JP2004131342A - Extruded part and method of producing the same - Google Patents

Extruded part and method of producing the same Download PDF

Info

Publication number
JP2004131342A
JP2004131342A JP2002298476A JP2002298476A JP2004131342A JP 2004131342 A JP2004131342 A JP 2004131342A JP 2002298476 A JP2002298476 A JP 2002298476A JP 2002298476 A JP2002298476 A JP 2002298476A JP 2004131342 A JP2004131342 A JP 2004131342A
Authority
JP
Japan
Prior art keywords
water
mass
parts
cement
cellulose ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002298476A
Other languages
Japanese (ja)
Inventor
Jun Mitani
美谷 潤
Toshitsugu Tanaka
田中 敏嗣
Akihiko Kodama
児玉 明彦
Akio Tokuoka
徳岡 昭夫
Keisuke Kajima
鹿嶋 圭介
Kanji Yamada
山田 寛次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Kawada Construction Co Ltd
Original Assignee
Taiheiyo Cement Corp
Kawada Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Kawada Construction Co Ltd filed Critical Taiheiyo Cement Corp
Priority to JP2002298476A priority Critical patent/JP2004131342A/en
Publication of JP2004131342A publication Critical patent/JP2004131342A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing an extruded part, by which bending strength and toughness can be improved while maintaining high productivity, and to provide the extruded part used as a civil engineering structural member. <P>SOLUTION: The extruded part is produced by extruding under vacuum a mortar kneaded material containing cement, a pozzolana-based fine powder, aggregate, a quartz powder, needle-like particles, a polypropylene fiber, a water-soluble cellulose ether, a water-reducing agent, and water, and then subjecting the formed part to autoclave curing. A fiber having a specified size is used as the polypropylene fiber, and a water-soluble cellulose ether exhibiting viscosity of 10-100 Pa×s(20°C) when it is prepared as an aqueous solution of 2 mass % is used as the water-soluble cellulose ether. Further, the blending amounts of the water-soluble cellulose ether, the water-reducing agent, and water are 0.15-1.5 parts by mass, 0.3-0.7 parts by mass, and 20-30 parts by mass, respectively, to 100 parts by mass of the cement, and the blending amount of the polypropylene fiber is set to be 3-5 vol.%, based on the volume of the mortar. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、押出成形体およびその製造方法に関し、特に、押出成形体の曲げ強度、靱性などの特性を改良することのできる押出成形体およびその製造方法に関するものである。
【0002】
【従来の技術】
押出成形体としては、セメント、骨材、ポゾラン質微粉末ほか各種の粉粒子、ビニロン繊維、減水剤、水などを混練し、真空押出成形し、養生して製造されたものが知られている。該成形体は強度、靱性などが比較的高いという特性を有している。
しかしながら、原料としてビニロン繊維を用いるため、耐熱性の関係から養生方法を蒸気養生に頼らねばならず、製造時間がかかり生産性が低かった。
【0003】
そこで、ビニロン繊維を用いずポリプロピレン繊維を配合して、オ−トクレ−ブ養生する方法が考えられた。
一例を挙げる。セメント、骨材(例:珪石粉)、補強繊維(石綿、パルプ繊維など)、増粘剤(例:メチルセルロ−ス)などのセメント組成物に長さ3〜12mm,厚み0.01〜0.02mm,幅0.05〜0.3mmの断面が扁平状のポリプロピレン繊維1〜3重量%を配合し混練し、押出成形し、オ−トクレ−ブ養生するセメント板(用途例:瓦)の製造方法が開示されている(例えば、特許文献1)。
【0004】
【特許文献1】
特開平7−267709号公報(請求項1〜3、[0008][0010])
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来法による押出成形体は、一般建築用部材として使用することができるが、土木構造物用部材、例えば、道路構造物用部材、鉄道構造物用部材、下水構造物用部材、簡易スラブなどのような極めて高い靱性を要求される部材には、利用できないという欠点を有していた。
【0006】
本発明は、上記従来法の欠点を考慮し、押出成形体を土木用部材として使用できるようにするために、素材について種々検討を加えたものであって、その目的は、
高い生産性を維持しつつ、
・曲げ強度および靱性を改良すること
のできる押出成形体の製造方法、そして
・土木構造物用部材として使用する押出成形体
を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、概略、ポリプロピレン繊維の寸法、水溶性セルロ−スエ−テルの特性、使用原料およびその配合量などを特定したことを特徴とし、これによって前記目的を達成し、土木構造物にも使用することのできる押出成形体の製造方法を確立したものである。
【0008】
すなわち、本発明(押出成形体の製造方法)は、
「・セメント、
・ポゾラン質微粉末、
・最大粒径2mm以下の骨材、
・平均粒径3〜20μmの石英粉末、
・平均粒度1mm以下の針状粒子および/または薄片状粒子、
・ポリプロピレン繊維、
・水溶性セルロ−スエ−テル、
・減水剤、および
・水、
を含むモルタル混練物を真空下で押出成形後、オ−トクレ−ブ養生してなる押出成形体の製造方法において、
1)・ポリプロピレン繊維として長さ10〜20mm、直径0.05〜0.15m
mのもの、および、
・水溶性セルロ−スエ−テルとして2質量%水溶液に調製したときの粘度が1
0〜100Pa・s(20℃)を示すもの
を使用し、かつ、
2)・水溶性セルロ−スエ−テル、減水剤および水の配合量がセメント100質量部に対しそれぞれ0.15〜1.5質量部、0.3〜0.7質量部(固形分換算)および20〜30質量部、ならびに
・ポリプロピレン繊維の配合量がモルタル体積の3〜5体積%であること」
(請求項1)、
を要旨とし、また、
・上記製造方法によって製造されたものが土木構造物用部材として用いられるこ
と(請求項2)
を特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で製造される押出成形体は、道路構造物用部材、鉄道構造物用部材、海洋構造物用部材、地中構造物用部材、下水構造物用部材、土木構造物用埋設型枠および簡易スラブとして使用される。
【0010】
次に、モルタル混練物の製造に使用する原料について説明する。
セメントは、その品種を限定しない。普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメントなどのポルトランドセメント、高炉セメント、フライアッシュセメントなどの混合セメント、その他ポリマ−セメント、カラ−セメント、エコセメントなど、いずれも使用できる。
特に、前記目的のほか、工期上、早期強度の発現が必要な場合には早強ポルトランドセメント、長期強度の発現が求められる場合には中庸熱ポルトランドセメント、低熱ポルトランドセメントなどを使用するのが好ましい。
【0011】
ポゾラン質微粉末は、配合することによってマイクロフィラ−効果、およびセメント分散効果が生じ、押出成形体を緻密化し強度を向上させるなどの作用がある。
そのような作用効果を有するポゾラン質微粉末としては、シリカフュ−ム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゾル、沈降シリカなどが挙げられる。
細かさは、特に限定しないが細かい方が好ましい。中でも、シリカフュ−ムおよびシリカダストは、それ自体が平均粒径1.0μm以下であり、粉砕処理を要さずそのまま使用できるのでコスト上からも好ましい。
配合量は、モルタルの混練性、押出成形性、強度の点から、セメント100質量部に対し5〜50質量部が好ましく、特に、15〜35質量部より好ましい。
【0012】
骨材は、慣用の川砂、陸砂、海砂、砕砂、珪砂またはこれらの混合物を使用する。
骨材は、最大粒径2mm以下のものを使用する。2mmを超えると、強度が低下するので好ましくない。好ましい最大粒径は、強度発現性の観点から1.5mm以下、より好ましくは1.2mm以下である。
配合量は、原料配合物の混練性、押出成形性など、硬化後にあっては強度、クラックに対する抵抗性などの観点からセメント100質量部に対し50〜250質量部が好ましく、80〜180質量部がより好ましい。
【0013】
石英粉末には、石英、非晶質石英などの粉末、オパ−ル質・クリストバライト質などのシリカ含有粉末が挙げられる。
細かさは、平均粒径が3〜20μmの範囲のものでなければならない。その範囲外では、強度が低下するので好ましくない。4〜10μmのものが強度の点から好ましい。
配合量は、原料配合物の混練性、混練物の押出成形性、硬化後の強度などの観点から、セメント100質量部に対し1〜50質量部が好ましく、5〜40質量部がより好ましい。
【0014】
次に、針状粒子および薄片状粒子について説明する。
針状粒子としては、ウォラストナイト、ボ−キサイト、ムライトなどが挙げられる。
薄片状粒子としては、マイカフレ−ク、タルクフレ−ク、バ−ミキュライトフレ−ク、アルミナフレ−クなどが挙げられる。
それら粒子は、単独配合しても、または併用しても良い。
針状粒子、薄片状粒子とも、平均粒度(注)1mm以下のものを配合する。1mmを超える場合には、押出成形体の強度、靱性が低下するので好ましくない(なお、針状粒子は、靱性を高めるために、長さ/直径比が3以上のものが好ましい)。
配合量(併用の場合は、合計配合量)は、原料配合物の混練性、混練物の押出成形性、硬化後の強度、靱性などの点から、セメント100質量部に対し1〜35質量部が好ましく、2〜25質量部がより好ましい。
(注)この明細書において、「平均粒度」とは、針状粒子および薄片状粒子の
最大寸法(針状粒子の場合、長さ寸法となる)をいう。
【0015】
ポリプロピレン繊維は、他の有機繊維に比して耐熱性が高く、オ−トクレ−ブ養生が可能である。
該繊維は、長さが10〜20mm、直径が0.05〜0.15mmのものを配合することが重要である。
長さが10mm未満では靱性が低下し、20mmを超えると原料配合物の混練性、混練物の押出成形性が低下するので、いずれも好ましくない。直径が0.05mm未満では靱性が低下し、一方、0.15mmを超えると押出成形性が低下するので、両方とも好ましくない。
ポリプロピレン繊維の配合量は、モルタル体積の3〜5体積%である。3体積%未満の場合、強度、靱性などが低下するので好ましくなく、また、5体積%を超える場合、押出成形性が低下するので、やはり好ましくない。
【0016】
水溶性セルロ−スエ−テルは、モルタル混練物の増粘剤として配合するものであるが、具体的には、ヒドロキシプロピルメチルセルロ−ス(HPMC)などが挙げられる。
水溶性セルロ−スエ−テルとしては、その2質量%水溶液の粘度が10〜100Pa・s(20℃)を示すものを配合に用いることが重要である。
調製された2質量%水溶液が上記粘度範囲外を示す水溶性セルロ−スエ−テルを配合した場合、原料配合物の混練性、混練物の押出成形性などが極端に低下するので好ましくない。なお、好ましい水溶性セルロ−スエ−テルは、ヒドロキシプロピルメチルセルロ−ス(HPMC)である。
【0017】
水溶性セルロ−スエ−テルの配合量は、セメント100質量部に対し0.15〜1.5質量部である。
配合量が0.15質量部未満では押出成形が困難となり、逆に1.5質量部を超えると混練物の粘性が上昇し混練性、押出成形性が低下するので、いずれも好ましくない。
【0018】
減水剤には、リグニンスルホン酸系、ナフタレンスルホン酸系、アルキルアリルスルホン酸系、メラミンスルホン酸系、ポリカルボン酸系、オキシカルボン酸系などの各種減水剤(AE減水剤、高性能減水剤、高性能AE減水剤を含む)が挙げられる。
配合量は、セメント100質量部に対して0.3〜0.7質量部(固形分換算)である。配合量が0.3質量部(固形分換算)未満の場合、原料配合物の混練性、混練物の押出成形性が低下し、また、0.7質量部(固形分換算)を超える場合、強度が低下するので、いずれの場合も好ましくない。
なお、減水剤は、液状、粉末状いずれも使用できる。
【0019】
水の配合量は、セメント100質量部に対し20〜30質量部である。20質量部未満では原料配合物の混練性、混練物の押出成形性が困難になり、30質量部を超えると強度が低下するので、いずれも好ましくない。
【0020】
次に、押出成形体の製造方法について説明する。
前述した各原料を適宜選択し、配合し混練してモルタル混練物を製造する。
混練方法は、特に限定するものではないが、次のような方法がある。
1)配合する全原料をポリプロピレン繊維、水溶性セルロ−スエ−テル、減水剤および水のグル−プと、それらを除く他の原料のグル−プとに2分し、後者をミキサに投入して混合したもの(プレミックス)に前者のグル−プの各原料を投入し、引き続き混練する方法、
2)原料(水を除く)をミキサに投入して混合したのち、水を投入して引き続き混練する方法(ただし、減水剤は、粉末状のものを使用する)、
3)各原料を個別にミキサに順次投入し混練する方法、
などが挙げられる。
【0021】
上記混練には、コンクリ−ト混練用のミキサが使用できる。例えば、アイリッヒミキサ、揺動型ミキサ、パンタイプミキサ、二軸練りミキサなどである。
混練は、せん断力の大きいアイリッヒミキサが好ましい。原料配合物をアイリッヒミキサ、次いでニ−ダ−ロ−ラで混練した場合、押出成形を効率的に行なうことができ、最も好ましいモルタル混練物が得られる。
【0022】
モルタル混練物は、真空下(1〜60mmHg)で押出成形する。
押出成形機には、例えば、一軸または二軸の連続式真空押出機などが用いられる。
【0023】
成形された生の押出成形体は、前養生した後、オ−トクレ−ブ養生する。
オ−トクレ−ブ養生の実施は、養生時間を短縮し、生産性の向上を図ることができる。その養生温度は、105〜150℃、好ましくは110〜130℃であり、養生時間は、3〜8時間である。
なお、前養生の方法には、例えば、生の押出成形体を温度5〜100℃、相対湿度50〜100%の条件下で養生する方法、50〜100℃で蒸気養生する方法などが挙げられる。
【0024】
以上のようにして製造された押出成形体は、20MPa以上の曲げひび割れ強度を具備し、靱性も著しく優れている。
そのために、本発明による押出成形体は、前掲した土木構造物部材に使用することができる。
【0025】
【実施例】
以下、本発明を実施例により説明する。
使用した原料は、次のとおりです。
1)セメント:低熱ポルトランドセメント(太平洋セメント社製)
2)ポゾラン質微粉末:シリカフュ−ム(平均粒径0,25μm)
3)骨材:珪砂5号(最大粒径2.0mm)
4)石英粉末:平均粒径7μm
5)針状粒子:ウォラストナイト(平均粒度;0.3mm、長さ/直径比=4)6)ポリプロピレン繊維:
繊維A;長さ12mm、直径0.1mm、
繊維B;長さ18mm、直径0.1mm、
繊維C;長さ12mm、直径0.2mm、
繊維D;長さ12mm、直径0.043mm、
7)水溶性セルロ−スエ−テル:ヒドロキシプロピルメチルセルロ−ス(HPMC)、20℃における2質量%水溶液の粘度;50Pa・s
8)減水剤:ポリカルボン酸系高性能減水剤
9)水:水道水
【0026】
(実施例1〜2、比較例1〜10)
上記原料を用いてモルタル混練物を製造した。
すなわち、セメント;100質量部、ポゾラン質微粉末;32、5質量部、骨材;120質量部、石英粉末;30質量部、針状粒子;24質量部および表1に示す配合量のポリプロピレン繊維および水溶性セルロ−スエ−テルをアイリッヒミキサに一括投入し空練りしたものに、同表に示す配合量(質量部)の減水剤(固形分換算)および水を投入し混練し、引き続きニ−ダ−ロ−ラで混練してモルタル混練物を得た。
そして、該混練物を真空押出成形機(三上社製)を用いて、450×3000×25mmの大きさに成形した。
次いで、30℃、相対湿度80%の条件下、40時間前養生を行なったのち、120℃でオ−トクレ−ブ養生を6時間行ない、押出成形体(道路構造物用部材)を製造した。
なお、表1において、ポリプロピレン繊維の配合量のみは、全モルタル容積に対する「容積%」で表示した。
【0027】
【表1】

Figure 2004131342
【0028】
一方、モルタル混練物および押出成形体について、以下の測定を行なった。
1)モルタル混練物:押出成形性の観察をし、良好な場合を「◯」、やや良好な場合を「△」、混練が困難な場合を「×」とし、3段階で評価した。
2)押出成形体:押出成形体を450×25×1500mmに切断して供試体を作製し、支点間距離;1200mmの3等分点曲げ載荷試験により、曲げひび割れ強度および曲げたわみ40mm時の曲げ強度を測定し、両者から残存曲げ耐力比(注)を算出した。
上記の結果を表1に併記した。
(注)「曲げ靱性」ともいう。計算式は、次のとおりである。
残存曲げ耐力比(%)=[(曲げたわみ40mm時の曲げ強度)/(曲げひび割れ強度)]×100
【0029】
表1、実施例1、2の測定結果から、ポリプロピレン繊維および水溶性セルロ−スエ−テルならびに配合割合をそれぞれ特定範囲に限定することにより、モルタル混練物の押出成形性および押出成形体の残存曲げ耐力比(曲げ靱性)が改良されることが確認された。
その結果、押出成形体を土木構造物用部材に使用できることが判明した。
一方、比較例1〜10から、上記特定範囲から外れて製造された場合、押出成形性および/または残存曲げ耐力比が好ましくないことが認められた。
【0030】
【発明の効果】
本発明は、オ−トクレ−ブ養生を行なってセメント押出成形体を製造するにあたり、原料の一部であるポリプロピレン繊維、水溶性セルロ−スエ−テルを限定し、かつ、使用原料およびその配合量を特定したことを特徴とし、これにより、高い生産性を維持しつつ、曲げ強度および靱性が改良されるという特性改良効果を奏した結果、該押出成形体が土木構造物用部材として使用できる、という用途拡大効果も生じた。
すなわち、本発明にしたがって製造された押出成形体は、道路構造物用部材、鉄道構造物用部材、海洋構造物用部材、地中構造物用部材、下水構造物用部材、土木構造物用埋設型枠および簡易スラブに使用できることとなった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an extruded product and a method for producing the same, and more particularly to an extruded product capable of improving properties such as bending strength and toughness of the extruded product and a method for producing the same.
[0002]
[Prior art]
As an extruded product, there is known one produced by kneading cement, aggregate, pozzolanic fine powder, various powder particles, vinylon fiber, water reducing agent, water, etc., vacuum extruding and curing. . The molded article has characteristics such as relatively high strength and toughness.
However, since vinylon fiber is used as a raw material, the curing method has to rely on steam curing from the viewpoint of heat resistance, which requires a long production time and low productivity.
[0003]
Then, a method of blending polypropylene fibers without using vinylon fibers and performing autoclave curing has been considered.
Take an example. A cement composition such as cement, aggregate (eg, silica powder), reinforcing fiber (asbestos, pulp fiber, etc.), thickener (eg, methylcellulose), has a length of 3 to 12 mm and a thickness of 0.01 to 0.1 mm. Manufacture of cement board (use example: tile) which mixes, kneads, extrudes and cures autoclave by mixing 1 to 3% by weight of polypropylene fiber having a flat cross section of 02 mm and width of 0.05 to 0.3 mm. A method is disclosed (for example, Patent Document 1).
[0004]
[Patent Document 1]
JP-A-7-267709 (Claims 1 to 3, [0008] and [0010])
[0005]
[Problems to be solved by the invention]
However, the extruded body according to the above-mentioned conventional method can be used as a member for general buildings, but is used for members for civil engineering structures, for example, members for road structures, members for railway structures, members for sewage structures, and members for simple construction. A member requiring extremely high toughness, such as a slab, has a drawback that it cannot be used.
[0006]
The present invention has been made in consideration of the drawbacks of the above-mentioned conventional methods, and has made various studies on materials in order to use the extruded body as a member for civil engineering.
While maintaining high productivity,
An object of the present invention is to provide a method for producing an extruded body capable of improving bending strength and toughness, and to provide an extruded body used as a member for civil engineering structures.
[0007]
[Means for Solving the Problems]
The present invention is characterized in that the dimensions of the polypropylene fiber, the characteristics of the water-soluble cellulose ether, the raw materials used and the amounts thereof are generally specified, thereby achieving the above-mentioned object, and also being used in civil engineering structures. It has established a method for producing an extruded body that can be used.
[0008]
That is, the present invention (the method for producing an extruded body)
"·cement,
・ Pozzolanic fine powder,
・ Aggregate with maximum particle size of 2mm or less
A quartz powder having an average particle size of 3 to 20 μm,
Needle-like particles and / or flaky particles having an average particle size of 1 mm or less,
・ Polypropylene fiber,
・ Water-soluble cellulose ether,
Water reducing agents, and water,
In a method for producing an extruded body obtained by extruding a mortar kneaded product containing under vacuum in an autoclave,
1) 10 to 20 mm in length and 0.05 to 0.15 m in diameter as polypropylene fiber
m, and
A viscosity of 1 when prepared as a 2% by weight aqueous solution as a water-soluble cellulose ether;
Use a material exhibiting 0 to 100 Pa · s (20 ° C.), and
2) The compounding amounts of the water-soluble cellulose ether, water reducing agent and water are 0.15 to 1.5 parts by mass and 0.3 to 0.7 parts by mass, respectively, based on 100 parts by mass of the cement (in terms of solid content). And 20 to 30 parts by mass, and the amount of the polypropylene fiber is 3 to 5% by volume of the mortar volume. "
(Claim 1),
To the abstract, and
-The thing manufactured by the said manufacturing method is used as a member for civil engineering structures (Claim 2)
It is characterized by the following.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The extruded body manufactured by the present invention is a member for road structures, a member for railway structures, a member for marine structures, a member for underground structures, a member for sewage structures, a buried formwork for civil engineering structures and Used as a simple slab.
[0010]
Next, the raw materials used for producing the mortar kneaded material will be described.
Cement does not limit its variety. Portland cement such as ordinary Portland cement, early-strength Portland cement, medium heat Portland cement, low heat Portland cement, etc., mixed cement such as blast furnace cement, fly ash cement, other polymer cement, color cement, eco cement, etc. can be used. .
In particular, in addition to the above-mentioned purpose, it is preferable to use early-strength Portland cement when early strength is required on the construction period, and moderate heat Portland cement or low-heat Portland cement when long-term strength is required. .
[0011]
By mixing the pozzolanic fine powder, a microfiller effect and a cement dispersing effect are produced, and the pozzolanic fine powder has effects such as densifying the extruded product and improving the strength.
Examples of the pozzolanic fine powder having such an effect include silica fume, silica dust, fly ash, slag, volcanic ash, silica sol, precipitated silica, and the like.
Although fineness is not particularly limited, finer is preferable. Among them, silica fume and silica dust are preferred in terms of cost because they themselves have an average particle size of 1.0 μm or less and can be used as they are without pulverization.
The compounding amount is preferably 5 to 50 parts by mass, particularly preferably 15 to 35 parts by mass with respect to 100 parts by mass of cement, in view of kneading properties, extrudability and strength of the mortar.
[0012]
As the aggregate, conventional river sand, land sand, sea sand, crushed sand, quartz sand or a mixture thereof is used.
Aggregates having a maximum particle size of 2 mm or less are used. If it exceeds 2 mm, the strength is undesirably reduced. The preferred maximum particle size is 1.5 mm or less, more preferably 1.2 mm or less from the viewpoint of strength development.
The compounding amount is preferably from 50 to 250 parts by mass, more preferably from 80 to 180 parts by mass, based on 100 parts by mass of cement from the viewpoint of strength, resistance to cracks, etc. after curing, such as kneadability and extrudability of the raw material mixture. Is more preferred.
[0013]
Examples of the quartz powder include powders such as quartz and amorphous quartz, and silica-containing powders such as opal and cristobalite.
Fineness should be such that the average particle size is in the range of 3-20 μm. Outside this range, the strength is undesirably reduced. Those having a diameter of 4 to 10 μm are preferred in terms of strength.
The compounding amount is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass with respect to 100 parts by mass of cement, from the viewpoints of kneadability of the raw material mixture, extrudability of the kneaded material, strength after curing, and the like.
[0014]
Next, the acicular particles and the flaky particles will be described.
Examples of the acicular particles include wollastonite, bauxite, and mullite.
Examples of the flaky particles include mica flake, talc flake, vermiculite flake, and alumina flake.
These particles may be used alone or in combination.
Both the acicular particles and the flaky particles are blended having an average particle size (note) of 1 mm or less. If it exceeds 1 mm, the strength and the toughness of the extruded product are undesirably reduced (the needle-like particles preferably have a length / diameter ratio of 3 or more in order to increase the toughness).
The compounding amount (in the case of combined use, the total compounding amount) is from 1 to 35 parts by mass based on 100 parts by mass of cement from the viewpoints of kneading properties of the raw material mixture, extrudability of the kneaded product, strength after curing, toughness, and the like. Is preferable, and 2 to 25 parts by mass is more preferable.
(Note) In this specification, the “average particle size” refers to the maximum dimension of acicular particles and flaky particles (in the case of acicular particles, it is the length dimension).
[0015]
Polypropylene fibers have higher heat resistance than other organic fibers and can be autoclaved.
It is important that the fibers have a length of 10 to 20 mm and a diameter of 0.05 to 0.15 mm.
If the length is less than 10 mm, the toughness decreases, and if it exceeds 20 mm, the kneading property of the raw material mixture and the extrudability of the kneading material are reduced, and neither is preferable. If the diameter is less than 0.05 mm, the toughness decreases, while if it exceeds 0.15 mm, the extrudability decreases, and both are not preferred.
The blending amount of the polypropylene fiber is 3 to 5% by volume of the mortar volume. If the amount is less than 3% by volume, strength and toughness are undesirably reduced. On the other hand, if the amount is more than 5% by volume, extrudability is undesirably reduced.
[0016]
The water-soluble cellulose ether is blended as a thickening agent for the mortar kneaded material, and specific examples thereof include hydroxypropylmethyl cellulose (HPMC).
As the water-soluble cellulose ether, it is important to use a 2% by mass aqueous solution having a viscosity of 10 to 100 Pa · s (20 ° C.).
It is not preferable that the prepared 2% by mass aqueous solution contains a water-soluble cellulose ether having a viscosity outside the above range because the kneading property of the raw material mixture and the extrudability of the kneaded product are extremely reduced. A preferred water-soluble cellulose ether is hydroxypropylmethyl cellulose (HPMC).
[0017]
The amount of the water-soluble cellulose ether is 0.15 to 1.5 parts by mass based on 100 parts by mass of the cement.
If the compounding amount is less than 0.15 parts by mass, extrusion molding becomes difficult, while if it exceeds 1.5 parts by mass, the viscosity of the kneaded material increases, and the kneading properties and the extrudability are reduced, and neither is preferable.
[0018]
Water reducing agents include various water reducing agents such as lignin sulfonic acid type, naphthalene sulfonic acid type, alkyl allyl sulfonic acid type, melamine sulfonic acid type, polycarboxylic acid type and oxycarboxylic acid type (AE water reducing agent, high performance water reducing agent, Including high performance AE water reducing agents).
The compounding amount is 0.3 to 0.7 parts by mass (in terms of solid content) based on 100 parts by mass of cement. When the compounding amount is less than 0.3 parts by mass (solid content), the kneading property of the raw material mixture and the extrudability of the kneaded material are reduced, and when the compounding amount exceeds 0.7 parts by mass (solid content), Either case is not preferred because the strength is reduced.
In addition, as a water reducing agent, any of a liquid form and a powder form can be used.
[0019]
The amount of water is 20 to 30 parts by mass based on 100 parts by mass of cement. If the amount is less than 20 parts by mass, the kneadability of the raw material mixture and the extrudability of the kneaded material become difficult, and if the amount exceeds 30 parts by mass, the strength is reduced, and neither is preferred.
[0020]
Next, a method for manufacturing an extruded product will be described.
The above-mentioned raw materials are appropriately selected, blended and kneaded to produce a mortar kneaded material.
The kneading method is not particularly limited, but includes the following methods.
1) All raw materials to be blended are divided into a polypropylene fiber, a water-soluble cellulose ether, a water reducing agent and a water group, and a group of other raw materials other than the above, and the latter is put into a mixer. A method in which the raw materials of the former group are added to the mixture (premix), followed by kneading,
2) A method in which raw materials (excluding water) are charged into a mixer and mixed, and then water is charged and continuously kneaded (however, a water reducing agent is used in powder form);
3) a method in which each raw material is individually put into a mixer sequentially and kneaded,
And the like.
[0021]
For the kneading, a mixer for concrete kneading can be used. For example, there are an Erich mixer, an oscillating mixer, a pan-type mixer, a twin-screw mixer, and the like.
For the kneading, an Erich mixer having a large shearing force is preferable. When the raw material mixture is kneaded with an Erich mixer and then with a kneader roller, extrusion molding can be performed efficiently, and the most preferable mortar kneaded material is obtained.
[0022]
The mortar mixture is extruded under vacuum (1 to 60 mmHg).
As the extruder, for example, a single-screw or twin-screw continuous vacuum extruder is used.
[0023]
The molded raw extrudate is pre-cured and then autoclaved.
Autocure curing can shorten the curing time and improve productivity. The curing temperature is 105 to 150 ° C, preferably 110 to 130 ° C, and the curing time is 3 to 8 hours.
The pre-curing method includes, for example, a method of curing a raw extruded product at a temperature of 5 to 100 ° C. and a relative humidity of 50 to 100%, and a method of steam curing at 50 to 100 ° C. .
[0024]
The extruded body manufactured as described above has a bending crack strength of 20 MPa or more, and has extremely excellent toughness.
Therefore, the extruded product according to the present invention can be used for the above-mentioned civil engineering structural member.
[0025]
【Example】
Hereinafter, the present invention will be described with reference to examples.
The raw materials used are as follows.
1) Cement: Low heat Portland cement (manufactured by Taiheiyo Cement Corporation)
2) Pozzolanic fine powder: silica fume (average particle size: 0.25 μm)
3) Aggregate: silica sand No. 5 (maximum particle size 2.0 mm)
4) Quartz powder: average particle size 7 μm
5) Acicular particles: wollastonite (average particle size; 0.3 mm, length / diameter ratio = 4) 6) Polypropylene fiber:
Fiber A; length 12 mm, diameter 0.1 mm,
Fiber B; length 18 mm, diameter 0.1 mm,
Fiber C; length 12 mm, diameter 0.2 mm,
Fiber D; length 12 mm, diameter 0.043 mm,
7) Water-soluble cellulose ether: hydroxypropylmethylcellulose (HPMC), viscosity of a 2% by mass aqueous solution at 20 ° C .; 50 Pa · s
8) Water reducing agent: polycarboxylic acid-based high-performance water reducing agent 9) Water: tap water
(Examples 1 and 2, Comparative Examples 1 to 10)
A mortar kneaded product was manufactured using the above-mentioned raw materials.
That is, cement: 100 parts by mass, pozzolanic fine powder; 32, 5 parts by mass, aggregate: 120 parts by mass, quartz powder: 30 parts by mass, acicular particles: 24 parts by mass, and polypropylene fiber having the compounding amount shown in Table 1 The water-soluble cellulose ether was put into the Erich mixer at once, and the mixture was kneaded and kneaded with a water-reducing agent (in terms of solid content) and water having the compounding amount (parts by mass) shown in the same table, followed by kneading. The mixture was kneaded with a Darroller to obtain a kneaded mortar.
Then, the kneaded product was formed into a size of 450 × 3000 × 25 mm using a vacuum extrusion molding machine (manufactured by Mikami).
Next, after pre-curing for 40 hours under the conditions of 30 ° C. and relative humidity of 80%, autoclave curing was performed at 120 ° C. for 6 hours to produce an extruded body (member for road structure).
In Table 1, only the blending amount of the polypropylene fiber was indicated by "volume%" with respect to the total mortar volume.
[0027]
[Table 1]
Figure 2004131342
[0028]
On the other hand, the following measurement was performed on the mortar kneaded material and the extruded product.
1) Kneaded mortar: Extrusion moldability was observed, and a good case was evaluated as “◯”, a slightly good case was evaluated as “△”, and a difficult kneading was evaluated as “x”, and evaluated in three steps.
2) Extruded body: The extruded body was cut into 450 × 25 × 1500 mm to prepare a test piece, and the bending crack strength and the bending at 40 mm of bending were determined by a cubic point bending load test of fulcrum distance: 1200 mm. The strength was measured, and the residual bending strength ratio (note) was calculated from both.
The results are shown in Table 1.
(Note) Also called "bending toughness". The calculation formula is as follows.
Residual bending strength ratio (%) = [(bending strength at bending of 40 mm) / (bending crack strength)] × 100
[0029]
From the measurement results of Table 1 and Examples 1 and 2, the extrudability of the mortar kneaded product and the residual bending of the extruded product were determined by limiting the polypropylene fiber, the water-soluble cellulose ether, and the mixing ratio to specific ranges, respectively. It was confirmed that the proof stress ratio (bending toughness) was improved.
As a result, it was found that the extruded product can be used as a member for civil engineering structures.
On the other hand, it was recognized from Comparative Examples 1 to 10 that, when manufactured out of the above specified range, the extrudability and / or the ratio of residual bending strength were not preferable.
[0030]
【The invention's effect】
The present invention limits the polypropylene fiber and the water-soluble cellulose ether, which are a part of the raw materials, to produce a cement extruded body by performing autoclave curing, and also uses the raw materials and the amounts thereof. It is characterized by the fact that, while maintaining high productivity, as a result of the characteristic improvement effect that the bending strength and toughness are improved, the extruded body can be used as a member for civil engineering structures, This also has the effect of expanding applications.
That is, the extruded body manufactured according to the present invention is a member for a road structure, a member for a railway structure, a member for an offshore structure, a member for an underground structure, a member for a sewage structure, a member for burying a civil structure. It can be used for formwork and simple slabs.

Claims (2)

セメント、ポゾラン質微粉末、最大粒径2mm以下の骨材、平均粒径3〜20μmの石英粉末、平均粒度1mm以下の針状粒子および/または薄片状粒子、ポリプロピレン繊維、水溶性セルロ−スエ−テル、減水剤、および水を含むモルタル混練物を真空下で押出成形後、オ−トクレ−ブ養生してなる押出成形体の製造方法において、
1)ポリプロピレン繊維として長さ10〜20mm、直径0.05〜0.15mmのもの、および、水溶性セルロ−スエ−テルとして2質量%水溶液に調製したときの粘度が10〜100Pa・s(20℃)を示すものを使用し、か
つ、
2)水溶性セルロ−スエ−テル、減水剤および水の配合量がセメント100質量部に対しそれぞれ0.15〜1.5質量部、0.3〜0.7質量部(固形分換算)および20〜30質量部、ならびにポリプロピレン繊維の配合量がモ
ルタル体積の3〜5体積%である
ことを特徴とする押出成形体の製造方法。
Cement, pozzolanic fine powder, aggregate having a maximum particle size of 2 mm or less, quartz powder having an average particle size of 3 to 20 μm, needle-like particles and / or flaky particles having an average particle size of 1 mm or less, polypropylene fiber, water-soluble cellulosic A method for producing an extruded product obtained by extruding a mortar kneaded product containing a ter, a water reducing agent, and water under vacuum and then curing the autoclave.
1) A polypropylene fiber having a length of 10 to 20 mm and a diameter of 0.05 to 0.15 mm, and a water-soluble cellulose ether having a viscosity of 10 to 100 Pa · s (20 ° C), and
2) The compounding amounts of the water-soluble cellulose ether, water reducing agent and water are 0.15 to 1.5 parts by mass, 0.3 to 0.7 parts by mass (in terms of solid content) and 100 parts by mass of cement, respectively. 20 to 30 parts by mass and a blending amount of the polypropylene fiber is 3 to 5% by volume of the mortar volume.
請求項1に記載の製造方法によって製造されたものが土木構造物用部材として用いられることを特徴とする押出成形体。An extruded product, which is produced by the production method according to claim 1 and is used as a member for civil engineering structures.
JP2002298476A 2002-10-11 2002-10-11 Extruded part and method of producing the same Pending JP2004131342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298476A JP2004131342A (en) 2002-10-11 2002-10-11 Extruded part and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298476A JP2004131342A (en) 2002-10-11 2002-10-11 Extruded part and method of producing the same

Publications (1)

Publication Number Publication Date
JP2004131342A true JP2004131342A (en) 2004-04-30

Family

ID=32287880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298476A Pending JP2004131342A (en) 2002-10-11 2002-10-11 Extruded part and method of producing the same

Country Status (1)

Country Link
JP (1) JP2004131342A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424418A (en) * 2005-03-21 2006-09-27 Felix Allen Hughes Cement composition containing amongst other constituents, pozzolanic reaction particles and fibres
CN102229189A (en) * 2011-06-21 2011-11-02 云浮市新富云岗石有限公司 Square stock type artificial quartzite plate and manufacturing method thereof
JP2019031433A (en) * 2017-08-04 2019-02-28 東邦化学工業株式会社 Additive for extrusion-molding cement compositions

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424418A (en) * 2005-03-21 2006-09-27 Felix Allen Hughes Cement composition containing amongst other constituents, pozzolanic reaction particles and fibres
GB2424418B (en) * 2005-03-21 2008-10-08 Felix Allen Hughes Concrete compositions
CN102229189A (en) * 2011-06-21 2011-11-02 云浮市新富云岗石有限公司 Square stock type artificial quartzite plate and manufacturing method thereof
CN102229189B (en) * 2011-06-21 2013-03-20 云浮市新富云岗石有限公司 Square stock type artificial quartzite plate and manufacturing method thereof
JP2019031433A (en) * 2017-08-04 2019-02-28 東邦化学工業株式会社 Additive for extrusion-molding cement compositions
JP7068091B2 (en) 2017-08-04 2022-05-16 東邦化学工業株式会社 Additives for Extruded Cement Compositions

Similar Documents

Publication Publication Date Title
JP2015536899A (en) Method for producing a master mixture based on carbonaceous nanofillers and superplasticizers and use of this mixture in curable inorganic systems
JP3397775B2 (en) Hydraulic composition
JP4407779B2 (en) Binder for hydraulic composition for extrusion molding, hydraulic composition and method for producing extruded product
JP5101355B2 (en) Cement composition
JP2001181004A (en) High-strength mortar and high-strength concrete
JP3397774B2 (en) Hydraulic composition
JP2009084092A (en) Mortar-based restoring material
JP2002348167A (en) Hydraulic composition
JPH01244808A (en) Manufacture of cement molded matter having high strength and precise structure
JP4039801B2 (en) Hydraulic composition
JP2004131342A (en) Extruded part and method of producing the same
JP2004300001A (en) Organic fiber-containing high strength concrete thin sheet reinforced by high strength mesh
JP4165992B2 (en) Hydraulic composition
JP2002012465A (en) Extrusion compact and its manufacturing method
JP6959000B2 (en) Cement composition
JP4526627B2 (en) Steel pipe filling concrete
JP7403342B2 (en) Cement composition and its manufacturing method, and mortar
JP2018192703A (en) Method for producing extrusion-molded product
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JP5895588B2 (en) Underwater non-separated grout composition, grout slurry and grout cured body
JP2004224639A (en) Slab member
JP3652446B2 (en) Cement-based extrusion aid and cement-based extrusion molding material
JP2001226160A (en) Ultrahigh strength cement hardened body
JP2864862B2 (en) Cement compositions and cement extruded products
JP2001220200A (en) Water-sealing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070627