JP4298322B2 - Tuning fork crystal unit - Google Patents

Tuning fork crystal unit Download PDF

Info

Publication number
JP4298322B2
JP4298322B2 JP2003045499A JP2003045499A JP4298322B2 JP 4298322 B2 JP4298322 B2 JP 4298322B2 JP 2003045499 A JP2003045499 A JP 2003045499A JP 2003045499 A JP2003045499 A JP 2003045499A JP 4298322 B2 JP4298322 B2 JP 4298322B2
Authority
JP
Japan
Prior art keywords
tuning fork
excitation electrode
fork arm
tuning
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003045499A
Other languages
Japanese (ja)
Other versions
JP2004260249A (en
Inventor
昌裕 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2003045499A priority Critical patent/JP4298322B2/en
Publication of JP2004260249A publication Critical patent/JP2004260249A/en
Application granted granted Critical
Publication of JP4298322B2 publication Critical patent/JP4298322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は音叉型水晶振動子(以下、音叉型振動子とする)を産業上の技術分野とし、特にクリスタルインピーダンス(CI)を小さく維持して小型化を促進した音叉型振動子に関する。
【0002】
【従来の技術】
(発明の背景)音叉型振動子は特に時計用の歩度を刻む信号源として知られ、近年ではジャイロスコープのセンサ素子等にも適用されている。そして、このようなものでも、他の電子部品と同様に小型化が求められている。
【0003】
(従来技術の一例)第3図は一従来例を説明する音叉型振動子の図で、同図(a)は外観図、同図(b)は上面図、同図(c)は正面図である。
音叉型振動子は例えばZカットとした(通称では+5度Xカット)音叉状水晶片からなり、音叉基部1と一対の音叉腕2(ab)を有する。通常では、結晶軸(XYZ)のX軸を幅、Y軸を長さ、Z軸を厚みとする。そして、各音叉腕2(ab)の4面に励振電極3を形成する「第3図(a)」。
【0004】
励振電極3は、一方の音叉腕2aでは各組の対向面(両主面と両側面)を同電位として、一組と他組の対向面は逆電位とする。そして、他方の音叉腕2bでは一方の音叉腕2aとは逆電位として、図示しない結線図により一方と他方の音叉腕2(ab)の同電位同士を共通接続する。
【0005】
このようなものでは、例えば一方の音叉腕2aの両主面を+電位とし、両側面を−電位とすると、矢印で示す各電界によって音叉腕2(ab)の両主面から外側面と内側面に向かう電界合成ベクトルP、Qが発生する「第3図(b)」。
【0006】
そして、この電界合成ベクトルP、Qに起因した圧電逆効果によって、一方の音叉腕2aの外側面では縮小し、内側面では伸張する。したがって、音叉腕2a矢印Aで示すように外方向に撓む。そして、一方の音叉腕2aとは電位を逆とした他方の音叉腕2bは矢印Bで示すように反対方向の外方向に撓む「第3図(c)」。
【0007】
また、前述とは逆に一方の音叉腕2aの両主面を−電位とし(未図示)、両側面を+電位とすると、一方の音叉腕2aの外側面と内側面から両主面に向かう電界ベクトルが発生する。そして、外側面では伸張、内側面では収縮する。したがって、一方の音叉腕2aは内方向に撓む。そして、他方の音叉湾2bは反対方向の内方向に撓む。
【0008】
これらにより、両主面と両側面に±電位とする交番電圧を印加すると、一対の音叉腕2(ab)が互いに反対方向に水平振動即ち音叉振動が励起される。これらのものでは、音叉腕2(ab)の長さLと幅Wによって共振周波が決定され、概ねW/L2に比例する。そして、発振回路に組み込まれて発振子として、ここではQの高いインダクタ素子として機能する。
【0009】
【発明が解決しようとする課題】
(従来技術の問題点)しかしながら、上記構成の音叉型振動子では小型化が進行するとCIが増大する問題があった。すなわち、音叉腕2(ab)の幅が小さくなると励振電極3の主面電極幅も小さくなり、充分な電界を供給できずにCIが増大する。
【0010】
また、音叉型振動子を音叉型角速度センサに適用した場合には、例えば音叉振動を励起する励振電極を一方の音叉腕2aに、角速度を検出する図示しないセンサ電極を他方の音叉腕2bに形成する。したがって、一方の音叉腕2aのみで音叉振動を励起するので、CIが大きくなる問題があった。
【0011】
(発明の目的)本発明はCIを小さく維持して小型化を促進する音叉型振動子を提供することを目的とする。
【0012】
【特許文献1】
特開2002−204141号公報
【0013】
【課題を解決するための手段】
(着目点)本発明は前述した主面電極幅とCIとの関係に、即ち主面電極面積が大きくなればCIは小さくなる点に着目した。なお、特許文献1ではX軸方向へ直線上の電界を得るべく凹部4を設けており、基本的に発想が異なる。
【0014】
【課題を解決するための手段】
本発明は、音叉振動を励起する励振電極を主面及び側面に有する一対の音叉腕と音叉基部からなる音叉型水晶振動子において、前記音叉腕の主面に二次元方向のいずれの方向にもそれぞれが複数となる凹凸部を設けて前記励振電極を形成した構成とする。これにより、励振電極の面積が増加して電界強度が高まり、CIを小さくする。以下、本発明の一実施例を説明する。
【0015】
【実施例】
第1図は本発明の一実施例を説明する音叉型振動子の一部外観図である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。
【0016】
音叉型振動子は前述したように音叉基部1と一対の音叉腕2(ab)を有するZカットの音叉状水晶片からなり、音叉振動を励起する励振電極3を各音叉腕2(ab)に設けてなる。但し、X軸を幅、Y軸を長さ、Z軸を厚みとする。
【0017】
そして、各音叉腕2(ab)の両主面には長さ(結晶軸のY軸)と幅(同X軸)の二次元方向に例えば印刷技術を用いたエッチングによって一定の間隔で凹部4を設ける。要するに、各音叉腕2(ab)の両主面に二次元方向の凹凸部4、5が設けられる。ここでの凹凸部4、5はそれぞれ同一の正方形として各辺が長さ及び幅方向に平行とし、幅方向に5個を、長さ方向に8個を形成する。凹部4の深さは正方形の一辺の長さ即ち凹部4を立方体とする。そして、両主面の凹部内の側面を含む凹凸部4、5上に励振電極3を形成した構成とする。
【0018】
このようなものでは、音叉主面を平坦面とした従来例に対して、本実施例による励振電極3の形成された音叉主面の表面積は3倍になる。例えば、凹凸部4、5の一辺の長さを例えば10μmとすると従来例では4000μmとなり、本実施例では12000μmとなる。したがって、両主面と両側面との間の電界密度が高まるので、CIが小さくなる。
【0019】
【他の事項】
上記実施例では凹凸部4、5とした正方形の各辺は音叉腕の幅と長さ方向に平行としたが、例えば第2図(平面図)に示したようにしてもよい。すなわち、図示しない二次元の幾何学的座標軸XY軸を45度回転して、X′Y′座標に沿って凹凸部4、5を形成してもよい。なお、黒塗部が凹部4である。この場合、凹部4を形成する正方形の各辺が幅と長さ方向に平行なときに比較して、凹部側面からの音叉側面に対する電界密度が高まるのでさらにCIを小さくできる。
【0020】
また、凹凸部4、5はそれぞれ正方形としたが、例えば凹部4を円として二次元方向に並べてもよく凹凸部4、5の形状は任意に選択できる。但し、正方形とした場合が最も表面積を大きくできる。また、凹部4は立方体としたが深さ方向は任意に設定できる。但し、深さに比例して表面積が大きくなることは言うまでもない。
【0021】
また、実際にはエッチングによって凹部4を形成するので必ずしも幾何学上の立方体にはならない。そして、励振電極3は便宜的に凹凸面上にのみ形成したが、実際には凹凸面の外周にまたがって形成される。そして、音叉型振動子として説明したが、例えば前述した角速度センサでの音叉振動を励起する駆動電極にも適用できることは勿論である。
【0022】
【発明の効果】
本発明は、音叉振動を励起する励振電極を主面及び側面に有する一対の音叉腕と音叉基部からなる音叉型水晶振動子において、前記音叉腕の主面に二次元方向のいずれの方向にもそれぞれが複数となる凹凸部を設けて前記励振電極を形成した構成とする。したがって、励振電極の面積が増加して電界強度が高まり、CIを小さく維持して小型化を促進する音叉型振動子を提供できる。
【図面の簡単な説明】
【図1】本実施例の一実施例を説明する音叉型振動子の一部外観図である。
【図2】本実施例の他の例を説明する音叉型振動子の一部平面図である。
【図3】従来例を説明する音叉型振動子の図で、同図(a)は外観図、同図(b)は上面図、同図(c)は正面図である。
【符号の説明】
1 音叉基部、2 音叉腕、3 励振電極、4 凹部、5 凸部.
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tuning fork type crystal resonator (hereinafter referred to as a tuning fork type resonator) as an industrial technical field, and more particularly to a tuning fork type resonator that promotes downsizing while maintaining a small crystal impedance (CI).
[0002]
[Prior art]
(Background of the Invention) A tuning fork type vibrator is known as a signal source for engraving a rate for a watch in particular, and has recently been applied to a gyroscope sensor element or the like. Even in such a case, downsizing is required in the same manner as other electronic components.
[0003]
(Example of Prior Art) FIG. 3 is a diagram of a tuning fork vibrator for explaining one conventional example. FIG. 3 (a) is an external view, FIG. 3 (b) is a top view, and FIG. 3 (c) is a front view. It is.
The tuning fork vibrator is made of, for example, a Z-cut (commonly known as +5 degree X cut) tuning fork crystal piece, and has a tuning fork base 1 and a pair of tuning fork arms 2 (ab). Usually, the X axis of the crystal axis (XYZ) is the width, the Y axis is the length, and the Z axis is the thickness. Then, the excitation electrode 3 is formed on the four surfaces of each tuning fork arm 2 (ab) (FIG. 3A).
[0004]
In the excitation electrode 3, in one tuning fork arm 2 a, each set of opposed surfaces (both main surfaces and both side surfaces) has the same potential, and one set and the other set of opposed surfaces have opposite potentials. In the other tuning fork arm 2b, the same potential of one tuning fork arm 2 (ab) is connected in common with the other tuning fork arm 2a as a reverse potential with respect to one tuning fork arm 2a.
[0005]
In such a case, for example, if both main surfaces of one tuning fork arm 2a are set to a positive potential and both side surfaces are set to a negative potential, the electric fields indicated by the arrows cause the main surface of the tuning fork arm 2 (ab) to be connected to the outer surface and the inner surface. “FIG. 3B” where electric field synthesis vectors P and Q directed to the side face are generated.
[0006]
Then, due to the piezoelectric inverse effect caused by the electric field synthesis vectors P and Q, the outer surface of one tuning fork arm 2a is reduced and the inner surface is expanded. Therefore, the tuning fork arm 2a bends outward as indicated by the arrow A. Then, the other tuning fork arm 2b having the potential opposite to that of the one tuning fork arm 2a is bent outward in the opposite direction as shown by an arrow B (FIG. 3 (c)).
[0007]
Contrary to the above, if both main surfaces of one tuning fork arm 2a are set to -potential (not shown) and both side surfaces are set to + potential, the outer surface and the inner surface of one tuning fork arm 2a are directed to both main surfaces. An electric field vector is generated. The outer surface expands and the inner surface contracts. Therefore, one tuning fork arm 2a bends inward. The other tuning fork bay 2b bends inward in the opposite direction.
[0008]
Thus, when an alternating voltage having a ± potential is applied to both main surfaces and both side surfaces, the pair of tuning fork arms 2 (ab) excite horizontal vibration, that is, tuning fork vibration in opposite directions. In these, the resonance frequency is determined by the length L and the width W of the tuning fork arm 2 (ab), and is approximately proportional to W / L2. Then, it is incorporated into an oscillation circuit and functions as an inductor element having a high Q here as an oscillator.
[0009]
[Problems to be solved by the invention]
(Problems of the prior art) However, the tuning fork vibrator having the above-described configuration has a problem that the CI increases as the size of the tuning fork vibrator decreases. That is, when the width of the tuning fork arm 2 (ab) is reduced, the width of the main surface electrode of the excitation electrode 3 is also reduced, and a sufficient electric field cannot be supplied, resulting in an increase in CI.
[0010]
When a tuning fork type vibrator is applied to a tuning fork type angular velocity sensor, for example, an excitation electrode for exciting tuning fork vibration is formed on one tuning fork arm 2a, and a sensor electrode (not shown) for detecting angular velocity is formed on the other tuning fork arm 2b. To do. Therefore, since tuning fork vibration is excited only by one tuning fork arm 2a, there is a problem that CI becomes large.
[0011]
(Object of the Invention) An object of the present invention is to provide a tuning fork type vibrator that keeps CI small and promotes miniaturization.
[0012]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-204141
[Means for Solving the Problems]
(Points of interest) The present invention has focused on the relationship between the main surface electrode width and CI described above, that is, the CI decreases as the main surface electrode area increases. In Patent Document 1, a concave portion 4 is provided to obtain a linear electric field in the X-axis direction, and the idea is basically different.
[0014]
[Means for Solving the Problems]
The present invention provides a tuning-fork crystal consisting of a pair of tuning fork arms and fork base having an excitation electrode for exciting the tuning fork to the main surface and the side surface, in either direction of the two-dimensional direction to the main surface of the tuning fork arms Each of the plurality of concave and convex portions is provided to form the excitation electrode. As a result, the area of the excitation electrode is increased, the electric field strength is increased, and the CI is reduced. An embodiment of the present invention will be described below.
[0015]
【Example】
FIG. 1 is a partial external view of a tuning fork vibrator for explaining an embodiment of the present invention. In addition, the same number is attached | subjected to the same part as a prior art example, and the description is simplified or abbreviate | omitted.
[0016]
As described above, the tuning fork vibrator is composed of a Z-cut tuning fork crystal piece having a tuning fork base 1 and a pair of tuning fork arms 2 (ab), and an excitation electrode 3 for exciting tuning fork vibration is provided on each tuning fork arm 2 (ab). It is provided. However, the X axis is the width, the Y axis is the length, and the Z axis is the thickness.
[0017]
Then, on both main surfaces of each tuning fork arm 2 (ab), recesses 4 are formed at regular intervals by etching using, for example, a printing technique in a two-dimensional direction of length (Y axis of crystal axis) and width (X axis of the crystal axis). Is provided. In short, two-dimensional concavo-convex portions 4 and 5 are provided on both main surfaces of each tuning fork arm 2 (ab). Here, the concave and convex portions 4 and 5 are the same square, and each side is parallel to the length and width direction, and five in the width direction and eight in the length direction are formed. The depth of the recess 4 is the length of one side of the square, that is, the recess 4 is a cube. And it is set as the structure which formed the excitation electrode 3 on the uneven | corrugated | grooved parts 4 and 5 containing the side surface in the recessed part of both main surfaces.
[0018]
In such a case, the surface area of the tuning fork main surface on which the excitation electrode 3 according to the present embodiment is formed is three times that of the conventional example in which the tuning fork main surface is a flat surface. For example, if the length of one side of the concavo-convex portions 4 and 5 is 10 μm, for example, it is 4000 μm 2 in the conventional example, and 12000 μm 2 in this embodiment. Therefore, since the electric field density between both main surfaces and both side surfaces increases, CI decreases.
[0019]
[Other matters]
In the above-described embodiment, each side of the square having the concavo-convex portions 4 and 5 is parallel to the width and length direction of the tuning fork arm, but may be as shown in FIG. 2 (plan view), for example. That is, the uneven portions 4 and 5 may be formed along the X′Y ′ coordinates by rotating a two-dimensional geometric coordinate axis XY (not shown) by 45 degrees. Note that the black coating portion is the recess 4. In this case, compared with the case where each side of the square forming the recess 4 is parallel to the width and the length direction, the electric field density from the side surface of the recess to the side surface of the tuning fork increases, so that the CI can be further reduced.
[0020]
Moreover, although the uneven | corrugated | grooved parts 4 and 5 were each square, for example, the recessed part 4 may be arranged in a two-dimensional direction as a circle, and the shape of the uneven | corrugated | grooved parts 4 and 5 can be selected arbitrarily. However, the surface area can be maximized when it is square. Moreover, although the recessed part 4 was made into the cube, the depth direction can be set arbitrarily. However, it goes without saying that the surface area increases in proportion to the depth.
[0021]
Further, in practice, the concave portion 4 is formed by etching, so that it does not necessarily become a geometrical cube. And although the excitation electrode 3 was formed only on the uneven surface for convenience, it is actually formed over the outer periphery of the uneven surface. Although described as a tuning fork vibrator, it is needless to say that the present invention can also be applied to a drive electrode that excites the tuning fork vibration in the angular velocity sensor described above.
[0022]
【The invention's effect】
The present invention provides a tuning-fork crystal consisting of a pair of tuning fork arms and fork base having an excitation electrode for exciting the tuning fork to the main surface and the side surface, in either direction of the two-dimensional direction to the main surface of the tuning fork arms Each of the plurality of concave and convex portions is provided to form the excitation electrode. Therefore, it is possible to provide a tuning fork vibrator that increases the area of the excitation electrode to increase the electric field strength and promotes downsizing while maintaining the CI small.
[Brief description of the drawings]
FIG. 1 is a partial external view of a tuning fork vibrator for explaining an embodiment of the present embodiment.
FIG. 2 is a partial plan view of a tuning fork vibrator for explaining another example of the present embodiment.
3A and 3B are diagrams of a tuning fork type vibrator for explaining a conventional example. FIG. 3A is an external view, FIG. 3B is a top view, and FIG. 3C is a front view.
[Explanation of symbols]
1 tuning fork base, 2 tuning fork arm, 3 excitation electrode, 4 concave, 5 convex.

Claims (1)

音叉振動を励起する励振電極を主面及び側面に有する一対の音叉腕と音叉基部からなる音叉型水晶振動子において、前記音叉腕の主面に二次元方向のいずれの方向にもそれぞれが複数となる凹凸部を設けて前記励振電極を形成したことを特徴とする音叉型水晶振動子。In the tuning fork type quartz resonator consisting of a pair of tuning fork arms and fork base having an excitation electrode for exciting the tuning fork to the main surface and side surfaces, respectively in either direction of the two-dimensional direction to the main surface of the tuning fork arms and a plurality tuning fork crystal resonator, characterized in that the formation of the excitation electrodes an uneven portion formed by providing.
JP2003045499A 2003-02-24 2003-02-24 Tuning fork crystal unit Expired - Fee Related JP4298322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045499A JP4298322B2 (en) 2003-02-24 2003-02-24 Tuning fork crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045499A JP4298322B2 (en) 2003-02-24 2003-02-24 Tuning fork crystal unit

Publications (2)

Publication Number Publication Date
JP2004260249A JP2004260249A (en) 2004-09-16
JP4298322B2 true JP4298322B2 (en) 2009-07-15

Family

ID=33112281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045499A Expired - Fee Related JP4298322B2 (en) 2003-02-24 2003-02-24 Tuning fork crystal unit

Country Status (1)

Country Link
JP (1) JP4298322B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593203B2 (en) * 2004-08-24 2010-12-08 リバーエレテック株式会社 Tuning fork crystal unit and method for manufacturing the same
JP4638263B2 (en) * 2005-03-23 2011-02-23 リバーエレテック株式会社 Tuning fork type bending vibrator
TW201032470A (en) 2008-10-24 2010-09-01 Seiko Epson Corp Bending vibration piece, bending vibrator, and piezoelectric device
JP4636170B2 (en) * 2008-12-11 2011-02-23 セイコーエプソン株式会社 Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP4692619B2 (en) * 2008-12-11 2011-06-01 セイコーエプソン株式会社 Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP2011082945A (en) 2009-09-08 2011-04-21 Seiko Epson Corp Flexural vibration piece, flexural vibrator, and electronic device
JP5482541B2 (en) * 2009-10-01 2014-05-07 セイコーエプソン株式会社 Vibrating piece, vibrator, oscillator, and electronic device
CN102629861A (en) 2011-02-02 2012-08-08 精工爱普生株式会社 Vibrator element, vibrator, oscillator, and electronic apparatus
JP5685962B2 (en) 2011-02-02 2015-03-18 セイコーエプソン株式会社 Vibrating piece, vibrator, oscillator and electronic device
JP2013251833A (en) * 2012-06-04 2013-12-12 Seiko Epson Corp Vibration piece, electronic device, electronic apparatus and manufacturing method for vibration piece
JP6018837B2 (en) * 2012-08-22 2016-11-02 京セラクリスタルデバイス株式会社 Quartz vibrating element and method for manufacturing the same
JP6482169B2 (en) 2013-07-19 2019-03-13 セイコーエプソン株式会社 Vibrating piece, vibrator, oscillator, electronic device and moving object

Also Published As

Publication number Publication date
JP2004260249A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4852195B2 (en) Tuning fork crystal unit
US8633637B2 (en) Resonator element, resonator, physical quantity sensor, and electronic equipment that have steps on a side surface of a vibrating arm
JP4298322B2 (en) Tuning fork crystal unit
JP4068370B2 (en) Vibrating gyro
JP2008011348A (en) Piezoelectric vibration piece
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP2006270335A (en) Tuning fork type flexural vibrator
EP1936325B1 (en) Angular velocity sensor
JP2010232932A (en) Piezoelectric vibration chip
JP2007232710A (en) Oscillator for oscillating gyroscope
JP2004135052A (en) Tuning fork type vibrator
JP2003264446A (en) Piezoelectric vibration chip, manufacturing device of piezoelectric vibration chip and piezoelectric device
JP4379119B2 (en) Crystal oscillator
JP4356881B2 (en) Vibrating gyroscope
JP2007163248A (en) Piezoelectric vibration gyro
JP4671284B2 (en) Measuring element for vibrating gyroscope
JP4316903B2 (en) Flexural vibrator
JP2004301552A (en) Vibrator and physical quantity measuring apparatus
JP4440682B2 (en) Vibrating gyro
JP2007086003A (en) Measuring element for oscillation type gyroscope
JP2006308359A (en) Inertia sensor element, and manufacturing method of inertia sensor element
JP2006010659A (en) Oscillation gyroscope
JP2005345404A (en) Vibrator for piezoelectric vibration gyroscope, and its manufacturing method
JP2008256542A (en) Vibration gyro
JPH09113279A (en) Vibrational gyro

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees