JP4440682B2 - Vibrating gyro - Google Patents

Vibrating gyro Download PDF

Info

Publication number
JP4440682B2
JP4440682B2 JP2004088261A JP2004088261A JP4440682B2 JP 4440682 B2 JP4440682 B2 JP 4440682B2 JP 2004088261 A JP2004088261 A JP 2004088261A JP 2004088261 A JP2004088261 A JP 2004088261A JP 4440682 B2 JP4440682 B2 JP 4440682B2
Authority
JP
Japan
Prior art keywords
leg
vibration
detection
electrode
legs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004088261A
Other languages
Japanese (ja)
Other versions
JP2005274360A (en
Inventor
徹 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2004088261A priority Critical patent/JP4440682B2/en
Publication of JP2005274360A publication Critical patent/JP2005274360A/en
Application granted granted Critical
Publication of JP4440682B2 publication Critical patent/JP4440682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

本発明は、角速度を検出する振動ジャイロに関するものである。   The present invention relates to a vibrating gyroscope that detects angular velocity.

従来から機械式の回転ジャイロスコープが、飛行機や船舶の慣性航行装置として使われているが、装置が大きく、価格が高く、従って小型の電子機器や小型の輸送機械に組み込むことは困難である。   Conventionally, a mechanical rotary gyroscope has been used as an inertial navigation device for airplanes and ships, but the device is large and expensive, so it is difficult to incorporate it into a small electronic device or a small transport machine.

しかし近年、ジャイロスコープも小型化の研究が進み、圧電素子で振動体を励振し、振動体に設けた別の圧電素子で振動体が回転により受けるコリオリ力で起きる振動により発生する電圧を検出する振動ジャイロの実用化が進み、自動車のナビゲーションシステムやビデオカメラの手振れ検出装置等に使われている。   In recent years, however, research on miniaturization of gyroscopes has progressed, and a vibrating body is excited by a piezoelectric element, and a voltage generated by vibration caused by Coriolis force that the vibrating body receives by rotation is detected by another piezoelectric element provided on the vibrating body. Vibrating gyros have been put into practical use and are used in automobile navigation systems and video camera shake detection devices.

特に圧電性単結晶を用いた振動ジャイロは、構造が簡単で、調整もしやすく、また温度特性に優れ、有望視されている。以下に圧電性単結晶を使用した例として、水晶を用いた音叉型振動ジャイロの構造を図面を用いて説明する。図5は音叉型の振動ジャイロを示す斜視図である。図6は、従来の音叉型水晶ジャイロの駆動検出方法を説明する為の断面及び駆動検出回路の模式図である。   In particular, a vibrating gyroscope using a piezoelectric single crystal has a simple structure, is easy to adjust, and has excellent temperature characteristics, and is considered promising. As an example using a piezoelectric single crystal, the structure of a tuning fork type vibration gyro using quartz will be described below with reference to the drawings. FIG. 5 is a perspective view showing a tuning fork type vibration gyro. FIG. 6 is a cross-sectional view and a schematic diagram of a drive detection circuit for explaining a drive detection method of a conventional tuning fork type crystal gyro.

図5、図6において、音叉J10は水晶を一体加工したものに、駆動検出電極を蒸着した構造を有している。すなわち音叉J10は、平行に配置された第1の脚J11及び第2の脚J12が、基部J15に結合した構造を持つものである。第1の脚J11には、駆動電極J1、J2、J3及びJ4が蒸着されており、第2の脚J12には、4つの角部に沿って4つの検出電極J5、J6,J7及びJ8が蒸着されている。基部J15の底面は、支持に用いられる。ここで、脚の伸びた方向をY’方向、2本の脚の並ぶ方向をX方向、X及びY’方向に直交する方向をZ’方向とする。   5 and 6, the tuning fork J10 has a structure in which a drive detection electrode is vapor-deposited on an integrally processed quartz crystal. That is, the tuning fork J10 has a structure in which the first leg J11 and the second leg J12 arranged in parallel are coupled to the base J15. Drive electrodes J1, J2, J3, and J4 are deposited on the first leg J11, and four detection electrodes J5, J6, J7, and J8 are formed along the four corners on the second leg J12. Vapor deposited. The bottom surface of the base J15 is used for support. Here, the extending direction of the legs is defined as the Y ′ direction, the direction in which the two legs are arranged is defined as the X direction, and the direction orthogonal to the X and Y ′ directions is defined as the Z ′ direction.

作用について説明する。図6において、左側に記す第1の脚J11の断面には、駆動電極J1,J2,J3及びJ4の断面が配置され、右側に記す第2の脚J12の断面には検出電極J5,J6,J7及びJ8の断面が配置されている。   The operation will be described. In FIG. 6, the cross sections of the drive electrodes J1, J2, J3 and J4 are arranged on the cross section of the first leg J11 shown on the left side, and the detection electrodes J5, J6 and J6 are shown on the cross section of the second leg J12 shown on the right side. Cross sections of J7 and J8 are arranged.

まず、第1の脚J11が例えば第2の脚J12に向かってX方向に屈曲すると、電極J2近傍がY’方向に伸び、電極J4近傍がY’方向に縮むが、この時水晶内部では圧電効果により電極J2近傍ではX方向に、また電極J4近傍では−X方向に電界が発生する。この時電界の向きを考慮すると電極J2及びJ4は同電位で、脚の中央より例えば高い電位となる。X方向に見ると、脚J11の中央付近に配置された電極J1及びJ3は、相対的に電極J2及びJ4より低い電位となるので、電極J2及びJ4と、電極J1及びJ3の間には、電位差が発生する。圧電効果は可逆的なので、電極J2及びJ4と、電極J1及びJ3の間に電位差を与えれば、水晶内部には、これに応じた電界が発生し、第1の脚J11はX方向に屈曲することになる。これらのことから、例えば電極J1及びJ3の電位を参照として発振条件を超える増幅率でアンプJGを用いて増幅し、発振条件を満足する位相に移相回路JPで整えて電極J2及びJ4に戻すことにより、第1の脚J11の屈曲に伴う機械的な戻り力と電気的な力の間でエネルギーの交換が起こり、第1の脚J11をX方向に自励発振させることができる。   First, when the first leg J11 is bent in the X direction toward the second leg J12, for example, the vicinity of the electrode J2 extends in the Y ′ direction and the vicinity of the electrode J4 contracts in the Y ′ direction. Due to the effect, an electric field is generated in the X direction in the vicinity of the electrode J2, and in the -X direction in the vicinity of the electrode J4. At this time, considering the direction of the electric field, the electrodes J2 and J4 have the same potential, for example, a higher potential than the center of the leg. When viewed in the X direction, the electrodes J1 and J3 arranged near the center of the leg J11 have a relatively lower potential than the electrodes J2 and J4, and therefore, between the electrodes J2 and J4 and the electrodes J1 and J3, A potential difference occurs. Since the piezoelectric effect is reversible, if a potential difference is applied between the electrodes J2 and J4 and the electrodes J1 and J3, an electric field corresponding to this is generated inside the crystal, and the first leg J11 bends in the X direction. It will be. From these things, for example, the potential of the electrodes J1 and J3 is used as a reference to amplify with the amplifier JG at an amplification factor exceeding the oscillation condition, and adjusted to a phase satisfying the oscillation condition by the phase shift circuit JP and returned to the electrodes J2 and J4. As a result, energy exchange occurs between the mechanical return force and the electrical force accompanying the bending of the first leg J11, and the first leg J11 can oscillate in the X direction.

音叉J10全体で見ると、第1の脚J11及び第2の脚J12の運動量をバランスさせる為、第1の脚J11がX方向に動く時、第2の脚J12は−X方向に動き、第1の脚J
11が−X方向に動く時、第2の脚J12がX方向に動く動作となり、これを、通常の音叉が1つの面内で振動を行うのを理想とする慣例から、面内屈曲振動と呼ぶが、第1の脚J11,アンプJG及び移相回路JPで発生させる振動は面内屈曲振動と同じ動作であり、その周波数は、音叉J10の面内屈曲振動の共振周波数とほぼ一致する。
Looking at the tuning fork J10 as a whole, when the first leg J11 moves in the X direction to balance the momentum of the first leg J11 and the second leg J12, the second leg J12 moves in the -X direction, 1 leg J
When 11 moves in the -X direction, the second leg J12 moves in the X direction. This is because the conventional tuning fork vibrates in one plane. Although called, the vibration generated by the first leg J11, the amplifier JG and the phase shift circuit JP is the same operation as the in-plane bending vibration, and its frequency substantially matches the resonance frequency of the in-plane bending vibration of the tuning fork J10.

この状態で音叉J10全体をY’軸の回りに角速度Ωで回転させると、音叉J10の2つの脚には、面内屈曲振動と直交するZ’方向にコリオリ力Fcが働く。コリオリ力FCは以下の式で表すことができる。
FC=2・M・Ω・V
ここで、Mは第1の脚J11又は第2の脚J12の質量であり、Vは第1の脚J11又は第2の脚J12の速度である。このコリオリ力FCは、第1の脚J11及び第2の脚J12に、面内屈曲振動の動作方向であるX方向と直交する、Z’方向に変位する屈曲振動を励起する。以下これを面外屈曲振動と呼ぶ。また、コリオリ力は変位でなく、速度に比例する力なので、コリオリ力により発生する面外屈曲振動は、面内屈曲振動より90度位相が遅れて発生する。
When the entire tuning fork J10 is rotated around the Y ′ axis at an angular velocity Ω in this state, the Coriolis force Fc acts on the two legs of the tuning fork J10 in the Z ′ direction perpendicular to the in-plane bending vibration. The Coriolis force FC can be expressed by the following equation.
FC = 2 ・ M ・ Ω ・ V
Here, M is the mass of the first leg J11 or the second leg J12, and V is the speed of the first leg J11 or the second leg J12. This Coriolis force FC excites the first leg J11 and the second leg J12 to bend vibrations that are displaced in the Z ′ direction perpendicular to the X direction, which is the operation direction of in-plane bending vibrations. Hereinafter, this is referred to as out-of-plane bending vibration. Further, since the Coriolis force is not a displacement but a force proportional to the velocity, the out-of-plane bending vibration generated by the Coriolis force is generated with a phase delay of 90 degrees from the in-plane bending vibration.

この面外屈曲振動により、例えば第2の脚J12の電極J5及びJ8の近傍はY’方向に伸び縮みし、電極J6及びJ7の近傍は電極J5及びJ8の近傍と逆相で伸び縮みする。例えば、電極J5及びJ8の近傍がY’方向に伸びている時、第2の脚J12の内部の電極J5及びJ8の近傍では、X方向に電界が発生し、この時電極J6及びJ7の近傍はY’方向に縮むので、第2の脚12の内部の電極J6及びJ7の近傍では、−X方向に電界が発生する。すなわち電極J5の電位が電極J8の電位より高い時、電極J7の電位は電極J6の電位より高い状態となる。また、電極J5及びJ8の近傍がY’方向に縮んでいる時、第2の脚J12の内部の電極J5及びJ8の近傍では、−X方向に電界が発生し、この時電極J6及びJ7の近傍はY’方向に伸びるので、第2の脚12の内部の電極J6及びJ7の近傍では、X方向に電界が発生する。すなわち電極J5の電位が電極J8の電位より低い時、電極J7の電位は電極J6の電位より低い状態となる。   By this out-of-plane bending vibration, for example, the vicinity of the electrodes J5 and J8 of the second leg J12 expands and contracts in the Y 'direction, and the vicinity of the electrodes J6 and J7 expands and contracts in a phase opposite to that of the vicinity of the electrodes J5 and J8. For example, when the vicinity of the electrodes J5 and J8 extends in the Y ′ direction, an electric field is generated in the X direction in the vicinity of the electrodes J5 and J8 inside the second leg J12. At this time, in the vicinity of the electrodes J6 and J7 Is contracted in the Y ′ direction, an electric field is generated in the −X direction in the vicinity of the electrodes J6 and J7 inside the second leg 12. That is, when the potential of the electrode J5 is higher than the potential of the electrode J8, the potential of the electrode J7 is higher than the potential of the electrode J6. When the vicinity of the electrodes J5 and J8 is contracted in the Y ′ direction, an electric field is generated in the −X direction in the vicinity of the electrodes J5 and J8 inside the second leg J12. At this time, the electrodes J6 and J7 Since the vicinity extends in the Y ′ direction, an electric field is generated in the X direction in the vicinity of the electrodes J6 and J7 inside the second leg 12. That is, when the potential of the electrode J5 is lower than the potential of the electrode J8, the potential of the electrode J7 is lower than the potential of the electrode J6.

面外屈曲振動により発生するこれら電極J5及びJ8と、電極J6及びJ7の間の電位差は、Z’方向に振れる第2の脚J12の方向に従って変化する。見方を変えると、例えば電極J5が高電位の時電極J7も高電位であり、この時電極J6及び電極J8は低電位であり、電極J5が低電位の時電極J7も低電位であり、この時電極J6及び電極J8は高電位である。コリオリ力は、電極J5又は電極J7と、電極J6又は電極J8の間の電位差として現れる。   The potential difference between the electrodes J5 and J8 and the electrodes J6 and J7 generated by the out-of-plane bending vibration changes according to the direction of the second leg J12 that swings in the Z ′ direction. In other words, for example, when the electrode J5 is at a high potential, the electrode J7 is also at a high potential. At this time, the electrodes J6 and J8 are at a low potential, and when the electrode J5 is at a low potential, the electrode J7 is also at a low potential. The hour electrode J6 and the electrode J8 are at a high potential. The Coriolis force appears as a potential difference between the electrode J5 or the electrode J7 and the electrode J6 or the electrode J8.

コリオリ力の検出信号は、電極J5及び電極J7を一方の入力信号とし、電極J6及び電極J8を他方の入力信号とした、差動バッファJDを経て乗算回路JMに導かれ、面内屈曲振動の発振系の出力を、コリオリ力が90度遅れて発生するのを補正する目的で、アンプJGの出力を、移相回路JP2により90度移相し、コンパレータJCにより2値化した参照信号により乗算され、乗算により検波された結果は、更に積分回路JSにより平滑化され、正確な直流出力として検出できる。この直流出力はコリオリ力FCに比例し、コリオリ力FCは角速度Ωに比例するので、この直流出力により角速度Ωを知ることができる(非特許文献1参照)。   The detection signal of the Coriolis force is guided to the multiplication circuit JM through the differential buffer JD with the electrodes J5 and J7 as one input signal and the electrodes J6 and J8 as the other input signal, and the in-plane bending vibration is detected. The output of the amplifier JG is shifted by 90 degrees by the phase shift circuit JP2 and multiplied by the reference signal binarized by the comparator JC for the purpose of correcting the generation of the Coriolis force delayed by 90 degrees. The result detected by multiplication is further smoothed by the integrating circuit JS and can be detected as an accurate DC output. Since this DC output is proportional to the Coriolis force FC, and the Coriolis force FC is proportional to the angular velocity Ω, the angular velocity Ω can be known from this DC output (see Non-Patent Document 1).

一方、特許文献1には3本の足を持つ3脚音叉振動体の一本の足を静止させる、非対称3脚音叉形状とすることで、振動ジャイロの性能を向上させることができることが示されている。
特開2003-156337号公報(図1、図2、2頁〜7頁) T.IEE Japan,Vol.118−E,No.7/8,’98(P377〜P383)
On the other hand, Patent Document 1 shows that the performance of a vibrating gyroscope can be improved by adopting an asymmetric three-leg tuning fork shape in which one leg of a three-leg tuning fork vibrator having three legs is stationary. ing.
Japanese Patent Laid-Open No. 2003-156337 (FIG. 1, FIG. 2, pages 2 to 7) T. T. IEEE Japan, Vol. 118-E, no. 7/8, '98 (P377-P383)

しかしながら、従来の水晶を用いた音叉型の振動ジャイロには以下のような課題がある。振動ジャイロの出力を決定する要素の中で、駆動振動と検出振動の周波数の差で定義される離調度はジャイロの出力に反比例し、その僅かな変化によりジャイロの出力を大きく変化させるため、正確に値を設定しなければならないが、現在の水晶の加工精度では、この離調度を、小さい方では温度特性が劣化したり、振動に対する疑似出力を出さない範囲で、また大きい方では所望の出力を最大限に発揮できる目標とする設定値の範囲内に設定するのは難しい。   However, the tuning fork type vibration gyro using a conventional crystal has the following problems. Among the factors that determine the output of a vibrating gyroscope, the degree of detuning defined by the difference between the frequency of the drive vibration and the detected vibration is inversely proportional to the output of the gyro, and the slight change in it greatly changes the output of the gyro. However, with current crystal processing accuracy, this detuning degree is within the range where temperature characteristics are not degraded or pseudo output against vibration is not produced, and the desired output is produced with a larger value. It is difficult to set the value within the range of the target setting value that can fully demonstrate

周波数だけの調整ならば、一般の発振器用音叉に用いられる先端部の質量を変化させる周波数調整方法等で加工後に調整することも可能だが、駆動側と検出側双方の共振周波数がほぼ同じ量だけ変わってしまうので、この調整方法では離調度の調整は困難である。   If only the frequency is adjusted, it can be adjusted after processing with a frequency adjustment method that changes the mass of the tip used for general oscillator tuning forks, but the resonance frequency on both the drive side and the detection side is almost the same amount. Therefore, it is difficult to adjust the degree of detuning with this adjustment method.

本発明の目的は、上記課題を解決しようとするもので、離調度の変化に対して検出出力の変化が緩やかな振動ジャイロを与える。   An object of the present invention is to solve the above-described problems, and provides a vibration gyro in which a change in detection output is gentle with respect to a change in detuning degree.

上記目的を解決するために、本発明の振動ジャイロは、下記の構成を採用する。基部に3本の脚を配設した振動子と、該3本の脚のうち2本を所定の駆動周波数で駆動する発振手段と、駆動された前記2本の脚とは異なる他の1本の脚でコリオリ力を検出する検出手段とを有し、前記3本の脚は互いに所定の間隔を保って前記基部から同じ方向へ平行に配設し、前記発振手段は前記3本の脚のうち、中央の脚と該中央の脚と隣り合う一方の脚とを駆動し、前記中央の脚と隣り合う他方の脚をほぼ静止させ、前記検出手段は前記他方の脚に発生するコリオリ力を検出する振動ジャイロにおいて、前記振動子は第1の振動周波数を共振点とする第1検出振動モードと、第2の振動周波数を共振点とする第2検出振動モードとを有しており、前記発振手段の前記駆動周波数が前記第1の振動周波数と前記第2の振動周波数との間の周波数であることを特徴とする。
また、前記コリオリ力に基づいて発生する前記第1検出振動モードの振動と前記第2検出振動モードの振動が前記他方の脚を同位相で振動するように作用することを特徴とする。
また、前記第1検出振動モードは、前記一方の脚と前記他方の脚が前記中央の脚と逆位相で振動するモードであり、前記第2検出振動モードは、前記一方の脚と前記中央の脚が前記他方の脚と逆位相で振動するモードであることを特徴とする。
また、前記他方の脚の幅が、前記中央の脚の幅と前記一方の脚の幅よりも狭いことを特徴とする。
また、前記一方の脚の幅と前記中央の脚の幅をほぼ同じにするとともに、前記他方の脚の幅は、前記一方の脚又は前記中央の脚の幅の3/5±10%にしており、前記一方の脚と前記基部を結合する部分に肩部を設けたことを特徴とする。
In order to solve the above object, the vibration gyro of the present invention employs the following configuration. A vibrator having three legs arranged at the base, an oscillating means for driving two of the three legs at a predetermined drive frequency, and another one different from the driven two legs Detecting means for detecting the Coriolis force by the legs of the three legs, the three legs being arranged in parallel in the same direction from the base with a predetermined distance from each other, and the oscillating means of the three legs Among them, the center leg and one leg adjacent to the center leg are driven, the other leg adjacent to the center leg is substantially stationary, and the detection means generates the Coriolis force generated on the other leg. In the vibration gyro to detect, the vibrator has a first detection vibration mode with a first vibration frequency as a resonance point, and a second detection vibration mode with a second vibration frequency as a resonance point, The drive frequency of the oscillating means is between the first vibration frequency and the second vibration frequency. Characterized in that it is a frequency.
Further, the first detection vibration mode vibration and the second detection vibration mode vibration generated based on the Coriolis force act so that the other leg vibrates in the same phase.
Further, the first detection vibration mode is a mode in which the one leg and the other leg vibrate in an opposite phase to the center leg, and the second detection vibration mode is the one leg and the center leg. The leg is in a mode that vibrates in an opposite phase to the other leg.
The width of the other leg is narrower than the width of the central leg and the width of the one leg.
In addition, the width of the one leg and the width of the central leg are made substantially the same, and the width of the other leg is 3/5 ± 10% of the width of the one leg or the central leg. And a shoulder is provided at a portion connecting the one leg and the base.

本発明による振動ジャイロは、検出振動が複数ある、例えば3脚音叉型振動ジャイロにおいて、駆動振動の周波数を離調度調整により検出出力が殆ど変化しない領域である2つの検出振動の周波数の間に設定することにより、離調度により検出出力が殆ど変化しない安定した出力特性を実現することができる。   The vibration gyro according to the present invention has a plurality of detected vibrations. For example, in a three-leg tuning fork type vibration gyro, the drive vibration frequency is set between two detection vibration frequencies that are regions in which the detection output hardly changes by adjusting the degree of detuning. By doing so, it is possible to realize a stable output characteristic in which the detection output hardly changes depending on the degree of detuning.

以下に実施例を用いて、本発明の最良の実施形態を説明する。   The best mode for carrying out the present invention will be described below with reference to examples.

以下、本発明の振動ジャイロを実施するための最良の形態による実施の形態を図面を基に説明する。図1〜図4,図7〜図9は本発明の実施の形態である振動ジャイロであり、図1は以後3脚音叉10と呼ぶ、3脚音叉型の振動ジャイロの外観を示し、以後説明に用いる座標を示す斜視図であり、図2は3脚音叉10の断面,回路ブロック及び配線模式図であり、図3は3脚音叉型の振動ジャイロの外観を示し、座標を示し、電極の一部を示す表面図であり、図4は3脚音叉型の振動ジャイロの外観を示し、座標を示し、電極の一部を示す裏面図であり、図7〜図9は3脚音叉型振動体の振動モードを示す脚の断面の動作説明図であり、図10は3脚音叉型振動ジャイロの出力を周波数に対して表す図である。   Hereinafter, an embodiment according to the best mode for carrying out a vibrating gyroscope of the present invention will be described with reference to the drawings. 1 to 4 and FIGS. 7 to 9 show a vibrating gyroscope according to an embodiment of the present invention. FIG. 1 shows an appearance of a three-leg tuning fork type vibrating gyro, which will be referred to as a three-leg tuning fork 10 hereinafter. 2 is a cross-sectional view of a tripod tuning fork 10, a circuit block, and a schematic wiring diagram. FIG. 3 shows the appearance of a three-leg tuning fork type vibrating gyroscope, shows the coordinates, FIG. 4 is a front view showing a part, FIG. 4 is a rear view showing the appearance of a tripod tuning fork type vibration gyro, showing coordinates, and part of an electrode, and FIGS. FIG. 10 is a diagram for explaining an operation of a leg cross section showing a vibration mode of the body, and FIG. 10 is a diagram illustrating an output of a three-leg tuning fork type vibration gyro with respect to frequency.

[振動ジャイロの構造説明:図1〜図4]
本実施の形態においては、圧電性単結晶の中で、特に温度特性に優れた水晶を使用する。水晶は、Si0の単結晶で、常温では4つの結晶軸を持つ三方晶系に属する。結晶軸の1つはc軸と呼ばれ、結晶の頂点を通る結晶軸であり、残りの3つはa軸と呼ばれ、c軸に垂直な面内に互いに120度の角度を成す結晶軸である。ここでは、3つのa軸のいずれかをX軸とし、c軸をZ軸とし、X軸及びZ軸に直交する方向にY軸をとる。
[Structural description of vibrating gyroscope: FIGS. 1 to 4]
In the present embodiment, a crystal having excellent temperature characteristics is used among the piezoelectric single crystals. Crystal is a Si0 2 single crystal at normal temperature belongs to trigonal system with four crystal axes. One of the crystal axes is called the c-axis and is the crystal axis passing through the apex of the crystal, and the other three are called the a-axis and are crystal axes that form an angle of 120 degrees with each other in a plane perpendicular to the c-axis. It is. Here, one of the three a-axes is taken as the X-axis, the c-axis is taken as the Z-axis, and the Y-axis is taken in a direction perpendicular to the X-axis and the Z-axis.

図1に示すように、本実施の形態で使用する座標系は、上記X,Y,Z軸から、X軸の回りに、Z軸からY軸の方向にθ度回転させた座標軸Y’軸,Z’軸及びX軸を用いる。このとき回転角θは0〜10度とする。ここに示した回転角は、温度特性及び振動の安定度を指標に最適なものが選択される。3脚音叉10は、一定の厚みを持つ2次元形状であるが、この厚み方向をZ’軸方向にして切り出す。こうして切り出された3脚音叉10の3脚音叉形状は、X−Y’面内に2次元形状で表現される。ここで以下の説明において、Z’軸方向を表裏方向とし、Z’方向から見たZ’軸に直交する面を表面、−Z’方向から見たZ’軸に直交する面を裏面と呼び、X軸方向を左右方向とし、X方向から見たX軸に直交する面を左側面、−X方向から見たX軸に直交する面を右側面と呼ぶ事とする。   As shown in FIG. 1, the coordinate system used in the present embodiment is a coordinate axis Y′-axis rotated from the X, Y, and Z axes around the X axis by θ degrees in the direction from the Z axis to the Y axis. , Z ′ axis and X axis are used. At this time, the rotation angle θ is set to 0 to 10 degrees. The rotation angle shown here is selected optimally using the temperature characteristics and the stability of vibration as indices. The tripod tuning fork 10 has a two-dimensional shape with a constant thickness, and is cut out with this thickness direction as the Z′-axis direction. The tripod tuning fork shape of the tripod tuning fork 10 cut out in this way is expressed in a two-dimensional shape in the X-Y ′ plane. Here, in the following description, the Z′-axis direction is the front and back direction, the surface orthogonal to the Z ′ axis viewed from the Z ′ direction is referred to as the front surface, and the surface orthogonal to the Z ′ axis viewed from the −Z ′ direction is referred to as the back surface. The X-axis direction is the left-right direction, the plane orthogonal to the X-axis viewed from the X direction is referred to as the left side, and the plane orthogonal to the X-axis viewed from the -X direction is referred to as the right side.

図1は、3脚音叉10を斜めから見た図であるが、電極は省略してある。図1に示すように、3脚音叉10は脚1〜3,基部9及び支持部11から構成される。脚1は弾性と圧電性を持つ水晶からなり、形状は、Y’方向の長さL,X方向の幅W1,Z’方向の厚さがtの、各々同一の寸法を持つ四角柱であり、側面に施された金属蒸着膜からなる電極を有している。脚2は弾性と圧電性を持つ水晶からなり、形状は、Y’方向の長さL,X方向の幅W2,Z’方向の厚さがtの四角柱であり、側面に施された金属蒸着膜からなる電極を有している。脚3は弾性と圧電性を持つ水晶からなり、形状は、Y’方向の長さL,X方向の幅W3,Z’方向の厚さがtの四角柱であり、側面に施された金属蒸着膜からなる電極を有している。ここで、脚1,2及び3の幅の比W1:W2:W3は、ほぼ5:5:3である。基部9は弾性を持つ水晶からなり、形状は、Y’方向の長さD,X方向の幅W1+W2+W3+2×U+K,Z’方向の厚さがtの四角柱である。支持部11は、弾性を持つ水晶からなり、形状は、X方向の幅が基部の幅の1/3〜1/1であり、Z’方向の厚さがtの四角柱である。脚1〜3は、X方向に脚1,脚2,脚3の順に平行に、隙間Uを開けて配置され、各々の脚は、基部9のY’方向に垂直な1つの面に接合している。このとき、基部9の左側面と脚1の左側面は単一平面とならず、脚1は、基部9の側面からX方向にKだけ内側に配置され、左肩部が形成される。また、基部9の右側面と脚3の右側面は単一平面となるように配置され、右肩部は形成されない。支持部11は、基部9の脚1〜3の接合した面と平行な、底面と呼ぶもう1つの面の中央に接合している。上記すべての部分は同じ厚さで、同一平面内にあり、一体構造である。   FIG. 1 is a view of the tripod tuning fork 10 viewed from an oblique direction, but the electrodes are omitted. As shown in FIG. 1, the three-leg tuning fork 10 includes legs 1 to 3, a base portion 9 and a support portion 11. The leg 1 is made of a quartz crystal having elasticity and piezoelectricity, and the shape is a rectangular column having the same length, the length L in the Y ′ direction, the width W1 in the X direction, and the thickness t in the Z ′ direction. And an electrode made of a metal vapor deposition film provided on the side surface. The legs 2 are made of quartz having elasticity and piezoelectricity, and the shape is a rectangular column having a length L in the Y ′ direction, a width W2 in the X direction, and a thickness t in the Z ′ direction. It has an electrode made of a deposited film. The legs 3 are made of quartz having elasticity and piezoelectricity, and the shape thereof is a rectangular column having a length L in the Y ′ direction, a width W3 in the X direction, and a thickness t in the Z ′ direction. It has an electrode made of a deposited film. Here, the ratio W1: W2: W3 of the widths of the legs 1, 2 and 3 is approximately 5: 5: 3. The base 9 is made of a quartz crystal having elasticity, and the shape thereof is a rectangular column having a length D in the Y ′ direction, a width W1 + W2 + W3 + 2 × U + K in the X direction, and a thickness t in the Z ′ direction. The support part 11 is made of a quartz crystal having elasticity, and the shape thereof is a quadrangular column whose width in the X direction is 1/3 to 1/1 of the width of the base part and whose thickness in the Z ′ direction is t. The legs 1 to 3 are arranged in parallel with each other in the order of leg 1, leg 2 and leg 3 in the X direction, with a gap U therebetween, and each leg is joined to one surface perpendicular to the Y ′ direction of the base 9. ing. At this time, the left side surface of the base portion 9 and the left side surface of the leg 1 are not a single plane, and the leg 1 is disposed inward in the X direction from the side surface of the base portion 9 by K and a left shoulder portion is formed. Further, the right side surface of the base portion 9 and the right side surface of the leg 3 are arranged to be a single plane, and the right shoulder portion is not formed. The support portion 11 is joined to the center of another surface called a bottom surface that is parallel to the joined surfaces of the legs 1 to 3 of the base portion 9. All the above parts have the same thickness, are in the same plane, and are monolithic.

図3及び図4には、電極の一例として3脚音叉10に金属蒸着膜から成る電極を形成した様子を示した。ただし、電極の説明に関係のない、支持部11は省略してある。図3は3脚音叉10をZ’方向から見た様子を示している。図4は3脚音叉10を−Z’方向か
ら見た様子を示している。既に述べた様に、図3に示す面を表面,図4に示す面を裏面と呼ぶ。電極の形状は、予め形状をエッチングで作成したマスクを作成しておき、これを3脚音叉10の電極を生成する表裏面に密着させて真空蒸着を施すことにより形成する。左右側面の電極は、蒸着方向を回転する事により形成できる。脚1の表面に電極1U,裏面に電極1D,左側面に電極1L,右側面に電極1Rを蒸着し、脚2の表面に電極2U,裏面に電極2D,左側面に電極2L,右側面に電極2Rを蒸着し、脚3の表面から右側面に回り込む電極3U,裏面から右側面に回り込む電極3D,左側面に電極3Gを蒸着する。全ての電極は長方形である。基部9の表面には回路と接続する為の端子DR,SE,S1,S2及びGNDと、各々の脚の電極と端子を結ぶ導線を蒸着する。
3 and 4 show a state in which an electrode made of a metal vapor deposition film is formed on a tripod tuning fork 10 as an example of the electrode. However, the support part 11 which is not related to the description of the electrodes is omitted. FIG. 3 shows the tripod tuning fork 10 viewed from the Z ′ direction. FIG. 4 shows the tripod tuning fork 10 as viewed from the −Z ′ direction. As already described, the surface shown in FIG. 3 is called the front surface, and the surface shown in FIG. 4 is called the back surface. The shape of the electrode is formed by preparing a mask having a shape created by etching in advance, and bringing the mask into close contact with the front and back surfaces on which the electrode of the tripod tuning fork 10 is formed, and performing vacuum deposition. The left and right side electrodes can be formed by rotating the deposition direction. Electrode 1U is deposited on the surface of leg 1, electrode 1D on the back surface, electrode 1L on the left side, electrode 1R on the right side, electrode 2U on the surface of leg 2, electrode 2D on the back side, electrode 2L on the left side, electrode 2L on the right side. Electrode 2R is vapor-deposited, electrode 3U which goes around from the surface of leg 3 to the right side, electrode 3D which goes around from the back to the right side, and electrode 3G is vapor-deposited on the left side. All electrodes are rectangular. On the surface of the base portion 9, terminals DR, SE, S1, S2 and GND for connecting to the circuit and conductive wires connecting the electrodes and the terminals of the respective legs are deposited.

図2には、図3及び図4に示したのと同じ脚1〜3、及び電極1L,1R,1U,1D,2L,2R,2U,2D,3U,3D及び3GのY’軸方向に垂直な断面を示し、各電極の接続関係及び駆動検出回路を示す。駆動回路は、検出電極1L,1R,2U及び2Dからの信号をアンプG及び移相回路Pを用いて駆動電極1U,1D,2L及び2Rに返す自励発振回路で構成され、検出回路は、検出電極3U及び3Dからの信号を検出する差動バッファD、アンプGの出力の位相を変化させる移相回路P2、位相検出回路の信号を2値化するコンパレータC、差動バッファDの出力を移相回路P2の出力と乗算する乗算回路M、及び乗算結果を積分して直流化する積分回路Sで構成される。3電源系の回路で構成する場合は、駆動検出回路に直接接続されない電極3Gはグランドに接地する。   FIG. 2 shows the same legs 1 to 3 as shown in FIGS. 3 and 4, and the electrodes 1L, 1R, 1U, 1D, 2L, 2R, 2U, 2D, 3U, 3D and 3G in the Y′-axis direction. A vertical section is shown, and the connection relation of each electrode and the drive detection circuit are shown. The drive circuit includes a self-oscillation circuit that returns signals from the detection electrodes 1L, 1R, 2U, and 2D to the drive electrodes 1U, 1D, 2L, and 2R using the amplifier G and the phase shift circuit P. The differential buffer D that detects signals from the detection electrodes 3U and 3D, the phase shift circuit P2 that changes the phase of the output of the amplifier G, the comparator C that binarizes the signal of the phase detection circuit, and the output of the differential buffer D A multiplication circuit M that multiplies the output of the phase shift circuit P2 and an integration circuit S that integrates the multiplication result into a direct current. In the case of a three-power supply circuit, the electrode 3G that is not directly connected to the drive detection circuit is grounded.

[振動ジャイロの動作・作用説明:図2,図7〜図10]
以下、図7及び図9を用いて3脚音叉型振動体の検出振動を説明し、図8においては3脚音叉型振動体の駆動振動を説明し、図10において2つの検出振動により得られる出力の傾向を説明し、最後に図2を用いて、電気的に3脚音叉10を駆動し、3脚音叉10の回転の結果である電圧出力から角速度を知る方法を説明する。
[Description of Operation and Action of Vibration Gyro: FIGS. 2 and 7 to 10]
Hereinafter, the detected vibration of the tripod tuning fork type vibrating body will be described with reference to FIGS. 7 and 9, the driving vibration of the tripod tuning fork type vibrating body will be described with reference to FIG. 8, and obtained with two detected vibrations in FIG. 10. The tendency of the output will be described. Finally, a method of electrically driving the tripod tuning fork 10 and knowing the angular velocity from the voltage output resulting from the rotation of the tripod tuning fork 10 will be described with reference to FIG.

最初に、本実施の形態において使用する3脚音叉10を切り出す座標系が、水晶の結晶軸から傾いている事について説明する。本実施の形態において使用する水晶は異方性単結晶であり、方向により弾性率の温度依存性が異なる。厚み方向をZ軸方向とせず、X軸の回りに、Z軸からY軸の方向にθ度回転させた座標軸Y’軸,Z’軸及びX軸を用い、厚み方向をZ’軸方向としたのは、回転角θにより駆動検出振動の共振周波数の温度特性が変化するので、回転角θを温度特性を勘案して決定する為である。この回転角θは、振動ジャイロを使用する温度条件を勘案し、0〜10度から選択する。   First, the fact that the coordinate system for cutting out the tripod tuning fork 10 used in the present embodiment is tilted from the crystal axis of the crystal will be described. The quartz used in this embodiment is an anisotropic single crystal, and the temperature dependence of the elastic modulus differs depending on the direction. The thickness direction is not the Z-axis direction, and the coordinate direction Y′-axis, Z′-axis, and X-axis rotated around the X-axis by θ degrees from the Z-axis to the Y-axis are used. This is because the temperature characteristic of the resonance frequency of the drive detection vibration varies depending on the rotation angle θ, so that the rotation angle θ is determined in consideration of the temperature characteristic. The rotation angle θ is selected from 0 to 10 degrees in consideration of the temperature condition in which the vibrating gyroscope is used.

振動ジャイロにおいては、駆動振動が発生している間に、検出部がコリオリ力に無関係な出力を発生しないことが、高いS/Nと厄介な無回転時の出力のドリフトを抑える点で有効である。無回転時に出力が無ければ、ドリフトは存在しないからである。コリオリ力に無関係な出力は、駆動と検出振動の直交性が不完全であれば、振動する検出部において、駆動振動が検出振動を機械的に発生させ、電極の対称性が不完全であれば、振動する検出部において、駆動出力が検出出力を電気的に発生させるので、有限な加工精度で製作された振動体としては、回転のない時は、駆動振動発生時に、駆動振動と無関係に検出部が静止しており、回転による検出振動の発生時は、検出部が検出振動の振動体の一部として大きく振動するような構造が望ましい。本実施の形態においては、3本の脚を持つ3脚音叉を振動体として用い、並んだ3本の脚の中で、右端の脚3の幅を、他の脚の幅の3/5±10%、つまり
3/5・W2・0.9≦ W3 ≦3/5・W2・1.1
とする事で、上述の望ましい事項を全て満脚する振動体を提供する。
In the vibration gyro, it is effective in that the detection unit does not generate an output unrelated to the Coriolis force while driving vibration is generated in order to suppress high S / N and troublesome output drift during no rotation. is there. This is because there is no drift if there is no output during no rotation. If the orthogonality between the drive and detection vibrations is incomplete, the output unrelated to the Coriolis force will cause the drive vibration to mechanically generate the detection vibration in the vibrating detection section, and if the electrode symmetry is incomplete. In the detection unit that vibrates, the drive output electrically generates the detection output. Therefore, the vibration body manufactured with finite machining accuracy is detected regardless of the drive vibration when the drive vibration is generated when there is no rotation. It is desirable that the part is stationary and the detection part vibrates greatly as a part of the vibration body of the detection vibration when the detection vibration is generated by the rotation. In the present embodiment, a three-leg tuning fork having three legs is used as a vibrating body, and among the three legs arranged side by side, the width of the rightmost leg 3 is 3/5 ± of the width of the other leg. 10%, that is, 3/5 · W2 · 0.9 ≦ W3 ≦ 3/5 · W2 · 1.1
Thus, a vibrating body that satisfies all of the above-mentioned desirable matters is provided.

本実施の形態で使用する3脚音叉型振動体は、複数の固有振動モードを持つ。これらの中で3脚音叉形状の、厚み方向に直交する平面内、即ちX−Y’平面内で完結する、3本
の脚のX方向への1次屈曲振動を、3脚音叉10の面内振動と呼ぶこととする。また、3脚音叉形状の、厚み方向、即ち3本の脚のZ’方向への1次屈曲振動を、3脚音叉10の面外振動と呼ぶこととする。3脚音叉においては、1次屈曲振動にだけ限定しても、少なくとも2つの面外振動が存在し、これらはジャイロの検出動作に利用できる。
The tripod tuning fork type vibrator used in the present embodiment has a plurality of natural vibration modes. Among these, the primary bending vibration of the three legs in the X direction, which is completed in the plane orthogonal to the thickness direction of the three-leg tuning fork shape, that is, the XY ′ plane, is the surface of the three-leg tuning fork 10. This is called internal vibration. The primary bending vibration of the three-leg tuning fork shape in the thickness direction, that is, the Z ′ direction of the three legs is referred to as out-of-plane vibration of the three-leg tuning fork 10. In a three-leg tuning fork, there are at least two out-of-plane vibrations that can be used for the gyro detection operation even if limited to the primary bending vibration.

図7を用いて、3脚音叉10の第1の検出振動を説明する。図7はY’方向から見た脚の断面図であるが、3脚音叉10の面外振動の中で、脚1及び脚3の組と脚2が、互いに相対する方向へ屈曲する面外振動を行う振動モードである。図7は、ある瞬間の各々の脚の変位方向を矢印で示している。この振動モードを第1の検出振動と呼ぶ事とする。   The first detected vibration of the tripod tuning fork 10 will be described with reference to FIG. FIG. 7 is a cross-sectional view of the leg as viewed from the Y ′ direction. In the out-of-plane vibration of the tripod tuning fork 10, the leg 1 and the pair of legs 3 and the leg 2 are bent out of the plane. This is a vibration mode for performing vibration. FIG. 7 shows the direction of displacement of each leg at a certain moment by an arrow. This vibration mode is referred to as first detection vibration.

図9を用いて、3脚音叉10の第2の検出振動を説明する。図9はY’方向から見た脚の断面図であるが、3脚音叉10の面外振動の中で、脚2及び脚3の組と脚1が、互いに相対する方向へ屈曲する面外振動を行う振動モードである。図9は、ある瞬間の各々の脚の変位方向を矢印で示している。この振動モードを第2の検出振動と呼ぶ事とする。   The second detected vibration of the tripod tuning fork 10 will be described with reference to FIG. FIG. 9 is a cross-sectional view of the leg as viewed from the Y ′ direction. In the out-of-plane vibration of the tripod tuning fork 10, the leg 2 and the pair of legs 3 and the leg 1 bend in the direction opposite to each other. This is a vibration mode for performing vibration. FIG. 9 shows the displacement direction of each leg at a certain moment by an arrow. This vibration mode is referred to as second detection vibration.

次に、図8を用いて、3脚音叉10の駆動振動を説明する。3脚音叉10の面内振動の中で、脚1及び2が、互いに相対する方向へ屈曲する面内振動を行い、この間、脚3が静止している振動モードがある。図8は、Y’方向から見た脚の断面図であるが、ある瞬間の各々の脚の変位方向を矢印で示している。この振動モードを駆動振動と呼ぶ事とする。   Next, the drive vibration of the tripod tuning fork 10 will be described with reference to FIG. Among the in-plane vibrations of the three-leg tuning fork 10, there is a vibration mode in which the legs 1 and 2 perform in-plane vibrations that bend in directions opposite to each other while the legs 3 are stationary. FIG. 8 is a cross-sectional view of the leg viewed from the Y ′ direction, and the displacement direction of each leg at a certain moment is indicated by an arrow. This vibration mode is called drive vibration.

3脚音叉10の各々の脚の配置において、脚1及び2の配置に着目すると、脚1及び2は2脚音叉に似た配置を形成しており、駆動振動は脚1及び2で構成される2脚音叉と類似の面内振動と見る事が出来る。2脚音叉の面内振動は、基部の下部を支持部とした自己完結的な振動体であるが、これに類似の3脚音叉10の駆動振動は、支持部への振動の漏れが殆どないことが確認されている。   Focusing on the arrangement of the legs 1 and 2 in the arrangement of each leg of the three-leg tuning fork 10, the legs 1 and 2 form an arrangement similar to a two-leg tuning fork, and the drive vibration is composed of the legs 1 and 2. It can be seen as in-plane vibration similar to the two-leg tuning fork. The in-plane vibration of the biped tuning fork is a self-contained vibrating body with the lower part of the base as a supporting part, but the driving vibration of the similar three-leg tuning fork 10 has almost no leakage of vibration to the supporting part. It has been confirmed.

駆動振動において、脚3が静止している理由は、脚1,2の組が自己完結的な振動を実現できるからであるが、更に脚3の幅が、他の脚の幅に対して3/5±10%と狭くなっており、脚3のX方向の共振周波数が他の脚の面内振動の共振周波数とかけ離れていて、脚1及び2の振動に結合できないことが挙げられる。   The reason why the leg 3 is stationary in the drive vibration is that the pair of legs 1 and 2 can realize self-contained vibration, but the width of the leg 3 is 3 with respect to the width of other legs. The resonance frequency in the X direction of the leg 3 is far from the resonance frequency of the in-plane vibration of the other leg and cannot be coupled to the vibration of the legs 1 and 2.

各々の面外振動においては、脚固有の共振周波数は脚の幅に影響されず厚さtで決定される為、脚3の幅を大きく変化させても3本の脚は全て振動する検出振動が実現したのに対し、面内振動においては脚3の幅を大きく変化させる事により、脚3だけが静止する駆動振動を実現した。これが3脚音叉10の大きな特徴である。   In each out-of-plane vibration, the resonance frequency inherent to the leg is determined by the thickness t without being affected by the width of the leg, so that all three legs vibrate even if the width of the leg 3 is greatly changed. On the other hand, in the in-plane vibration, the driving vibration in which only the leg 3 is stationary is realized by changing the width of the leg 3 greatly. This is a major feature of the tripod tuning fork 10.

次に、駆動振動及び各々の検出振動と、コリオリ力の関係について説明する。駆動振動を行う3脚音叉10において、この時3脚音叉10をY’の周りに角速度Ωで回転すると、速度VXで運動する脚1には、駆動振動に直交する方向にコリオリ力FCが働き、速度−VXで運動する脚2には、駆動振動に直交する方向にコリオリ力−FCが働く。即ち、図7に示す様に、コリオリ力FC及び−FCは、面外振動方向に、駆動振動の周波数で3脚音叉10の脚1及び2に働く。従って駆動振動が発生している3脚音叉10をY’軸周りに角速度Ωで回転すると、コリオリ力により脚1及び2の運動を媒介として検出振動が励振されることが分かる。ただし、脚1及び2がコリオリ力を媒介として引き起こす第1の検出振動及び第2の検出振動で動作する脚3の運動方向は、図7及び図9に示したように、脚1及び脚2の運動方向に対して互いに反対方向である。   Next, the relationship between the drive vibration and each detected vibration and the Coriolis force will be described. In the tripod tuning fork 10 that performs drive vibration, when the tripod tuning fork 10 is rotated at an angular velocity Ω around Y ′ at this time, the Coriolis force FC acts on the leg 1 that moves at the velocity VX in a direction orthogonal to the drive vibration. The Coriolis force -FC acts on the leg 2 moving at the speed -VX in the direction orthogonal to the drive vibration. That is, as shown in FIG. 7, the Coriolis forces FC and -FC act on the legs 1 and 2 of the tripod tuning fork 10 at the frequency of the drive vibration in the out-of-plane vibration direction. Accordingly, it can be seen that when the tripod tuning fork 10 in which the drive vibration is generated is rotated around the Y ′ axis at an angular velocity Ω, the detected vibration is excited by the Coriolis force through the movement of the legs 1 and 2. However, as shown in FIGS. 7 and 9, the movement directions of the legs 3 operating by the first detection vibration and the second detection vibration caused by the legs 1 and 2 using Coriolis force as the medium are the legs 1 and 2. The directions of movement are opposite to each other.

振動ジャイロの出力は、検出振動系に対して、高速で移動する駆動振動部に、速度に比例するコリオリ力FC=2・M・Ω・VXが働いた結果、これに直交する検出振動方向に発生する振動力による強制振動と見ることができる。固有振動数ω0で振動する駆動振動
が、コリオリ力FCを介して検出振動を励振する場合は、駆動振動の変位を振幅Dの正弦波D・sinω0・tとすると、コリオリ力の記述式FC=2・M・Ω・VXから、検出方向に発生するコリオリ力は
2M・Ω・D・ω0・cosω0・tなので、固有振動数ωと先鋭度Qを持つ3脚音叉10の検出振動系の振動部の変位を時間の関数としてZ(t)と表現し、微分方程式をたてると次の(式1)のようになる。
M・d・Z(t)/dt+M・(ω/Q)・dZ(t)/dt+Mω・Z(t)=2・M・Ω・D・ω0・cosω0・t …(式1)
この微分方程式の定常解は、角速度Ωに比例した振幅を持つ正弦波A・cos(ω0t−φ)である。ここに振幅Aは
A=2・D・Ω・(1/ω0)・(ω/ω0)・((1−(ω/ω0)
+((1/Q)・(ω/ω0))1/2 …(式2)
であり、また、位相φは、
φ=arctan(Q・(ω0/ω)−(ω/ω0))−1) …(式3)
で記述されるが、φは、Qが大きい場合は、ω0>ωでは−90度,ω0<ωでは90度に変化する階段状の関数である。
The output of the vibrating gyroscope is generated in the direction of the detected vibration orthogonal to the result of the Coriolis force FC = 2, M, Ω, and VX proportional to the speed acting on the drive vibration section that moves at high speed relative to the detected vibration system. This can be viewed as forced vibration due to the generated vibration force. When the drive vibration that vibrates at the natural frequency ω0 excites the detected vibration via the Coriolis force FC, the displacement of the drive vibration is a sine wave D · sinω0 · t of amplitude D, and the Coriolis force description formula FC = Since the Coriolis force generated in the detection direction from 2 · M · Ω · VX is 2M · Ω · D · ω0 · cosω0 · t, the vibration of the detection vibration system of the tripod tuning fork 10 having the natural frequency ω and the sharpness Q When the displacement of the part is expressed as Z (t) as a function of time and a differential equation is established, the following (Formula 1) is obtained.
M · d 2 · Z (t) / dt 2 + M · (ω / Q) · dZ (t) / dt + Mω 2 · Z (t) = 2 · M · Ω · D · ω0 · cosω0 · t (Formula 1) )
The steady solution of this differential equation is a sine wave A · cos (ω0t−φ) having an amplitude proportional to the angular velocity Ω. Here, the amplitude A is A = 2 · D · Ω · (1 / ω0) · (ω / ω0) · ((1- (ω / ω0) 2 ) 2
+ ((1 / Q) · (ω / ω0)) 2 ) 1/2 (Expression 2)
And the phase φ is
φ = arctan (Q · (ω0 / ω) − (ω / ω0)) −1 ) (Equation 3)
Where φ is a step-like function that changes to −90 degrees when ω0> ω and 90 degrees when ω0 <ω when Q is large.

位相φは駆動振動に対する検出振動の位相関係を示すものであるが、上記の式(3)は、検出振動の周波数が駆動振動の周波数に一致する点を境にして、高いか低いかにより位相が180度異なることを示している。このことは検出振動の周波数に対して、駆動振動の周波数を調整することにより、駆動振動によりコリオリ力で励振する検出振動の位相を制御できることを示している。   The phase φ indicates the phase relationship of the detected vibration with respect to the driving vibration, and the above equation (3) depends on whether the detected vibration frequency is higher or lower than the point where the detected vibration frequency matches the driving vibration frequency. Indicates a difference of 180 degrees. This indicates that the phase of the detected vibration excited by the Coriolis force by the drive vibration can be controlled by adjusting the frequency of the drive vibration with respect to the frequency of the detected vibration.

本実施の形態で用いる3脚音叉10は、共振周波数ω=ω1と先鋭度Q=Q1を持つ第1の検出振動、及び共振周波数ω=ω2と先鋭度Q=Q2を持つ第2の検出振動の、2つの検出振動を有しており、第1の検出振動の共振周波数ω1は第2の検出振動の共振周波数ω2より大きく、ω1>ω2となっている。2つの共振周波数ω1及びω2の値の大小関係は、3脚音叉10の形状を大きく変えない限り変えることが出来ないが、面外振動である2つの共振周波数ω1及びω2の値は、面内振動である共振周波数ω0に対しては、板の厚さtにより同じ比率で変化させることができるので、2つの共振周波数ω1及びω2に対する駆動周波数ω0の大小関係は、3脚音叉10の厚さtを変化させることにより容易に変化させることが出来る。   The tripod tuning fork 10 used in this embodiment includes a first detection vibration having a resonance frequency ω = ω1 and a sharpness Q = Q1, and a second detection vibration having a resonance frequency ω = ω2 and a sharpness Q = Q2. The resonance frequency ω1 of the first detection vibration is larger than the resonance frequency ω2 of the second detection vibration, and ω1> ω2. The magnitude relationship between the values of the two resonance frequencies ω1 and ω2 cannot be changed unless the shape of the tripod tuning fork 10 is significantly changed, but the values of the two resonance frequencies ω1 and ω2 that are out-of-plane vibrations are in-plane. Since the resonance frequency ω0 that is vibration can be changed at the same ratio according to the thickness t of the plate, the magnitude relationship of the drive frequency ω0 with respect to the two resonance frequencies ω1 and ω2 is the thickness of the tripod tuning fork 10. It can be easily changed by changing t.

本実施の形態に於いては、駆動振動の共振周波数ω0を2つの検出振動の共振周波数ω1及びω2の間の値としている。即ち厚さtを調整することにより、ω1>ω0>ω2の大小関係を実現している。この関係においては、図7及び図9に示したように、駆動振動が励振する向きが互いに逆である各々の検出振動は、駆動振動から見て、第1の検出振動の共振周波数は高く、第2の検出振動の共振周波数は低いので、駆動振動が第1の検出振動を励振する場合の位相φ=φ1、及び駆動振動が第2の検出振動を励振する場合の位相φ=φ2は互いに180度異なることを考慮すると、駆動振動がコリオリ力により発生させる各々の検出振動の方向は同じであり、2つの検出振動は互いに強め合う結果となる。   In the present embodiment, the resonance frequency ω0 of the drive vibration is a value between the resonance frequencies ω1 and ω2 of the two detection vibrations. That is, by adjusting the thickness t, the magnitude relationship of ω1> ω0> ω2 is realized. In this relationship, as shown in FIG. 7 and FIG. 9, each detected vibration in which the driving vibrations are excited in opposite directions has a high resonance frequency of the first detected vibration when viewed from the drive vibration. Since the resonance frequency of the second detection vibration is low, the phase φ = φ1 when the driving vibration excites the first detection vibration and the phase φ = φ2 when the driving vibration excites the second detection vibration are mutually Considering the difference of 180 degrees, the direction of each detected vibration generated by the drive vibration due to the Coriolis force is the same, and the two detected vibrations strengthen each other.

Qが大きいとき式2はKを比例定数として近似的に、A=K・Ω/|ω−ω0|と表すことができる。駆動振動の共振周波数ω0が2つの検出振動の共振周波数ω1及びω2の値の間にある3脚音叉10の場合は、A=K・Ω/|ω1−ω0|+K・Ω/|ω0−ω2|、即ち、第1の検出振動の離調度をΔω1=|ω1―ω0|,第2の検出振動の離調度をΔω2=|ω2―ω0|と記すと、A=K・Ω/(1/Δω1+1/Δω2)となる。図10には、駆動振動の共振周波数ω0が第2の検出振動の共振周波数ω2より大きく、第1の検出振動の共振周波数ω1より小さい場合の振幅Aの大きさを、第1の検出振動からの寄与を示す一点破線と、第2の検出振動からの寄与を示す破線の和として、周波数
の関数として実線で示してある。
When Q is large, Equation 2 can be approximately expressed as A = K · Ω / | ω−ω0 | with K as a proportional constant. In the case of the tripod tuning fork 10 in which the resonance frequency ω0 of the drive vibration is between the values of the resonance frequencies ω1 and ω2 of the two detection vibrations, A = K · Ω / | ω1-ω0 | + K · Ω / | ω0−ω2 That is, if the detuning degree of the first detected vibration is expressed as Δω1 = | ω1−ω0 |, and the detuning degree of the second detected vibration is expressed as Δω2 = | ω2−ω0 |, A = K · Ω / (1 / Δω1 + 1 / Δω2). FIG. 10 shows the magnitude of the amplitude A when the resonance frequency ω0 of the drive vibration is larger than the resonance frequency ω2 of the second detection vibration and smaller than the resonance frequency ω1 of the first detection vibration. As a sum of a one-dot broken line indicating the contribution of the second and a broken line indicating the contribution from the second detected vibration, a solid line is shown as a function of the frequency.

図10に示すように、第1の検出振動及び第2の検出振動からの寄与である2つの双曲線の和は、ω1とω2の間の領域で鍋底の領域100を形成している。これは、振幅がA=K・Ω/(1/Δω1−1/Δω2)となり、駆動振動の共振周波数ω0が第1の検出振動の共振周波数ω1よりも大きい場合には、検出振動振幅Aに急峻な振幅変化を見せる領域200に比べ、図10の領域100に駆動振動の共振周波数ω0を設定した3脚音叉10は、駆動振動の共振周波数を変えることで調整される離調度の変化に対する検出振動振幅Aの変化が小さく、離調度を変化させてもコリオリ検出出力が殆ど変化しない特性を実現する事ができることを示している。   As shown in FIG. 10, the sum of two hyperbolic curves, which are contributions from the first detection vibration and the second detection vibration, forms a pan bottom region 100 in a region between ω1 and ω2. This is because the amplitude is A = K · Ω / (1 / Δω1-1 / Δω2), and the resonance frequency ω0 of the drive vibration is larger than the resonance frequency ω1 of the first detection vibration, the detected vibration amplitude A is obtained. Compared with the region 200 showing a sharp amplitude change, the tripod tuning fork 10 in which the resonance frequency ω0 of the drive vibration is set in the region 100 of FIG. 10 detects the change in the degree of detuning adjusted by changing the resonance frequency of the drive vibration. This shows that it is possible to realize a characteristic in which the change in the vibration amplitude A is small and the Coriolis detection output hardly changes even if the degree of detuning is changed.

ここまで、3脚音叉10の振動体形状としては、検出脚の幅が他の脚の3/5±10%という厳しい制限を課したものについてのみ説明してきたが、2つの検出振動は検出脚の固有の共振周波数を他の脚に対して変化させた非対称形状の3脚音叉全般に存在するものであり、また対称形状の3脚音叉にも存在するものである。従って、3脚音叉全般においても、駆動振動の周波数ω0を、第1の検出振動及び第2の検出振動ω1とω2の間の領域に設定することにより、本実施の形態で述べた、離調度の変化に対する出力の変化が小さく、離調度により検出出力が殆ど変化しない特性を実現する事ができる。   Up to this point, the vibration body shape of the three-leg tuning fork 10 has been described only for the case where a strict restriction that the width of the detection leg is 3/5 ± 10% of the other leg has been described. It exists in all asymmetrical three-leg tuning forks in which the natural resonance frequency is changed with respect to other legs, and also exists in a symmetrical three-leg tuning fork. Therefore, also in general for a three-leg tuning fork, by setting the frequency ω0 of the drive vibration in the region between the first detection vibration and the second detection vibrations ω1 and ω2, the detuning degree described in the present embodiment. Therefore, it is possible to realize a characteristic in which the change in the output with respect to the change in is small and the detection output hardly changes depending on the degree of detuning.

次に、実際の駆動検出回路を用いた、電気的な駆動検出方法について説明する。図2には、3脚音叉10の脚の断面及び、電極1L,1R,1U,1D,2L,2R,2U,2D,3U,3D,及び3Gの断面が示されている。   Next, an electrical drive detection method using an actual drive detection circuit will be described. FIG. 2 shows a cross section of the leg of the three-leg tuning fork 10 and cross sections of the electrodes 1L, 1R, 1U, 1D, 2L, 2R, 2U, 2D, 3U, 3D, and 3G.

まず、脚2が面内振動を行う場合を説明する。脚2がX方向に屈曲すると、電極2L近傍はY’方向に伸び、電極2R近傍はY’方向に縮む。この時水晶内部の電極2L近傍には圧電効果により−X方向に電界が発生し、電極2R近傍には圧電効果によりX方向に電界が発生する。これらの電界により、電極2U及び2Dは電極2L及び2Rより高電位となる。またこれとは逆に、電極2Lと電極2U又は2Dの間に外部から電圧を印加し、電極2U又は2Dと電極2Rの間に外部から逆電圧を印加すると、圧電効果は可逆的なので、水晶内部には電極2L近傍に−X方向に電界が発生し、電極2R近傍にX方向に電界が発生するが、この電界により脚2の電極2Lの近傍は伸び、電極2Rの近傍は縮み、結果として脚2はX方向に屈曲する。従って、X方向の屈曲によって電極2U又は2Dに発生する電圧を増幅し、位相を調整して電極2L及び2Rにこの電圧を加える事により、脚2を用いて面内振動を発振させる事が出来る。   First, the case where the leg 2 performs in-plane vibration will be described. When the leg 2 is bent in the X direction, the vicinity of the electrode 2L extends in the Y ′ direction, and the vicinity of the electrode 2R contracts in the Y ′ direction. At this time, an electric field is generated in the −X direction near the electrode 2L inside the crystal due to the piezoelectric effect, and an electric field is generated near the electrode 2R in the X direction due to the piezoelectric effect. Due to these electric fields, the electrodes 2U and 2D have a higher potential than the electrodes 2L and 2R. Conversely, when a voltage is applied from the outside between the electrode 2L and the electrode 2U or 2D and a reverse voltage is applied from the outside between the electrode 2U or 2D and the electrode 2R, the piezoelectric effect is reversible. Inside, an electric field is generated in the −X direction near the electrode 2L, and an electric field is generated in the X direction near the electrode 2R. This electric field expands the vicinity of the electrode 2L of the leg 2 and contracts the vicinity of the electrode 2R. The leg 2 bends in the X direction. Therefore, the in-plane vibration can be oscillated using the leg 2 by amplifying the voltage generated in the electrode 2U or 2D by bending in the X direction, adjusting the phase, and applying this voltage to the electrodes 2L and 2R. .

本実施の形態においては、駆動振動で動作する脚1及び2を全て駆動する。即ち、図8に示した駆動振動の脚の動作方向を勘案し、脚1は、左右の電極1L及び1Rを参照電圧として、表裏の電極1U及び1Dに電圧を印加し、脚2においては、逆に表裏の電極2U及び2Dの電圧を参照に左右の電極2L及び2Rに電圧を印加すればよい。本実施の形態においては、電極1L,1R,2U及び2Dからの電圧をアンプGに入力し、移相回路PでアンプGの出力を移相して、電極1U,1D,2L及び2Rに印加する事により、駆動振動を自励発振させている。   In the present embodiment, all the legs 1 and 2 that operate by driving vibration are driven. That is, considering the movement direction of the leg of the drive vibration shown in FIG. 8, the leg 1 applies voltages to the front and back electrodes 1U and 1D using the left and right electrodes 1L and 1R as reference voltages. Conversely, the voltage may be applied to the left and right electrodes 2L and 2R with reference to the voltages of the front and back electrodes 2U and 2D. In the present embodiment, the voltages from the electrodes 1L, 1R, 2U and 2D are input to the amplifier G, the output of the amplifier G is phase-shifted by the phase shift circuit P, and applied to the electrodes 1U, 1D, 2L and 2R. By doing so, the drive vibration is self-excited.

この状態で3脚音叉10全体をZ’軸の回りに角速度Ωで回転させると、3脚音叉10の脚1及び2の運動を介して、3脚音叉10には、既に述べた様に2つの検出振動が発生し、回転のない場合には静止していた脚3には、面外振動が発生する。脚3が面外振動する場合を説明する。脚3がZ’方向に屈曲すると、電極3D近傍がY’方向に縮む。この時圧電効果により、Z’方向に見て、脚3の電極3Dが存在する領域ではX方向に電界が発生する。従って基準電極3Gに対して電極3Dは低電位になる。このとき電極3U近傍はY’方向に伸びる。圧電効果により、Z’方向に見て、脚3の電極3Uが存在する領域
では−X方向に電界が発生する。従って基準電極3Gに対して電極3Uは高電位になる。これとは逆に、脚3が−Z’方向に屈曲すると、電極3Dの存在する領域がY’方向に伸びる。この時圧電効果により、電極の存在する領域では−X方向に電界が発生する。従って基準電極3Gに対して電極3Dは高電位になる。このとき電極3U近傍はY’方向に縮む。圧電効果により、Z’方向に見て、脚3の電極3Uが存在する領域ではX方向に電界が発生する。従って基準電極3Gに対して電極3Uは低電位になる。即ち、検出振動は、脚3の基準電極3Gの電位を基準とした、電極3Uと電極3Dに生じる互いに逆方向の電圧として検出できる。勿論、電極3Gを使用せずに、直接に電極3Uと3D間の電圧を測定しても良い。
In this state, when the entire three-leg tuning fork 10 is rotated around the Z ′ axis at an angular velocity Ω, the three-leg tuning fork 10 has 2 as described above through the movement of the legs 1 and 2 of the three-leg tuning fork 10. Two detection vibrations are generated, and when there is no rotation, out-of-plane vibrations are generated in the leg 3 that is stationary. A case where the leg 3 vibrates out of plane will be described. When the leg 3 bends in the Z ′ direction, the vicinity of the electrode 3D contracts in the Y ′ direction. At this time, due to the piezoelectric effect, an electric field is generated in the X direction in the region where the electrode 3D of the leg 3 exists as viewed in the Z ′ direction. Accordingly, the electrode 3D is at a lower potential than the reference electrode 3G. At this time, the vicinity of the electrode 3U extends in the Y ′ direction. Due to the piezoelectric effect, an electric field is generated in the −X direction in the region where the electrode 3U of the leg 3 is present when viewed in the Z ′ direction. Therefore, the electrode 3U has a higher potential than the reference electrode 3G. On the other hand, when the leg 3 is bent in the −Z ′ direction, the region where the electrode 3D exists extends in the Y ′ direction. At this time, due to the piezoelectric effect, an electric field is generated in the −X direction in the region where the electrode exists. Accordingly, the electrode 3D has a higher potential than the reference electrode 3G. At this time, the vicinity of the electrode 3U contracts in the Y ′ direction. Due to the piezoelectric effect, an electric field is generated in the X direction in the region where the electrode 3U of the leg 3 is present as viewed in the Z ′ direction. Therefore, the electrode 3U is at a lower potential than the reference electrode 3G. That is, the detected vibration can be detected as voltages in opposite directions generated at the electrode 3U and the electrode 3D with reference to the potential of the reference electrode 3G of the leg 3. Of course, the voltage between the electrodes 3U and 3D may be directly measured without using the electrode 3G.

コリオリ力の検出信号は、電極3Gをグランドに接続して基準電圧を作り、電極3U及び3Dの電圧を差動バッファDに入力し、差動バッファDを経て乗算回路Mに導き、駆動振動の発振系の出力を、コリオリ力が90度遅れて発生するのを補正する目的で、アンプGの出力を、移相回路P2により90度移相し、コンパレータCにより2値化した参照信号により乗算し、乗算により検波した結果は、更に積分回路Sにより平滑化し、正確な直流出力として検出できる。この直流出力はコリオリ力に比例し、コリオリ力は角速度Ωに比例するので、この直流出力により角速度Ωを知ることができる。ここで、検出に差動検出を用いたのは、回路の対称性を向上し、回路系のドリフトを低減する為である。   The detection signal of the Coriolis force is generated by connecting the electrode 3G to the ground to generate a reference voltage, inputting the voltages of the electrodes 3U and 3D to the differential buffer D, leading to the multiplication circuit M via the differential buffer D, and The output of the amplifier G is shifted by 90 degrees by the phase shift circuit P2 and multiplied by the reference signal binarized by the comparator C for the purpose of correcting that the Coriolis force is delayed by 90 degrees. The result of detection by multiplication can be further smoothed by the integration circuit S and detected as an accurate DC output. Since this DC output is proportional to the Coriolis force, and the Coriolis force is proportional to the angular velocity Ω, the angular velocity Ω can be known from this DC output. Here, the reason why the differential detection is used for the detection is to improve the symmetry of the circuit and reduce the drift of the circuit system.

本発明は、3脚振動子を用いたジャイロセンサに適用できるものである。   The present invention can be applied to a gyro sensor using a tripod vibrator.

本発明の実施の形態である3脚音叉型の振動ジャイロの外観を示し、以後説明に用いる座標を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing the appearance of a tripod tuning fork type vibration gyro which is an embodiment of the present invention, and showing coordinates used for the following description. 本発明の実施の形態である3脚音叉の断面を示し,回路ブロック及び配線を示す模式図である。It is a schematic diagram which shows the cross section of the tripod tuning fork which is embodiment of this invention, and shows a circuit block and wiring. 本発明の実施の形態である3脚音叉型の振動ジャイロの外観を示し、以後説明に用いる座標を示し、電極の一部を示す表面図である。FIG. 3 is a surface view showing the appearance of a tripod tuning fork type vibrating gyroscope according to an embodiment of the present invention, showing coordinates used for the description, and showing a part of an electrode. 本発明の実施の形態である3脚音叉型の振動ジャイロの外観を示し、以後説明に用いる座標を示し、電極の一部を示す裏面図である。1 is a back view showing an appearance of a tripod tuning fork type vibration gyroscope according to an embodiment of the present invention, showing coordinates used in the following description, and showing a part of an electrode. 従来の音叉型の水晶ジャイロの外観を示し、座標を示し、電極の一部を示し、異方性結晶の回転方向を示す斜視図である。It is a perspective view which shows the external appearance of the conventional tuning fork type crystal gyro, shows a coordinate, shows a part of electrode, and shows the rotation direction of an anisotropic crystal. 従来の音叉型水晶ジャイロの、脚の断面及び駆動検出回路の配線模式図である。It is the wiring cross section of the cross section of a leg and a drive detection circuit of the conventional tuning fork type crystal gyro. 本発明の実施の形態である3脚音叉型振動体の駆動振動を示す動作説明図である。It is operation | movement explanatory drawing which shows the drive vibration of the tripod tuning fork type vibrating body which is embodiment of this invention. 本発明の実施の形態である3脚音叉型振動体の検出振動を示す動作説明図である。It is operation | movement explanatory drawing which shows the detection vibration of the tripod tuning fork type vibrating body which is embodiment of this invention. 本発明の実施の形態である3脚音叉型振動体の検出振動を示す動作説明図である。It is operation | movement explanatory drawing which shows the detection vibration of the tripod tuning fork type vibrating body which is embodiment of this invention. 本発明の実施の形態である3脚音叉型振動ジャイロの出力を周波数に対して表す図である。It is a figure showing the output of the tripod tuning fork type vibration gyroscope which is embodiment of this invention with respect to a frequency.

符号の説明Explanation of symbols

1L,1R,1U,1D 電極
2L,2R,2U,2D 電極
3U,3D,3G 電極
DR,SE 端子
S1,S2,GND 端子
1〜3 脚
9 基部
10 3脚音叉型の振動ジャイロ
11 支持部
A1〜A3 錘
W1,W2,W3 脚幅
U 溝幅
K 肩幅
C コンパレータ
D 差動バッファ
G アンプ
M 乗算回路
P ,P2 移相回路
S 積分回路
FC,−FC コリオリ力
VX,−VX 速度
J1〜J8 電極
J10 音叉型振動体
J11 第1の脚
J12 第2の脚
J15 基部
JC コンパレータ
JD 差動バッファ
JG アンプ
JM 乗算回路
JP ,JP2 移相回路
JS 積分回路
1L, 1R, 1U, 1D Electrodes 2L, 2R, 2U, 2D Electrodes 3U, 3D, 3G Electrodes DR, SE Terminals S1, S2, GND Terminals 1-3 Leg 9 Base 10 Three-leg tuning-fork type vibration gyro 11 Support part A1 A3 Weights W1, W2, W3 Leg width U Groove width K Shoulder width C Comparator
D differential buffer G amplifier M multiplication circuit P, P2 phase shift circuit S integration circuit FC, -FC Coriolis force VX, -VX speed J1-J8 electrode J10 tuning fork type vibrator J11 first leg J12 second leg J15 base JC comparator
JD differential buffer JG amplifier JM multiplication circuit JP, JP2 phase shift circuit JS integration circuit

Claims (5)

基部に3本の脚を配設した振動子と、該3本の脚のうち2本を所定の駆動周波数で駆動する発振手段と、駆動された前記2本の脚とは異なる他の1本の脚でコリオリ力を検出する検出手段とを有し、前記3本の脚は互いに所定の間隔を保って前記基部から同じ方向へ平行に配設し、前記発振手段は前記3本の脚のうち、中央の脚と該中央の脚と隣り合う一方の脚とを駆動し、前記中央の脚と隣り合う他方の脚をほぼ静止させ、前記検出手段は前記他方の脚に発生するコリオリ力を検出する振動ジャイロにおいて、
前記振動子は第1の振動周波数を共振点とする第1検出振動モードと、第2の振動周波数を共振点とする第2検出振動モードとを有しており、前記発振手段の前記駆動周波数が前記第1の振動周波数と前記第2の振動周波数との間の周波数であることを特徴とする振動ジャイロ。
A vibrator having three legs arranged at the base, an oscillating means for driving two of the three legs at a predetermined drive frequency, and another one different from the driven two legs Detecting means for detecting the Coriolis force by the legs of the three legs, the three legs being arranged in parallel in the same direction from the base with a predetermined distance from each other, and the oscillating means of the three legs Among them, the center leg and one leg adjacent to the center leg are driven, the other leg adjacent to the center leg is substantially stationary, and the detection means generates the Coriolis force generated on the other leg. In the vibration gyro to detect,
The vibrator has a first detection vibration mode having a first vibration frequency as a resonance point, and a second detection vibration mode having a second vibration frequency as a resonance point, and the driving frequency of the oscillation means. A vibration gyro characterized in that is a frequency between the first vibration frequency and the second vibration frequency.
前記コリオリ力に基づいて発生する前記第1検出振動モードの振動と前記第2検出振動モードの振動が前記他方の脚を同位相で振動するように作用することを特徴とする請求項1記載の振動ジャイロ。   2. The vibration of the first detection vibration mode and the vibration of the second detection vibration mode that are generated based on the Coriolis force act so that the other leg vibrates in the same phase. Vibration gyro. 前記第1検出振動モードは、前記一方の脚と前記他方の脚が前記中央の脚と逆位相で振動するモードであり、前記第2検出振動モードは、前記一方の脚と前記中央の脚が前記他方の脚と逆位相で振動するモードであることを特徴とする請求項1または請求項2記載の振動ジャイロ。   The first detection vibration mode is a mode in which the one leg and the other leg vibrate in opposite phases to the center leg, and the second detection vibration mode is a mode in which the one leg and the center leg are 3. The vibration gyro according to claim 1, wherein the vibration gyro is in a mode that vibrates in an opposite phase to the other leg. 前記他方の脚の幅が、前記中央の脚の幅と前記一方の脚の幅よりも狭いことを特徴とする請求項1記載の振動ジャイロ。   2. The vibrating gyroscope according to claim 1, wherein the width of the other leg is narrower than the width of the central leg and the width of the one leg. 前記一方の脚の幅と前記中央の脚の幅をほぼ同じにするとともに、前記他方の脚の幅は、前記一方の脚又は前記中央の脚の幅の3/5±10%にしており、前記一方の脚と前記基部を結合する部分に肩部を設けたことを特徴とする請求項1記載の振動ジャイロ。   The width of the one leg and the width of the center leg are substantially the same, and the width of the other leg is 3/5 ± 10% of the width of the one leg or the center leg, 2. The vibrating gyroscope according to claim 1, wherein a shoulder portion is provided at a portion connecting the one leg and the base portion.
JP2004088261A 2004-03-25 2004-03-25 Vibrating gyro Expired - Fee Related JP4440682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088261A JP4440682B2 (en) 2004-03-25 2004-03-25 Vibrating gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088261A JP4440682B2 (en) 2004-03-25 2004-03-25 Vibrating gyro

Publications (2)

Publication Number Publication Date
JP2005274360A JP2005274360A (en) 2005-10-06
JP4440682B2 true JP4440682B2 (en) 2010-03-24

Family

ID=35174192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088261A Expired - Fee Related JP4440682B2 (en) 2004-03-25 2004-03-25 Vibrating gyro

Country Status (1)

Country Link
JP (1) JP4440682B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911690B2 (en) * 2006-01-31 2012-04-04 Necトーキン株式会社 Vibrating gyro vibrator
CH700716B1 (en) * 2006-10-09 2010-10-15 Suisse Electronique Microtech Tuning fork resonator type silicon.
US20100116052A1 (en) * 2007-03-20 2010-05-13 Citizen Holdings Co., Ltd. Piezoelectric vibrator, and vibration gyro
JP5071058B2 (en) * 2007-11-07 2012-11-14 セイコーエプソン株式会社 Piezoelectric vibrating piece
JP5617534B2 (en) * 2010-10-29 2014-11-05 Tdk株式会社 Piezoelectric vibration type yaw rate sensor

Also Published As

Publication number Publication date
JP2005274360A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4068370B2 (en) Vibrating gyro
EP0649002B1 (en) Vibration-sensing gyro
US7348716B2 (en) Piezoelectric gyro element and piezoelectric gyroscope
US9885576B2 (en) Angular velocity sensor
JP2002141770A (en) Small-sized vibrator
JP2001255152A (en) Piezoelectric vibrating gyroscope and its frequency adjusting method
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP4911690B2 (en) Vibrating gyro vibrator
JP2002228453A (en) Oscillatory gyro and temperature drift adjusting method therefor
JP4440682B2 (en) Vibrating gyro
KR100361118B1 (en) Vibrator for detecting angular velocities about two axes and vibrating gyroscope having the same
JP2008224627A (en) Angular velocity sensor, method of manufacturing the same, and electronic apparatus
JPH08278146A (en) Vibrating gyro
JP4295233B2 (en) Tuning fork type vibrator for vibration gyro
JP4668441B2 (en) Vibrating gyro
JP2001208545A (en) Piezoelectric vibration gyroscope
JP4641107B2 (en) Vibrating gyro
JP3355998B2 (en) Vibrating gyro
JP2001194148A (en) Vibrating gyro
JP2009063299A (en) Vibration gyroscope
JP2005345404A (en) Vibrator for piezoelectric vibration gyroscope, and its manufacturing method
JP2008256542A (en) Vibration gyro
JP2001241953A (en) Vibrating gyro
US7571648B2 (en) Piezoelectric vibration angular velocity sensor
JP2001116552A (en) Vibration gyro

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4440682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150115

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees