JP2004132888A - Measuring instrument for electronic component, and measuring method for electronic component - Google Patents

Measuring instrument for electronic component, and measuring method for electronic component Download PDF

Info

Publication number
JP2004132888A
JP2004132888A JP2002299110A JP2002299110A JP2004132888A JP 2004132888 A JP2004132888 A JP 2004132888A JP 2002299110 A JP2002299110 A JP 2002299110A JP 2002299110 A JP2002299110 A JP 2002299110A JP 2004132888 A JP2004132888 A JP 2004132888A
Authority
JP
Japan
Prior art keywords
electronic component
cavity
chip
measurement substrate
type electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002299110A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yoshimoto
吉本 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002299110A priority Critical patent/JP2004132888A/en
Publication of JP2004132888A publication Critical patent/JP2004132888A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely and stably measure a characteristic of an electronic component. <P>SOLUTION: A rectangular base table 32 comprises metal such as stainless steel, and a recessed cavity 33 is formed in its central part. A size of the cavity 33 is set to be conformed with a size of the chip type electronic component 100. An elastic body 34 such as an urethane resin and silicone rubber is filled in the cavity 33. A measuring substrate 40 is fixed onto a cavity 33 forming face i.e. an upper face of the base table 32 to cover the cavity 33. The measuring substrate 40 is preferably expandable and elastic. In concretely saying, the measuring substrate 40 comprises, for example, a glass epoxy polymer, a glass fluoro polymer, a glass polyimide or the like. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品の電気特性を測定するための測定装置およびその測定方法に関する。
【0002】
【従来の技術】
従来の電子部品の測定装置として、例えば、特許文献1に記載のものが知られている。この測定装置は、図9に示すように、それぞれ複数のパターン電極20を表面に設けた2枚のプリント基板16と、2枚の異方性導電ゴム24とを備えている。パターン電極20は、プリント基板16の対向する端縁付近から中央部に向かって配設されている。プリント基板16の端部付近にはスルーホール18が設けられ、このスルーホール18を介してリード線22がパターン電極20に電気的に接続されている。これらのリード線22は、チップ型電子部品10の電気特性を測定するための測定器に接続されている。
【0003】
チップ型電子部品10の電気特性を測定する際には、2枚のプリント基板16間に異方性導電ゴム24を挟んでチップ型電子部品10が配置される。プリント基板16のそれぞれのパターン電極20が、チップ型電子部品10の側面に設けられている外部電極14に対応するように、チップ型電子部品10が位置決めされる。この状態で、2枚のプリント基板16の両側から圧力が加えられる。それにより、外部電極14とパターン電極20とが異方性導電ゴム24を介して電気的に接続される。そして、リード線22に接続された測定器によって、チップ型電子部品10の電気特性が測定される。
【0004】
異方性導電ゴム24は伸縮可能であるため、被測定物であるチップ型電子部品10の外部電極14の形状に合わせた形で変形し、外部電極14との間で良好な接触状態が得られる。この結果、チップ型電子部品10の外部電極14とプリント基板16のパターン電極20との接触不良を低減することができる。
【0005】
【特許文献1】
特開平6−273466号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1の測定装置は、チップ型電子部品10とプリント基板16との間に異方性導電ゴム24を介在させるため、異方性導電ゴム24自身が有するインダクタンス分が測定データに付加されてしまう。
【0007】
さらに、チップ型電子部品10とプリント基板16の位置関係が、チップ型電子部品10をプリント基板にはんだ付けした状態と比べ、間に異方性導電ゴム24が挿入されている分だけずれている。従って、特許文献1の測定装置を使用した測定は、チップ型電子部品10の実装面とプリント基板16の電磁気的結合が、チップ型電子部品10をプリント基板にはんだ付けした状態とは異なる状態での測定となる。
【0008】
このため、特許文献1の測定装置によって得られるチップ型電子部品10の特性インピーダンスが、実際の値からずれてしまうという問題があった。
【0009】
また、外部電極14の電極厚みばらつきが大きい場合には、異方性導電ゴム24の厚み方向の縮み量のばらつきも大きくなる。このため、チップ型電子部品10とプリント基板16間の異方性導電ゴム24の厚みが、測定毎に大きく変化し、特性インピーダンスの変化も大きくなる。特に、チップ型電子部品10の外部電極14が小さい場合、異方性導電ゴム24の単位面積当たりの外部電極数が少なくなるため、特性インピーダンスが変化し易くなる。
【0010】
そこで、本発明の目的は、電子部品の特性を確実にかつ安定して測定することができる電子部品の測定装置および電子部品の測定方法を提供することにある。
【0011】
【課題を解決するための手段および作用】
前記目的を達成するため、本発明に係る電子部品の測定装置は、
(a)ベース台と、ベース台に形成されたキャビティと、ベース台のキャビティ形成面に取り付けられた測定基板と、測定基板の表面に設けられた特性測定用電極とを備え、
(b)測定基板は、押圧力により弾性変形してベース台のキャビティ内に撓むこと、
を特徴とする。
【0012】
ここに、キャビティ内は、空洞であってもよいし、弾性体や剛体が配設されていてもよい。キャビティ内に弾性体を配設するときには、弾性体を測定基板と接触するように配設する。キャビティ内に剛体を配設するときには、測定基板との間に所定のギャップを有するように配設する。また、キャビティは、ベース台にスペーサを介して測定基板を取り付けることにより、ベース台と測定基板との間に形成した空間であってもよい。
【0013】
以上の構成により、測定時には、チップ型電子部品の外部電極を測定基板の特性測定用電極に電気的に接触させた状態で、チップ型電子部品を測定基板に押しつけ、測定基板を弾性変形させてベース台のキャビティ内に撓ませ、チップ型電子部品の電気特性を確実かつ安定して測定する。
【0014】
測定基板自身が有する弾性力が、チップ型電子部品の外部電極と測定基板の特性測定用電極との間に適度の接触圧を発生させる。一方、測定中、チップ型電子部品と測定基板は直接に接触するため、チップ型電子部品の実装面と測定基板の電磁気的結合が、チップ型電子部品をプリント基板にはんだ付けした状態と殆ど同じ状態となる。この結果、従来の測定装置で生じていた、チップ型電子部品を測定したときと、実際にプリント基板に実装した時との特性インピーダンスのずれも抑えられる。
【0015】
【発明の実施の形態】
以下、本発明に係る電子部品の測定装置および電子部品の測定方法の実施形態について添付の図面を参照して説明する。
【0016】
[第1実施形態、図1〜図4]
図1および図2に示すように、例えば、コンデンサ、インダクタ、抵抗、フィルタ、遅延線、複合デバイスといったチップ型電子部品100の電気特性を測定するための測定装置31は、概略、ベース台32と、該ベース台32の上面32aに接着剤やねじで固定された測定基板40を備えている。
【0017】
矩形体のベース台32はステンレスなどの金属からなり、中央部に凹形状のキャビティ33が形成されている。キャビティ33のサイズはチップ型電子部品100の大きさに合わせて設定される。キャビティ33内には、ウレタン樹脂やシリコンゴムなどの弾性体34が充填されている。
【0018】
測定基板40は、ベース台32のキャビティ33形成面すなわち上面32aに、キャビティ33を覆うように、かつ、弾性体34と接触するように固定されている。測定基板40は伸縮性や弾性を有している。具体的には、測定基板40として、例えばガラスエポキシやガラスフッ素やガラスポリイミドなどからなる0.6mm(代表値)の厚さを有するベース板に銅箔を貼り付けたプリント回路用銅張基板などが使用される。
【0019】
測定基板40の上面には複数の特性測定用電極42が設けられている。特性測定用電極42は、測定基板40の外周縁部付近から中央部に向かって配設されている。測定基板40の外周縁部付近にはパッド電極43が設けられ、このパッド電極43を介してリード線(図示せず)が特性測定用電極42に電気的に接続されている。これらのリード線は、チップ型電子部品100の電気特性を測定するための測定器に接続されている。
【0020】
特性測定用電極42やパッド電極43は、本第1実施形態の場合、プリント回路用銅張基板の銅箔をパターンニング(エッチング)することによって形成される。特性測定用電極42は、チップ型電子部品100の入出力外部電極やグランド外部電極などの外部電極102の形状に合わせてパターンニングされる。
【0021】
次に、この測定装置31を用いて、被測定物であるチップ型電子部品100の特性を測定する方法について説明する。チップ型電子部品100は外部電極102がそれぞれ、測定装置31の特性測定用電極42に対応するように位置決めされる。
【0022】
次に、図3に示すように、測定基板40の上面にチップ型電子部品100が配置された状態で、チップ型電子部品100の上側から押圧力Pが加えられる。通常、押圧量Pは2kgf/cm以下に設定される。押圧力Pが強過ぎると、測定基板40が円弧状に大きく湾曲してしまい、チップ型電子部品100の中央部分に形成されている外部電極102との間に隙間ができ、接触不良が発生するからである。
【0023】
測定基板40は押圧力Pにより弾性変形し、ベース台32のキャビティ33内に撓む。通常、測定基板40の撓み量Hは約0.5mm以下である。この撓みにより弾性体34が圧縮され、弾性体34に発生する弾性力と測定基板40自身が有する弾性力とを組み合わせた力が、チップ型電子部品100の外部電極102と測定基板40の特性測定用電極42との間に適度の接触圧を発生させる。
【0024】
キャビティ33内に充填された弾性体34は、測定基板40が円弧状に湾曲するのを防止するものである。つまり、弾性体34の弾性力が、測定基板40を下から押し上げるように作用することにより、測定基板40はチップ型電子部品100の底面に沿って変形する。従って、測定基板40とチップ型電子部品100との密着部分を増加させる。キャビティ33内に弾性体34を配設する構造は、特に、四つの側面に外部電極102をもつチップ型電子部品100を測定する場合に有効である。また、測定基板40の過度の変形を抑えるので、測定基板40の寿命をアップさせることができる。
【0025】
この結果、チップ型電子部品100の外部電極102の厚みばらつきやチップ型電子部品100自身の反りなどの影響を受けることなく、外部電極102が特性測定用電極42に確実かつ安定して電気的に接触することができる。
【0026】
次に、リード線を介して接続されている測定器によってチップ型電子部品100の電気特性が測定される。測定中は、チップ型電子部品100と測定基板40が直接に接触しているので、チップ型電子部品100の底面と測定基板40の電磁気的結合が、チップ型電子部品100をプリント基板にはんだ付けした状態と殆ど同じ状態となる。この結果、従来の測定装置で生じていた、測定したときと、実際にプリント基板に実装した時とのチップ型電子部品100の特性インピーダンスのずれを抑えることができる。従って、従来の異方性導電ゴムを利用した測定装置に必要であった整合素子も不要となる。
【0027】
なお、弾性体34は、キャビティ33内全体に配設されている必要はなく、図4に示すように、チップ型電子部品100が載置される部分とその周辺部分だけに設けた構造の測定装置31Aであっても、同様の効果を得ることができる。
【0028】
[第2実施形態、図5および図6]
図5に示すように、第2実施形態の測定装置51は、概略、矩形体のベース台52と、該ベース台52の上面52aの2〜4隅部もしくは外周縁部にスペーサ54を介して接着剤やねじで固定された測定基板40を備えている。測定基板40は前記第1実施形態で説明したものと同様のものであり、その詳細な説明は省略する。
【0029】
ベース台52はステンレスなどの金属からなる。ベース第52の上面52aと測定基板40の下面との間に形成された空間がキャビティ53として機能する。つまり、測定基板40の上面にチップ型電子部品100が配置された状態で、チップ型電子部品100の上側から押圧力Pが加えられると、測定基板40は弾性変形し、キャビティ53内に撓む。この撓みにより、測定基板40自身が有する弾性力がチップ型電子部品100の外部電極102と測定基板40の特性測定用電極42との間に適度の接触圧を発生させる。
【0030】
本第2実施形態の場合、キャビティ53内に弾性体を配設していない。これは、被測定物であるチップ型電子部品が両端面に外部電極をもつ2端子タイプのものである場合、測定基板40が円弧状に湾曲して、測定基板40とチップ型電子部品の中央部分との間に多少の隙間が生じても、両端面の外部電極が測定基板40に接触しておれば測定に支障がないからである。ただし、この場合でも、キャビティ53内に弾性体を配設してもよいことは言うまでもない。
【0031】
なお、接着剤やねじで必ずしも測定基板40をベース台52に固定する必要はなく、図6に示すように、測定基板40をピン60でベース台52に位置決めする構造の測定装置51Aであってもよい。この場合、ベース台52の2〜4隅部にピン用穴52bが形成されるとともに、その位置に合わせて、スペーサ54と測定基板40にそれぞれピン用穴54a,40aが形成される。これにより測定基板40を撓ませたときピン60も若干撓むので、測定基板40の可動範囲を大きくすることができ、測定基板40の変形を抑え、測定基板40の寿命をアップさせることができる。
【0032】
[第3実施形態、図7]
図7に示すように、第3実施形態の測定装置71は、前記第1実施形態の測定装置31において、弾性体34の替わりに剛体72をキャビティ33内に配設したものと同様のものである。剛体72の上面72aの高さは、ベース台32の上面32aの高さより少し低くし、剛体72の上面72aと測定基板40の下面との間には、測定基板40の撓みを考慮して、所定のギャップGを設定する。この剛体72は、測定基板40が過度に変形するのを防止する。
【0033】
[他の実施形態]
なお、本発明は前記実施形態に限定するものではなく、その要旨の範囲内で種々に変更することができる。例えば、ベース台は、図8に示すように、溝形状のキャビティ83が形成されたベース台82であってもよい。
【0034】
【発明の効果】
以上の説明で明らかなように、本発明によれば、測定時には、チップ型電子部品の外部電極を測定基板の特性測定用電極に電気的に接触させた状態で、チップ型電子部品を測定基板に押しつけ、測定基板を弾性変形させてベース台のキャビティ内に撓ませ、チップ型電子部品の電気特性を確実かつ安定して測定させることができる。
【0035】
測定基板自身が有する弾性力が、チップ型電子部品の外部電極と測定基板の特性測定用電極との間に適度の接触圧を発生させることができる。一方、測定中、チップ型電子部品と測定基板は直接に接触するため、チップ型電子部品の実装面と測定基板の電磁気的結合が、チップ型電子部品をプリント基板にはんだ付けした状態と殆ど同じ状態となる。この結果、従来の測定装置で生じていた、チップ型電子部品を測定したときと、実際にプリント基板に実装した時とのチップ型電子部品の特性インピーダンスのずれも抑えることができる。
【0036】
また、キャビティ内に弾性体を配設することにより、弾性体の弾性力が、測定基板を下から押し上げるように作用することにより、測定基板はチップ型電子部品の底面に沿って変形する。従って、測定基板とチップ型電子部品との密着部分を増加させることができる。
【図面の簡単な説明】
【図1】本発明に係る電子部品の測定装置の第1実施形態を示す分解斜視図。
【図2】図1に示した電子部品の測定装置の断面図。
【図3】図1に示した電子部品の測定装置を用いた測定方法を示す断面図。
【図4】図1に示した電子部品の測定装置の変形例を示す断面図。
【図5】本発明に係る電子部品の測定装置の第2実施形態を示す断面図。
【図6】図5に示した電子部品の測定装置の変形例を示す断面図。
【図7】本発明に係る電子部品の測定装置の第3実施形態を示す断面図。
【図8】ベース台の変形例を示す斜視図。
【図9】従来例を示す斜視図。
【符号の説明】
31,31A,51,51A,71…測定装置
32,52,82…ベース台
33,53,83…キャビティ
34…弾性体
40…測定基板
42…特性測定用電極
54…スペーサ
72…剛体
100…チップ型電子部品
102…外部電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a measuring device and a measuring method for measuring electric characteristics of an electronic component.
[0002]
[Prior art]
2. Description of the Related Art As a conventional electronic component measuring device, for example, a device described in Patent Document 1 is known. As shown in FIG. 9, the measuring device includes two printed boards 16 each having a plurality of pattern electrodes 20 provided on the surface thereof, and two anisotropic conductive rubbers 24. The pattern electrodes 20 are provided from near the opposing edges of the printed circuit board 16 toward the center. A through hole 18 is provided near the end of the printed board 16, and a lead wire 22 is electrically connected to the pattern electrode 20 via the through hole 18. These lead wires 22 are connected to a measuring device for measuring the electrical characteristics of the chip-type electronic component 10.
[0003]
When measuring the electrical characteristics of the chip-type electronic component 10, the chip-type electronic component 10 is arranged with the anisotropic conductive rubber 24 interposed between two printed boards 16. The chip-type electronic component 10 is positioned such that each pattern electrode 20 of the printed board 16 corresponds to the external electrode 14 provided on the side surface of the chip-type electronic component 10. In this state, pressure is applied from both sides of the two printed boards 16. Thus, the external electrode 14 and the pattern electrode 20 are electrically connected via the anisotropic conductive rubber 24. Then, the electrical characteristics of the chip-type electronic component 10 are measured by the measuring device connected to the lead wire 22.
[0004]
Since the anisotropic conductive rubber 24 can expand and contract, it deforms according to the shape of the external electrode 14 of the chip-type electronic component 10 to be measured, and a good contact state with the external electrode 14 is obtained. Can be As a result, poor contact between the external electrodes 14 of the chip-type electronic component 10 and the pattern electrodes 20 of the printed circuit board 16 can be reduced.
[0005]
[Patent Document 1]
JP-A-6-273466.
[Problems to be solved by the invention]
However, in the measurement device of Patent Document 1, since the anisotropic conductive rubber 24 is interposed between the chip-type electronic component 10 and the printed board 16, the inductance of the anisotropic conductive rubber 24 itself is added to the measurement data. Will be done.
[0007]
Further, the positional relationship between the chip-type electronic component 10 and the printed circuit board 16 is shifted from the state in which the chip-type electronic component 10 is soldered to the printed circuit board by an amount corresponding to the insertion of the anisotropic conductive rubber 24 therebetween. . Therefore, the measurement using the measuring device of Patent Document 1 is performed in a state where the electromagnetic coupling between the mounting surface of the chip-type electronic component 10 and the printed board 16 is different from the state where the chip-type electronic component 10 is soldered to the printed board. Measurement.
[0008]
For this reason, there is a problem that the characteristic impedance of the chip-type electronic component 10 obtained by the measuring device of Patent Document 1 deviates from an actual value.
[0009]
In addition, when the electrode thickness variation of the external electrode 14 is large, the variation in the amount of shrinkage of the anisotropic conductive rubber 24 in the thickness direction also increases. For this reason, the thickness of the anisotropic conductive rubber 24 between the chip-type electronic component 10 and the printed board 16 changes greatly every measurement, and the characteristic impedance also changes greatly. In particular, when the external electrodes 14 of the chip-type electronic component 10 are small, the number of external electrodes per unit area of the anisotropic conductive rubber 24 decreases, so that the characteristic impedance tends to change.
[0010]
Therefore, an object of the present invention is to provide an electronic component measuring device and an electronic component measuring method capable of reliably and stably measuring characteristics of an electronic component.
[0011]
Means and action for solving the problem
In order to achieve the object, an electronic component measuring device according to the present invention includes:
(A) a base table, a cavity formed in the base table, a measurement substrate attached to the cavity forming surface of the base table, and a characteristic measurement electrode provided on the surface of the measurement substrate;
(B) the measurement substrate is elastically deformed by the pressing force and bent into the cavity of the base table;
It is characterized by.
[0012]
Here, the inside of the cavity may be a cavity, or an elastic body or a rigid body may be provided. When disposing the elastic body in the cavity, the elastic body is arranged so as to be in contact with the measurement substrate. When disposing a rigid body in the cavity, the rigid body is disposed so as to have a predetermined gap between the rigid body and the measurement substrate. Further, the cavity may be a space formed between the base table and the measurement substrate by attaching the measurement substrate to the base table via a spacer.
[0013]
With the above configuration, at the time of measurement, the chip-type electronic component is pressed against the measurement substrate while the external electrodes of the chip-type electronic component are in electrical contact with the characteristic measurement electrodes of the measurement substrate, and the measurement substrate is elastically deformed. It is bent into the cavity of the base table, and the electrical characteristics of the chip-type electronic component are reliably and stably measured.
[0014]
The elastic force of the measurement substrate itself generates an appropriate contact pressure between the external electrode of the chip-type electronic component and the characteristic measurement electrode of the measurement substrate. On the other hand, during measurement, the chip-type electronic component and the measurement board are in direct contact, so the electromagnetic coupling between the mounting surface of the chip-type electronic component and the measurement board is almost the same as when the chip-type electronic component is soldered to a printed circuit board. State. As a result, the deviation of the characteristic impedance between the time when the chip-type electronic component is measured and the time when it is actually mounted on the printed circuit board, which is caused by the conventional measuring device, can be suppressed.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an electronic component measuring device and an electronic component measuring method according to the present invention will be described with reference to the accompanying drawings.
[0016]
[First Embodiment, FIGS. 1 to 4]
As shown in FIGS. 1 and 2, for example, a measuring device 31 for measuring the electrical characteristics of a chip-type electronic component 100 such as a capacitor, an inductor, a resistor, a filter, a delay line, and a composite device generally includes a base table 32 and And a measurement substrate 40 fixed to the upper surface 32a of the base table 32 with an adhesive or a screw.
[0017]
The rectangular base 32 is made of metal such as stainless steel, and has a concave cavity 33 at the center. The size of the cavity 33 is set according to the size of the chip-type electronic component 100. The cavity 33 is filled with an elastic body 34 such as urethane resin or silicon rubber.
[0018]
The measurement substrate 40 is fixed to the cavity 33 forming surface, that is, the upper surface 32 a of the base table 32 so as to cover the cavity 33 and to be in contact with the elastic body 34. The measurement substrate 40 has elasticity and elasticity. Specifically, as the measurement substrate 40, for example, a copper-clad substrate for a printed circuit in which a copper foil is stuck to a base plate having a thickness of 0.6 mm (typical value) made of glass epoxy, glass fluorine, glass polyimide, or the like. Is used.
[0019]
A plurality of characteristic measurement electrodes 42 are provided on the upper surface of the measurement substrate 40. The characteristic measuring electrode 42 is provided from the vicinity of the outer peripheral edge of the measurement substrate 40 toward the center. A pad electrode 43 is provided near the outer periphery of the measurement substrate 40, and a lead wire (not shown) is electrically connected to the characteristic measurement electrode 42 via the pad electrode 43. These leads are connected to a measuring instrument for measuring the electrical characteristics of the chip-type electronic component 100.
[0020]
In the case of the first embodiment, the characteristic measuring electrode 42 and the pad electrode 43 are formed by patterning (etching) a copper foil of a copper clad substrate for a printed circuit. The characteristic measuring electrode 42 is patterned according to the shape of the external electrode 102 such as the input / output external electrode or the ground external electrode of the chip-type electronic component 100.
[0021]
Next, a method for measuring the characteristics of the chip-type electronic component 100 as the device under test using the measuring device 31 will be described. The chip-type electronic component 100 is positioned so that the external electrodes 102 respectively correspond to the characteristic measuring electrodes 42 of the measuring device 31.
[0022]
Next, as shown in FIG. 3, in a state where the chip-type electronic component 100 is arranged on the upper surface of the measurement substrate 40, a pressing force P is applied from above the chip-type electronic component 100. Usually, the pressing amount P is set to 2 kgf / cm 2 or less. If the pressing force P is too strong, the measurement substrate 40 is greatly curved in an arc shape, and a gap is formed between the measurement substrate 40 and the external electrode 102 formed in the central portion of the chip-type electronic component 100, and a contact failure occurs. Because.
[0023]
The measurement substrate 40 is elastically deformed by the pressing force P and bends into the cavity 33 of the base table 32. Usually, the amount of deflection H of the measurement substrate 40 is about 0.5 mm or less. The elastic body 34 is compressed by this bending, and the force obtained by combining the elastic force generated in the elastic body 34 and the elastic force of the measurement board 40 itself is used to measure the characteristics of the external electrodes 102 of the chip-type electronic component 100 and the measurement board 40. An appropriate contact pressure is generated between the electrode and the electrode for use.
[0024]
The elastic body 34 filled in the cavity 33 prevents the measurement substrate 40 from bending in an arc shape. That is, the measurement substrate 40 is deformed along the bottom surface of the chip-type electronic component 100 by the elastic force of the elastic body 34 acting to push up the measurement substrate 40 from below. Therefore, the contact portion between the measurement substrate 40 and the chip-type electronic component 100 is increased. The structure in which the elastic body 34 is provided in the cavity 33 is particularly effective when measuring the chip-type electronic component 100 having the external electrodes 102 on the four side surfaces. In addition, since excessive deformation of the measurement substrate 40 is suppressed, the life of the measurement substrate 40 can be extended.
[0025]
As a result, the external electrode 102 is reliably and stably electrically connected to the characteristic measuring electrode 42 without being affected by the thickness variation of the external electrode 102 of the chip-type electronic component 100 or the warpage of the chip-type electronic component 100 itself. Can contact.
[0026]
Next, the electrical characteristics of the chip-type electronic component 100 are measured by a measuring device connected via the lead wire. During the measurement, since the chip-type electronic component 100 and the measurement board 40 are in direct contact, the electromagnetic coupling between the bottom surface of the chip-type electronic component 100 and the measurement board 40 causes the chip-type electronic component 100 to be soldered to the printed board. It becomes almost the same state as the state that was done. As a result, it is possible to suppress the deviation of the characteristic impedance of the chip-type electronic component 100 between when the measurement is performed and when the chip-type electronic component 100 is actually mounted on a printed circuit board, which occurs in the conventional measurement device. Therefore, the matching element required for the conventional measuring device using the anisotropic conductive rubber becomes unnecessary.
[0027]
The elastic body 34 does not need to be disposed in the entire cavity 33. As shown in FIG. 4, measurement of a structure provided only in a portion where the chip-type electronic component 100 is mounted and a peripheral portion thereof is performed. The same effect can be obtained with the device 31A.
[0028]
[Second Embodiment, FIGS. 5 and 6]
As shown in FIG. 5, the measuring device 51 of the second embodiment has a roughly rectangular base 52 and two or four corners or an outer peripheral edge of an upper surface 52 a of the base 52 via a spacer 54. It has a measurement substrate 40 fixed with an adhesive or a screw. The measurement substrate 40 is the same as that described in the first embodiment, and a detailed description thereof will be omitted.
[0029]
The base 52 is made of metal such as stainless steel. The space formed between the upper surface 52a of the base 52 and the lower surface of the measurement substrate 40 functions as the cavity 53. That is, when the pressing force P is applied from above the chip-type electronic component 100 in a state where the chip-type electronic component 100 is arranged on the upper surface of the measurement substrate 40, the measurement substrate 40 is elastically deformed and bent into the cavity 53. . Due to this bending, the elastic force of the measurement substrate 40 itself generates an appropriate contact pressure between the external electrode 102 of the chip-type electronic component 100 and the characteristic measurement electrode 42 of the measurement substrate 40.
[0030]
In the case of the second embodiment, no elastic body is provided in the cavity 53. This is because when the chip-type electronic component to be measured is of a two-terminal type having external electrodes on both end surfaces, the measurement substrate 40 is curved in an arc shape, and the measurement substrate 40 and the center of the chip-type electronic component are bent. This is because even if a small gap is formed between the two portions, the external electrodes on both end surfaces are in contact with the measurement substrate 40, so that there is no problem in the measurement. However, in this case, needless to say, an elastic body may be provided in the cavity 53.
[0031]
It is not always necessary to fix the measurement substrate 40 to the base 52 with an adhesive or a screw. As shown in FIG. 6, the measurement device 51A has a structure in which the measurement substrate 40 is positioned on the base 52 with pins 60. Is also good. In this case, pin holes 52b are formed at two to four corners of the base table 52, and pin holes 54a, 40a are formed in the spacer 54 and the measurement substrate 40 in accordance with the positions. As a result, when the measurement substrate 40 is bent, the pins 60 also slightly bend, so that the movable range of the measurement substrate 40 can be increased, the deformation of the measurement substrate 40 can be suppressed, and the life of the measurement substrate 40 can be extended. .
[0032]
[Third embodiment, FIG. 7]
As shown in FIG. 7, the measuring device 71 of the third embodiment is the same as the measuring device 31 of the first embodiment except that a rigid body 72 is provided in the cavity 33 instead of the elastic body 34. is there. The height of the upper surface 72a of the rigid body 72 is slightly lower than the height of the upper surface 32a of the base 32, and between the upper surface 72a of the rigid body 72 and the lower surface of the measurement substrate 40, in consideration of the bending of the measurement substrate 40, A predetermined gap G is set. The rigid body 72 prevents the measurement substrate 40 from being excessively deformed.
[0033]
[Other embodiments]
The present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist. For example, as shown in FIG. 8, the base table may be a base table 82 in which a groove-shaped cavity 83 is formed.
[0034]
【The invention's effect】
As apparent from the above description, according to the present invention, at the time of measurement, the chip-type electronic component is placed on the measurement substrate while the external electrodes of the chip-type electronic component are in electrical contact with the characteristic measurement electrodes of the measurement substrate. And the measurement substrate is elastically deformed and bent into the cavity of the base table, so that the electrical characteristics of the chip-type electronic component can be measured reliably and stably.
[0035]
The elastic force of the measurement substrate itself can generate an appropriate contact pressure between the external electrode of the chip-type electronic component and the characteristic measurement electrode of the measurement substrate. On the other hand, during measurement, the chip-type electronic component and the measurement board are in direct contact, so the electromagnetic coupling between the mounting surface of the chip-type electronic component and the measurement board is almost the same as when the chip-type electronic component is soldered to a printed circuit board. State. As a result, the deviation of the characteristic impedance of the chip-type electronic component between the time when the chip-type electronic component is measured and the time when the chip-type electronic component is actually mounted on a printed circuit board, which has occurred with the conventional measuring device, can be suppressed.
[0036]
Further, by disposing the elastic body in the cavity, the elastic force of the elastic body acts to push up the measurement substrate from below, so that the measurement substrate is deformed along the bottom surface of the chip-type electronic component. Therefore, the contact portion between the measurement substrate and the chip-type electronic component can be increased.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a first embodiment of an electronic component measuring device according to the present invention.
FIG. 2 is a cross-sectional view of the electronic component measuring device shown in FIG.
FIG. 3 is a sectional view showing a measuring method using the electronic component measuring device shown in FIG. 1;
FIG. 4 is a sectional view showing a modification of the electronic component measuring device shown in FIG. 1;
FIG. 5 is a sectional view showing a second embodiment of the electronic component measuring device according to the present invention.
FIG. 6 is a sectional view showing a modification of the electronic component measuring device shown in FIG. 5;
FIG. 7 is a sectional view showing a third embodiment of the electronic component measuring apparatus according to the present invention.
FIG. 8 is a perspective view showing a modification of the base table.
FIG. 9 is a perspective view showing a conventional example.
[Explanation of symbols]
31, 31A, 51, 51A, 71 measuring device 32, 52, 82 base base 33, 53, 83 cavity 34 elastic body 40 measuring substrate 42 characteristic measuring electrode 54 spacer 72 rigid body 100 chip Electronic component 102: external electrode

Claims (5)

ベース台と、前記ベース台に形成されたキャビティと、前記ベース台のキャビティ形成面に取り付けられた測定基板と、前記測定基板の表面に設けられた特性測定用電極とを備え、
前記測定基板は、押圧力により弾性変形して前記ベース台のキャビティ内に撓むこと、
を特徴とする電子部品の測定装置。
A base, a cavity formed in the base, a measurement substrate attached to the cavity forming surface of the base, and a characteristic measurement electrode provided on the surface of the measurement substrate,
The measurement substrate is elastically deformed by the pressing force and bends into the cavity of the base table,
An electronic component measuring device characterized by the above-mentioned.
前記キャビティ内に弾性体が前記測定基板と接触するように配設されていることを特徴とする請求項1に記載の電子部品の測定装置。The measuring device for an electronic component according to claim 1, wherein an elastic body is disposed in the cavity so as to be in contact with the measurement substrate. 前記キャビティ内に前記測定基板との間に所定のギャップを有するように剛体が配設されていることを特徴とする請求項1に記載の電子部品の測定装置。2. The electronic component measuring apparatus according to claim 1, wherein a rigid body is provided in the cavity so as to have a predetermined gap between the cavity and the measurement substrate. 前記キャビティは、前記ベース台にスペーサを介して前記測定基板を取り付けることにより前記ベース台と前記測定基板との間に形成された空間であることを特徴とする請求項1に記載の電子部品の測定装置。2. The electronic component according to claim 1, wherein the cavity is a space formed between the base table and the measurement substrate by attaching the measurement substrate to the base table via a spacer. 3. measuring device. 請求項1〜請求項4のいずれか一つの電子部品の測定装置を用い、チップ型電子部品の外部電極を前記測定基板の特性測定用電極に電気的に接触させた状態で、前記チップ型電子部品を前記測定基板に押しつけ、測定基板を弾性変形させて前記ベース台のキャビティ内に撓ませ、チップ型電子部品の電気特性を測定することを特徴とする電子部品の測定方法。5. The chip-type electronic device according to claim 1, wherein an external electrode of the chip-type electronic component is electrically contacted with a characteristic measuring electrode of the measurement substrate, using the electronic component measuring device according to claim 1. A method for measuring an electronic component, comprising: pressing a component against the measurement substrate; elastically deforming the measurement substrate to bend into a cavity of the base table; and measuring electrical characteristics of the chip-type electronic component.
JP2002299110A 2002-10-11 2002-10-11 Measuring instrument for electronic component, and measuring method for electronic component Pending JP2004132888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299110A JP2004132888A (en) 2002-10-11 2002-10-11 Measuring instrument for electronic component, and measuring method for electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299110A JP2004132888A (en) 2002-10-11 2002-10-11 Measuring instrument for electronic component, and measuring method for electronic component

Publications (1)

Publication Number Publication Date
JP2004132888A true JP2004132888A (en) 2004-04-30

Family

ID=32288341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299110A Pending JP2004132888A (en) 2002-10-11 2002-10-11 Measuring instrument for electronic component, and measuring method for electronic component

Country Status (1)

Country Link
JP (1) JP2004132888A (en)

Similar Documents

Publication Publication Date Title
TWI311836B (en) Electrical connecting member capable of achieving stable connection with a simple structure and connector using the same
JP2005321305A (en) Electronic component measurement jig
US8333597B2 (en) Connector and interposer using connector
JPS5938065Y2 (en) printed circuit board
JP2003185700A (en) Ic socket
JP2004132888A (en) Measuring instrument for electronic component, and measuring method for electronic component
JP2000156588A (en) Shield structure of chip part
JP4075456B2 (en) Electric characteristic measuring jig and electric characteristic measuring method
EP1480267B1 (en) Integrated electronic component
JP4765508B2 (en) Measuring jig for high frequency devices
WO2000004394A1 (en) Socket for device measurement, and method of measuring device
US6669095B2 (en) Card-type peripheral device
US7235978B2 (en) Device for measuring impedance of electronic component
JP3815165B2 (en) Electronic component measuring device
JP4156125B2 (en) IC socket
KR200265544Y1 (en) Semiconductor package test socket by using silicone rubber
JP2004061290A (en) Evaluation apparatus for semiconductor device
KR20060125698A (en) Memory pack
JPH06230032A (en) Probe base plate
JP2000082553A (en) Ic socket
JP2001251087A (en) Electromagnetic wave shield structure
JP2004085241A (en) Contact probe, probe device and method for manufacturing contact probe
JP4238635B2 (en) Electronic component characteristic measurement jig
JP2001208774A (en) Contact of jig for measuring characteristic of electronic component
JPH06201774A (en) Measuring method for circuit element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127