JP2004231797A - Biodegradable adhesive, varnish and laminate using the same - Google Patents

Biodegradable adhesive, varnish and laminate using the same Download PDF

Info

Publication number
JP2004231797A
JP2004231797A JP2003022278A JP2003022278A JP2004231797A JP 2004231797 A JP2004231797 A JP 2004231797A JP 2003022278 A JP2003022278 A JP 2003022278A JP 2003022278 A JP2003022278 A JP 2003022278A JP 2004231797 A JP2004231797 A JP 2004231797A
Authority
JP
Japan
Prior art keywords
biodegradable
lactic acid
sensitive adhesive
pressure
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003022278A
Other languages
Japanese (ja)
Inventor
Takashi Miyamoto
貴志 宮本
Osamu Morimoto
修 森元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003022278A priority Critical patent/JP2004231797A/en
Publication of JP2004231797A publication Critical patent/JP2004231797A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesive having excellent biodegradability and adhesivity to a biodegradable base material such as a polylactic acid film, and also to provide a laminate using the same. <P>SOLUTION: The biodegradable adhesive agent comprises an aliphatic polyester (A), which has not less than 55 wt. % of lactic acid residues, the molar ratio (L/D) of L lactic acid and D lactic acid in the range of 0.11-9 and the reduced viscosity of 0.2-1.0 dL/g, and a tackifier resin (B) from a natural source as essential components. The adhesive varnish is prepared by dissolving the above agent in the nonhalogenated solvent (D), and the biodegradable lamination is prepared by laminating the above adhesive on a biodegradable base material (E). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、微生物による分解性を有することを特徴とする粘着剤とそれを用いたワニスおよび積層体に関する。
【0002】
【従来の技術】
戦後、粘着剤の発展はゴム系粘着剤を主な柱として、次々に開発されたポリマーをくまなくテストし、製品に応用していった。そして、実用性、機能性などの総合的な評価を受けたものがポリ酢酸ビニル系粘着剤である。当時の日本の原料事情及び戦中戦後の技術蓄積からしても酢酸ビニルは手ごろな原料であった。ついで塩ビ・ビニルエーテル共重合体と酢酸ビニルをベースとする粘着剤が、ポリビニルブチラール系粘着剤が開発された。昭和30年以降には、原料の輸入及び国産化が進んできて、欧米の特許に見られる各種ポリマー(例えばポリビニルエーテル、ポリイソブチル、SBR、各種の合成ゴム類など)をベースとする粘着剤が続々と製品に応用されることとなった。とりわけ特筆されるのはアクリル系粘着剤の出現である(例えば特許文献1参照)。
【0003】
このアクリル系粘着剤はカーボン数2〜12の脂肪族アルコールの(メタ)アクリル酸エステルを主体とし、これにアクリル酸、アクリルアマイドをはじめ、極性基を有するモノマーを少量共重合させることによって得られたアクリル樹脂を主成分とする粘着剤である。アクリル酸エステルは粘着性を付与し、他のモノマーは凝集性、接着性、さらには架橋反応性を付与するために共重合させる。粘着性付与樹脂(タッキファイヤー)、可塑剤などの添加剤成分をほとんど必要とせず、共重合体一成分、あるいはこれに架橋剤を反応させた系で粘着剤になりうる。つまり、一成分で粘着剤にふさわしい粘弾性を持っている。
【0004】
最近、環境問題に対応するために各種包装材料や工業用建材フィルムとしてポリL−乳酸フィルムをはじめとする生分解性フィルムが検討されている。あくまで環境問題に対応するための究極の形態は、全ての素材を生分解性の材料とすることであるが、生分解性フィルムに上述のアクリル系粘着剤を塗布した場合、微生物により分解されないため、コンポスト処理を実施できない等の問題が生じていた。さらには、ポリ乳酸をはじめとする生分解性を有する基材にアクリル樹脂系の粘着剤を積層しても、密着性が十分でなく、例えばフィルムの折り曲げやこすり試験で容易に粘着剤層が脱落してしまったり、逆に被着体の方へ粘着剤層が転写してしまったりして、実用的ではなかった。
【0005】
生分解性を有する粘着剤としては、天然ゴム等のエラストマーに生分解性物質を配合した粘着剤(例えば特許文献2参照)、生ロジンと天然ゴムからなる粘着剤(例えば特許文献3参照)が提案されているが、これらの生分解性はポリ乳酸等の脂肪族ポリエステル素材と比べ、微生物による分解速度が遅いことや、生分解性基材の中でも、将来的に、主役となると予測されるポリ乳酸フィルムへの密着性が悪い等の実用性能上の問題があり、普及するまでに至っていない。
【0006】
【特許文献1】
特公昭34−9270号公報(特許請求の範囲)
【特許文献2】
特開平7−26219号公報(特許請求の範囲)
【特許文献3】
特開平7−173442号公報(特許請求の範囲)
【0007】
【発明が解決しようとする課題】
本発明の課題は、ポリ乳酸フィルムをはじめとする生分解性基材との密着性や生分解性に優れた粘着剤とそれを用いた積層体を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討を重ね、本発明の粘着剤を用いることにより、基材への密着性が飛躍的に向上することを見出し、本発明を完成させた。すなわち本発明は以下の生分解性粘着剤とそれを用いたワニスおよび積層体である。
【0009】
(1)乳酸残基を55重量%以上含有し、L乳酸とD乳酸のモル比(L/D)が0.11〜9、還元粘度が0.2〜1.0dl/gの範囲にある脂肪族ポリエステル(A)と天然物系粘着付与樹脂(B)を必須の成分として含有することを特徴とする生分解性粘着剤。
【0010】
(2)脂肪族ポリエステル(A)の水酸基濃度が100〜500eq/10gであることを特徴とする(1)記載の生分解性粘着剤。
【0011】
(3)さらに多官能イソシアネート(C)を含むことを特徴とする(1)または(2)に記載の生分解性粘着剤。
【0012】
(4)天然物系粘着付与樹脂(B)がロジン系樹脂および/またはテルペン系樹脂を含むことを特徴とする(1)〜(3)のいずれかに生分解性粘着剤。
【0013】
(5)(1)〜(4)のいずれかに記載の生分解性粘着剤を非ハロゲン系溶剤(D)に溶解した粘着剤ワニス。
【0014】
(6)(1)〜(4)のいずれかに記載の生分解性粘着剤を生分解性基材(E)に積層したことを特徴とする生分解性積層体。
【0015】
(7)生分解性基材(E)がポリL乳酸フィルムであることを特徴とする(6)記載の生分解性積層体。
【0016】
【発明の実施の形態】
以下、実施の形態を示して本発明をより詳細に説明する。
まず、本発明に用いる脂肪族ポリエステル(A)について説明する。
本発明に用いる脂肪族ポリエステル(A)は、乳酸残基を55重量%以上含有し、L乳酸とD乳酸のモル比(L/D)が0.11〜9の範囲、還元粘度が0.2〜1.0dl/gの範囲である。
【0017】
ここで、本発明に用いる脂肪族ポリエステル(A)の原料となる乳酸としては、L乳酸、D乳酸、DL乳酸、あるいは対応するラクチドのいずれも用いることができる。
【0018】
本発明における脂肪族ポリエステル(A)は乳酸残基を55重量%以上含有することが望ましい。乳酸残基が55重量%未満であると、生分解性が不足したり、また、ポリL乳酸フィルム基材等への密着性が不足したりすることがある。脂肪族ポリエステルの組成はH−NMR測定のプロトン積分比より決定する。
【0019】
なお、本発明に用いる脂肪族ポリエステル(A)のL乳酸残基とD乳酸残基のモル比(L/D)は、0.11〜9の範囲であることが望ましい。さらにL/Dは、より好ましくは0.5〜8、さらに好ましくは1〜5の範囲である。L/Dが9を超えても、0.11未満でも非ハロゲン系の汎用溶剤に対する溶解性が悪くなる場合がある。また、現状では、D乳酸過剰では、原料価格が高くなるという問題も存在する。ここでL/D比は脂肪族ポリエステルのメタノリシス分解後、乳酸モノマーの旋光度を測定することで決定するものである。
【0020】
本発明に用いる脂肪族ポリエステル(A)には、乳酸以外にもカプロラクトン、グリコール酸、2−ヒドロキシイソ酪酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、16−ヒドロキシヘキサデカン酸、2−ヒドロキシ−2−メチル酪酸、10−ヒドロキシステアリン酸、リンゴ酸、クエン酸、グルコン酸等が挙げられる。脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、ノナンジオール、ダイマージオールなどのジオール類が挙げられる。脂肪族ジカルボン酸類としては、コハク酸、アジピン酸、セバシン酸、ダイマー酸等が挙げられる。多価アルコールとしては、グリセリン、ポリグリセリン、ソルビトール、ペンタエリスリトール、グルコース等が挙げられる。多価アルコールとしては、基材フィルムとの密着性を高めるという点からポリグリセリンを用いることが好ましく、中でも、重合度5〜20のポリグリセリンが好ましい。
【0021】
本発明に用いる脂肪族ポリエステル(A)の水酸基濃度は、100〜500eq/10gの範囲にあることが望ましい。また、200〜300eq/10gの範囲にあることがさらに好ましい。水酸基濃度が100eq/10g未満では、生分解性基材(E)に対する良好な接着強度が得られない、被粘着体に対する粘着剤残りが発生する、耐熱性が不足する等の問題が生じることがある。また、水酸基濃度が500eq/10gを超えると、耐水性が悪化する恐れがある。
【0022】
ここで、水酸基濃度は、過剰のフェニルイソシアネートを加え樹脂水酸基と反応させ、次に、未反応イソシアネートと過剰のジエチルアミンと反応させ、残留ジエチルアミン量を酸により滴定する滴定法で求めることができる。なお水酸基濃度は樹脂1トン当たりの等量数で表す。
【0023】
本発明の脂肪族ポリエステル(A)の還元粘度は、0.2〜1.0dl/gの範囲にあることが望ましい。0.2dl/g未満であると、生分解性基材(E)への密着性が悪くなったり、被粘着体への粘着剤残りが生じたりする。また、樹脂還元粘度が1.0dl/gを超えると、粘着剤のコーティング適性が悪くなる場合がある。
【0024】
樹脂還元粘度は、ポリエステルの重合時間、重合温度、減圧の程度、共重合成分としてのアルコール成分の使用量を変化させることにより調整することができる。なお、本発明において、還元粘度は、サンプル濃度0.125g/ml、測定溶剤クロロホルム、測定温度25℃でウベローデ粘度管を用いて測定した値である。
【0025】
前記の諸条件を満たす、本発明に用いる脂肪族ポリエステルは、生分解性ポリエステルである。なお、本明細書における生分解性とは、分解の一過程において、生物の代謝が関与し、低分子量化合物に変換する性質をいう。
【0026】
本発明に用いる脂肪族ポリエステル(A)の製造方法としては、特に限定されず、従来公知の方法を用いることができる。たとえば、乳酸の二量体であるラクチドやカプロラクトンを溶融混合させ、必要に応じてポリグリセリン等を重合開始剤として添加し、公知の開環重合触媒(たとえば、オクチル酸スズ、アルミニウムアセチルアセトナートなど)を使用して加熱開環重合させる方法や、加熱および減圧による直接脱水重縮合を行う方法、などが挙げられる。
【0027】
本発明の粘着剤には脂肪族ポリエステル(A)の他に天然物系粘着性付与剤(B)が必須である。ここで言う天然物系とは、自然界由来であることを示す。具体的には、ロジン系樹脂とテルペン系樹脂等が挙げられる。ロジン系樹脂としては、ロジン、重合ロジン、水添ロジン、ロジンエステル、水添ロジンエステル、ロジンフェノール樹脂等が挙げられる。ロジンとしては、ガムロジン、トール油ロジン、ウッドロジン(米国のハーキュレス社製)等が挙げられる。重合ロジンとしては、ポリペールレジン、ダイマレックスレジン(理化ハーキュレス社製)等が挙げられる。水添ロジンとしては、エステルガムA、エステルガムAAV(荒川化学社製)、ハリエスターT、ハリエスターS(播磨化成社製)、エステルガム8L、ペンタリンA(理化ハーキュレス社製)等が挙げられる。ロジンフェノール樹脂としては、スミライトレジンPR12603(住友デュレズ社製)、タマノル803(荒川化学社製)等が挙げられる。
【0028】
テルペン系樹脂としては、テルペン樹脂、テルペンフェノール樹脂、芳香族変性テルペン樹脂が挙げられるが、テルペン樹脂としては、YSレジンPx(ヤスハラケミカル社製)、ピッコライトA(ハーキュレス社製)等が挙げられる。テルペンフェノール樹脂としては、YSポリスターT、スケネクタディSP566(スケネクタディ社製、米国)、マイティエースG(ヤスハラケミカル社製)等が挙げられる。
【0029】
天然物系粘着付与剤(B)の配合量としては、脂肪族ポリエステル(A)100重量部に対して、5〜200重量部が好ましく、20〜100重量部がさらに好ましい。5重量部未満であると粘着性に関する効果が発揮されにくく、200重量部を超えると積層体のタック性が強くなるため、取り扱いが難しくなる場合がある。
【0030】
本発明の粘着剤には多官能イソシアネート(C)をさらに配合することが、安定した粘着性を付与する上で好ましい。例えばヘキサメチレンジイソシアネートやその3量体、リジンジイソシアネート、水添トルイレンジイソシアネート、水添ジフェニルメタンジイソシアネート等が挙げられる。
【0031】
多官能イソシアネート(C)の配合量としては、脂肪族ポリエステル(A)100重量部に対して、0.3〜25重量部、好ましくは1〜15重量部である。0.3重量部未満では粘着性の安定性に効果の薄いことがあり、25重量部を超えると粘着性が低下することがある
【0032】
本発明の生分解性粘着剤には、必要に応じ、レベリング剤、粘度調整剤、シリカ粒子等の無機微粒子、導電性粒子、着色顔料、紫外線吸収剤等を添加することが出来る。
【0033】
本発明の粘着剤は非ハロゲン系溶剤(D)に溶解してワニスとし、それを後述する生分解性基材(E)に塗布、乾燥して生分解性積層体を作成することができる。
【0034】
非ハロゲン系溶剤(D)とは、塩素、フッ素、臭素、ヨウ素等ハロゲン原子を分子内に含有しない溶剤を指す。例えば酢酸エチル、酢酸プロピル、酢酸ブチル、乳酸メチル、乳酸エチル等のエステル系溶剤、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン等の芳香族系溶剤が挙げられる。特に好ましいのは、酢酸エチル等のエステル系溶剤である。
【0035】
本発明における生分解性基材(E)としては、ポリ乳酸系フィルム、ポリカプロラクトン系フィルム、ポリエチレンサクシネート系フィルム、脂肪族ポリカーボネート系フィルム、PHBフィルム等の生分解性フィルムや、生分解性不織布、天然繊維布、紙等が挙げられる。これらのうち、良好な密着性と生分解性を両立できるという点で特にポリ乳酸フィルムが好ましい。ポリ乳酸フィルムとしては、特にL乳酸含有率が97モル%以上の光学純度のものが耐熱性や密着性の観点より好ましく、99%以上のものがさらに好ましい。
【0036】
本発明の生分解性粘着剤の塗布方法は、特に限定されないが、ロールコーター方式、スプレー方式、ディップ方式、その他の方法で生分解性基材(E)等の基材へ塗布、乾燥後、離型紙、離形フィルム等を貼り合わせ、巻き取り等を行う。
【0037】
本発明の生分解性積層体は、生分解性プラスチック成型品に貼る生分解性ラベル、自動車等の塗装用マスキングテープ、埃を粘着除去する掃除用具のシート等での使用が好適である。
【0038】
【実施例】
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
【0039】
<実施例1>
Lラクチド240g、DLラクチド240g、カプロラクトン320g、重合度が10であるポリグリセリン8g、オクチル酸スズ100mgを4つ口フラスコに加え、窒素雰囲下、180℃で3時間加熱開環重合させて、ポリエステル(I)を得た。ポリエステル(I)の組成及び特性値を表1に示す。
【0040】
次に、ポリエステル(I)100gとトール油ロジン40gをメチルエチルケトン200gに溶解させ、ヘキサメチレンジイソシアネートの3量体である「デュラネートTPA−100(旭化成社製)」を2g配合し、粘着剤組成物(I)を得た。組成を表2に示す。
【0041】
厚さ50μmのポリL乳酸の二軸延伸フィルムに粘着剤組成物(I)を乾燥後の厚みが10μmになうように塗布し、70℃で30分乾燥させ、40℃で24時間エージング後、粘着剤積層フィルム(I)を得た。
【0042】
<実施例2>
ポリエステル(I)100gとマイティエースG(ヤスハラケミカル社製)40gをメチルエチルケトン200gに溶解させ、デュラネートTPA−100を2g配合し、粘着剤組成物(II)を得た。
厚さ50μmのポリL乳酸フィルムに粘着剤組成物(II)を乾燥後の厚みが10μmになるように塗布し、70℃で30分乾燥させ、40℃で24時間エージング後、粘着剤積層フィルム(II)を得た。
【0043】
<実施例3>
Lラクチド240g、DLラクチド240g、カプロラクトン320g、オクチル酸スズ100mgを4つ口フラスコに加え、窒素雰囲気下、180℃で3時間加熱開環重合させて、その後、減圧下、残留モノマーを40g留去させ、ポリエステル(II)を得た。
【0044】
次に、ポリエステル(II)100gとトール油ロジン40gをメチルエチルケトン200gに溶解させ、TPA−100を2g配合し、粘着剤組成物(III)を得た。
厚さ50μmのポリL乳酸フィルムに粘着剤組成物(III)を乾燥厚み10μmで塗布し、70℃で30分乾燥させ、40℃で24時間エージング後、粘着剤積層フィルム(III)を得た。
【0045】
<比較例1>
天然ゴムラテックス(40wt%水分散系)250gにシクロヘキサノンに溶解したトール油ロジン溶液(50wt%)80gを配合し、十分混合することにより、粘着剤組成物(IV)を得た。
厚さ50μmのポリL乳酸フィルムに粘着剤組成物(IV)を乾燥厚み10μmで塗布し、80℃で30分乾燥させることにより、粘着剤積層フィルム(IV)を得た。
【0046】
【表1】

Figure 2004231797
【0047】
【表2】
Figure 2004231797
【0048】
<性能評価>
実施例および比較例で得られた、積層体(I)〜(IV)を用い、生分解性、ポリL乳酸フィルム基材への密着性、粘着剤の粘着性評価を下記の試験方法に基づき行なった。結果を表3に示す。
【0049】
(i)生分解性試験
積層体10cm×10cmをコンポスター(生ゴミ処理機、三井ホーム社製「MAM」)中に入れ、7日後にサンプルの形態(分解の速度)を目視観察し、下記の基準に従って評価した。
【0050】
○:サンプルの形態が完全になし
△:サンプルの断片あり
×:サンプルの形態がほとんど残っている
【0051】
(ii)ポリL乳酸フィルム基材への密着性試験
厚み25μmの二軸延伸ポリエステルフィルムに接着剤(東洋モートン社製AD−122を100重量部、CAT−10を5重量部混合させたもの)を乾燥厚が3μmとなるように塗布し、積層体(I)〜(IV)の粘着剤面とドライラミネートして試験片を作成し、40℃にて24時間エージングした後、この試験片を180度剥離法にて測定した。測定値の単位は、gf/15mmである。
【0052】
(iii)粘着性試験
JIS Z−0237に従って、粘着テープのボールタックを測定し、測定結果をボールナンバーで示した。測定温度は5℃とした。
【0053】
【表3】
Figure 2004231797
【0054】
表3より明らかなように従来の天然ゴム系粘着剤を使用した比較例1に比べて本発明の脂肪族ポリエステルと粘着付与剤を配合した実施例1〜3は生分解性、密着性、粘着性がバランス良く付与されていることがわかる。
【0055】
【発明の効果】
以上説明したとおり、この発明により、生分解性が良好であり、しかも、ポリ乳酸フィルム等の生分解性基材への密着性が良好な生分解性粘着剤が得られる。これにより、オール生分解性素材の粘着剤フィルムが容易に得られ、環境に対する負荷を低減できるものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an adhesive characterized by being degradable by microorganisms, and to a varnish and a laminate using the same.
[0002]
[Prior art]
After the war, the development of pressure-sensitive adhesives was based on rubber-based pressure-sensitive adhesives, and the developed polymers were tested thoroughly and applied to products. Those that have been comprehensively evaluated for practicality and functionality are polyvinyl acetate-based pressure-sensitive adhesives. Vinyl acetate was an affordable raw material, considering the raw material situation in Japan at that time and the accumulated technology during the war. Then, an adhesive based on a vinyl chloride / vinyl ether copolymer and vinyl acetate was developed as a polyvinyl butyral-based adhesive. Since 1950, raw materials have been imported and domestically manufactured, and adhesives based on various polymers (eg, polyvinyl ether, polyisobutyl, SBR, various synthetic rubbers, etc.) found in European and American patents have been developed. It has been applied to products one after another. Particularly noteworthy is the emergence of an acrylic pressure-sensitive adhesive (for example, see Patent Document 1).
[0003]
This acrylic pressure-sensitive adhesive is obtained by copolymerizing a small amount of a monomer having a polar group, including acrylic acid, acrylamide, and the like, mainly composed of a (meth) acrylic acid ester of an aliphatic alcohol having 2 to 12 carbon atoms. It is an adhesive containing acrylic resin as a main component. Acrylic esters provide tackiness and other monomers are copolymerized to provide cohesiveness, adhesion, and crosslinking reactivity. Almost no additive components such as tackifier resin (tackifier) and plasticizer are required, and it can be a pressure-sensitive adhesive in one component of a copolymer or a system in which a crosslinking agent is reacted with this. In other words, one component has viscoelasticity suitable for an adhesive.
[0004]
Recently, biodegradable films including poly-L-lactic acid films have been studied as various packaging materials and industrial building material films in order to respond to environmental issues. The ultimate form for responding to environmental problems is to use all materials as biodegradable materials.However, when the above-mentioned acrylic adhesive is applied to a biodegradable film, it is not decomposed by microorganisms. And composting cannot be performed. Furthermore, even when an acrylic resin-based pressure-sensitive adhesive is laminated on a biodegradable substrate such as polylactic acid, the adhesion is not sufficient, and the pressure-sensitive adhesive layer can be easily formed by, for example, a film bending or rubbing test. It was not practical because it was dropped or the adhesive layer was transferred to the adherend.
[0005]
Examples of the biodegradable pressure-sensitive adhesive include a pressure-sensitive adhesive obtained by blending a biodegradable substance with an elastomer such as natural rubber (for example, see Patent Document 2) and a pressure-sensitive adhesive composed of raw rosin and natural rubber (for example, see Patent Document 3). Although it has been proposed, these biodegradable, compared to aliphatic polyester materials such as polylactic acid, the rate of decomposition by microorganisms is slow, and even among biodegradable substrates, it is predicted that they will become the leading role in the future. There is a problem in practical performance such as poor adhesion to a polylactic acid film, and it has not reached widespread use.
[0006]
[Patent Document 1]
JP-B-34-9270 (Claims)
[Patent Document 2]
JP-A-7-26219 (Claims)
[Patent Document 3]
JP-A-7-173442 (Claims)
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a pressure-sensitive adhesive excellent in adhesion and biodegradability with a biodegradable substrate such as a polylactic acid film, and a laminate using the same.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above problems, and found that by using the pressure-sensitive adhesive of the present invention, the adhesion to a substrate is dramatically improved, and completed the present invention. . That is, the present invention relates to the following biodegradable pressure-sensitive adhesive, and varnishes and laminates using the same.
[0009]
(1) The lactic acid residue contains 55% by weight or more, the molar ratio (L / D) of L-lactic acid to D-lactic acid is in the range of 0.11 to 9, and the reduced viscosity is in the range of 0.2 to 1.0 dl / g. A biodegradable pressure-sensitive adhesive comprising an aliphatic polyester (A) and a natural product-based tackifying resin (B) as essential components.
[0010]
(2) The biodegradable pressure-sensitive adhesive according to (1), wherein the aliphatic polyester (A) has a hydroxyl group concentration of 100 to 500 eq / 10 6 g.
[0011]
(3) The biodegradable pressure-sensitive adhesive according to (1) or (2), further comprising a polyfunctional isocyanate (C).
[0012]
(4) The biodegradable pressure-sensitive adhesive according to any one of (1) to (3), wherein the natural product-based tackifying resin (B) contains a rosin-based resin and / or a terpene-based resin.
[0013]
(5) An adhesive varnish obtained by dissolving the biodegradable adhesive according to any one of (1) to (4) in a non-halogen solvent (D).
[0014]
(6) A biodegradable laminate, wherein the biodegradable pressure-sensitive adhesive according to any one of (1) to (4) is laminated on a biodegradable substrate (E).
[0015]
(7) The biodegradable laminate according to (6), wherein the biodegradable substrate (E) is a poly-L-lactic acid film.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to embodiments.
First, the aliphatic polyester (A) used in the present invention will be described.
The aliphatic polyester (A) used in the present invention contains 55% by weight or more of lactic acid residues, the molar ratio (L / D) of L-lactic acid to D-lactic acid is in the range of 0.11 to 9, and the reduced viscosity is 0.1%. It is in the range of 2 to 1.0 dl / g.
[0017]
Here, as the lactic acid as a raw material of the aliphatic polyester (A) used in the present invention, any of L lactic acid, D lactic acid, DL lactic acid, and corresponding lactide can be used.
[0018]
It is desirable that the aliphatic polyester (A) in the present invention contains 55% by weight or more of lactic acid residues. If the lactic acid residue is less than 55% by weight, the biodegradability may be insufficient, or the adhesion to a poly-L-lactic acid film substrate or the like may be insufficient. The composition of the aliphatic polyester is determined from the proton integral ratio measured by 1 H-NMR.
[0019]
The molar ratio (L / D) of the L-lactic acid residue to the D-lactic acid residue of the aliphatic polyester (A) used in the present invention is desirably in the range of 0.11 to 9. L / D is more preferably in the range of 0.5 to 8, and even more preferably in the range of 1 to 5. If the L / D is more than 9 or less than 0.11, the solubility in non-halogen general-purpose solvents may be poor. Further, at present, there is also a problem that the raw material price becomes high when D-lactic acid is excessive. Here, the L / D ratio is determined by measuring the optical rotation of the lactic acid monomer after methanolysis decomposition of the aliphatic polyester.
[0020]
The aliphatic polyester (A) used in the present invention includes, in addition to lactic acid, caprolactone, glycolic acid, 2-hydroxyisobutyric acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 16-hydroxyhexadecanoic acid, 2-hydroxy-2-acid. Examples include methylbutyric acid, 10-hydroxystearic acid, malic acid, citric acid, gluconic acid and the like. Examples of the aliphatic glycol include diols such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, hexanediol, nonanediol, and dimer diol. Examples of the aliphatic dicarboxylic acids include succinic acid, adipic acid, sebacic acid, dimer acid and the like. Examples of the polyhydric alcohol include glycerin, polyglycerin, sorbitol, pentaerythritol, glucose and the like. As the polyhydric alcohol, it is preferable to use polyglycerin from the viewpoint of enhancing the adhesion to the base film, and among them, polyglycerin having a polymerization degree of 5 to 20 is preferable.
[0021]
The hydroxyl group concentration of the aliphatic polyester (A) used in the present invention is desirably in the range of 100 to 500 eq / 10 6 g. Further, it is more preferable that it is in the range of 200 to 300 eq / 10 6 g. If the hydroxyl group concentration is less than 100 eq / 10 6 g, problems such as a failure to obtain good adhesive strength to the biodegradable substrate (E), generation of an adhesive residue on the adherend, and insufficient heat resistance will occur. Sometimes. When the hydroxyl group concentration exceeds 500 eq / 10 6 g, the water resistance may be deteriorated.
[0022]
Here, the hydroxyl group concentration can be determined by a titration method in which an excess of phenyl isocyanate is added and reacted with a resin hydroxyl group, then, an unreacted isocyanate is reacted with an excess of diethylamine, and the amount of residual diethylamine is titrated with an acid. The hydroxyl group concentration is represented by an equivalent number per ton of resin.
[0023]
The reduced viscosity of the aliphatic polyester (A) of the present invention is desirably in the range of 0.2 to 1.0 dl / g. If it is less than 0.2 dl / g, the adhesion to the biodegradable substrate (E) will be poor, or the adhesive will remain on the adherend. If the resin reduced viscosity exceeds 1.0 dl / g, the coating suitability of the pressure-sensitive adhesive may be deteriorated.
[0024]
The resin reduced viscosity can be adjusted by changing the polymerization time of the polyester, the polymerization temperature, the degree of reduced pressure, and the amount of the alcohol component used as the copolymer component. In the present invention, the reduced viscosity is a value measured using an Ubbelohde viscosity tube at a sample concentration of 0.125 g / ml, a measurement solvent of chloroform, and a measurement temperature of 25 ° C.
[0025]
The aliphatic polyester used in the present invention that satisfies the above conditions is a biodegradable polyester. In the present specification, the term "biodegradable" refers to the property of being involved in metabolism of an organism and converting to a low molecular weight compound in one process of decomposition.
[0026]
The method for producing the aliphatic polyester (A) used in the present invention is not particularly limited, and a conventionally known method can be used. For example, lactide or caprolactone, which is a dimer of lactic acid, is melt-mixed, and if necessary, polyglycerin or the like is added as a polymerization initiator, and a known ring-opening polymerization catalyst (for example, tin octylate, aluminum acetylacetonate, etc.) ), And a method of performing direct dehydration polycondensation by heating and reduced pressure.
[0027]
In the pressure-sensitive adhesive of the present invention, a natural product-based tackifier (B) is essential in addition to the aliphatic polyester (A). The term “natural product” as used herein means that the product is derived from nature. Specifically, a rosin-based resin and a terpene-based resin are exemplified. Examples of the rosin-based resin include rosin, polymerized rosin, hydrogenated rosin, rosin ester, hydrogenated rosin ester, and rosin phenol resin. Examples of the rosin include gum rosin, tall oil rosin, and wood rosin (manufactured by Hercules, USA). Examples of the polymerized rosin include polyester resin, Dimalex resin (manufactured by Rika Hercules), and the like. Examples of the hydrogenated rosin include ester gum A, ester gum AAV (manufactured by Arakawa Chemical), Harrier Star T, Harrier Star S (manufactured by Harima Kasei), ester gum 8L, pentalin A (manufactured by Rika Hercules), and the like. . Examples of the rosin phenol resin include Sumilite Resin PR12603 (manufactured by Sumitomo Durez), Tamanol 803 (manufactured by Arakawa Chemical).
[0028]
Examples of the terpene resin include a terpene resin, a terpene phenol resin, and an aromatic modified terpene resin. Examples of the terpene resin include YS resin Px (manufactured by Yasuhara Chemical Co., Ltd.) and Piccolite A (manufactured by Hercules). Examples of the terpene phenol resin include YS Polystar T, Schenectady SP566 (manufactured by Schenectady, USA), and Mighty Ace G (manufactured by Yashara Chemical).
[0029]
The compounding amount of the natural tackifier (B) is preferably from 5 to 200 parts by weight, more preferably from 20 to 100 parts by weight, based on 100 parts by weight of the aliphatic polyester (A). If the amount is less than 5 parts by weight, the effect on the adhesiveness is hardly exhibited, and if the amount is more than 200 parts by weight, the tackiness of the laminate becomes strong, so that handling may be difficult.
[0030]
It is preferable to further add a polyfunctional isocyanate (C) to the pressure-sensitive adhesive of the present invention in order to impart stable tackiness. For example, hexamethylene diisocyanate and its trimer, lysine diisocyanate, hydrogenated toluylene diisocyanate, hydrogenated diphenylmethane diisocyanate and the like can be mentioned.
[0031]
The compounding amount of the polyfunctional isocyanate (C) is 0.3 to 25 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the aliphatic polyester (A). If the amount is less than 0.3 part by weight, the effect on the stability of the adhesive may be weak, and if it exceeds 25 parts by weight, the adhesiveness may decrease.
If necessary, a leveling agent, a viscosity modifier, inorganic fine particles such as silica particles, conductive particles, a coloring pigment, an ultraviolet absorber, and the like can be added to the biodegradable pressure-sensitive adhesive of the present invention.
[0033]
The pressure-sensitive adhesive of the present invention can be dissolved in a non-halogen solvent (D) to form a varnish, applied to a biodegradable substrate (E) described below, and dried to form a biodegradable laminate.
[0034]
The non-halogen solvent (D) refers to a solvent containing no halogen atom in the molecule, such as chlorine, fluorine, bromine, and iodine. For example, ester solvents such as ethyl acetate, propyl acetate, butyl acetate, methyl lactate, and ethyl lactate; ketone solvents such as methyl ethyl ketone and cyclohexanone; ether solvents such as diethyl ether and tetrahydrofuran; and aromatic solvents such as toluene and xylene. No. Particularly preferred are ester solvents such as ethyl acetate.
[0035]
Examples of the biodegradable substrate (E) in the present invention include a biodegradable film such as a polylactic acid-based film, a polycaprolactone-based film, a polyethylene succinate-based film, an aliphatic polycarbonate-based film, and a PHB film; , Natural fiber cloth, paper and the like. Among these, a polylactic acid film is particularly preferred in that good adhesion and biodegradability can be achieved at the same time. As the polylactic acid film, a film having an optical purity of an L-lactic acid content of 97 mol% or more is particularly preferable from the viewpoint of heat resistance and adhesion, and a film of 99% or more is more preferable.
[0036]
The method for applying the biodegradable pressure-sensitive adhesive of the present invention is not particularly limited, but is applied to a substrate such as a biodegradable substrate (E) by a roll coater method, a spray method, a dip method, or another method, and then dried. Laminating release paper, release film, etc., and winding.
[0037]
The biodegradable laminate of the present invention is suitable for use as a biodegradable label to be attached to a biodegradable plastic molded product, a masking tape for painting automobiles, a sheet of a cleaning tool for removing dust by adhesion, and the like.
[0038]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
[0039]
<Example 1>
240 g of L lactide, 240 g of DL lactide, 320 g of caprolactone, 8 g of polyglycerin having a degree of polymerization of 10 and 100 mg of tin octylate were added to a four-necked flask, and subjected to ring-opening polymerization at 180 ° C. for 3 hours under a nitrogen atmosphere. Polyester (I) was obtained. Table 1 shows the composition and characteristic values of the polyester (I).
[0040]
Next, 100 g of the polyester (I) and 40 g of tall oil rosin are dissolved in 200 g of methyl ethyl ketone, and 2 g of "Duranate TPA-100 (manufactured by Asahi Kasei Corporation)", which is a trimer of hexamethylene diisocyanate, is blended. I) was obtained. The composition is shown in Table 2.
[0041]
The adhesive composition (I) is applied to a biaxially stretched film of poly-L-lactic acid having a thickness of 50 μm so that the thickness after drying becomes 10 μm, dried at 70 ° C. for 30 minutes, and aged at 40 ° C. for 24 hours. Thus, an adhesive laminated film (I) was obtained.
[0042]
<Example 2>
100 g of polyester (I) and 40 g of Mighty Ace G (manufactured by Yasuhara Chemical Co., Ltd.) were dissolved in 200 g of methyl ethyl ketone, and 2 g of duranate TPA-100 was blended to obtain pressure-sensitive adhesive composition (II).
A pressure-sensitive adhesive composition (II) is applied to a 50 μm-thick poly-L-lactic acid film so that the thickness after drying is 10 μm, dried at 70 ° C. for 30 minutes, and aged at 40 ° C. for 24 hours. (II) was obtained.
[0043]
<Example 3>
240 g of L lactide, 240 g of DL lactide, 320 g of caprolactone and 100 mg of tin octylate are added to a four-necked flask, and subjected to ring-opening polymerization at 180 ° C. for 3 hours under a nitrogen atmosphere, and then 40 g of residual monomers are distilled off under reduced pressure. Then, a polyester (II) was obtained.
[0044]
Next, 100 g of polyester (II) and 40 g of tall oil rosin were dissolved in 200 g of methyl ethyl ketone, and 2 g of TPA-100 was blended to obtain a pressure-sensitive adhesive composition (III).
An adhesive composition (III) was applied to a 50 μm-thick poly-L-lactic acid film at a dry thickness of 10 μm, dried at 70 ° C. for 30 minutes, and aged at 40 ° C. for 24 hours to obtain an adhesive laminated film (III). .
[0045]
<Comparative Example 1>
80 g of a tall oil rosin solution (50 wt%) dissolved in cyclohexanone was mixed with 250 g of natural rubber latex (40 wt% aqueous dispersion), and thoroughly mixed to obtain a pressure-sensitive adhesive composition (IV).
The adhesive composition (IV) was applied to a 50 μm-thick poly-L-lactic acid film at a dry thickness of 10 μm, and dried at 80 ° C. for 30 minutes to obtain an adhesive laminated film (IV).
[0046]
[Table 1]
Figure 2004231797
[0047]
[Table 2]
Figure 2004231797
[0048]
<Performance evaluation>
Using the laminates (I) to (IV) obtained in Examples and Comparative Examples, evaluation of biodegradability, adhesion to a poly-L-lactic acid film substrate, and adhesiveness of an adhesive was carried out based on the following test methods. Done. Table 3 shows the results.
[0049]
(I) Biodegradability test A laminate of 10 cm × 10 cm was placed in a composter (garbage disposal machine, “MAM” manufactured by Mitsui Home Co., Ltd.), and after 7 days, the form (decomposition rate) of the sample was visually observed. Was evaluated according to the criteria of
[0050]
:: Sample morphology was completely absent. △: Sample fragment was present. X: Sample morphology almost remained.
(Ii) Adhesion test to poly-L-lactic acid film substrate Adhesive (100 parts by weight of AD-122 and 5 parts by weight of CAT-10 mixed with Toyo Morton Co.) Is applied so as to have a dry thickness of 3 μm, and dry-laminated with the pressure-sensitive adhesive surface of the laminates (I) to (IV) to prepare a test piece. After aging at 40 ° C. for 24 hours, the test piece is It was measured by a 180-degree peeling method. The unit of the measured value is gf / 15 mm.
[0052]
(Iii) Adhesion test According to JIS Z-0237, the ball tack of the pressure-sensitive adhesive tape was measured, and the measurement results were indicated by ball numbers. The measurement temperature was 5 ° C.
[0053]
[Table 3]
Figure 2004231797
[0054]
As is clear from Table 3, Examples 1 to 3 in which the aliphatic polyester of the present invention and the tackifier were blended were compared with Comparative Example 1 in which the conventional natural rubber-based pressure-sensitive adhesive was used. It can be seen that the properties are provided in a well-balanced manner.
[0055]
【The invention's effect】
As described above, according to the present invention, a biodegradable pressure-sensitive adhesive having good biodegradability and good adhesion to a biodegradable substrate such as a polylactic acid film can be obtained. As a result, an adhesive film of an all-biodegradable material can be easily obtained, and the load on the environment can be reduced.

Claims (7)

乳酸残基を55重量%以上含有し、L乳酸とD乳酸のモル比(L/D)が0.11〜9、還元粘度が0.2〜1.0dl/gの範囲にある脂肪族ポリエステル(A)と天然物系粘着付与樹脂(B)を必須の成分として含有することを特徴とする生分解性粘着剤。Aliphatic polyester containing at least 55% by weight of a lactic acid residue, having a molar ratio (L / D) of L-lactic acid to D-lactic acid of 0.11 to 9 and a reduced viscosity of 0.2 to 1.0 dl / g A biodegradable pressure-sensitive adhesive comprising (A) and a natural product-based tackifying resin (B) as essential components. 脂肪族ポリエステル(A)の水酸基濃度が100〜500eq/10gであることを特徴とする請求項1記載の生分解性粘着剤。2. The biodegradable pressure-sensitive adhesive according to claim 1, wherein the aliphatic polyester (A) has a hydroxyl group concentration of 100 to 500 eq / 10 6 g. さらに多官能イソシアネート(C)を含むことを特徴とする請求項1または2に記載の生分解性粘着剤。The biodegradable pressure-sensitive adhesive according to claim 1, further comprising a polyfunctional isocyanate (C). 天然物系粘着付与樹脂(B)がロジン系樹脂および/またはテルペン系樹脂を含むことを特徴とする請求項1〜3のいずれかに生分解性粘着剤。The biodegradable pressure-sensitive adhesive according to any one of claims 1 to 3, wherein the natural product-based tackifying resin (B) contains a rosin-based resin and / or a terpene-based resin. 請求項1〜4のいずれかに記載の生分解性粘着剤を非ハロゲン系溶剤(D)に溶解した粘着剤ワニス。An adhesive varnish obtained by dissolving the biodegradable adhesive according to any one of claims 1 to 4 in a non-halogen solvent (D). 請求項1〜4のいずれかに記載の生分解性粘着剤を生分解性基材(E)に積層したことを特徴とする生分解性積層体。A biodegradable laminate obtained by laminating the biodegradable pressure-sensitive adhesive according to claim 1 on a biodegradable substrate (E). 生分解性基材(E)がポリL乳酸フィルムであることを特徴とする請求項6記載の生分解性積層体。The biodegradable laminate according to claim 6, wherein the biodegradable substrate (E) is a poly-L-lactic acid film.
JP2003022278A 2003-01-30 2003-01-30 Biodegradable adhesive, varnish and laminate using the same Withdrawn JP2004231797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022278A JP2004231797A (en) 2003-01-30 2003-01-30 Biodegradable adhesive, varnish and laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022278A JP2004231797A (en) 2003-01-30 2003-01-30 Biodegradable adhesive, varnish and laminate using the same

Publications (1)

Publication Number Publication Date
JP2004231797A true JP2004231797A (en) 2004-08-19

Family

ID=32951389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022278A Withdrawn JP2004231797A (en) 2003-01-30 2003-01-30 Biodegradable adhesive, varnish and laminate using the same

Country Status (1)

Country Link
JP (1) JP2004231797A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244438A (en) * 2003-02-10 2004-09-02 Toyobo Co Ltd Anchoring agent for pressure-sensitive adhesive and laminate
JP2006070091A (en) * 2004-08-31 2006-03-16 Dainippon Printing Co Ltd Adhesive and adhesive member
JP2008127403A (en) * 2006-11-16 2008-06-05 Unitika Ltd Adhesive, adhesive layer comprising the same, laminate and laminated material
JP2008195819A (en) * 2007-02-13 2008-08-28 Nitto Denko Corp Polyester-based self-adhesive composition
WO2010016514A1 (en) 2008-08-06 2010-02-11 日東電工株式会社 Polyesters, polyester compositions, adhesive compositions, adhesive layers and adhesive sheets
WO2011046037A1 (en) 2009-10-14 2011-04-21 オリジン電気株式会社 Polylactic acid-based decorative body
WO2011049112A1 (en) * 2009-10-20 2011-04-28 日東電工株式会社 Radiation-cure removal type pressure-sensitive adhesive sheet
WO2011049116A1 (en) * 2009-10-20 2011-04-28 日東電工株式会社 Thermally removable pressure-sensitive adhesive sheet
WO2011049111A1 (en) 2009-10-20 2011-04-28 日東電工株式会社 Pressure-sensitive adhesive sheet for surface protection
JP2011088957A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Masking self-adhesive tape
JP2011088961A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Double-sided self-adhesive sheet
WO2013058365A1 (en) * 2011-10-20 2013-04-25 東洋紡株式会社 Copolymer polyurethane resin having poly(hydroxycarboxylic acid) segment and pendant carboxyl group, and emulsion and adhesive composition including same
JP2014502297A (en) * 2010-11-15 2014-01-30 コヘラ メディカル インコーポレイテッド Biodegradable composition having pressure sensitive adhesive properties
KR101433809B1 (en) 2008-12-30 2014-08-25 에스케이케미칼주식회사 Biodegradable Polyester Resin Composition for Solvent-Based Adhesive, Polyester Resin Polymerized Therefrom, Solvent-Based Adhesive Comprising the Same, and Preparation Method Thereof
WO2014136765A1 (en) * 2013-03-05 2014-09-12 日東電工株式会社 Adhesive agent layer, adhesive tape, and double-sided adhesive tape
JP2014169419A (en) * 2013-03-05 2014-09-18 Nitto Denko Corp Adhesive layer, adhesive tape, and double-sided adhesive tape
JP2014169420A (en) * 2013-03-05 2014-09-18 Nitto Denko Corp Double-sided adhesive tape
US20140329065A1 (en) * 2012-09-21 2014-11-06 Lg Hausys, Ltd. Biodegradable sheets having adhesive layer
US9362586B2 (en) 2009-12-07 2016-06-07 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing secondary battery
CN112831304A (en) * 2021-01-26 2021-05-25 常州都铂高分子有限公司 Biodegradable pressure-sensitive adhesive
WO2021210608A1 (en) 2020-04-17 2021-10-21 東洋インキScホールディングス株式会社 Adhesive agent composition and adhesive sheet
JP7005078B1 (en) * 2021-10-08 2022-01-21 サイデン化学株式会社 Adhesive resin composition
WO2022220223A1 (en) * 2021-04-14 2022-10-20 東洋インキScホールディングス株式会社 Adhesive composition and adhesive sheet

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244438A (en) * 2003-02-10 2004-09-02 Toyobo Co Ltd Anchoring agent for pressure-sensitive adhesive and laminate
JP2006070091A (en) * 2004-08-31 2006-03-16 Dainippon Printing Co Ltd Adhesive and adhesive member
JP2008127403A (en) * 2006-11-16 2008-06-05 Unitika Ltd Adhesive, adhesive layer comprising the same, laminate and laminated material
JP2008195819A (en) * 2007-02-13 2008-08-28 Nitto Denko Corp Polyester-based self-adhesive composition
WO2010016514A1 (en) 2008-08-06 2010-02-11 日東電工株式会社 Polyesters, polyester compositions, adhesive compositions, adhesive layers and adhesive sheets
US9096782B2 (en) 2008-08-06 2015-08-04 Nitto Denko Corporation Polyesters, polyester compositions, pressure-sensitive adhesive compositions, pressure-sensitive adhesive layers and pressure-sensitive adhesive sheets
KR101433809B1 (en) 2008-12-30 2014-08-25 에스케이케미칼주식회사 Biodegradable Polyester Resin Composition for Solvent-Based Adhesive, Polyester Resin Polymerized Therefrom, Solvent-Based Adhesive Comprising the Same, and Preparation Method Thereof
WO2011046037A1 (en) 2009-10-14 2011-04-21 オリジン電気株式会社 Polylactic acid-based decorative body
US8603636B2 (en) 2009-10-14 2013-12-10 Origin Electric Company, Limited Polylactic acid-based decorative body
JP2011088958A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Pressure-sensitive adhesive sheet for surface protection
WO2011049112A1 (en) * 2009-10-20 2011-04-28 日東電工株式会社 Radiation-cure removal type pressure-sensitive adhesive sheet
JP2011088959A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Thermally peelable pressure-sensitive adhesive sheet
JP2011088961A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Double-sided self-adhesive sheet
JP2011088960A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Radiation-curable, repeelable pressure-sensitive adhesive sheet
CN102549095A (en) * 2009-10-20 2012-07-04 日东电工株式会社 Radiation-cure removal type pressure-sensitive adhesive sheet
CN102575132A (en) * 2009-10-20 2012-07-11 日东电工株式会社 Pressure-sensitive adhesive sheet for surface protection
US20120202058A1 (en) * 2009-10-20 2012-08-09 Nitto Denko Corporation Pressure-sensitive adhesive sheet for surface protection
US20120208017A1 (en) * 2009-10-20 2012-08-16 Nitto Denko Corporation Pressure-sensitive adhesive tape for masking
US20120208955A1 (en) * 2009-10-20 2012-08-16 Nitto Denko Corporation Double-sided pressure-sensitive adhesive sheet
JP2011088957A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Masking self-adhesive tape
WO2011049111A1 (en) 2009-10-20 2011-04-28 日東電工株式会社 Pressure-sensitive adhesive sheet for surface protection
US8999503B2 (en) 2009-10-20 2015-04-07 Nitto Denko Corporation Thermally removable pressure-sensitive adhesive sheet
WO2011049116A1 (en) * 2009-10-20 2011-04-28 日東電工株式会社 Thermally removable pressure-sensitive adhesive sheet
US8962136B2 (en) 2009-10-20 2015-02-24 Nitto Denko Corporation Pressure-sensitive adhesive sheet for surface protection
US8889255B2 (en) 2009-10-20 2014-11-18 Nitto Denko Corporation Radiation-cure removal type pressure-sensitive adhesive sheet
US9362586B2 (en) 2009-12-07 2016-06-07 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing secondary battery
JP2014502297A (en) * 2010-11-15 2014-01-30 コヘラ メディカル インコーポレイテッド Biodegradable composition having pressure sensitive adhesive properties
JPWO2013058365A1 (en) * 2011-10-20 2015-04-02 東洋紡株式会社 Copolyurethane resin having poly (hydroxycarboxylic acid) segment and pendant carboxyl group, emulsion and adhesive composition containing the same
WO2013058365A1 (en) * 2011-10-20 2013-04-25 東洋紡株式会社 Copolymer polyurethane resin having poly(hydroxycarboxylic acid) segment and pendant carboxyl group, and emulsion and adhesive composition including same
US9403348B2 (en) * 2012-09-21 2016-08-02 Lg Hausys, Ltd. Biodegradable sheets having adhesive layer
US20140329065A1 (en) * 2012-09-21 2014-11-06 Lg Hausys, Ltd. Biodegradable sheets having adhesive layer
JP2014169419A (en) * 2013-03-05 2014-09-18 Nitto Denko Corp Adhesive layer, adhesive tape, and double-sided adhesive tape
JP2014169420A (en) * 2013-03-05 2014-09-18 Nitto Denko Corp Double-sided adhesive tape
CN105121578A (en) * 2013-03-05 2015-12-02 日东电工株式会社 Adhesive agent layer, adhesive tape, and double-sided adhesive tape
WO2014136765A1 (en) * 2013-03-05 2014-09-12 日東電工株式会社 Adhesive agent layer, adhesive tape, and double-sided adhesive tape
US10287465B2 (en) 2013-03-05 2019-05-14 Nitto Denko Corporation Pressure-sensitive adhesive layer, pressure-sensitive adhesive tape, and double-sided pressure-sensitive adhesive tape
WO2021210608A1 (en) 2020-04-17 2021-10-21 東洋インキScホールディングス株式会社 Adhesive agent composition and adhesive sheet
KR20230007333A (en) 2020-04-17 2023-01-12 토요잉크Sc홀딩스주식회사 Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
CN112831304A (en) * 2021-01-26 2021-05-25 常州都铂高分子有限公司 Biodegradable pressure-sensitive adhesive
WO2022220223A1 (en) * 2021-04-14 2022-10-20 東洋インキScホールディングス株式会社 Adhesive composition and adhesive sheet
JP7005078B1 (en) * 2021-10-08 2022-01-21 サイデン化学株式会社 Adhesive resin composition

Similar Documents

Publication Publication Date Title
JP2004231797A (en) Biodegradable adhesive, varnish and laminate using the same
JP3395395B2 (en) Biodegradable polyester adhesive
CN105829482B (en) Adhesive composition, adhesive layer, adhesive tape, and double-sided adhesive tape
JP5519996B2 (en) Surface protection adhesive sheet
CN101240060B (en) Crystalline copolyesters having good solubility in unhalogenated solvents and their use
TWI608068B (en) Double-sided adhesive tape
US9260639B2 (en) Polyester adhesive composition
EP2492326B1 (en) Radiation-cure removal type pressure-sensitive adhesive sheet
WO2011049114A1 (en) Double-faced pressure-sensitive adhesive sheet
CN106459694A (en) Adhesive tape for protecting surfaces
JP5199021B2 (en) Solvent-free polyester adhesive composition
JP3090221B2 (en) Polyester adhesive
JP2012107153A (en) Polyester-based self-adhesive composition, and polyester-based self-adhesive, and self-adhesive sheet using the self-adhesive
JP3698533B2 (en)   Method for using degradable copolymers as biodegradable adhesives
KR102047147B1 (en) Adhesive composition and adhesive sheet
JP2004131675A (en) Biodegradable polyester resin-based hot melt adhesive
JP2002088334A (en) Biodegradable hot melt adhesive
EP2821454B1 (en) Unsaturated photo-curable bio-based adhesive composition
JP4470090B2 (en) Anchor agent for adhesive and laminate
JP4273391B2 (en) Anchor for biodegradable printing ink and biodegradable laminate
JP4585152B2 (en) Biodegradable laminate
JP2002097437A (en) Biodegradable polyester adhesive
JP3984684B2 (en) Resin for adhesive, resin composition for adhesive, and adhesive tape
JP7211537B2 (en) Adhesive tape
JP2004099792A (en) Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090820

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091015