波用検波部462、パワー比演算部47、パワー比参照メモリ48、パワー比比較部49、検波信号抑制部410および表示部411については、上記実施の形態1における超音波診断装置10における探触子11、送受信切替部12、送信部13、整相加算部14、基本波用検波部161、高調波用検波部162、パワー比演算部17、パワー比参照メモリ18、パワー比比較部19、検波信号抑制部110および表示部111と同じであるため、その説明は省略する。
【0049】
基本波用DBPF部451および高調波用DBPF部452は、受信深度が深くなるにつれてバンドパス帯域が動的に低周波帯域に移動していくフィルタ特性を有している。このようなフィルタ特性を有するBPFを使用する理由は、送信した超音波パルスのパワーは伝播距離(深度)に応じて減衰することになるが、図7に示すように、周波数が高くなるほどより顕著に信号パワーが減衰する性質があるためである。図8に、このダイナミックバンドパスフィルタの周波数特性例を示す。
そこで、ダイナミックバンドパスフィルタを用いることで伝播距離(深度)に応じたバンドパス帯域を動的に変更するように制御することが可能となるので、S/N比の良い受信検波信号を得ることができ、最終的には、誤診断を招きにくい断層像を生成することができる。
【0050】
次に、以上のことを踏まえ、実施の形態2に係る超音波診断装置40における動作について、図9を参照しながら説明する。図9は、超音波診断装置40の動作の流れを示すフローチャートである。図9において明らかなように、基本波用DBPF部451においてDBPFを使用し、高調波用DBPF部452においてDBPFを使用すること(S901)以外は、上記実施の形態1の図5のフローと同じである。
【0051】
なお、上記の説明では、前記実施の形態1の場合と同様に、検波信号抑制部410に入力される受信検波信号は、基本波用検波部461から出力された受信検波信号としているが、高調波による断層像表示モード(Tissue Harmonics Imaging Mode)を用いる場合は、高調波用検波部462から出力された受信検波信号を入力として用いることとする。
【0052】
以上のように、本実施の形態に係る超音波診断装置40によれば、受信検波信号における「高調波パワー/基本波パワー」のパワー比を算出して比較することによって、超音波エコーに含まれるアーチファクトの原因となるサイドローブによって生じた受信エコー信号の検出およびその抑制を行ない、さらに、伝播距離(深度)に応じてバンドパス帯域を動的に変更するように制御して、より実際に即した基本波周波数成分および高調波周波数成分の抽出を行なってアーチファクトの低減化を図っているので、表示部111に表示される断層像は、より鮮明な断層像を生成することが可能となり、誤診断を防止することができる。
【0053】
なお、上記実施の形態1及び実施の形態2においては、基本波周波数成分の信号パワーと高調波周波数成分の信号パワーとの比に基づいてサイドローブによるエコー信号か否かを判別してアーチファクトの低減化を図る場合について説明したが、これに限定するものではない。例えば、N次高調波周波数成分(N:2以上の整数)の信号パワーとM次高調波周波数成分(N<M、M:3以上の整数)の信号パワーとの比に基づいて、同様に、サイドローブによるエコー信号か否かを判別してアーチファクトの低減化を図るように構成することもできる。
【0054】
【発明の効果】
以上のように、本発明に係る超音波診断装置は、探触子から送信される超音波パルスにおけるメインローブ方向およびサイドローブ方向への送信パワーの違いと被検体のもつ非線形伝播歪み現象の度合いの違いとを利用することにより、受信検波信号についてアーチファクトを生成する信号であるか否かを判断し、この結果に基づいて受信検波信号の出力レベルを抑制して上記アーチファクトの低減化が実現されるので、その実用的価値は大きい。
【0055】
なお、さらに、メインローブ方向においても送信方向に広がりがあるので、本発明において利用するパワー比しきい値を適切に設定すれば、方位分解能に関しても向上させることが可能となる。結果として、アーチファクトが低減され、かつ方位分解能が向上した断層像表示が可能な超音波診断装置を構築することが可能となる。
【図面の簡単な説明】
【図1】実施の形態1における超音波診断装置の外観図である。
【図2】実施の形態1における超音波診断装置の機能構成を示すブロック図である。
【図3】送信パワーの違いによる非線型伝播歪みを受けた信号波形を説明するための図である。
【図4】送信パワーの違いによる非線型伝播歪みを受けた信号スペクトルの一例である。
【図5】実施の形態1における超音波診断装置の処理の流れを示すフローチャートである。
【図6】実施の形態2における超音波診断装置の機能構成を示すブロック図である。
【図7】伝播距離(深度)と受信信号パワーとの関係を表わす曲線の一例である。
【図8】伝播距離(深度)と受信信号の振幅との関係を表わす周波数特性曲線の一例である。
【図9】実施の形態2における超音波診断装置の処理の流れを示すフローチャートである。
【図10】従来における超音波診断装置の機能構成を示す概略図である。
【図11】従来における送信パルスのパワー分布を模式的に示す図である。
【図12】従来における伝播距離に対する受信パルスのパワー分布を模式的に示す図である。
【符号の説明】
10 超音波診断装置
10a 表示装置
10b 本体装置
10c プローブ
11 探触子
12 送受信切替部
13 送信部
14 整相加算部
17 パワー比演算部
18 パワー比参照メモリ
19 パワー比比較部
20 操作入力部
40 超音波診断装置
41 探触子
42 送受信切替部
43 送信部
44 整相加算部
47 パワー比演算部
48 パワー比参照メモリ
49 パワー比比較部
50 操作入力部
70 超音波診断装置
71 探触子
72 送受信切替部
73 送信部
74 整相加算部
75 フィルタ部
76 検波部
77 表示部
110 検波信号抑制部
111 表示部
151 基本波用BPF部
152 高調波用BPF部
161 基本波用検波部
162 高調波用検波部
410 検波信号抑制部
411 表示部
451 基本波用DBPF部
452 高調波用DBPF部
461 基本波用検波部
462 高調波用検波部
【発明の属する技術分野】
本発明は、超音波診断装置に関し、特に超音波断層像内に含まれるアーチファクト(虚像)を低減させる技術に関する。
【0002】
【従来の技術】
非侵襲、かつリアルタイムで被検体の観測が可能である超音波診断装置は、医療分野において欠かせない存在になりつつある。この超音波診断装置は、プローブ(探触子)で発生させた超音波パルスを被検体に送信し、反射してきた超音波エコーに基づいて被検体内の様子を画像化する装置である(非特許文献1参照)。
【0003】
ここで、従来の超音波診断装置の構成およびその動作について説明する。
図10は、従来の超音波診断装置70の機能構成を示すブロック図である。
図10に示されるように、従来の超音波診断装置70は、探触子71、送受信切替部72、送信部73、整相加算部74、フィルタ部75、検波部76および表示部77を備えている。
【0004】
探触子71は、被検体に対して超音波パルスを送信すると共に、被検体から反射してきた超音波(以下、「超音波エコー」という。)の受信を行なう装置である。探触子71は、超音波パルスの送信時においては、送信部73から超音波パルスを発生させるためのパルス信号(以下、「送信パルス信号」という。)を受信し、これに基づいて超音波パルスを生成する。一方、超音波エコーの受信時においては、被検体から反射してきた超音波エコーを電気信号(以下、「受信エコー信号」という。)に変換し、送受信切替部72に出力する。
【0005】
送受信切替部72は、超音波パルスの送信時には探触子71と送信部73とを接続させ、超音波エコーの受信時には探触子71と整相加算部74とを接続するように切り替える。送信部73は、超音波パルスの送信時に送信パルス信号を生成して送受信切替部72に出力する。
【0006】
整相加算部74は、送受信切替部72を介して探触子71から受信した受信エコー信号に対してフォーカシングおよび必要な整相加算を行ない、フィルタ部75に出力する。フィルタ部75は、整相加算部74から出力された受信エコー信号に対してフィルタ処理を施す。検波部76は、フィルタ部75から出力されたフィルタ処理後の受信エコー信号に対して包絡線検波を行ない、検波後の受信エコー信号(以下、「受信検波信号」という。)を表示部77に出力する。表示部77は、検波部76から出力された受信検波信号に基づいて断層像を生成し、その表示を行なう。
【0007】
次に、従来の超音波診断装置70における動作について説明する。被検体に超音波パルスを送信するために、送信部73において送信パルス信号が生成され、この送信パルス信号に基づいて生成された超音波パルスが探触子71から被検体に送信される。被検体に送信された超音波パルスは、被検体内の音響インピーダンス境界において反射され、送信開始時刻から反射深度に応じた時間分だけ遅れて探触子71に戻ってくる。探触子71は、受信した超音波エコーを電気的な受信エコー信号に変換して整相加算部74に出力する。整相加算部74は、探触子71を構成する各振動子が超音波エコーを受信した場合の受信時刻の差の補正を行ない、受信エコー信号のフォーカシングを行なう。
【0008】
さらに、整相加算後の受信エコー信号には、ノイズ成分も含まれているため、フィルタ部75において中心周波数あるいは中心周波数の2倍となる高調波周波数における受信エコー信号を効率的に抽出するために、バンドパスフィルタ(BPF)によってフィルタリングが施される。フィルタ部75を通過した受信エコー信号は、検波部76においてヒルベルト変換フィルタなどを用いて複素化された後、包絡線検波が施されることで、断層像を生成するための輝度等を示す受信検波信号に変換される。最後に、表示部77は、受信検波信号に基づいて断層像を生成し、ディスプレイ装置等に表示する。
【0009】
なお、超音波診断装置においては、断層像の画質改善を図るため、所望の指向性(例えば、正面方向がより強い音圧を有する特性)をもった超音波パルスが使用される。
【0010】
【非特許文献1】
伊東・平田編著、「超音波医学TEXT 基礎超音波医学」1998年4月、
医歯薬出版株式会社
p.7−20、p.24−25
【0011】
【発明が解決しようとする課題】
しかしながら、実際に送信される超音波パルスは、所望する方向(正面方向)に送信されるメインローブ以外に、所望としない方向(例えば、左右に45°)に送信される複数のサイドローブを有している。
【0012】
図11は、メインローブ81の両脇に発生し、かつ所望しない方向(左右の斜め方向。以下、「サイドローブ方向」という。)に送信される複数のサイドローブ82、83の概要を示す図である。これらのサイドローブのため、サイドローブ方向にある物体に超音波パルスのサイドローブが送信され、超音波診断装置70が超音波エコーを受信すると、断層像として表示させたい超音波が反射する物体から反射される超音波パルスのメインローブ以外に、サイドローブ方向にある物体から反射される超音波エコーも同時に受信することになる。その結果、サイドローブ方向からの超音波エコーがアーチファクト(虚像)を生成することになり、アーチファクトを含む断層像によって誤った診断を招いてしまうという問題がある(非特許文献1参照)。
【0013】
図12は、上記のサイドローブ82、83によって生成されたアーチファクト(虚像)が断層像として表示されるまでの過程を模式的に示した図である。図12に示されるように、メインローブ方向には、断層像として表示させたい超音波が反射し得る物体91、92があり、超音波パルスのメインローブがこれらの物体に反射し、受信エコー信号96、97が生成される。しかし、この超音波パルスはサイドローブを有しているため、左右のサイドローブ方向には、断層像として表示させたくない、超音波が反射し得る物体93〜95があり、サイドローブがこれらの物体に反射し、受信エコー信号93a〜95aが生成されてしまう。その結果として、受信検波信号においても上記サイドローブによる信号93a〜95aが残留してしまい、これがアーチファクトとして現われる。
【0014】
そこで、本発明では、上記課題に鑑みてなされたものであり、サイドローブによって発生するアーチファクト(虚像)による誤診断を防止し得る超音波診断装置および超音波診断方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る超音波診断装置は、メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断装置であって、前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信手段と、前記変換された電気信号に対して、基本波周波数成分を抽出し、当該信号のパワーを算出する第1算出手段と、前記変換された電気信号に対して、高調波周波数成分を抽出し、当該信号のパワーを算出する第2算出手段と、前記算出された基本波周波数成分に係る信号のパワーと高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算手段と、前記算出された比の値に基づいて、前記基本波周波数成分の電気信号を制御して出力する出力制御手段と、前記出力された電気信号に基づいて、断層像を生成して表示する画像表示手段とを備える。
【0016】
さらに、上記目的を達成するために、本発明に係る超音波診断装置は、メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断装置であって、前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信手段と、前記変換された電気信号に対して、基本波周波数成分を抽出し、当該信号のパワーを算出する第1算出手段と、前記変換された電気信号に対して、高調波周波数成分を抽出し、当該信号のパワーを算出する第2算出手段と、前記算出された基本波周波数成分に係る信号のパワーと高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算手段と、前記算出された比の値に基づいて、前記高調波周波数成分の電気信号を制御して出力する出力制御手段と、前記出力された電気信号に基づいて、断層像を生成して表示する画像表示手段とを備える。
【0017】
なお、上記目的を達成するために、本発明は、上記超音波診断装置の特徴的な構成手段をステップとする方法として実現したり、それらのステップの全てを含むプログラムとして実現することもできる。そして、そのプログラムは、超音波診断装置が備えるROM等に格納しておくだけでなく、CD−ROM等の記録媒体や通信ネットワーク等の伝送媒体を介して流通させることも可能である。
【0018】
【発明の実施の形態】
以下、本発明に係る実施の形態について、図面を参照しながら説明を行なう。
(実施の形態1)
図1は、本実施の形態における超音波診断装置10の外観図である。本装置10は、単に断層像を生成するだけでなく、サイドローブによって発生するアーチファクト(虚像)を低減して、より正確な診断が可能な超音波診断装置であり、主に表示装置10a、本体装置10bおよびプローブ10cから構成されている。
【0019】
表示装置10aは、超音波エコー法等により得られた断層像や必要な情報を表示させるための液晶又はCRT等によるディスプレイ装置であり、オペレータからの入力を受け付けるタッチパネル等を有している。
【0020】
本体装置10bは、プローブ10cにおける超音波の送受信を制御するための送受信回路、各種の信号や画像を処理するためにDSP(Digital Signal Processor)やRAM等からなる信号・画像処理回路、オペレータからの操作を受け付けるスイッチ群やマウス、タッチパネルを有する液晶ディスプレイ等を備える。
【0021】
プローブ10cは、超音波を送受信するための超音波振動子や音響レンズ等からなる探触子である。
【0022】
図2は、本実施の形態における超音波診断装置10の機能構成を示すブロック図である。図2に示されるように、本装置10は、探触子11、送受信切替部12、送信部13、整相加算部14、基本波用BPF(バンドパスフィルタ)部151、高調波用BPF(バンドパスフィルタ)部152、基本波用検波部161、高調波用検波部162、パワー比演算部17、パワー比参照メモリ18、パワー比比較部19、操作入力部20、検波信号抑制部110および表示部111を備えている。
【0023】
探触子11は、超音波パルスの生成および被検体から反射してきた超音波エコーの受信を行なう装置である(上記図1のプローブ10cに該当)。この探触子11は、超音波パルスの送信時においては、送信部13から受信した送信パルス信号に基づいて超音波パルスを生成する。一方、超音波エコーの受信時においては、被検体から反射してきた超音波エコーを受信エコー信号に変換し、この受信エコー信号を送受信切替部12に出力する。
【0024】
送受信切替部12は、超音波パルスの送信時には探触子11と送信部13とを接続させ、超音波エコーの受信時には探触子11と整相加算部14とが接続するように切り替える。
【0025】
送信部13は、超音波パルスの送信時に、送信パルス信号を生成し、送受信切替部12に出力する。整相加算部14は、送受信切替部12を介して探触子11から受信した受信エコー信号に対してフォーカシングを行ない、必要な整相加算を行なう。
【0026】
基本波用BPF部151は、整相加算部14から出力された受信エコー信号に対して、超音波パルスの基本波に対応する中心周波数に係る信号成分を抽出するためのフィルタ処理を施す。高調波用BPF部152は、整相加算部14から出力された受信エコー信号に対して、超音波パルスの基本波が被検体内を伝播する際に発生した非線形歪を構成する高調波周波数に係る信号成分を抽出するためのフィルタ処理を施す。
【0027】
基本波用検波部161は、基本波用BPF部151から出力された受信エコー信号の中心周波数に係る信号成分に対して検波を行なう。高調波用検波部162は、高調波用BPF部152から出力された受信エコー信号の高調波周波数に係る信号成分に対して検波を行なう。
【0028】
パワー比演算部17は、基本波用検波部161および高調波用検波部162からそれぞれ出力された受信検波信号におけるパワー比(例えば、高調波の受信検波信号の最大振幅値/基本波の受信検波信号の最大振幅値)を算出する。
【0029】
パワー比参照メモリ18は、被検体内における伝播距離(または、「深度」ともいう。)毎に設定されている「パワー比しきい値」を格納する。この「パワー比しきい値」とは、受信検波信号がメインローブに基づくものかサイドローブに基づくものかを判断する際の基準値であり、この値を下回るパワー比の場合は、その受信検波信号はサイドローブに基づく受信検波信号であると判断する。例えば、伝播距離(深度)が「5cm」の時のパワー比しきい値は「0.3」、伝播距離(深度)が「10cm」の時のパワー比しきい値は「0.35」というように双方が対応付けられて記憶されている。なお、このパワー比しきい値は、操作入力部20を介してユーザによって変更され得る。
【0030】
パワー比比較部19は、パワー比演算部17の出力である「パワー比」とこれに対応するパワー比参照メモリ18に格納されている伝播距離(深度)毎の「パワー比しきい値」とを比較し、その結果(「アーチファクトである」、「アーチファクトでない」等)を検波信号抑制部110に通知する。例えば、伝播距離(深度)が「5cm」の場合のパワー比の値が「0.1」で、これに対応するパワー比しきい値の値が「0.3」の場合は、サイドローブに基づくアーチファクトであると判断する。
【0031】
検波信号抑制部110は、パワー比比較部19から受信した通知に基づいて、基本波用検波部161の出力を制御する。例えば、パワー比比較部19から「サイドローブである」旨の通知を受けた場合は、その基本波に係る受信検波信号を「20パーセントに低減して出力」するとか、「全く出力しない」というように制御する。
【0032】
表示部111は、基本波用検波部161の出力であるエコー信号に基づいて断層像を生成し、その表示を行なう。
【0033】
次に、本実施の形態の超音波診断装置10における動作について説明する。
まず、被検体に超音波パルスを送信するためには、送信部13が送信パルス信号を生成して探触子11に送信する。さらに、探触子11がこの送信パルス信号に基づいて超音波パルスを生成して被検体に送信する。
この際、上記発明が解決しようとする課題でも述べたように、探触子11から送信される超音波パルスは、メインローブおよびサイドローブを有している。このため、サイドローブ方向にある物体にも超音波パルス(サイドローブ)が送信されるので、超音波診断装置10が超音波エコーを受信した場合は、メインローブ方向にある断層像として表示させたい物体から反射された超音波エコー以外に、サイドローブ方向にある物体から反射された超音波エコーも同時に受信することになる。その結果としてサイドローブ方向からの超音波パルスがアーチファクト(虚像)として表示されることになる。
【0034】
ここで注目すべき点は2つある。1点目は、送信される超音波パルスにおけるメインローブ方向の送信パワーとサイドローブ方向の送信パワーとの違いである。すなわち、上記図11から明らかなように、メインローブ方向の送信パワーは、サイドローブ方向の送信パワーよりも大きい点である。2点目は、被検体を超音波パルスが通過した場合の非線形伝播歪み現象である。この現象は、送信された超音波パルスが被検体内を伝播するにつれて超音波パルスの波形が次第に歪んでいく現象であり、超音波パルスは伝播距離(深度)に従って本来の送信周波数(基本波周波数)のN倍(2倍、3倍等)の高調波周波数成分が増大する。
【0035】
図3は、超音波パルスが被検体内を伝播する際の非線形伝播歪み現象を模式的に表わした図であり、(a)は、送信される超音波パルスのパワーが大きい場合(即ち、メインローブの場合)の受信エコー信号波形の例示であり、(b)は、送信される超音波パルスのパワーが小さい場合(即ち、サイドローブの場合)の受信エコー信号波形の例示である。図3(特に、図3(a))に示されるように、伝播距離が長く(深度が深く)なるに従って、受信エコー信号の波形が鋸歯状になっていく。これは、超音波が媒質(被検体の内部)を進む場合は、超音波のパワーが大きい(音圧の大きい)部分は速く、逆にパワーが小さい(音圧の小さい)部分は遅く進むため、波形が鋸歯状になり、図3に示されるような歪みを生ずるのである。
さらに、図3(a)および(b)に示されるように、この非線形伝播歪み現象は、送信される超音波パルスのパワーの大小にも密接に関係しており、上記と同様の理由から、超音波パルスのパワーが大きい場合は、パワーが小さい場合に比べて短い伝播距離(深度)で非線形伝播歪みを生じてしまう。言い換えると、パワーが大きい場合は、短い伝播距離(深度)で大きな高調波を有することとなる。
【0036】
図4は、上記図3の非線形伝播歪み現象における受信検波信号の周波数スペクトルを模式的に表わした図であり、(a)は、送信される超音波パルスのパワーが大きい場合(即ち、メインローブの場合)の受信検波信号の周波数スペクトル例であり、(b)は、送信される超音波パルスのパワーが小さい場合(即ち、サイドローブの場合)の受信検波信号の周波数スペクトル例示である。
より詳細に説明すると、図4(a)には、送信される超音波パルスのパワーが大きい場合の、伝播距離がZ0とZ1における受信エコー信号の信号パワー分布が示されており、伝播距離が長くなると(Z1>Z0)、高調波周波数(F1=2F0)における信号パワーが際立って大きくなる様子が示されている。
【0037】
一方、図4(b)には、送信される超音波パルスのパワーが小さい場合の、伝播距離がZ0とZ1における受信検波信号の信号パワー分布が示されているが、この場合は、伝播距離が長くなっても高調波周波数における信号パワーが際立って大きくなることはない。
【0038】
以上の注目すべき2点から、基本波周波数成分および高調波周波数成分のパワー比(高調波パワー/基本波パワー)を考慮すると、アーチファクト(虚像)の原因となるサイドローブ方向から受信された超音波エコーは、メインローブ方向から受信した超音波エコーよりもパワー比が小さくなる傾向がある。したがって、このパワー比に基づいて受信検波信号の出力を抑制すればアーチファクトを低減させることが可能となる。
【0039】
次に、以上のことを踏まえ、実施の形態1に係る超音波診断装置10における動作について、図5を参照しながら説明する。図5は、超音波診断装置10の動作の流れを示すフローチャートである。
【0040】
最初に、超音波パルスが被検体に送信されると(S401)、その超音波パルスは被検体内の音響インピーダンス境界において反射され、送信開始時間から反射深度に応じた遅延時間分だけ遅れて探触子11に戻ってくる(S402)。この探触子11で受信される超音波エコーには、メインローブ方向およびサイドローブ方向からの反射波が重ね合わされて受信されることになる。探触子11で受信された超音波エコーは、受信エコー信号に変換されて整相加算部14に送られる。整相加算部14は、探触子11を構成する各振動子間での受信エコー信号の到達時間の差の補正を行ない、受信エコー信号のフォーカシングを行なう。整相加算後の受信エコー信号は、メインローブから反射してきた超音波エコーに基づく受信エコー信号なのかサイドローブから反射したきた超音波エコーに基づく受信エコー信号なのかが不明であると共に、ノイズ成分も含んでいるため、基本波用BPF部151および基本波用検波部161を用いて基本波周波数成分を抽出し、その信号パワーを算出する(S403、S404)。一方、高調波用BPF部152および高調波用検波部162を用いて高調波周波数成分を抽出し、その信号パワーを算出する(S403、S404)。
【0041】
そして、パワー比演算部17は、基本波用検波部161及び高調波用検波部162によって算出されたそれぞれの信号パワーの比Rpを算出する(S405)。ここで、ユーザから上記パワー比しきい値Rsについて変更がある場合は(S406)、パワー比参照メモリ18に格納されているパワー比しきい値Rsの値を更新する(S407)。
【0042】
さらに、パワー比比較部19は、パワー比演算部17で算出されたパワー比Rpとパワー比参照メモリ18に格納されている伝播距離(深度)毎に記憶されているパワー比しきい値Rsとを比較し、その比較結果に基づく通知を検波信号抑制部110に行なう。
【0043】
検波信号抑制部110は、パワー比比較部19から受信した通知が「アーチファクトである」旨であれば基本波用検波部161から出力された受信検波信号の信号レベルを抑制(例えば、20パーセントに抑制)し(S410)、そうでない場合は基本波用検波部161から出力された受信検波信号の信号レベルをそのまま出力する(S409)。
【0044】
最後に、表示部111は、検波信号抑制部110から出力された受信検波信号に基づいて断層像を生成し、これを表示する(S411)。以上の処理を超音波診断装置による診断が終了するまで継続する(S401〜S412)。
なお、上記の説明では、検波信号抑制部110に入力される受信検波信号は、基本波用検波部161から出力された受信エコー信号としているが、高調波による断層像表示モード(Tissue Harmonics Imaging Mode)を用いる場合は、高調波用検波部162から出力された受信検波信号を入力として用いることとする。
【0045】
以上のように、本実施の形態に係る超音波診断装置10によれば、受信検波信号における「高調波パワー/基本波パワー」のパワー比を算出して比較することによって、超音波エコーに含まれるアーチファクトの原因となるサイドローブによって生じた受信エコー信号の検出およびその抑制を行なうので、表示部111に表示される断層像をアーチファクトの少ない鮮明な断層像を生成することが可能となり、誤診断を防止することができる。
【0046】
(実施の形態2)
実施の形態2における超音波診断装置は、上記実施の形態1における超音波診断装置10と同様に、超音波パルスにおけるサイドローブによって生じた受信検波信号のレベルを抑制させることによって、アーチファクトを軽減し得る超音波診断装置であるが、特に、基本波周波数成分又は高調波周波数成分を抽出するためのバンドパスフィルタとして、ダイナミックバンドパスフィルタを用いる点で上記実施の形態1における超音波診断装置と異なる。
【0047】
図6は、本実施の形態における超音波診断装置40の機能構成を示すブロック図である。図6に示されるように、超音波診断装置40は、探触子41、送受信切替部42、送信部43、整相加算部44、基本波用DBPF(ダイナミックバンドパスフィルタ)部451、高調波用DBPF(ダイナミックバンドパスフィルタ)部452、基本波用検波部461、高調波用検波部462、パワー比演算部47、パワー比参照メモリ48、パワー比比較部49、検波信号抑制部410、表示部411を備えている。
【0048】
なお、実施の形態2における超音波診断装置の構成については、上記実施の形態1の場合とほぼ同様であるため、異なる構成について重点的に説明する。図6における探触子41、送受信切替部42、送信部43、整相加算部44、基本波用検波部461、高調波用検波部462、パワー比演算部47、パワー比参照メモリ48、パワー比比較部49、検波信号抑制部410および表示部411については、上記実施の形態1における超音波診断装置10における探触子11、送受信切替部12、送信部13、整相加算部14、基本波用検波部161、高調波用検波部162、パワー比演算部17、パワー比参照メモリ18、パワー比比較部19、検波信号抑制部110および表示部111と同じであるため、その説明は省略する。
【0049】
基本波用DBPF部451および高調波用DBPF部452は、受信深度が深くなるにつれてバンドパス帯域が動的に低周波帯域に移動していくフィルタ特性を有している。このようなフィルタ特性を有するBPFを使用する理由は、送信した超音波パルスのパワーは伝播距離(深度)に応じて減衰することになるが、図7に示すように、周波数が高くなるほどより顕著に信号パワーが減衰する性質があるためである。図8に、このダイナミックバンドパスフィルタの周波数特性例を示す。
そこで、ダイナミックバンドパスフィルタを用いることで伝播距離(深度)に応じたバンドパス帯域を動的に変更するように制御することが可能となるので、S/N比の良い受信検波信号を得ることができ、最終的には、誤診断を招きにくい断層像を生成することができる。
【0050】
次に、以上のことを踏まえ、実施の形態2に係る超音波診断装置40における動作について、図9を参照しながら説明する。図9は、超音波診断装置40の動作の流れを示すフローチャートである。図9において明らかなように、基本波用DBPF部451においてDBPFを使用し、高調波用DBPF部452においてDBPFを使用すること(S901)以外は、上記実施の形態1の図5のフローと同じである。
【0051】
なお、上記の説明では、前記実施の形態1の場合と同様に、検波信号抑制部410に入力される受信検波信号は、基本波用検波部461から出力された受信検波信号としているが、高調波による断層像表示モード(Tissue Harmonics Imaging Mode)を用いる場合は、高調波用検波部462から出力された受信検波信号を入力として用いることとする。
【0052】
以上のように、本実施の形態に係る超音波診断装置40によれば、受信検波信号における「高調波パワー/基本波パワー」のパワー比を算出して比較することによって、超音波エコーに含まれるアーチファクトの原因となるサイドローブによって生じた受信エコー信号の検出およびその抑制を行ない、さらに、伝播距離(深度)に応じてバンドパス帯域を動的に変更するように制御して、より実際に即した基本波周波数成分および高調波周波数成分の抽出を行なってアーチファクトの低減化を図っているので、表示部111に表示される断層像は、より鮮明な断層像を生成することが可能となり、誤診断を防止することができる。
【0053】
なお、上記実施の形態1及び実施の形態2においては、基本波周波数成分の信号パワーと高調波周波数成分の信号パワーとの比に基づいてサイドローブによるエコー信号か否かを判別してアーチファクトの低減化を図る場合について説明したが、これに限定するものではない。例えば、N次高調波周波数成分(N:2以上の整数)の信号パワーとM次高調波周波数成分(N<M、M:3以上の整数)の信号パワーとの比に基づいて、同様に、サイドローブによるエコー信号か否かを判別してアーチファクトの低減化を図るように構成することもできる。
【0054】
【発明の効果】
以上のように、本発明に係る超音波診断装置は、探触子から送信される超音波パルスにおけるメインローブ方向およびサイドローブ方向への送信パワーの違いと被検体のもつ非線形伝播歪み現象の度合いの違いとを利用することにより、受信検波信号についてアーチファクトを生成する信号であるか否かを判断し、この結果に基づいて受信検波信号の出力レベルを抑制して上記アーチファクトの低減化が実現されるので、その実用的価値は大きい。
【0055】
なお、さらに、メインローブ方向においても送信方向に広がりがあるので、本発明において利用するパワー比しきい値を適切に設定すれば、方位分解能に関しても向上させることが可能となる。結果として、アーチファクトが低減され、かつ方位分解能が向上した断層像表示が可能な超音波診断装置を構築することが可能となる。
【図面の簡単な説明】
【図1】実施の形態1における超音波診断装置の外観図である。
【図2】実施の形態1における超音波診断装置の機能構成を示すブロック図である。
【図3】送信パワーの違いによる非線型伝播歪みを受けた信号波形を説明するための図である。
【図4】送信パワーの違いによる非線型伝播歪みを受けた信号スペクトルの一例である。
【図5】実施の形態1における超音波診断装置の処理の流れを示すフローチャートである。
【図6】実施の形態2における超音波診断装置の機能構成を示すブロック図である。
【図7】伝播距離(深度)と受信信号パワーとの関係を表わす曲線の一例である。
【図8】伝播距離(深度)と受信信号の振幅との関係を表わす周波数特性曲線の一例である。
【図9】実施の形態2における超音波診断装置の処理の流れを示すフローチャートである。
【図10】従来における超音波診断装置の機能構成を示す概略図である。
【図11】従来における送信パルスのパワー分布を模式的に示す図である。
【図12】従来における伝播距離に対する受信パルスのパワー分布を模式的に示す図である。
【符号の説明】
10 超音波診断装置
10a 表示装置
10b 本体装置
10c プローブ
11 探触子
12 送受信切替部
13 送信部
14 整相加算部
17 パワー比演算部
18 パワー比参照メモリ
19 パワー比比較部
20 操作入力部
40 超音波診断装置
41 探触子
42 送受信切替部
43 送信部
44 整相加算部
47 パワー比演算部
48 パワー比参照メモリ
49 パワー比比較部
50 操作入力部
70 超音波診断装置
71 探触子
72 送受信切替部
73 送信部
74 整相加算部
75 フィルタ部
76 検波部
77 表示部
110 検波信号抑制部
111 表示部
151 基本波用BPF部
152 高調波用BPF部
161 基本波用検波部
162 高調波用検波部
410 検波信号抑制部
411 表示部
451 基本波用DBPF部
452 高調波用DBPF部
461 基本波用検波部
462 高調波用検波部
Claims (15)
- メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断装置であって、
前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信手段と、
前記変換された電気信号に対して、基本波周波数成分を抽出し、当該信号のパワーを算出する第1算出手段と、
前記変換された電気信号に対して、高調波周波数成分を抽出し、当該信号のパワーを算出する第2算出手段と、
前記算出された基本波周波数成分に係る信号のパワーと高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算手段と、
前記算出された比の値に基づいて、前記基本波周波数成分の電気信号を制御して出力する出力制御手段と、
前記出力された電気信号に基づいて、断層像を生成して表示する画像表示手段とを備えることを特徴とする超音波診断装置。 - メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断装置であって、
前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信手段と、
前記変換された電気信号に対して、基本波周波数成分を抽出し、当該信号のパワーを算出する第1算出手段と、
前記変換された電気信号に対して、高調波周波数成分を抽出し、当該信号のパワーを算出する第2算出手段と、
前記算出された基本波周波数成分に係る信号のパワーと高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算手段と、
前記算出された比の値に基づいて、前記高調波周波数成分の電気信号を制御して出力する出力制御手段と、
前記出力された電気信号に基づいて、断層像を生成して表示する画像表示手段とを備えることを特徴とする超音波診断装置。 - 前記出力制御手段は、
前記パワー比と所定のパワー比しきい値とを比較し、当該比較結果に基づいて、前記制御を行なう
ことを特徴とする請求項1又は2記載の超音波診断装置。 - 前記出力制御手段は、
前記パワー比が前記パワー比しきい値以下の場合は、前記電気信号は前記サイドローブに基づく電気信号と判定し、当該電気信号の信号レベルを抑制して出力を行なう
ことを特徴とする請求項3記載の超音波診断装置。 - 前記超音波診断装置は、さらに、
ユーザから操作入力を受け付け、当該受け付けられた操作入力に基づいて、前記パワー比しきい値の内容を更新するしきい値更新手段を備え、
前記出力制御手段は、
前記更新されたパワー比しきい値に基づいて、前記比較を行なう
ことを特徴とする請求項4記載の超音波診断装置。 - 前記第1算出手段は、ダイナミックバンドパスフィルタを用いて、前記基本波周波数成分の抽出を行ない、
前記第2算出手段は、ダイナミックバンドパスフィルタを用いて、前記高調波周波数成分の抽出を行なう
ことを特徴とする請求項1〜5の何れか1項に記載の超音波診断装置。 - メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断装置であって、
前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信手段と、
前記変換された電気信号に対して、N次高調波周波数成分(N:2以上の整数)を抽出し、当該信号のパワーを算出する第1算出手段と、
前記変換された電気信号に対して、M次高調波周波数成分(N<M、M:3以上の整数)を抽出し、当該信号のパワーを算出する第2算出手段と、
前記算出されたN次高調波周波数成分に係る信号のパワーとM次高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算手段と、
前記算出された比の値に基づいて、前記N次高調波周波数成分の電気信号を制御して出力する出力制御手段と、
前記出力された電気信号に基づいて、断層像を生成して表示する画像表示手段とを備えることを特徴とする超音波診断装置。 - メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断装置であって、
前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信手段と、
前記変換された電気信号に対して、N次高調波周波数成分(N:2以上の整数)を抽出し、当該信号のパワーを算出する第1算出手段と、
前記変換された電気信号に対して、M次高調波周波数成分(N<M、M:3以上の整数)を抽出し、当該信号のパワーを算出する第2算出手段と、
前記算出されたN次高調波周波数成分に係る信号のパワーとM次高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算手段と、
前記算出された比の値に基づいて、前記M次高調波周波数成分の電気信号を制御して出力する出力制御手段と、
前記出力された電気信号に基づいて、断層像を生成して表示する画像表示手段とを備えることを特徴とする超音波診断装置。 - メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断方法であって、
前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信ステップと、
前記変換された電気信号に対して、基本波周波数成分を抽出し、当該信号のパワーを算出する第1算出ステップと、
前記変換された電気信号に対して、高調波周波数成分を抽出し、当該信号のパワーを算出する第2算出ステップと、
前記算出された基本波周波数成分に係る信号のパワーと高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算ステップと、
前記算出された比の値に基づいて、前記基本波周波数成分の電気信号を制御して出力する出力制御ステップと、
前記出力された電気信号に基づいて、断層像を生成して表示する画像表示ステップと
を有することを特徴とする超音波診断方法。 - メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断方法であって、
前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信ステップと、
前記変換された電気信号に対して、基本波周波数成分を抽出し、当該信号のパワーを算出する第1算出ステップと、
前記変換された電気信号に対して、高調波周波数成分を抽出し、当該信号のパワーを算出する第2算出ステップと、
前記算出された基本波周波数成分に係る信号のパワーと高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算ステップと、
前記算出された比の値に基づいて、前記高調波周波数成分の電気信号を制御して出力する出力制御ステップと、
前記出力された電気信号に基づいて、断層像を生成して表示する画像表示ステップと
を有することを特徴とする超音波診断方法。 - 前記出力制御ステップは、
前記パワー比と所定のパワー比しきい値とを比較し、当該比較結果に基づいて、前記制御を行なう
ことを特徴とする請求項9又は10記載の超音波診断方法。 - 前記出力制御ステップは、
前記パワー比が前記パワー比しきい値以下の場合は、前記電気信号は前記サイドローブに基づく電気信号と判定し、当該電気信号の信号レベルを抑制して出力を行なう
ことを特徴とする請求項11記載の超音波診断方法。 - メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断方法であって、
前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信ステップと、
前記変換された電気信号に対して、N次高調波周波数成分(N:2以上の整数)を抽出し、当該信号のパワーを算出する第1算出ステップと、
前記変換された電気信号に対して、M次高調波周波数成分(N<M、M:3以上の整数)を抽出し、当該信号のパワーを算出する第2算出ステップと、
前記算出されたN次高調波周波数成分に係る信号のパワーとM次高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算ステップと、
前記算出された比の値に基づいて、前記N次高調波周波数成分の電気信号を制御して出力する出力制御ステップと、
前記出力された電気信号に基づいて、断層像を生成して表示する画像表示ステップとを有する
ことを特徴とする超音波診断方法。 - メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断方法であって、
前記超音波を生成すると共に、被検体から反射された超音波を受信して電気信号に変換する超音波送受信ステップと、
前記変換された電気信号に対して、N次高調波周波数成分(N:2以上の整数)を抽出し、当該信号のパワーを算出する第1算出ステップと、
前記変換された電気信号に対して、M次高調波周波数成分(N<M、M:3以上の整数)を抽出し、当該信号のパワーを算出する第2算出ステップと、
前記算出されたN次高調波周波数成分に係る信号のパワーとM次高調波周波数成分に係る信号のパワーとの比を算出するパワー比演算ステップと、
前記算出された比の値に基づいて、前記M次高調波周波数成分の電気信号を制御して出力する出力制御ステップと、
前記出力された電気信号に基づいて、断層像を生成して表示する画像表示ステップとを有する
ことを特徴とする超音波診断方法。 - メインローブおよびサイドローブを有する超音波の反射に基づいて被検体の断層像を生成し表示する超音波診断装置のためのプログラムであって、
請求項9〜14の何れか1項に記載された全てのステップをコンピュータに実行させる
ことを特徴とするプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002300957A JP2004135705A (ja) | 2002-10-15 | 2002-10-15 | 超音波診断装置及び超音波診断方法 |
US10/682,931 US6923766B2 (en) | 2002-10-15 | 2003-10-14 | Ultrasonic diagnostic apparatus and ultrasonic diagnostic method |
EP20030023279 EP1411368A1 (en) | 2002-10-15 | 2003-10-15 | Ultrasonic diagnostic apparatus and ultrasonic diagnostic method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002300957A JP2004135705A (ja) | 2002-10-15 | 2002-10-15 | 超音波診断装置及び超音波診断方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004135705A true JP2004135705A (ja) | 2004-05-13 |
Family
ID=32040791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002300957A Pending JP2004135705A (ja) | 2002-10-15 | 2002-10-15 | 超音波診断装置及び超音波診断方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US6923766B2 (ja) |
EP (1) | EP1411368A1 (ja) |
JP (1) | JP2004135705A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013000351A (ja) * | 2011-06-16 | 2013-01-07 | Hitachi Aloka Medical Ltd | 超音波診断装置 |
KR101858137B1 (ko) * | 2017-03-08 | 2018-05-16 | 대진대학교 산학협력단 | 컴퓨터 시뮬레이션을 이용한 초음파 영상의 부엽 억제 필터 평가 방법 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6988410B2 (en) * | 2003-10-24 | 2006-01-24 | General Electric Company | Inspection method and apparatus for determining incipient mechanical failure |
US7546769B2 (en) * | 2005-12-01 | 2009-06-16 | General Electric Compnay | Ultrasonic inspection system and method |
JP6223783B2 (ja) | 2013-11-07 | 2017-11-01 | 三菱日立パワーシステムズ株式会社 | 超音波探傷センサおよび超音波探傷方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4137256A1 (de) | 1991-03-29 | 1992-10-01 | Deutsche Forsch Luft Raumfahrt | Flexibler bandleiter |
US5235985A (en) * | 1992-04-30 | 1993-08-17 | Mcmorrow Gerald J | Automatic bladder scanning apparatus |
US5526816A (en) * | 1994-09-22 | 1996-06-18 | Bracco Research S.A. | Ultrasonic spectral contrast imaging |
US5961460A (en) * | 1997-04-11 | 1999-10-05 | Acuson Corporation | Ultrasound imaging enhancement methods and systems |
US5833614A (en) * | 1997-07-15 | 1998-11-10 | Acuson Corporation | Ultrasonic imaging method and apparatus for generating pulse width modulated waveforms with reduced harmonic response |
US6193659B1 (en) * | 1997-07-15 | 2001-02-27 | Acuson Corporation | Medical ultrasonic diagnostic imaging method and apparatus |
US5913823A (en) * | 1997-07-15 | 1999-06-22 | Acuson Corporation | Ultrasound imaging method and system for transmit signal generation for an ultrasonic imaging system capable of harmonic imaging |
US6181810B1 (en) * | 1998-07-30 | 2001-01-30 | Scimed Life Systems, Inc. | Method and apparatus for spatial and temporal filtering of intravascular ultrasonic image data |
US5961464A (en) * | 1998-09-16 | 1999-10-05 | Hewlett-Packard Company | Ultrasound contrast agent detection using spectral analysis from acoustic scan lines |
US6132377A (en) * | 1999-03-31 | 2000-10-17 | Acuson Corporation | Medical diagnostic ultrasonic imaging system and method using differential sub-band detection techniques |
-
2002
- 2002-10-15 JP JP2002300957A patent/JP2004135705A/ja active Pending
-
2003
- 2003-10-14 US US10/682,931 patent/US6923766B2/en not_active Expired - Fee Related
- 2003-10-15 EP EP20030023279 patent/EP1411368A1/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013000351A (ja) * | 2011-06-16 | 2013-01-07 | Hitachi Aloka Medical Ltd | 超音波診断装置 |
KR101858137B1 (ko) * | 2017-03-08 | 2018-05-16 | 대진대학교 산학협력단 | 컴퓨터 시뮬레이션을 이용한 초음파 영상의 부엽 억제 필터 평가 방법 |
Also Published As
Publication number | Publication date |
---|---|
US6923766B2 (en) | 2005-08-02 |
EP1411368A1 (en) | 2004-04-21 |
US20040077947A1 (en) | 2004-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5570877B2 (ja) | 超音波診断装置 | |
US11000263B2 (en) | Ultrasound diagnostic apparatus, image processing device, and image processing method | |
US9538990B2 (en) | Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus control method | |
US9782146B2 (en) | Ultrasonic diagnostic scanner and method for processing ultrasonic signal | |
JP2004129773A (ja) | 超音波イメージング装置及び超音波信号処理方法 | |
EP2435850A1 (en) | Ultrasoungimaging measurement apparatus using adaptive data reduction | |
JP4405182B2 (ja) | 超音波診断装置 | |
JP2007236740A (ja) | 超音波診断装置及びその制御プログラム | |
JP2009268734A (ja) | 超音波観測装置 | |
JP2004135705A (ja) | 超音波診断装置及び超音波診断方法 | |
JP6651405B2 (ja) | 超音波診断装置及びプログラム | |
JP5513976B2 (ja) | 超音波診断装置 | |
JP5492234B2 (ja) | 超音波診断装置及び超音波診断装置制御プログラム | |
JP3644895B2 (ja) | 超音波診断装置 | |
JP3078569B2 (ja) | 超音波診断装置 | |
JP7211150B2 (ja) | 超音波診断装置、超音波画像生成方法及びプログラム | |
JP2004195091A (ja) | 超音波診断装置 | |
JP2020036774A (ja) | 超音波診断装置、医用画像処理装置及び医用画像処理プログラム | |
JP4664209B2 (ja) | 超音波診断装置およびその撮像を実行する超音波イメージングプログラム | |
JP4719765B2 (ja) | 超音波診断装置 | |
JP2023109051A (ja) | 超音波診断装置、超音波診断方法、及び超音波診断プログラム | |
JP2023184248A (ja) | 超音波診断装置、超音波診断装置の制御方法、及び、超音波診断装置の制御プログラム | |
JP2022158648A (ja) | 超音波診断装置 | |
JP2002095662A (ja) | 超音波診断装置 | |
JP2008173503A (ja) | 超音波診断装置 |