JP2004131675A - Biodegradable polyester resin-based hot melt adhesive - Google Patents

Biodegradable polyester resin-based hot melt adhesive Download PDF

Info

Publication number
JP2004131675A
JP2004131675A JP2002331370A JP2002331370A JP2004131675A JP 2004131675 A JP2004131675 A JP 2004131675A JP 2002331370 A JP2002331370 A JP 2002331370A JP 2002331370 A JP2002331370 A JP 2002331370A JP 2004131675 A JP2004131675 A JP 2004131675A
Authority
JP
Japan
Prior art keywords
polyester resin
molecular weight
average molecular
hot melt
melt adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002331370A
Other languages
Japanese (ja)
Inventor
Shingo Sasaki
佐佐木 新吾
Tomohisa Kamimura
上村 知久
Atsuko Ueda
植田 敦子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIABOND INDUSTRY CO Ltd
Unitika Ltd
Original Assignee
DIABOND INDUSTRY CO Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIABOND INDUSTRY CO Ltd, Unitika Ltd filed Critical DIABOND INDUSTRY CO Ltd
Priority to JP2002331370A priority Critical patent/JP2004131675A/en
Publication of JP2004131675A publication Critical patent/JP2004131675A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot melt adhesive having a well balanced workability such as melt coatability, crushability and adhesion performance. <P>SOLUTION: The hot melt adhesive comprises, as the main ingredient, an aliphatic polyester resin which has a number-average molecular weight of 5,000-20,000 and is obtained by depolymerizing an aliphatic polyester resin having a number-average molecular weight of ≥20,000 with a non-volatile polyhydric alcohol in the presence of an organic solvent. The adhesive has a melt viscosity of 5,000-50,000 mPa.s at 150°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、脂肪族ポリエステル樹脂を主成分とする生分解性ホットメルト接着剤に関するものである。
【0002】
【従来の技術】
通常、生分解性を有する脂肪族ポリエステル樹脂は、フィルム、不織布、繊維等の分野で広く使用され始めてはいるが、かかる脂肪族ポリエステル樹脂は、結晶性が高くかつ高分子量であるため、ホットメルト接着剤として用いるには、塗工後の可使時間が短くかつ溶融粘度が高いので、粘着剤や可塑剤を併用しても接着剤としての適性は高くない。
そこで、欠点となる高結晶性を抑制する目的でポリビニルアルコール・酢酸ビニル共重合体に脂肪族ポリエステルをグラフト重合してホットメルト接着剤としての適性を改良した生分解性ホットメルト接着剤が本出願人により提案されている(特許文献1参照)。
【0003】
しかしながら、特許文献1に記載のホットメルト接着剤は、溶融粘度が高いため、180℃以上の高い温度での溶融、貯留、塗工が必要になる。脂肪族ポリエステル樹脂成分を含むホットメルト接着剤は、180℃以上の高い温度下に曝されると、熱分解、場合によっては加水分解によって、分子量が低下し、溶融粘度が経時により低くなり、接着剤塗工厚みムラ等の問題が発生する。
【0004】
【特許文献1】
特開2002−88334号公報
【0005】
【発明が解決しようとする課題】
本発明は、溶融塗工性、粉砕性等の作業性と接着性能とがバランスしたホットメルト接着剤の提供を目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、上記の目的を達成するものであって、数平均分子量20,000以上の脂肪族ポリエステル樹脂を有機溶剤の存在下で不揮発性の多価アルコールを用いて解重合反応により調製された数平均分子量5,000〜20,000の脂肪族ポリエステル樹脂を主成分とし、150℃における溶融粘度が5,000〜50,000mPa.sであることを特徴とする生分解性ポリエステル樹脂系ホットメルト接着剤である。
【0007】
さらには、数平均分子量20,000以上の脂肪族ポリエステル樹脂を有機溶剤の存在下で不揮発性の多価アルコールを用いて解重合反応により調製された数平均分子量5,000〜20,000の脂肪族ポリエステル樹脂を粉砕して調製される粉砕物を主成分とすることを特徴とする生分解性ポリエステル樹脂系ホットメルト接着剤である。
【0008】
【発明の実施の形態】
以下、本発明を具体的に説明する。
【0009】
本発明に使用する生分解性を有する脂肪族ポリエステル樹脂としては、例えば数平均分子量20,000以上のポリカプロラクトン、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリエチレンアジペート、ポリブチレンアジペート、ポリエチレンサクシネート・アジペートコポリマー、ポリ乳酸、あるいはこれらを主成分として他のジカルボン酸又は/及びジアルコールを共重合したポリエステル樹脂を例示することができる。
【0010】
上記の脂肪族ポリエステル樹脂は、数平均分子量20,000以上であり、単独で使用してもよいが、2種類以上の脂肪族ポリエステル樹脂を併用して一層の性能の向上を実現することができる。
【0011】
そして、生分解性を有する数平均分子量20,000以上の脂肪族ポリエステル樹脂を解重合するために使用する多価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、さらには化学式 HO(CHCHO)OH(nが5以上)で表されるポリエチレングリコール、プロピレングリコール、ブチレングリコール等のグリコール類、水添ロジンモノアルコール、水添ロジンジアルコール等の一分子中に1個以上の水酸基を含有する粘着剤、さらにはトリメチロールプロパン等の3価以上の多価アルコール、数平均分子量5,000以下の分子量既知の脂肪族ポリエステルの低重合体等を例示することができる。
【0012】
上記の解重合反応に使用する多価アルコールの量は、以下に示す数式により求めることができる。
Wa=[(1/Mn)−(1/Mn)]×M×W
但し、上記の数式において、Waは解重合反応に使用される多価アルコールの質量、Mnは目標とする脂肪族ポリエステル樹脂の数平均分子量、Mnは原料とする脂肪族ポリエステル樹脂の数平均分子量、Mは解重合反応に使用される多価アルコールの分子量、Wは原料とする脂肪族ポリエステル樹脂の質量をそれぞれ示している。
【0013】
また、上記の解重合反応に使用する有機溶剤としては、上記の解重合反応を進める温度で脂肪族ポリエステル樹脂及び多価アルコールの含有する水酸基と反応しない有機溶剤であって、例えばベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、キシレン等の芳香族炭化水素、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等のエステル類、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン等のケトン類を挙げることができるが、これに限らない。解重合反応を進めるにあたり有機溶剤を使用することは、反応系の水分除去、酸素除去や空気中の酸素遮断のために重要である。
【0014】
上記の解重合反応は、上記の脂肪族ポリエステル樹脂、多価アルコール、有機溶剤のほか、テトラ(n−プロピル)チタネート、テトラ(n−ブチル)チタネート、酢酸カルシウム、酢酸マグネシウム、酢酸亜鉛等の解重合反応触媒の存在下で、150〜250℃、好ましくは180〜220℃まで徐々に昇温して反応系に存在する水分を有機溶剤と共に除去しながら進めることができる。反応終了後に有機溶剤の残存が予想される場合は減圧下で除去することが望ましい。
【0015】
得られた脂肪族ポリエステル樹脂の数平均分子量は、5,000〜20,000、好ましくは7,500〜15,000である。すなわち、数平均分子量5,000未満では塗工型ホットメルト接着剤としての凝集力が不足し、十分な接着強度が得られない。他方、20,000を超えると、150℃以下の相対的に低い温度での溶融、塗工が困難であり、粉末散布型のホットメルト接着剤として調製するにあたっても通常の機械粉砕で微粉末として調製が困難であるばかりでなく、液体窒素等を用いた冷凍粉砕しても十分な収率で調製するのが困難になる。
【0016】
得られた数平均分子量5,000〜20,000の脂肪族ポリエステル樹脂の150℃における溶融粘度は、5,000〜50,000mPa.sとなる場合が多いが、接着性能を向上すべく50質量%以下の量で、粘着剤を使用しても良く、また溶融粘度低下させるべく50質量%以下の量で生分解性可塑剤を使用しても良く、さらにはカルナバワックス、ライスワックス等の生分解性ワックスを使用しても良く、これらの使用により150℃における溶融粘度が5,000〜50,000mPa.sに調整することができる。
【0017】
上記粘着剤としては、テルペン樹脂、テルペンフェノール樹脂、ロジン樹脂、水添ロジン樹脂、ロジンエステル、水添ロジンエステル等の粘着剤を挙げることができ、可塑剤としては、ポリエチレングリコール、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールジメチルエーテル、ポリプロピレングリコール、ポリエチレングリコール・ポリプロピレングリコールコポリマー、アジピン酸ジエチルエステル、アジピン酸ジプロピルエステル、アジピン酸ジブチルエステル、アクチルクエン酸トリブチル等を挙げることができる。
【0018】
更に、数平均分子量5,000〜20,000の脂肪族ポリエステル樹脂は、機械粉砕により得られた粉砕物を主成分として、粉末塗布型のホットメルト接着剤を簡易に調製することもできる。粉末散布型のホットメルト接着剤として調製する際は、可塑剤を使用しない方が粉砕性は向上するので、可塑剤を使用する必要はない。
【0019】
【実施例】
以下、実施例により本発明を具体的に説明する。ここで得られた生分解性ホットメルト接着剤の物性は、以下の方法で評価した。
【0020】
(1)溶融粘度
生分解性ホットメルト接着剤を150℃で溶融し、ブルックフィールド型回転粘度計を用いて150℃で溶融粘度を測定した。
【0021】
(2)接着性能1
生分解性ホットメルト接着剤をホットメルトガンを用いて150℃で厚み50μmのユニチカ社製ポリ乳酸フィルムに、20g/mの目付けで溶融塗布した後、塗布済みのポリ乳酸フィルム2枚を塗布側が接するように重ねて、30N/cmの荷重下で150℃で3秒間のホットプレスを施して接着した後、剥離強度を引張り角度180度、引張り速度50mm/分の条件下で測定した。
【0022】
(3)接着性能2
下記の粉砕機で粉砕した粉末型ホットメルト接着剤を厚み0.2mmの厚紙状に約20g/mの目付けで散布し、その上に厚み0.1mmの紙を重ねて3kg/cmの荷重下で160℃で5秒間ホットプレスして接着した後、剥離強度を測定した。
【0023】
(4)粉砕性
卓上粉砕機(大阪ケミカル社製WanderBlennder)を用いて20℃で機械粉砕した後、83メッシュの試験ふるいで分級して通過分の質量%で示す。
【0024】
(5)生分解性
生分解性ホットメルト接着剤を60℃の好気性コンポスト中で処理し、炭酸ガスの発生量を測定し、理論炭酸ガス発生量に対する実測炭酸ガス発生量の比率(質量%)で評価した。
【0025】
実施例1〜3及び比較例1,2
数平均分子量約55,000のポリブチレンサクシネート系脂肪族ポリエステル樹脂(BASF社エコフレックス)100質量部に対して表1に示す質量部の分子量650の水添ロジンジオール(荒川化学社製KE−601)を用いて、トルエン50質量部、触媒としてテトラ(n−ブチル)チタネート0.1質量部を加え、200℃まで昇温した後、2時間加熱撹拌して解重合反応を進め、150℃に降温した後、37.5質量部の粘着剤(荒川化学社製水添ロジンエステルKE−100)及び30質量部のアセチルクエン酸トリブチルを加え、表1に示す生分解性ホットメルト接着剤を調製した。さらに、各生分解性ホットメルト接着剤の溶融粘度、接着性能1及び生分解性を評価して表1に示す結果を得た。実施例1,2,3については溶融粘度、接着性能1及び生分解性のいずれにおいても優れた結果が得られたが、比較例1,2については溶融粘度および接着性能1において劣っていた。
【0026】
【表1】

Figure 2004131675
【0027】
実施例4〜6及び比較例3,4
実施例1と同様に、但しポリブチレンサクシネート系ポリエステル樹脂100質量部を50質量部に減らし、数平均分子量54,000のポリ乳酸(カーギル・ダウ社製6250D)50質量部を用いて、表2に示す量でジエチレングリコール及びテトラ(n−ブチル)チタネート0.1質量部のみを加えて実施例1と同様に解重合反応を行い、粉砕性、接着性能2および生分解性を評価して表2に示す結果を得た。実施例4,5,6については溶融粘度、接着性能1及び生分解性のいずれにおいても優れた結果が得られたが、比較例3については接着性能2において特に劣っており、比較例4については粉砕性において特に劣っていた。
【0028】
【表2】
Figure 2004131675
【0029】
比較例5
実施例4で用いたポリ乳酸を−90℃まで冷却し、冷凍粉砕したところ、粉砕性は22.8%であって劣っており、接着性能2は8N/25mmであって、非常に劣っていた。
【0030】
実施例7
実施例2と同様にして溶融塗工形の生分解性ポリエステル樹脂系ホットメルト接着剤を繰り返し5回、調製して、表3に示す溶融粘度の良好な結果を得た。
【0031】
【表3】
Figure 2004131675
【0032】
以上の実施例1〜3と比較例1,2とから明らかなように、溶融塗工型の生分解性ホリエステル系ホットメルト接着剤にあっては、目標数平均分子量が5,000未満では溶融粘度が低く塗工性は良好であるが、充分な接着強度が得られない。
他方、目標数平均分子量が20,000を超えると、溶融粘度が著しく高く、被着体への溶融塗工が困難になる。目標数平均分子量が5,000〜20,000、好ましくは7,500〜15,000において溶融塗工性と接着強度とが良好なバランスを示すことが表1から明らかである。
【0033】
他方、実施例4〜6と比較例3,4とから明らかなように、粉末散布型の生分解性ポリエステル樹脂系ホットメルト接着剤にあっては、目標数平均分子量が5,000未満では良好な粉砕性を示すが、溶融塗工形ホットメルト接着剤と同様に充分な接着強度が得られない。他方、目標数平均分子量が20,000を超えると著しく粉砕性が低下する。目標数平均分子量が5,000〜20,000、好ましくは7,500〜15,000において粉砕性と接着強度とが良好なバランスを示す。
【0034】
通常、繊維、不織布、フィルム用として市販の生分解性ポリエステル樹脂は、数平均分子量が50,000以上の高分子量の物であり、ホットメルト接着剤としての適性は極めて低い材料である。
【0035】
他方、数平均分子量が5,000〜20,000の生分解性ポリエステル樹脂は、高分子量ポリエステル樹脂と比較して重縮合反応により安定生産が困難であるが、実施例7から明らかなように本発明の方法である解重合反応により安定して調製することが可能である。
【0036】
【発明の効果】
以上の説明から明らかなように、本発明によれば、溶融塗工性、粉砕性等の作業性と接着性能とがバランスしたホットメルト接着剤の提供が可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a biodegradable hot melt adhesive containing an aliphatic polyester resin as a main component.
[0002]
[Prior art]
Normally, aliphatic polyester resins having biodegradability have begun to be widely used in the fields of films, nonwoven fabrics, fibers, and the like.However, such aliphatic polyester resins have high crystallinity and a high molecular weight, and therefore, have been used in hot melt. When used as an adhesive, the pot life after coating is short and the melt viscosity is high, so that even if an adhesive or a plasticizer is used in combination, the suitability as an adhesive is not high.
Therefore, in order to suppress the high crystallinity, which is a drawback, a biodegradable hot-melt adhesive that has been improved in its suitability as a hot-melt adhesive by graft polymerization of an aliphatic polyester onto a polyvinyl alcohol-vinyl acetate copolymer has been applied to the present application. It has been proposed by a human (see Patent Document 1).
[0003]
However, the hot melt adhesive described in Patent Document 1 has a high melt viscosity, and thus requires melting, storage, and coating at a high temperature of 180 ° C. or higher. When a hot melt adhesive containing an aliphatic polyester resin component is exposed to a high temperature of 180 ° C. or more, the molecular weight is reduced due to thermal decomposition and, in some cases, hydrolysis, and the melt viscosity is reduced over time, and the adhesive is Problems such as unevenness in the thickness of the agent coating occur.
[0004]
[Patent Document 1]
JP-A-2002-88334
[Problems to be solved by the invention]
An object of the present invention is to provide a hot melt adhesive in which workability such as melt coatability and pulverizability and adhesive performance are balanced.
[0006]
[Means for Solving the Problems]
The present invention achieves the above object, and is prepared by a depolymerization reaction of an aliphatic polyester resin having a number average molecular weight of 20,000 or more using a nonvolatile polyhydric alcohol in the presence of an organic solvent. It has an aliphatic polyester resin having a number average molecular weight of 5,000 to 20,000 as a main component and has a melt viscosity at 150 ° C of 5,000 to 50,000 mPa.s. s is a biodegradable polyester resin-based hot melt adhesive.
[0007]
Furthermore, a fatty acid having a number average molecular weight of 5,000 to 20,000 prepared by a depolymerization reaction of an aliphatic polyester resin having a number average molecular weight of 20,000 or more using a nonvolatile polyhydric alcohol in the presence of an organic solvent. A biodegradable polyester resin-based hot melt adhesive characterized in that a main component is a pulverized product prepared by pulverizing an aromatic polyester resin.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically.
[0009]
Examples of the biodegradable aliphatic polyester resin used in the present invention include polycaprolactone having a number average molecular weight of 20,000 or more, polyethylene succinate, polybutylene succinate, polyethylene adipate, polybutylene adipate, and polyethylene succinate adipate. Examples thereof include copolymers, polylactic acids, and polyester resins obtained by copolymerizing other dicarboxylic acids and / or dialcohols with these as main components.
[0010]
The above aliphatic polyester resin has a number average molecular weight of 20,000 or more, and may be used alone, but two or more aliphatic polyester resins can be used in combination to further improve the performance. .
[0011]
Examples of polyhydric alcohols used for depolymerizing an aliphatic polyester resin having a number-average molecular weight of 20,000 or more having biodegradability include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and the chemical formula HO. (CH 2 CH 2 O) glycols such as polyethylene glycol, propylene glycol, and butylene glycol represented by n OH (n is 5 or more), hydrogenated rosin monoalcohol, hydrogenated rosin dialcohol, etc. Examples thereof include pressure-sensitive adhesives containing at least one hydroxyl group, trihydric or higher polyhydric alcohols such as trimethylolpropane, and low-molecular weight aliphatic polyesters having a known number average molecular weight of 5,000 or less. .
[0012]
The amount of the polyhydric alcohol used in the above depolymerization reaction can be determined by the following equation.
Wa 1 = [(1 / Mn 1) - (1 / Mn 0)] × M W × W P
However, in the above formula, Wa 1 is the mass of the polyhydric alcohol used in the depolymerization reaction, Mn 1 is the number average molecular weight of the target aliphatic polyester resin, and Mn 0 is the number of the aliphatic polyester resin used as the raw material. average molecular weight, M W is the molecular weight of the polyhydric alcohol used in the depolymerization reaction, W P represents the mass of the aliphatic polyester resin as a raw material, respectively.
[0013]
The organic solvent used for the depolymerization reaction is an organic solvent that does not react with the hydroxyl group contained in the aliphatic polyester resin and the polyhydric alcohol at the temperature at which the depolymerization reaction proceeds, for example, benzene, toluene, Aromatic hydrocarbons such as ethylbenzene, propylbenzene and xylene; aliphatic hydrocarbons such as pentane, hexane, heptane and octane; alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and ethylcyclohexane; methyl acetate; ethyl acetate; propyl acetate And esters such as butyl acetate, methyl propionate and ethyl propionate, and ketones such as acetone, methyl ethyl ketone, diethyl ketone and dipropyl ketone, but are not limited thereto. It is important to use an organic solvent to advance the depolymerization reaction in order to remove water and oxygen in the reaction system and to shut off oxygen in the air.
[0014]
The above-mentioned depolymerization reaction is carried out in addition to the above-mentioned aliphatic polyester resin, polyhydric alcohol, organic solvent, tetra (n-propyl) titanate, tetra (n-butyl) titanate, calcium acetate, magnesium acetate, zinc acetate and the like. In the presence of the polymerization reaction catalyst, the temperature can be gradually raised to 150 to 250 ° C., preferably 180 to 220 ° C., so that the water present in the reaction system can be removed while being removed together with the organic solvent. If the organic solvent is expected to remain after the reaction, it is desirable to remove the organic solvent under reduced pressure.
[0015]
The number average molecular weight of the obtained aliphatic polyester resin is 5,000 to 20,000, preferably 7,500 to 15,000. That is, if the number average molecular weight is less than 5,000, the cohesive force of the coated hot melt adhesive is insufficient, and sufficient adhesive strength cannot be obtained. On the other hand, if it exceeds 20,000, it is difficult to melt and coat at a relatively low temperature of 150 ° C. or less. Not only is the preparation difficult, but it is also difficult to prepare a sufficient yield by freeze pulverization using liquid nitrogen or the like.
[0016]
The melt viscosity at 150 ° C. of the obtained aliphatic polyester resin having a number average molecular weight of 5,000 to 20,000 is 5,000 to 50,000 mPa.s. In many cases, the pressure-sensitive adhesive may be used in an amount of 50% by mass or less to improve the adhesive performance, and the biodegradable plasticizer may be used in an amount of 50% by mass or less to reduce the melt viscosity. Biodegradable waxes such as carnauba wax and rice wax may be used, and the melt viscosity at 150 ° C. is 5,000 to 50,000 mPa. s can be adjusted.
[0017]
Examples of the pressure-sensitive adhesive include pressure-sensitive adhesives such as terpene resin, terpene phenol resin, rosin resin, hydrogenated rosin resin, rosin ester, hydrogenated rosin ester, and as the plasticizer, polyethylene glycol, polyethylene glycol monomethyl ether Polyethylene glycol dimethyl ether, polypropylene glycol, polyethylene glycol / polypropylene glycol copolymer, diethyl adipate, dipropyl adipate, dibutyl adipate, tributyl actyl citrate and the like.
[0018]
Further, the aliphatic polyester resin having a number average molecular weight of 5,000 to 20,000 can be used to easily prepare a powder coating type hot melt adhesive by using a pulverized product obtained by mechanical pulverization as a main component. When preparing as a powder-spreading type hot melt adhesive, it is not necessary to use a plasticizer because the pulverizability is improved when no plasticizer is used.
[0019]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. The physical properties of the biodegradable hot melt adhesive obtained here were evaluated by the following methods.
[0020]
(1) Melt Viscosity The biodegradable hot melt adhesive was melted at 150 ° C., and the melt viscosity was measured at 150 ° C. using a Brookfield rotational viscometer.
[0021]
(2) Adhesive performance 1
The biodegradable hot melt adhesive was melt-coated at a temperature of 150 ° C. and a 50 μm-thick polylactic acid film manufactured by Unitika with a basis weight of 20 g / m 2 using a hot melt gun, and then two coated polylactic acid films were coated. The sheets were stacked so that the sides were in contact with each other, and were bonded by applying a hot press at 150 ° C. for 3 seconds under a load of 30 N / cm 2 , and the peel strength was measured under the conditions of a tensile angle of 180 ° and a tensile speed of 50 mm / min.
[0022]
(3) Adhesion performance 2
A powder type hot melt adhesive pulverized by the following pulverizer is sprayed on a cardboard having a thickness of 0.2 mm with a basis weight of about 20 g / m 2 , and a paper having a thickness of 0.1 mm is superimposed thereon to form a sheet of 3 kg / cm 2 . After hot-pressing at 160 ° C. for 5 seconds under load and bonding, the peel strength was measured.
[0023]
(4) Pulverizability After mechanical pulverization at 20 ° C. using a tabletop pulverizer (WanderBlender, manufactured by Osaka Chemical Co., Ltd.), the mixture is classified by a 83-mesh test sieve, and the result is shown by mass% of the passing amount.
[0024]
(5) Biodegradable The biodegradable hot melt adhesive is treated in an aerobic compost at 60 ° C., the amount of carbon dioxide generated is measured, and the ratio of the actually measured carbon dioxide generated to the theoretical carbon dioxide generated (mass%) ).
[0025]
Examples 1 to 3 and Comparative Examples 1 and 2
Hydrogenated rosin diol having a molecular weight of 650 (KE-Arakawa Chemical Co., Ltd.) having a molecular weight of 650 shown in Table 1 with respect to 100 parts by weight of a polybutylene succinate aliphatic polyester resin having a number average molecular weight of about 55,000 (Ecoflex, BASF). Using 601), 50 parts by mass of toluene and 0.1 part by mass of tetra (n-butyl) titanate as a catalyst were added, and the temperature was raised to 200 ° C., followed by heating and stirring for 2 hours to advance the depolymerization reaction. Then, 37.5 parts by mass of an adhesive (hydrogenated rosin ester KE-100 manufactured by Arakawa Chemical Co., Ltd.) and 30 parts by mass of tributyl acetylcitrate were added, and the biodegradable hot melt adhesive shown in Table 1 was added. Prepared. Furthermore, the melt viscosity, adhesion performance 1 and biodegradability of each biodegradable hot melt adhesive were evaluated, and the results shown in Table 1 were obtained. In Examples 1, 2, and 3, excellent results were obtained in all of the melt viscosity, adhesion performance 1, and biodegradability, but Comparative Examples 1 and 2 were inferior in melt viscosity and adhesion performance 1.
[0026]
[Table 1]
Figure 2004131675
[0027]
Examples 4 to 6 and Comparative Examples 3 and 4
In the same manner as in Example 1, except that 100 parts by mass of the polybutylene succinate-based polyester resin was reduced to 50 parts by mass, and 50 parts by mass of polylactic acid having a number average molecular weight of 54,000 (6250D manufactured by Cargill Dow) was used. The depolymerization reaction was carried out in the same manner as in Example 1 except that only 0.1 parts by mass of diethylene glycol and tetra (n-butyl) titanate were added in the amounts shown in Table 2, and the pulverizability, adhesive performance 2 and biodegradability were evaluated. The results shown in FIG. In Examples 4, 5, and 6, excellent results were obtained in all of the melt viscosity, adhesive performance 1, and biodegradability, but Comparative Example 3 was particularly inferior in adhesive performance 2, and Comparative Example 4 Was particularly inferior in grindability.
[0028]
[Table 2]
Figure 2004131675
[0029]
Comparative Example 5
When the polylactic acid used in Example 4 was cooled to -90 ° C. and freeze-pulverized, the pulverizability was 22.8%, which was inferior, and the bonding performance 2 was 8N / 25 mm, which was very inferior. Was.
[0030]
Example 7
In the same manner as in Example 2, a melt-coated biodegradable polyester resin-based hot melt adhesive was prepared 5 times repeatedly, and good results of melt viscosity shown in Table 3 were obtained.
[0031]
[Table 3]
Figure 2004131675
[0032]
As is clear from the above Examples 1 to 3 and Comparative Examples 1 and 2, in the melt-coated biodegradable polyester hot melt adhesive, the target number average molecular weight is less than 5,000. Although the melt viscosity is low and the coatability is good, sufficient adhesive strength cannot be obtained.
On the other hand, when the target number average molecular weight exceeds 20,000, the melt viscosity is extremely high, and it becomes difficult to apply the melt to the adherend. It is clear from Table 1 that when the target number average molecular weight is 5,000 to 20,000, preferably 7,500 to 15,000, the melt coatability and the adhesive strength show a good balance.
[0033]
On the other hand, as is apparent from Examples 4 to 6 and Comparative Examples 3 and 4, in the case of the powder-dispersed biodegradable polyester resin-based hot melt adhesive, if the target number average molecular weight is less than 5,000, it is good. However, sufficient adhesive strength cannot be obtained as with the hot-melt adhesive of the melt coating type. On the other hand, when the target number average molecular weight exceeds 20,000, the pulverizability is significantly reduced. When the target number average molecular weight is 5,000 to 20,000, preferably 7,500 to 15,000, the pulverizability and the adhesive strength show a good balance.
[0034]
Generally, a biodegradable polyester resin commercially available for fibers, nonwoven fabrics and films is a high molecular weight material having a number average molecular weight of 50,000 or more, and is a material having extremely low suitability as a hot melt adhesive.
[0035]
On the other hand, a biodegradable polyester resin having a number average molecular weight of 5,000 to 20,000 is more difficult to stably produce by a polycondensation reaction than a high molecular weight polyester resin. It can be stably prepared by the depolymerization reaction which is the method of the invention.
[0036]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is possible to provide a hot melt adhesive in which workability such as melt coatability and pulverizability and adhesive performance are balanced.

Claims (2)

数平均分子量20,000以上の脂肪族ポリエステル樹脂を有機溶剤の存在下で不揮発性の多価アルコールを用いて解重合反応することにより調製された数平均分子量5,000〜20,000の脂肪族ポリエステル樹脂を主成分とし、150℃における溶融粘度が5,000〜50,000mPa.sであることを特徴とする生分解性ポリエステル樹脂系ホットメルト接着剤。Aliphatic polyesters having a number average molecular weight of 5,000 to 20,000 prepared by subjecting an aliphatic polyester resin having a number average molecular weight of 20,000 or more to a depolymerization reaction using a nonvolatile polyhydric alcohol in the presence of an organic solvent. The melt viscosity at 150 ° C. is 5,000 to 50,000 mPa. s, a biodegradable polyester resin-based hot melt adhesive. 数平均分子量20,000以上の脂肪族ポリエステル樹脂を有機溶剤の存在下で不揮発性の多価アルコールを用いて解重合反応をすることにより調製された数平均分子量5,000〜20,000の脂肪族ポリエステル樹脂を粉砕して調製される粉砕物を主成分とすることを特徴とする生分解性ポリエステル樹脂系ホットメルト接着剤。Fats having a number average molecular weight of 5,000 to 20,000 prepared by subjecting an aliphatic polyester resin having a number average molecular weight of 20,000 or more to a depolymerization reaction using a nonvolatile polyhydric alcohol in the presence of an organic solvent. A biodegradable polyester resin-based hot melt adhesive characterized in that a main component is a pulverized product prepared by pulverizing an aromatic polyester resin.
JP2002331370A 2002-10-10 2002-10-10 Biodegradable polyester resin-based hot melt adhesive Pending JP2004131675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331370A JP2004131675A (en) 2002-10-10 2002-10-10 Biodegradable polyester resin-based hot melt adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002331370A JP2004131675A (en) 2002-10-10 2002-10-10 Biodegradable polyester resin-based hot melt adhesive

Publications (1)

Publication Number Publication Date
JP2004131675A true JP2004131675A (en) 2004-04-30

Family

ID=32290133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331370A Pending JP2004131675A (en) 2002-10-10 2002-10-10 Biodegradable polyester resin-based hot melt adhesive

Country Status (1)

Country Link
JP (1) JP2004131675A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029757A (en) * 2007-07-30 2009-02-12 Teijin Fibers Ltd Depolymerization method of polylactic acid
JP2013509477A (en) * 2009-10-30 2013-03-14 ヴァラグロ カーボネ レノヴェラブレ ポイトウ−チャレンテス Use of hydroxycarboxylic acid oligomer as adhesive, production method and resulting hydroxycarboxylic acid oligomer
JP2013227459A (en) * 2012-04-26 2013-11-07 Henkel Japan Ltd Hot melt adhesive
JP2015081344A (en) * 2013-10-24 2015-04-27 ヘンケルジャパン株式会社 Hot melt adhesive
CN108841352A (en) * 2018-07-13 2018-11-20 长沙乐远新材料科技股份有限公司 A kind of biodegradable polylactic acid hot melt adhesive and its preparation and application
WO2019195915A1 (en) * 2018-04-12 2019-10-17 Greenmantra Recycling Technologies Ltd. Hot-melt formulations utilizing depolymerized polymeric material
US10472487B2 (en) 2015-12-30 2019-11-12 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
US10597507B2 (en) 2016-02-13 2020-03-24 Greenmantra Recycling Technologies Ltd. Polymer-modified asphalt with wax additive
US10723858B2 (en) 2018-09-18 2020-07-28 Greenmantra Recycling Technologies Ltd. Method for purification of depolymerized polymers using supercritical fluid extraction
US10870739B2 (en) 2016-03-24 2020-12-22 Greenmantra Recycling Technologies Ltd. Wax as a melt flow modifier and processing aid for polymers
US11072676B2 (en) 2016-09-29 2021-07-27 Greenmantra Recycling Technologies Ltd. Reactor for treating polystyrene material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029757A (en) * 2007-07-30 2009-02-12 Teijin Fibers Ltd Depolymerization method of polylactic acid
JP2013509477A (en) * 2009-10-30 2013-03-14 ヴァラグロ カーボネ レノヴェラブレ ポイトウ−チャレンテス Use of hydroxycarboxylic acid oligomer as adhesive, production method and resulting hydroxycarboxylic acid oligomer
JP2013227459A (en) * 2012-04-26 2013-11-07 Henkel Japan Ltd Hot melt adhesive
JP2015081344A (en) * 2013-10-24 2015-04-27 ヘンケルジャパン株式会社 Hot melt adhesive
US10472487B2 (en) 2015-12-30 2019-11-12 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
US11072693B2 (en) 2015-12-30 2021-07-27 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
US10597507B2 (en) 2016-02-13 2020-03-24 Greenmantra Recycling Technologies Ltd. Polymer-modified asphalt with wax additive
US11279811B2 (en) 2016-02-13 2022-03-22 Greenmantra Recycling Technologies Ltd. Polymer-modified asphalt with wax additive
US10870739B2 (en) 2016-03-24 2020-12-22 Greenmantra Recycling Technologies Ltd. Wax as a melt flow modifier and processing aid for polymers
US11072676B2 (en) 2016-09-29 2021-07-27 Greenmantra Recycling Technologies Ltd. Reactor for treating polystyrene material
US11859036B2 (en) 2016-09-29 2024-01-02 Greenmantra Recycling Technologies Ltd. Reactor for treating polystyrene material
WO2019195915A1 (en) * 2018-04-12 2019-10-17 Greenmantra Recycling Technologies Ltd. Hot-melt formulations utilizing depolymerized polymeric material
CN108841352A (en) * 2018-07-13 2018-11-20 长沙乐远新材料科技股份有限公司 A kind of biodegradable polylactic acid hot melt adhesive and its preparation and application
US10723858B2 (en) 2018-09-18 2020-07-28 Greenmantra Recycling Technologies Ltd. Method for purification of depolymerized polymers using supercritical fluid extraction

Similar Documents

Publication Publication Date Title
JP3330390B2 (en) Hot melt adhesive composition
AU689130B2 (en) Biodegradable/compostable hot melt adhesives comprising polyester of lactic acid
JP2004512419A (en) Low molecular weight polyhydroxyalkanoate-containing composition and method of using same
CN101240060B (en) Crystalline copolyesters having good solubility in unhalogenated solvents and their use
JP2004131675A (en) Biodegradable polyester resin-based hot melt adhesive
JP2004231797A (en) Biodegradable adhesive, varnish and laminate using the same
WO2011049111A1 (en) Pressure-sensitive adhesive sheet for surface protection
JP2006519293A (en) PHA adhesive composition
CN107523253A (en) Biodegradable pressure-sensitive adhesive
JP2013227459A (en) Hot melt adhesive
JP2010095672A (en) Solventless polyester-based adhesive composition
JP3775668B2 (en) Polylactic acid aqueous emulsion, process for producing the same and coating agent containing the polylactic acid aqueous emulsion
JP2002088334A (en) Biodegradable hot melt adhesive
JP4905880B2 (en) Aqueous release agent, method for producing the same, and adhesive tape
JP3954838B2 (en) Biodegradable heat seal lacquer composition and biodegradable composite
JP2000192007A (en) Acrylic pressure sensitive adhesive composition and its production
JPH09302322A (en) Tacky agent composition and tacky processed product
JP2020516724A (en) Aqueous dry laminate binder with improved heat resistance
JP3984684B2 (en) Resin for adhesive, resin composition for adhesive, and adhesive tape
JPH01207372A (en) Heat-activated delayed type tacky agent composition and heat-activated delayed type tacky sheet
JP2005002198A (en) Biodegradable polyester resin composition
JP3609321B2 (en) Cardboard sealing tape
JP2005002199A (en) Heat sealing lacquer composition and biodegradable composite obtained using the same
JP2005002201A (en) Heat sealing lacquer composition and biodegradable composite obtained by using the same
JPS62153374A (en) Production of pressure-sensitive adhesive sheet