JP2004135052A - Tuning fork type vibrator - Google Patents

Tuning fork type vibrator Download PDF

Info

Publication number
JP2004135052A
JP2004135052A JP2002297404A JP2002297404A JP2004135052A JP 2004135052 A JP2004135052 A JP 2004135052A JP 2002297404 A JP2002297404 A JP 2002297404A JP 2002297404 A JP2002297404 A JP 2002297404A JP 2004135052 A JP2004135052 A JP 2004135052A
Authority
JP
Japan
Prior art keywords
tuning fork
type vibrator
fork arm
arm
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002297404A
Other languages
Japanese (ja)
Inventor
Minoru Ishihara
石原 実
Shingo Kawanishi
川西 信吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2002297404A priority Critical patent/JP2004135052A/en
Publication of JP2004135052A publication Critical patent/JP2004135052A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Clocks (AREA)
  • Gyroscopes (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tuning fork type vibrator which is made more small-sized by holding crystal impedance small without lowering shock resistance. <P>SOLUTION: The tuning fork type vibrator comprising a tuning fork base part 1 and a couple of tuning fork arms 2 is so configured that an exciting electrode 3 is formed by providing grooves which are in an uneven shape along the length of each tuning fork arm 2 on at least one main surface of the tuning fork arm 2. Then the uneven-shaped grooves are provided on both the main surfaces of the tuning fork arm 2. Consequently, the area of the exciting electrode 3 is made large to reduce the crystal impedance (CI). The exciting electrode 3 is formed by providing the uneven-shaped grooves on at least one main surface of the tuning fork arm 2, so the turning fork type vibrator can be provided which has its CI held small and is made more small-sized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は音叉型振動子を産業上の技術分野とし、特にクリスタルインピーダンス(以下、CIとする)を小さくして小型化を促進した音叉型振動子に関する。
【0002】
【従来の技術】
(発明の背景)音叉型振動子は特に時計用の歩度を刻む信号源として知られ、近年ではジャイロスコープのセンサ素子等にも適用されている。そして、このようなものでは、他の電子部品と同様に小型化が求められている。
【0003】
(従来技術の一例)第2図は一従来例を説明する音叉型振動子の図で、同図(a)は外観図、同図(b)は上面図、同図(c)は正面図である。
音叉型振動子は例えばZカットとした(通称では+5度Xカット)音叉状水晶片からなり、音叉基部1と一対の音叉腕2を有する。通常では、結晶軸(XYZ)のX軸を幅、Y軸を長さ、Z軸を厚みとする。そして、各音叉腕2の4面に励振電極3を形成する「第2図(a)」。
【0004】
励振電極3は、音叉腕2の一方では各組の対向面(両主面と両側面)を同電位として、一組と他組の対向面は逆電位とする。そして、音叉腕2の他方では音叉腕2の一方とは逆電位として、図示しない結線図により一方と他方の同電位同士を共通接続する。
【0005】
このようなものでは、例えば音叉腕2の一方での両主面を+電位とし、両側面を−電位とすると、矢印で示す各電界によって音叉腕2の中心から外側面と内側面に向かう電界合成ベクトルP、Qが発生する「第2図(b)」。
【0006】
そして、この電界合成ベクトルP、Qに起因した圧電逆効果によって、音叉腕の外側面では伸張し、内側面では縮小する。したがって、音叉腕2の一方は矢印Aで示すように外方向に撓む。そして、音叉腕2の一方とは電位を逆とした他方は矢印Bで示すように反対方向の外方向に撓む「第2図(c)」。
【0007】
また、前述とは逆に音叉腕2の一方での両主面を−電位とし(未図示)、両側面を+電位とすると、音叉腕2の外側面と内側面から中心に向かう電界ベクトルが発生する。そして、外側面では縮小、内側面では伸張する。したがって、音叉腕2の一方は内方向に撓む。そして、他方は反対方向の内方向に撓む。
【0008】
これらにより、両主面と両側面に±電位とする交番電圧を印加すると、一対の音叉腕2が互いに反対方向に水平振動即ち音叉振動が励起される。これらのものでは、音叉腕2の長さLと幅Wによって共振周波が決定され、概ねW/L2に比例する。そして、発振回路に組み込まれて発振子として、ここではQの高いインダクタ素子として機能する。
【0009】
【発明が解決しようとする課題】
(従来技術の問題点)しかしながら、上記構成の音叉型振動子では小型化が進行するとCIが増大する問題があった。すなわち、音叉腕2の幅が小さくなると励振電極3の主面電極幅も小さくなり、充分な電界を供給できずにCIが増大する。ちなみに、音叉腕2の幅を100μm、長さ1.6mm、厚み80μmとした共振周波数32KHzとした場合の、両主面の励振電極幅dとCIの関係は第3図になる。
【0010】
これから明らかなように、励振電極3の幅dが小さくなるとCIはこれに比例して増大する。そして、発振子として求められる実際的なCI値を50Ω以下とするためには、両主面の励振電極3の幅dを85μm以下にする必要のあることが分かる。なお、図中の実線は実側線、点線は推測線である。しかし、この場合には、マスク等を設けての励振電極3の形成を困難にし、実際的には50Ω以下にするには限界があった。
【0011】
そこで、第4図に示したように音叉腕2の両主面に対向する凹所4を設けて励振電極3を形成する。このようにすれば、X軸(幅)方向での電界が直線的になるので電界強度が増してCIを小さくできることが提案されている(特許文献1及び2)。しかしながら、この場合には主面の中央部に対向する凹所4を設けるため、強度が低下して耐衝撃性に問題を生ずる。
【0012】
(発明の目的)本発明はCIを小さく維持して小型化を促進する音叉型振動子を提供することを目的とする。
【0013】
【特許文献1】特開2002−76827号公報
【特許文献2】特開2002−204141号公報
【0014】
【課題を解決するための手段】
(着目点)本発明は前述した主面電極幅とCIとの関係に、即ち主面電極面積が大きくなればCIは小さくなる点に着目した。
【0015】
(解決手段、請求項1)本発明は、音叉腕の少なくとも一主面を凹凸状とする溝を設けて励振電極を形成したことを基本的な解決手段とする。これにより、励振電極の面積が大きくなるのでCIを小さくできる。以下、本発明の一実施例を説明する。
【0016】
【実施例】
第1図は本発明の一実施例を説明する音叉型振動子の図で、同図(a)は励振電極を除く外観図、同図(b)は上面図である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。
音叉型振動子は前述したように音叉基部1と一対の音叉腕2からなり、各音叉腕2に励振電極3を設けてなる。ここでは、印刷及びエッチング技術により、図示しない水晶ウェハから多くの音叉状水晶片を形成して電極をも一体的に形成する。
【0017】
そして、この実施例では、各音叉腕2の両主面にY軸(長さ)方向に沿った複数列の溝5をエッチングによって設け、両主面を幅方向に凹凸状にする。そして、両主面及び両側面に励振電極3を形成する。なお、両側面の励振電極3は製造上(エッチング)の点から両主面側にまたがって形成される。
【0018】
このような構成であれば、各音叉腕2の両主面の励振電極3は実質的に電極面積が増加する。すなわち、両主面の励振電極3の幅dを凹凸を設けることによって実質的に85μm以上にするので、前第3図のCI特性図に示したようにCI値を50Ω以下にできる。
【0019】
【他の事項】
上記実施例では溝5は方形状としたが、例えば3角状であってもU字状であってもよく実質的に電極幅dが長くなればよい。また、音叉腕2の両主面に設けたが、両側面をも含めていずれかの一面に設けられていればその効果を期待できる。但し、エッチングの場合には両主面に設けるのが最適である。また、溝5は少なくとも2列以上あれば同様にその効果を期待できる。
【0020】
そして、単に音叉型振動子として説明したが、ジャイロスコープ用のセンサ素子として利用する場合にも同様に適用でき、要は音叉振動を励起する場合には適用できる。
【0021】
【発明の効果】
本発明は、音叉腕の少なくとも一主面を凹凸状とする溝を設けて励振電極を形成したので、CIを小さく維持して小型化を促進する音叉型振動子を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例を説明する音叉型振動子の図で、同図(a)は励振電極を除く外観図、同図(b)は上面図である。
【図2】従来例を説明する音叉型振動子の図で、同図(a)は外観図、同図(b)は上面図、同図(c)は正面図である。
【図3】従来例の問題点を説明するCI特性図である。
【図4】従来例の他の例を説明する音叉型振動子の上面図である。
【符号の説明】
1 音叉基部、2 音叉腕部、3 励振電極、4 凹所、5 溝.
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tuning fork vibrator in which the tuning fork vibrator is an industrial technical field, and particularly to a tuning fork vibrator in which crystal impedance (hereinafter, referred to as CI) is reduced to promote downsizing.
[0002]
[Prior art]
BACKGROUND OF THE INVENTION A tuning fork vibrator is known as a signal source for counting the rate, particularly for a timepiece, and has recently been applied to a gyroscope sensor element and the like. And in such a thing, miniaturization is called for like other electronic parts.
[0003]
(Example of Prior Art) FIG. 2 is a diagram of a tuning fork vibrator for explaining a conventional example, wherein FIG. 2A is an external view, FIG. 2B is a top view, and FIG. It is.
The tuning fork type vibrator is made of, for example, a Z-cut (commonly known as +5 degree X cut) tuning fork-shaped crystal piece, and has a tuning fork base 1 and a pair of tuning fork arms 2. Usually, the X axis of the crystal axis (XYZ) is defined as a width, the Y axis is defined as a length, and the Z axis is defined as a thickness. Then, the excitation electrodes 3 are formed on four surfaces of each tuning fork arm 2 (FIG. 2A).
[0004]
In the excitation electrode 3, the opposing surfaces (both main surfaces and both side surfaces) of each set have the same potential on one side of the tuning fork arm 2, and the opposing surfaces of one set and the other set have opposite potentials. The other of the tuning fork arms 2 has a potential opposite to that of one of the tuning fork arms 2, and one and the other of the same potential are commonly connected by a connection diagram (not shown).
[0005]
In such a case, for example, when both main surfaces of one of the tuning fork arms 2 are set to a positive potential and both side surfaces are set to a negative potential, electric fields directed from the center of the tuning fork arm 2 to the outer surface and the inner surface by respective electric fields indicated by arrows. FIG. 2 (b) in which the combined vectors P and Q occur.
[0006]
Then, due to the piezoelectric inverse effect caused by the electric field synthesis vectors P and Q, the tuning fork arm expands on the outer surface and contracts on the inner surface. Therefore, one of the tuning fork arms 2 bends outward as indicated by arrow A. Then, one of the tuning fork arms 2 whose electric potential is opposite to that of the tuning fork arm 2 is bent outward in the opposite direction as shown by an arrow B in FIG. 2 (c).
[0007]
Contrary to the above, when one of the two main surfaces of the tuning fork arm 2 is set to a negative potential (not shown) and the both side surfaces are set to a positive potential, the electric field vector from the outer surface and the inner surface of the tuning fork arm 2 toward the center is obtained. appear. Then, it contracts on the outer side and expands on the inner side. Therefore, one of the tuning fork arms 2 bends inward. And the other flexes in the opposite inward direction.
[0008]
Thus, when an alternating voltage of ± potential is applied to both the main surface and both side surfaces, the pair of tuning fork arms 2 excite horizontal vibration, that is, tuning fork vibration in directions opposite to each other. In these devices, the resonance frequency is determined by the length L and the width W of the tuning fork arm 2, and is approximately proportional to W / L2. Then, it is incorporated in an oscillation circuit and functions as an oscillator, here, as an inductor element having a high Q.
[0009]
[Problems to be solved by the invention]
(Problems of the prior art) However, the tuning fork type vibrator having the above-described structure has a problem that the CI increases as the miniaturization proceeds. That is, when the width of the tuning fork arm 2 is reduced, the width of the main surface electrode of the excitation electrode 3 is also reduced, so that a sufficient electric field cannot be supplied and CI increases. FIG. 3 shows the relationship between the excitation electrode width d on both main surfaces and CI when the tuning frequency of the tuning fork arm 2 is 100 μm, the length is 1.6 mm, and the thickness is 80 μm.
[0010]
As is clear from this, as the width d of the excitation electrode 3 decreases, the CI increases in proportion to this. In addition, it can be seen that the width d of the excitation electrodes 3 on both main surfaces needs to be 85 μm or less in order to reduce the actual CI value required for the oscillator to 50Ω or less. The solid line in the figure is a solid side line, and the dotted line is a guess line. However, in this case, it is difficult to form the excitation electrode 3 by providing a mask or the like, and there is a limit in actually reducing the excitation electrode 3 to 50Ω or less.
[0011]
Therefore, as shown in FIG. 4, the excitation electrode 3 is formed by providing the recesses 4 facing both main surfaces of the tuning fork arm 2. By doing so, it has been proposed that the electric field in the X-axis (width) direction becomes linear, so that the electric field intensity increases and the CI can be reduced (Patent Documents 1 and 2). However, in this case, since the opposing recess 4 is provided at the central portion of the main surface, the strength is reduced and a problem occurs in the impact resistance.
[0012]
(Object of the Invention) It is an object of the present invention to provide a tuning fork type vibrator which keeps CI small and promotes miniaturization.
[0013]
[Patent Document 1] JP-A-2002-76827 [Patent Document 2] JP-A-2002-204141
[Means for Solving the Problems]
(Points of Interest) The present invention has focused on the relationship between the main surface electrode width and CI described above, that is, the point that CI increases as the main surface electrode area increases.
[0015]
(Solution, Claim 1) The basic solution of the present invention is that an excitation electrode is formed by providing a groove having at least one main surface of a tuning fork with an uneven shape. As a result, the area of the excitation electrode is increased, so that the CI can be reduced. Hereinafter, an embodiment of the present invention will be described.
[0016]
【Example】
FIG. 1 is a view of a tuning-fork type vibrator for explaining an embodiment of the present invention. FIG. 1 (a) is an external view excluding an excitation electrode, and FIG. 1 (b) is a top view. The same parts as those in the prior art are denoted by the same reference numerals, and description thereof will be simplified or omitted.
As described above, the tuning fork vibrator includes the tuning fork base 1 and the pair of tuning fork arms 2, and the excitation electrode 3 is provided on each tuning fork arm 2. Here, many tuning-fork-shaped quartz pieces are formed from a quartz wafer (not shown) by printing and etching techniques, and the electrodes are also integrally formed.
[0017]
In this embodiment, a plurality of rows of grooves 5 along the Y-axis (length) direction are provided on both main surfaces of each tuning fork arm 2 by etching, and both main surfaces are made uneven in the width direction. Then, the excitation electrodes 3 are formed on both main surfaces and both side surfaces. The excitation electrodes 3 on both side surfaces are formed over both main surfaces from the viewpoint of manufacturing (etching).
[0018]
With such a configuration, the electrode area of the excitation electrodes 3 on both main surfaces of each tuning fork arm 2 substantially increases. That is, since the width d of the excitation electrodes 3 on both main surfaces is made substantially 85 μm or more by providing unevenness, the CI value can be made 50Ω or less as shown in the CI characteristic diagram of FIG.
[0019]
[Other matters]
Although the groove 5 is rectangular in the above embodiment, it may be triangular or U-shaped, for example, as long as the electrode width d is substantially increased. In addition, although provided on both main surfaces of the tuning fork arm 2, the effect can be expected if provided on any one surface including both side surfaces. However, in the case of etching, it is optimal to provide on both main surfaces. The effect can be similarly expected if the grooves 5 have at least two rows.
[0020]
And although it explained simply as a tuning fork type vibrator, it can be similarly applied to a case where it is used as a sensor element for a gyroscope.
[0021]
【The invention's effect】
According to the present invention, since the excitation electrode is formed by providing the groove having at least one main surface of the tuning fork with irregularities, it is possible to provide a tuning fork vibrator that maintains a small CI and promotes miniaturization.
[Brief description of the drawings]
FIG. 1 is a diagram of a tuning-fork type vibrator for explaining an embodiment of the present invention. FIG. 1 (a) is an external view excluding an excitation electrode, and FIG. 1 (b) is a top view.
2A and 2B are diagrams of a tuning fork vibrator for explaining a conventional example, wherein FIG. 2A is an external view, FIG. 2B is a top view, and FIG. 2C is a front view.
FIG. 3 is a CI characteristic diagram for explaining a problem of the conventional example.
FIG. 4 is a top view of a tuning fork vibrator for explaining another example of the conventional example.
[Explanation of symbols]
1 tuning fork base, 2 tuning fork arm, 3 excitation electrode, 4 recess, 5 groove.

Claims (2)

音叉基部と一対の音叉腕からなる音叉型振動子において、前記音叉腕の少なくとも一主面に前記音叉腕の長さ方向に沿って凹凸状とする溝を設けて励振電極を形成したことを特徴とする音叉型振動子。In a tuning fork type vibrator comprising a tuning fork base and a pair of tuning fork arms, an excitation electrode is formed by providing a groove having an uneven shape along at least one main surface of the tuning fork arm along a length direction of the tuning fork arm. Tuning fork type vibrator. 前記凹凸状の溝は前記音叉腕の両主面に設けられた請求項1の音叉型振動子。2. The tuning fork vibrator according to claim 1, wherein said concave and convex grooves are provided on both main surfaces of said tuning fork arm.
JP2002297404A 2002-10-10 2002-10-10 Tuning fork type vibrator Pending JP2004135052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297404A JP2004135052A (en) 2002-10-10 2002-10-10 Tuning fork type vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297404A JP2004135052A (en) 2002-10-10 2002-10-10 Tuning fork type vibrator

Publications (1)

Publication Number Publication Date
JP2004135052A true JP2004135052A (en) 2004-04-30

Family

ID=32287112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297404A Pending JP2004135052A (en) 2002-10-10 2002-10-10 Tuning fork type vibrator

Country Status (1)

Country Link
JP (1) JP2004135052A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081749A (en) * 2005-09-13 2007-03-29 Nippon Dempa Kogyo Co Ltd Tuning-fork crystal vibrator
JP2009060347A (en) * 2007-08-31 2009-03-19 River Eletec Kk Tuning fork type flexural vibrator
JP2010263317A (en) * 2009-04-30 2010-11-18 Epson Toyocom Corp Flexural vibration piece
JP2011082945A (en) * 2009-09-08 2011-04-21 Seiko Epson Corp Flexural vibration piece, flexural vibrator, and electronic device
JP2011097562A (en) * 2009-10-01 2011-05-12 Seiko Epson Corp Vibrating piece, vibrator, oscillator, and electronic apparatus
JP2011199330A (en) * 2010-03-17 2011-10-06 Seiko Epson Corp Vibration piece, vibrator, and oscillator
JP2012156873A (en) * 2011-01-27 2012-08-16 Seiko Instruments Inc Piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic device, and radio clock
JP2014171263A (en) * 2009-09-11 2014-09-18 Seiko Epson Corp Vibration piece, vibrator, oscillator, and electronic apparatus
JP2014233083A (en) * 2014-07-31 2014-12-11 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic apparatus, and radio clock
JP2016118499A (en) * 2014-12-22 2016-06-30 京セラクリスタルデバイス株式会社 Sensor element, angular velocity sensor and production method of sensor element
JP2016118497A (en) * 2014-12-22 2016-06-30 京セラクリスタルデバイス株式会社 Angular velocity sensor and sensor element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081749A (en) * 2005-09-13 2007-03-29 Nippon Dempa Kogyo Co Ltd Tuning-fork crystal vibrator
JP2009060347A (en) * 2007-08-31 2009-03-19 River Eletec Kk Tuning fork type flexural vibrator
JP2010263317A (en) * 2009-04-30 2010-11-18 Epson Toyocom Corp Flexural vibration piece
US7932664B2 (en) * 2009-04-30 2011-04-26 Epson Toyocom Corporation Flexural vibration piece
JP2011082945A (en) * 2009-09-08 2011-04-21 Seiko Epson Corp Flexural vibration piece, flexural vibrator, and electronic device
JP2014171263A (en) * 2009-09-11 2014-09-18 Seiko Epson Corp Vibration piece, vibrator, oscillator, and electronic apparatus
US8288926B2 (en) * 2009-10-01 2012-10-16 Seiko Epson Corporation Tuning-fork resonator having juxtaposed grooves
US20120092084A1 (en) * 2009-10-01 2012-04-19 Seiko Epson Corporation Tuning-fork resonator with grooves on principal surfaces
JP2011097562A (en) * 2009-10-01 2011-05-12 Seiko Epson Corp Vibrating piece, vibrator, oscillator, and electronic apparatus
JP2011199330A (en) * 2010-03-17 2011-10-06 Seiko Epson Corp Vibration piece, vibrator, and oscillator
JP2012156873A (en) * 2011-01-27 2012-08-16 Seiko Instruments Inc Piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic device, and radio clock
JP2014233083A (en) * 2014-07-31 2014-12-11 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic apparatus, and radio clock
JP2016118499A (en) * 2014-12-22 2016-06-30 京セラクリスタルデバイス株式会社 Sensor element, angular velocity sensor and production method of sensor element
JP2016118497A (en) * 2014-12-22 2016-06-30 京セラクリスタルデバイス株式会社 Angular velocity sensor and sensor element

Similar Documents

Publication Publication Date Title
JP4026074B2 (en) Crystal unit, crystal unit and crystal oscillator
JP4852195B2 (en) Tuning fork crystal unit
JP5534828B2 (en) Tuning fork type bending crystal resonator element
JP2002141770A (en) Small-sized vibrator
JP2008252800A (en) Tuning fork type bent crystal oscillating element and quartz crystal oscillator mounted with the same, and crystal oscillator
JP2006270177A (en) Piezoelectric vibration reed and piezoelectric device
JP2004135052A (en) Tuning fork type vibrator
JP5652122B2 (en) Vibrating piece, vibrating device and electronic device
JP4298322B2 (en) Tuning fork crystal unit
JP2007013910A (en) Piezoelectric resonator
JP2019174254A (en) AE sensor element and AE sensor
JP4379119B2 (en) Crystal oscillator
JP2005167992A (en) Tuning fork-type crystal vibrator
JP2010246020A (en) Tuning fork type crystal resonator
JP4411494B2 (en) Crystal oscillator
JP5130502B2 (en) Piezoelectric vibrator and piezoelectric oscillator
JP4411495B2 (en) Crystal unit with a bent crystal unit
JP6263719B2 (en) Piezoelectric vibrator, piezoelectric unit, piezoelectric oscillator and electronic device
JP6131445B2 (en) Piezoelectric vibrator and piezoelectric unit
JP5756983B2 (en) Piezoelectric vibrator, piezoelectric unit, piezoelectric oscillator and electronic equipment
JP5526312B2 (en) Piezoelectric vibrator, piezoelectric unit, piezoelectric oscillator and electronic equipment
JP2004153624A (en) Tuning fork type quartz oscillator and bar-like oscillator
JP4411492B2 (en) Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment
JP2004159047A (en) Tuning fork crystal oscillator and bar-like oscillator
JP4411496B2 (en) Portable device equipped with crystal oscillator and manufacturing method thereof