JP5101355B2 - Cement composition - Google Patents
Cement composition Download PDFInfo
- Publication number
- JP5101355B2 JP5101355B2 JP2008067661A JP2008067661A JP5101355B2 JP 5101355 B2 JP5101355 B2 JP 5101355B2 JP 2008067661 A JP2008067661 A JP 2008067661A JP 2008067661 A JP2008067661 A JP 2008067661A JP 5101355 B2 JP5101355 B2 JP 5101355B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- cement
- parts
- cement composition
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、アラミド繊維を使用したセメント組成物に関する。 The present invention relates to a cement composition using aramid fibers.
従来より、有機繊維を含有する機械的特性(圧縮強度、曲げ強度、破壊エネルギー、静弾性係数等)に優れるセメント系材料(モルタル、コンクリート等)が種々提案されている。
例えば、セメントと、BET比表面積5〜25m2/gの微粉末と、ブレーン比表面積3000〜30000cm2/gの無機粉末と、細骨材と、有機繊維と、減水剤及び水を含むセメント組成物が提案されている(特許文献1)。該セメント組成物では、その実施例において、直径0.3mm、長さ13mmのビニロン繊維や直径0.3mm、長さ13mmのアラミド繊維が使用されている。そして、150〜170N/mm2程度の圧縮強度と20〜30N/mm2程度の曲げ強度が得られている。
また、セメント、ポゾラン質微粉末、細骨材、減水剤、補強用繊維、収縮低減剤、空気量調整剤および水からなる高強度モルタルが提案されている(特許文献2)。該高強度モルタルでは、その実施例において、直径0.012mm、長さ12mm又は30mmのアラミド繊維が使用されている。そして、170N/mm2程度の圧縮強度と25N/mm2程度の曲げ強度が得られている。
For example, a cement, a fine powder having a BET specific surface area 5~25m 2 / g, and inorganic powders of Blaine specific surface area 3000~30000cm 2 / g, and fine aggregate, and organic fibers, cement composition comprising a water reducing agent and water The thing is proposed (patent document 1). In this embodiment, vinylon fibers having a diameter of 0.3 mm and a length of 13 mm and aramid fibers having a diameter of 0.3 mm and a length of 13 mm are used. Then, 150~170N / mm 2 approximately compressive strength and 20-30 N / mm 2 of about bending strength is obtained.
Further, a high-strength mortar composed of cement, pozzolanic fine powder, fine aggregate, water reducing agent, reinforcing fiber, shrinkage reducing agent, air amount adjusting agent and water has been proposed (Patent Document 2). In the high strength mortar, an aramid fiber having a diameter of 0.012 mm and a length of 12 mm or 30 mm is used in the embodiment. Then, 170N / mm 2 approximately compressive strength and 25 N / mm 2 of about bending strength is obtained.
一般に、機械的特性に優れるセメント組成物(具体的には、モルタル、コンクリート等)は、次のような利点を有する。
(1)現場打ちで建築物等を構築する場合には、コンクリート層の厚さを薄くすることができるので、コンクリートの打設量が少なくなり、労力の軽減、コストの削減、利用空間の増大等を図ることができる。
(2)プレキャスト部材を製造する場合には、該プレキャスト部材の厚さを薄くすることができるので、軽量化を図ることができ、運搬や施工が容易になる。
(3)耐摩耗性や、中性化・クリープ等に対する耐久性が向上する。
現在、これらの利点に鑑みて、有機繊維を含有するセメント組成物においても、より機械的特性に優れるセメント組成物、特に高い圧縮強度(具体的には180N/mm2以上の圧縮強度)を発現できるセメント組成物が望まれている。
しかしながら、前記特許文献1、2に開示されるセメント組成物や高強度モルタルでは、有機繊維を含有する場合、圧縮強度が180N/mm2以上のセメント質硬化体を製造することは困難である。
In general, a cement composition (specifically, mortar, concrete, etc.) having excellent mechanical properties has the following advantages.
(1) When building buildings on site, the thickness of the concrete layer can be reduced, reducing the amount of concrete placement, reducing labor, reducing costs, and increasing use space. Etc. can be achieved.
(2) When a precast member is manufactured, the thickness of the precast member can be reduced, so that the weight can be reduced, and transportation and construction are facilitated.
(3) Abrasion resistance and durability against neutralization and creep are improved.
At present, in view of these advantages, cement compositions containing organic fibers also exhibit higher mechanical properties, especially high compressive strength (specifically, compressive strength of 180 N / mm 2 or more). Cement compositions that can be made are desired.
However, in the cement compositions and high-strength mortars disclosed in Patent Documents 1 and 2, it is difficult to produce a cementitious hardened body having a compressive strength of 180 N / mm 2 or more when it contains organic fibers.
本発明は、上述の背景に鑑みてなされたものであって、有機繊維を含有するセメント組成物においても、180N/mm2以上の圧縮強度を発現し、他の機械的特性にも優れるセメント組成物を提供することを目的とする。 The present invention has been made in view of the above background, and in a cement composition containing an organic fiber, a cement composition that expresses a compressive strength of 180 N / mm 2 or more and is excellent in other mechanical properties. The purpose is to provide goods.
本発明者は、上記課題を解決するために鋭意検討した結果、セメント、BET比表面積が5〜25m2/gの微粉末とブレーン比表面積が3500〜10000cm2/gの無機粉末とともに、特定の直径と長さを有するアラミド繊維を使用することにより、本発明の上記目的を達成することができることを見い出し、本発明を完成するに至った。 The present inventor has conducted extensive studies to solve the above problems, cement, BET specific surface area of fine powder and Blaine specific surface area of 5~25m 2 / g with an inorganic powder 3500~10000cm 2 / g, specific It has been found that the above object of the present invention can be achieved by using an aramid fiber having a diameter and a length, and the present invention has been completed.
すなわち、本発明は、セメント、BET比表面積が5〜25m2/gの微粉末、ブレーン比表面積が3500〜10000cm2/gの無機粉末、細骨材、アラミド繊維、減水剤及び水を含むセメント組成物であって、
前記アラミド繊維が、直径0.02〜0.2mm、長さ1〜10mmのモノフィラメント繊維であり、前記微粉末の配合量が、前記セメント100質量部に対して5〜50質量部であり、前記無機粉末の配合量が、セメント100質量部に対して5〜55質量部であり、前記細骨材の配合量が、セメント100質量部に対して50〜250質量部であり、前記アラミド繊維の配合量が、セメント組成物の体積の0.5〜3.0%であり、前記減水剤の配合量が、セメント100質量部に対して固形分換算で0.1〜4.0質量部であり、前記水の配合量が、セメント100質量部に対して10〜30質量部であることを特徴とするセメント組成物を提供するものである。
That is, the cement present invention, including cement, fine powder of BET specific surface area of 5~25m 2 / g, the inorganic powder Blaine specific surface area of 3500~10000cm 2 / g, fine aggregate, aramid fibers, a water reducing agent and water A composition comprising:
The aramid fiber, Ri monofilament fiber der diameter 0.02 to 0.2 mm, length 1 to 10 mm, the amount of powder the fines, from 5 to 50 parts by mass relative to the cement 100 parts by weight, the inorganic powder Is 5 to 55 parts by mass with respect to 100 parts by mass of cement, and the compounding amount of the fine aggregate is 50 to 250 parts by mass with respect to 100 parts by mass of cement. Is 0.5 to 3.0% of the volume of the cement composition, the blending amount of the water reducing agent is 0.1 to 4.0 parts by mass in terms of solid content with respect to 100 parts by mass of cement, and the blending amount of water is cement. The present invention provides a cement composition characterized by being 10 to 30 parts by mass with respect to 100 parts by mass .
本発明のセメント組成物では、機械的特性(圧縮強度、曲げ強度、破壊エネルギー、静弾性係数等)に優れるセメント質硬化体を製造することができる。特に、本発明のセメント組成物では、有機繊維を含有するセメント組成物では従来困難であった180N/mm2以上の圧縮強度を発現するセメント質硬化体を製造することができる。そのため、本発明のセメント組成物は、有機繊維を含有するセメント組成物では従来適用することが困難であった橋梁部材等の構造部材用途にも適用することが可能になる。 With the cement composition of the present invention, it is possible to produce a hardened cementitious material having excellent mechanical properties (compressive strength, bending strength, fracture energy, static elastic modulus, etc.). In particular, with the cement composition of the present invention, it is possible to produce a hardened cementitious material that exhibits a compressive strength of 180 N / mm 2 or more, which was conventionally difficult with a cement composition containing organic fibers. Therefore, the cement composition of the present invention can be applied to structural member applications such as bridge members, which have been difficult to apply conventionally with cement compositions containing organic fibers.
以下、本発明について詳細に説明する。
本発明のセメント組成物は、セメント、BET比表面積が5〜25m2/gの微粉末、ブレーン比表面積が3500〜10000cm2/gの無機粉末、細骨材、アラミド繊維、減水剤及び水を必須成分として含むものである。
セメントの種類としては、特に限定されないが、例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントを使用することができる。
本発明において、セメント組成物からなる硬化体の早期強度を向上させようとする場合には、早強ポルトランドセメントを使用することが好ましく、セメント組成物の流動性を向上させようとする場合には、中庸熱ポルトランドセメントや低熱ポルトランドセメントを使用することが好ましい。
Hereinafter, the present invention will be described in detail.
The cement composition of the present invention, cement, fine powder of BET specific surface area of 5~25m 2 / g, the inorganic powder Blaine specific surface area of 3500~10000cm 2 / g, fine aggregate, aramid fibers, a water reducing agent and water It is included as an essential component.
Although it does not specifically limit as a kind of cement, For example, various Portland cements, such as normal Portland cement, early-strong Portland cement, moderately hot Portland cement, low heat Portland cement, can be used.
In the present invention, when trying to improve the early strength of the cured body made of a cement composition, it is preferable to use early-strength Portland cement, and when trying to improve the fluidity of the cement composition. It is preferable to use medium heat Portland cement or low heat Portland cement.
BET比表面積が5〜25m2/gの微粉末としては、シリカフューム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゾル、沈降シリカ、石灰石粉末等が挙げられる。一般に、シリカフュームやシリカダストは、そのBET比表面積が5〜25m2/gであり、粉砕等をする必要がないので、本発明の微粉末として好適である。また、被粉砕性や流動性等の観点から、石灰石粉末も本発明の微粉末として好適である。
上記微粉末のBET比表面積は、5〜25m2/g、好ましくは7〜15m2/gである。該値が5m2/g未満では、180N/mm2以上の圧縮強度を得ることが困難であり、また緻密性や耐衝撃性等も低下する。一方、該値が25m2/gを越えるものは、入手が困難であるうえ、単位水量が増大し、硬化後の強度、緻密性や耐衝撃性等が低下することがある。
上記微粉末の配合量は、セメント100質量部に対して、好ましくは5〜50質量部、より好ましくは10〜40質量部である。配合量が5質量部未満では、180N/mm2以上の圧縮強度を得ることが困難であり、また緻密性や耐衝撃性等も低下する。一方、配合量が50質量部を越えると、単位水量が増大し、硬化後の強度、緻密性や耐衝撃性等が低下することがある。
Examples of the fine powder having a BET specific surface area of 5 to 25 m 2 / g include silica fume, silica dust, fly ash, slag, volcanic ash, silica sol, precipitated silica, and limestone powder. In general, silica fume and silica dust have a BET specific surface area of 5 to 25 m 2 / g and do not need to be pulverized, and thus are suitable as the fine powder of the present invention. Moreover, limestone powder is also suitable as the fine powder of the present invention from the viewpoints of pulverizability and fluidity.
The fine powder has a BET specific surface area of 5 to 25 m 2 / g, preferably 7 to 15 m 2 / g. When the value is less than 5 m 2 / g, it is difficult to obtain a compressive strength of 180 N / mm 2 or more, and the denseness and impact resistance are also lowered. On the other hand, when the value exceeds 25 m 2 / g, it is difficult to obtain, the unit water amount increases, and the strength, denseness, impact resistance and the like after curing may decrease.
The blending amount of the fine powder is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass with respect to 100 parts by mass of cement. If the blending amount is less than 5 parts by mass, it is difficult to obtain a compressive strength of 180 N / mm 2 or more, and the denseness and impact resistance are also lowered. On the other hand, when the blending amount exceeds 50 parts by mass, the unit water amount increases, and the strength, denseness, impact resistance and the like after curing may decrease.
ブレーン比表面積が3500〜10000cm2/gの無機粉末としては、セメント以外の無機粉末であり、スラグ、石灰石粉末、長石類、ムライト類、アルミナ粉末、石英粉末、フライアッシュ、火山灰、シリカゾル、炭化物粉末、窒化物粉末等が挙げられる。中でも、スラグ、フライアッシュ、石灰石粉末、石英粉末は、コストの点や硬化後の品質安定性の点で好ましく用いられる。
無機粉末のブレーン比表面積は3500〜10000cm2/gが好ましく、4000〜9000cm2/gがより好ましく、5000〜9000cm2/gが特に好ましい。無機粉末のブレーン比表面積が3500cm2/g未満では、硬化後の強度、緻密性や耐衝撃性等が低下するため好ましくない。一方、該値が10000cm2/gを越えると、流動性が低下したり、硬化後の強度、緻密性や耐衝撃性等が低下することがある。さらに、この場合、コストも増大する。
無機粉末の配合量は、セメント100質量部に対して、好ましくは5〜55質量部、より好ましくは10〜50質量部である。配合量が5質量部未満では、180N/mm2以上の圧縮強度を得ることが困難であり、また緻密性や耐衝撃性等も低下する。一方、配合量が55質量部を越えると、流動性が低下したり、硬化後の強度、緻密性や耐衝撃性等が低下することがある。
Inorganic powders with a specific surface area of Blaine of 350 to 10000 cm 2 / g are inorganic powders other than cement, slag, limestone powder, feldspar, mullite, alumina powder, quartz powder, fly ash, volcanic ash, silica sol, carbide powder And nitride powder. Among these, slag, fly ash, limestone powder, and quartz powder are preferably used in terms of cost and quality stability after curing.
Blaine specific surface area of the inorganic powder is preferably 3500~10000cm 2 / g, more preferably 4000~9000cm 2 / g, 5000~9000cm 2 / g is particularly preferred. If the Blaine specific surface area of the inorganic powder is less than 3500 cm 2 / g, the strength after curing, the denseness, the impact resistance and the like are lowered, which is not preferable. On the other hand, when the value exceeds 10,000 cm 2 / g, the fluidity may be lowered, and the strength, denseness, impact resistance and the like after curing may be lowered. In this case, the cost also increases.
The blending amount of the inorganic powder is preferably 5 to 55 parts by mass, more preferably 10 to 50 parts by mass with respect to 100 parts by mass of cement. If the blending amount is less than 5 parts by mass, it is difficult to obtain a compressive strength of 180 N / mm 2 or more, and the denseness and impact resistance are also lowered. On the other hand, if the blending amount exceeds 55 parts by mass, the fluidity may decrease, and the strength, density, impact resistance, and the like after curing may decrease.
細骨材としては、川砂、陸砂、海砂、砕砂、珪砂等又はこれらの混合物が挙げられる。 本発明においては、細骨材としては、流動性や硬化後の強度、緻密性や耐衝撃性等から、最大粒径が2mm以下、より好ましくは1.5mm以下のものを用いることが好ましい。また、流動性や作業性等から、75μm以下の粒子の含有量が2.0質量%以下、より好ましくは1.5質量%以下のものを用いることが好ましい。
細骨材の配合量は、流動性や施工性、硬化後の強度の観点、さらには、自己収縮や乾燥収縮の低減、水和発熱量の低減等の観点から、セメント100質量部に対して、好ましくは50〜250質量部、より好ましくは80〜180質量部である。
Examples of the fine aggregate include river sand, land sand, sea sand, crushed sand, silica sand, and the like, or a mixture thereof. In the present invention, it is preferable to use a fine aggregate having a maximum particle size of 2 mm or less, more preferably 1.5 mm or less, from the viewpoint of fluidity, strength after hardening, denseness, impact resistance and the like. From the viewpoint of fluidity and workability, it is preferable to use particles having a particle size of 75 μm or less of 2.0% by mass or less, more preferably 1.5% by mass or less.
The amount of fine aggregate blended is 100 parts by weight of cement from the viewpoints of fluidity, workability, strength after hardening, and further from the viewpoints of reducing self-shrinkage and drying shrinkage, and reducing the amount of heat generated by hydration. The amount is preferably 50 to 250 parts by mass, more preferably 80 to 180 parts by mass.
本発明で使用するアラミド繊維は、直径0.02〜0.2mm(好ましくは0.03〜0.1mm、より好ましくは0.04〜0.06mm)、長さ1〜10mm(好ましくは2〜8mm、より好ましくは3〜6mm)のモノフィラメント繊維である。アラミド繊維の直径が0.02mm未満では、セメント組成物の流動性や作業性が低下するうえ、180N/mm2以上の圧縮強度を得ることも困難となる。一方、直径が0.2mmを越えるアラミド繊維をモノフィラメント繊維として入手することは困難である。また、直径が0.2mmを越える収束型のアラミド繊維を使用した場合では、同一配合量での本数が少なくなるので、曲げ強度や破壊エネルギーが低下することがある。アラミド繊維の長さが1mm未満では、入手が困難であるうえ、曲げ強度や破壊エネルギーが低下することがある。一方、長さが10mmを越えると、セメント組成物の流動性や作業性が極端に低下するうえ、180N/mm2以上の圧縮強度を得ることも困難となる。
アラミド繊維の配合量は、セメント組成物の体積の0.5〜3.0%が好ましく、より好ましくは0.8〜2.0%である。配合量がセメント組成物の体積の0.5%未満では、曲げ強度や破壊エネルギー、特に破壊エネルギーが低下することがある。一方、配合量が3.0%を越えると、セメント組成物の流動性や作業性が極端に低下するうえ、コストも高くなる。
The aramid fiber used in the present invention has a diameter of 0.02 to 0.2 mm (preferably 0.03 to 0.1 mm, more preferably 0.04 to 0.06 mm) and a length of 1 to 10 mm (preferably 2 to 8 mm, more preferably 3 to 6 mm). Monofilament fiber. When the diameter of the aramid fiber is less than 0.02 mm, the fluidity and workability of the cement composition are lowered, and it is difficult to obtain a compressive strength of 180 N / mm 2 or more. On the other hand, it is difficult to obtain aramid fibers having a diameter exceeding 0.2 mm as monofilament fibers. In addition, when convergent aramid fibers having a diameter of more than 0.2 mm are used, the number of fibers with the same blending amount decreases, so that bending strength and fracture energy may be reduced. If the length of the aramid fiber is less than 1 mm, it is difficult to obtain and the bending strength and fracture energy may be lowered. On the other hand, when the length exceeds 10 mm, the fluidity and workability of the cement composition are extremely lowered, and it becomes difficult to obtain a compressive strength of 180 N / mm 2 or more.
The blending amount of the aramid fiber is preferably 0.5 to 3.0% of the volume of the cement composition, and more preferably 0.8 to 2.0%. When the blending amount is less than 0.5% of the volume of the cement composition, bending strength and fracture energy, particularly fracture energy may be lowered. On the other hand, if the blending amount exceeds 3.0%, the fluidity and workability of the cement composition are extremely lowered and the cost is increased.
本発明においては、セメント組成物の流動性や作業性、硬化後の強度、緻密性や耐衝撃性等から、アラミド繊維は含水率が5〜50質量%のものを使用するのが好ましく、10〜30質量%のものを使用するのがより好ましい。アラミド繊維の含水率が5質量%未満では、アラミド繊維がダマ状になったり、セメント組成物の流動性や作業性が低下することがある。一方、含水率が50質量%を越えると、強度発現性が低下することがあり、また、硬化後の緻密性や耐衝撃性等が低下することがある。
なお、本発明において、アラミド繊維の含水率は、105℃で24時間加熱した際の質量減少量から算出される値である。
In the present invention, it is preferable to use an aramid fiber having a moisture content of 5 to 50% by mass from the viewpoint of fluidity and workability of the cement composition, strength after curing, denseness, impact resistance, and the like. It is more preferable to use a ˜30% by mass. When the moisture content of the aramid fiber is less than 5% by mass, the aramid fiber may become lumpy or the fluidity and workability of the cement composition may be deteriorated. On the other hand, if the water content exceeds 50% by mass, strength development may be reduced, and the denseness and impact resistance after curing may be reduced.
In the present invention, the moisture content of the aramid fiber is a value calculated from a mass reduction amount when heated at 105 ° C. for 24 hours.
減水剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系の減水剤、AE減水剤、高性能減水剤または高性能AE減水剤を使用することができる。中でも、ポリカルボン酸系の高性能減水剤または高性能AE減水剤を使用することが好ましい。減水剤を配合することによって、セメント組成物の流動性や施工性、硬化後の緻密性や強度等が向上する。
減水剤の配合量は、流動性や分離抵抗性、硬化後の緻密性や強度、コスト等の面から、セメント100質量部に対して固形分換算で0.1〜4.0質量部が好ましく、0.1〜2.0質量部がより好ましく、0.1〜1.0質量部が特に好ましい。
As the water reducing agent, a lignin-based, naphthalenesulfonic acid-based, melamine-based, or polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high-performance water reducing agent, or a high-performance AE water reducing agent can be used. Among these, it is preferable to use a polycarboxylic acid-based high-performance water reducing agent or a high-performance AE water reducing agent. By blending a water reducing agent, the fluidity and workability of the cement composition, the denseness and strength after curing, and the like are improved.
The blending amount of the water reducing agent is preferably 0.1 to 4.0 parts by mass in terms of solid content with respect to 100 parts by mass of cement, in terms of fluidity, separation resistance, density and strength after curing, cost, etc. Part by mass is more preferable, and 0.1 to 1.0 part by mass is particularly preferable.
水としては、水道水等を使用することができる。
本発明において、水/セメント比は、流動性や施工性、硬化後の強度、耐久性、緻密性や耐衝撃性等から、10〜30質量%が好ましく、15〜25質量%がより好ましい。
As water, tap water or the like can be used.
In the present invention, the water / cement ratio is preferably 10 to 30% by mass, more preferably 15 to 25% by mass, from the viewpoint of fluidity, workability, strength after curing, durability, denseness, impact resistance, and the like.
本発明のセメント組成物においては、平均粒度が1mm以下の繊維状粒子又は薄片状粒子を含有することができる。ここで、粒子の粒度とは、その最大寸法の大きさ(特に、繊維状粒子ではその長さ)である。該繊維状粒子又は薄片状粒子を含有することにより、硬化後の靱性を高めることができる。
繊維状粒子としては、ウォラストナイト、ボーキサイト、ムライト等が、薄片状粒子としては、マイカフレーク、タルクフレーク、バーミキュライトフレーク、アルミナフレーク等が挙げられる。
繊維状粒子又は薄片状粒子の配合量は、セメント組成物の流動性や施工性、硬化後の靱性等から、セメント100質量部に対して35質量部以下が好ましく、0.1〜5質量部がより好ましい。
なお、繊維状粒子においては、硬化後の靱性を高める観点から、長さ/直径の比で表される針状度が3以上のものを用いるのが好ましい。
The cement composition of the present invention can contain fibrous particles or flaky particles having an average particle size of 1 mm or less. Here, the particle size of the particle is the size of the maximum dimension (particularly, the length of the fibrous particle). By containing the fibrous particles or flaky particles, the toughness after curing can be increased.
Examples of fibrous particles include wollastonite, bauxite, mullite, and examples of flaky particles include mica flakes, talc flakes, vermiculite flakes, and alumina flakes.
The blending amount of the fibrous particles or flaky particles is preferably 35 parts by mass or less, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of cement, from the fluidity and workability of the cement composition, toughness after curing, and the like. preferable.
In addition, it is preferable to use a fibrous particle having a needle-like degree represented by a length / diameter ratio of 3 or more from the viewpoint of increasing toughness after curing.
本発明においては、セメント組成物の混練方法は、特に限定されるものではなく、通常の方法を用いることができる。また、混練に用いる装置も特に限定されるものではなく、オムニミキサ、パン型ミキサ、二軸練りミキサ、傾胴ミキサ等が用いられる。
セメント組成物の成形・養生方法も、特に限定されるものではないが、本発明のセメント組成物を硬化してなるセメント質硬化体の生産性や強度発現性等を考慮すると、一次養生・二次養生を行う方法が好ましい。このような方法としては、例えば、以下のような方法が挙げられる。
まず、混練したセメント組成物を所定の型枠を用いて成形し、一次養生を行う。ここで、成形方法としては、特に限定されるものではなく、流し込み成形等の慣用の成形方法を採用することができる。一次養生の方法としては、型枠に混練したセメント組成物を収納した状態で、5〜40℃で所定時間、例えば3〜48時間静置する方法が挙げられる。一次養生終了後、脱型し、二次養生を行い、セメント質硬化体を製造する。一次養生終了後の脱型時におけるセメント質硬化体の圧縮強度は、10N/mm2以上であることが好ましい。圧縮強度が10N/mm2未満では、脱型が困難となる。二次養生の方法としては、75〜95℃で10〜48時間蒸気養生する方法が挙げられる。
In the present invention, the kneading method of the cement composition is not particularly limited, and a normal method can be used. Moreover, the apparatus used for kneading is not particularly limited, and an omni mixer, a pan-type mixer, a biaxial kneading mixer, a tilting cylinder mixer, and the like are used.
The molding / curing method of the cement composition is not particularly limited, but considering the productivity and strength development of a hardened cementitious material obtained by curing the cement composition of the present invention, the primary curing / seconding method is not limited. A method of performing the next curing is preferable. Examples of such methods include the following methods.
First, the kneaded cement composition is molded using a predetermined mold and subjected to primary curing. Here, the molding method is not particularly limited, and a conventional molding method such as casting can be employed. Examples of the primary curing method include a method in which the cement composition kneaded in a mold is stored and left at 5 to 40 ° C. for a predetermined time, for example, 3 to 48 hours. After the primary curing is completed, the mold is removed and subjected to secondary curing to produce a hardened cementitious material. The compressive strength of the hardened cementitious body at the time of demolding after the end of primary curing is preferably 10 N / mm 2 or more. If the compressive strength is less than 10 N / mm 2, demolding becomes difficult. Examples of the secondary curing method include a steam curing method at 75 to 95 ° C. for 10 to 48 hours.
次に、実施例を挙げて本発明をさらに説明するが、本発明は、これら実施例により限定されるものではない。
(実施例1〜5、比較例1〜4)
1.使用材料
以下に示す材料を使用した。
(a)セメント:低熱ポルトランドセメント(太平洋セメント(株)製)
(b)微粉末:シリカフューム(BET比表面積11m2/g)
(c)無機粉末:石英粉末(ブレーン比表面積7000cm2/g)
(d)細骨材:珪砂(粒径0.15〜0.6mm)
(e)減水剤:ポリカルボン酸系高性能減水剤
(f)水:水道水
(g)繊維:A:アラミド繊維(直径:0.045mm、長さ:3mmのモノフィラメント繊維)
B:アラミド繊維(直径:0.045mm、長さ:4mmのモノフィラメント繊維)
C:アラミド繊維(直径:0.045mm、長さ:5mmのモノフィラメント繊維)
D:アラミド繊維(直径:0.045mm、長さ:6mmのモノフィラメント繊維)
E:アラミド繊維(直径:0.048mm、長さ:5mmのモノフィラメント繊維)
F:アラミド繊維(直径:0.045mm、長さ:13mmのモノフィラメント繊維)
G:アラミド繊維(直径:0.012mm、長さ:5mmのモノフィラメント繊維)
H:ポリビニルアルコール繊維(直径:0.3mm、長さ:15mm)
なお、アラミド繊維A〜Gは、含水率が15質量%のものを使用した。
EXAMPLES Next, although an Example is given and this invention is further demonstrated, this invention is not limited by these Examples.
(Examples 1-5, Comparative Examples 1-4)
1. Materials used The following materials were used.
(a) Cement: Low heat Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
(b) Fine powder: Silica fume (BET specific surface area 11m 2 / g)
(c) Inorganic powder: Quartz powder (Blaine specific surface area 7000cm 2 / g)
(d) Fine aggregate: quartz sand (particle size 0.15-0.6mm)
(e) Water reducing agent: Polycarboxylic acid-based high-performance water reducing agent
(f) Water: Tap water
(g) Fiber: A: Aramid fiber (monofilament fiber with diameter: 0.045mm, length: 3mm)
B: Aramid fiber (monofilament fiber with diameter: 0.045mm, length: 4mm)
C: Aramid fiber (monofilament fiber of diameter: 0.045mm, length: 5mm)
D: Aramid fiber (diafilament: 0.045mm, length: 6mm monofilament fiber)
E: Aramid fiber (monofilament fiber of diameter: 0.048mm, length: 5mm)
F: Aramid fiber (monofilament fiber with diameter: 0.045mm, length: 13mm)
G: Aramid fiber (diameter: 0.012mm, length: 5mm monofilament fiber)
H: Polyvinyl alcohol fiber (diameter: 0.3mm, length: 15mm)
Aramid fibers A to G having a water content of 15% by mass were used.
2.セメント組成物の調製及び評価
上記各材料を表1に示す配合割合で個別に二軸練りミキサに投入し、混練した。混練後、次のように硬化前及び硬化後の物性を測定し評価した。なお、破壊エネルギーと静弾性係数は、1部のセメント組成物についてのみ測定した。
(1)フロー値:「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法に準じて、又は「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法において15回の落下運動を行なわないで測定した。
(2)圧縮強度:各セメント組成物をφ50×100mmの型枠内に流し込み、20℃で24時間前置き後、90℃で48時間蒸気養生して、硬化体(3本)を作製した後、「JIS A 1108(コンクリートの圧縮試験方法)」に準じて、該硬化体の圧縮強度を測定した。硬化体(3本)の測定値の平均値を圧縮強度とした。
(3)曲げ強度:各セメント組成物を4×4×16cmの型枠内に流し込み、20℃で24時間前置き後、90℃で48時間蒸気養生して、硬化体(3本)を作製した後、「JIS R 5201(セメントの物理試験方法)」に準じて、該硬化体の曲げ強度を測定した。載荷条件は、下支点間距離12cm、上支点間距離4cmの4点曲げとした。硬化体(3本)の測定値の平均値を曲げ強度とした。
(4)破壊エネルギー:破壊エネルギーは、上記曲げ強度試験において、荷重がひび割れ発生荷重に達してから、1/3に低下するまでの間の荷重−荷重点変位の積分値を、供試体断面積で除した値として算出した。なお、荷重点変位としては、曲げ試験機のクロスヘッド変位量を用いた。
(5)静弾性係数:セメント組成物をφ100×200mmの型枠内に流し込み、20℃で24時間前置き後、90℃で48時間蒸気養生して、硬化体(3本)を作製した後、「JIS A 1149(コンクリートの静弾性係数試験方法)」に準じて、該硬化体の静弾性係数を測定した。硬化体(3本)の測定値の平均値を静弾性係数とした。
結果を表2に示す。
2. Preparation and Evaluation of Cement Composition Each of the above materials was individually put into a biaxial kneader at a blending ratio shown in Table 1 and kneaded. After kneading, the physical properties before and after curing were measured and evaluated as follows. Note that the fracture energy and static elastic modulus were measured for only one part of the cement composition.
(1) Flow value: According to the method described in “JIS R 5201 (Cement physical test method) 11. Flow test” or described in “JIS R 5201 (Cement physical test method) 11. Flow test”. In the method to be measured, 15 drops were not performed.
(2) Compressive strength: After each cement composition was poured into a φ50 × 100 mm formwork, pre-set at 20 ° C. for 24 hours and then steam-cured at 90 ° C. for 48 hours to prepare hardened bodies (3 pieces). The compression strength of the cured product was measured according to “JIS A 1108 (Concrete compression test method)”. The average value of the measured values of the cured bodies (3 pieces) was taken as the compressive strength.
(3) Bending strength: Each cement composition was poured into a 4 × 4 × 16 cm formwork, pre-positioned at 20 ° C. for 24 hours, and then steam-cured at 90 ° C. for 48 hours to produce cured bodies (3 pieces). Thereafter, the bending strength of the cured body was measured according to “JIS R 5201 (physical test method for cement)”. The loading conditions were 4-point bending with a distance between the lower fulcrums of 12 cm and a distance between the upper fulcrums of 4 cm. The average value of the measured values of the cured bodies (3 pieces) was taken as the bending strength.
(4) Fracture energy: In the above bending strength test, the fracture energy is the integrated value of load-load point displacement from when the load reaches the cracking load until it drops to 1/3. Calculated as the value divided by. As the load point displacement, the crosshead displacement amount of a bending tester was used.
(5) Static elastic modulus: After casting the cement composition into a φ100 × 200 mm formwork, preheating at 20 ° C. for 24 hours and steam curing at 90 ° C. for 48 hours to produce cured bodies (3), The static elastic modulus of the cured product was measured according to “JIS A 1149 (Method for testing static elastic modulus of concrete)”. The average value of the measured values of the cured bodies (three) was taken as the static elastic modulus.
The results are shown in Table 2.
表2に示すように、本発明のセメント組成物では、優れた機械的特性(圧縮強度、曲げ強度、破壊エネルギー、静弾性係数)が得られること、特に、従来有機繊維を含有するセメント質硬化体では困難であった180N/mm2以上の圧縮強度を発現できることが分かる。
一方、繊維長さが本発明で規定する範囲を超えるアラミド繊維を使用したセメント組成物(比較例2)では、フロー値が極端に低下した。また、繊維直径が本発明で規定する範囲未満のアラミド繊維を使用したセメント組成物(比較例3)では、フロー値が低下したうえ、180N/mm2以上の圧縮強度も得られなかった。さらに、本発明で規定するアラミド繊維以外の繊維を用いたセメント組成物(比較例4)では、180N/mm2以上の圧縮強度を得ることができないうえ、他の機械的特性(曲げ強度、破壊エネルギー、静弾性係数)も、本発明のセメント組成物に比べて低かった。
As shown in Table 2, in the cement composition of the present invention, excellent mechanical properties (compressive strength, bending strength, fracture energy, static elastic modulus) can be obtained. It can be seen that a compressive strength of 180 N / mm 2 or more, which was difficult for the body, can be expressed.
On the other hand, in the cement composition using the aramid fiber whose fiber length exceeds the range defined in the present invention (Comparative Example 2), the flow value was extremely lowered. Further, in the cement composition using the aramid fiber having a fiber diameter less than the range specified in the present invention (Comparative Example 3), the flow value was lowered and a compressive strength of 180 N / mm 2 or more was not obtained. Further, the cement composition using fibers other than the aramid fibers defined in the present invention (Comparative Example 4) cannot obtain a compressive strength of 180 N / mm 2 or more and has other mechanical properties (bending strength, fracture). The energy and static elastic modulus) were also lower than that of the cement composition of the present invention.
(実施例6〜7)
上記実施例で使用したアラミド繊維Cの含水率を変えて、セメント組成物を調製し、フロー値、圧縮強度及び曲げ強度を測定した。
なお、アラミド繊維Cは含水率が1質量%のものと55質量%のものを使用し、セメント組成物の配合は、上記実施例3と同じ配合とした。
また、フロー値、圧縮強度及び曲げ強度も、上記実施例と同じ方法で測定した。
その結果を表3に示す。
(Examples 6 to 7)
Cement compositions were prepared by changing the water content of the aramid fibers C used in the above examples, and the flow value, compressive strength, and bending strength were measured.
Aramid fibers C having a moisture content of 1% by mass and 55% by mass were used, and the cement composition was blended in the same manner as in Example 3 above.
Moreover, the flow value, the compressive strength, and the bending strength were also measured by the same method as in the above examples.
The results are shown in Table 3.
表3に示すように、アラミド繊維の含水率が小さいと、流動性や機械的特性(圧縮強度や曲げ強度)が低下する傾向が認められた。また、アラミド繊維の含水率が大きくても、機械的特性(圧縮強度や曲げ強度)が低下する傾向が認められた。 As shown in Table 3, when the moisture content of the aramid fiber was small, there was a tendency for fluidity and mechanical properties (compression strength and bending strength) to decrease. Moreover, even if the moisture content of the aramid fiber was large, the tendency for the mechanical properties (compressive strength and bending strength) to decrease was observed.
Claims (2)
前記アラミド繊維が、直径0.02〜0.2mm、長さ1〜10mmのモノフィラメント繊維であり、前記微粉末の配合量が、前記セメント100質量部に対して5〜50質量部であり、前記無機粉末の配合量が、セメント100質量部に対して5〜55質量部であり、前記細骨材の配合量が、セメント100質量部に対して50〜250質量部であり、前記アラミド繊維の配合量が、セメント組成物の体積の0.5〜3.0%であり、前記減水剤の配合量が、セメント100質量部に対して固形分換算で0.1〜4.0質量部であり、前記水の配合量が、セメント100質量部に対して10〜30質量部であることを特徴とするセメント組成物。 Cement, fine powder, the Blaine specific surface area of 3500~10000cm 2 / g inorganic powder having a BET specific surface area of 5~25m 2 / g, fine aggregate, aramid fibers, a cement composition containing a water reducing agent and water,
The aramid fiber, Ri monofilament fiber der diameter 0.02 to 0.2 mm, length 1 to 10 mm, the amount of powder the fines, from 5 to 50 parts by mass relative to the cement 100 parts by weight, the inorganic powder Is 5 to 55 parts by mass with respect to 100 parts by mass of cement, and the compounding amount of the fine aggregate is 50 to 250 parts by mass with respect to 100 parts by mass of cement. Is 0.5 to 3.0% of the volume of the cement composition, the blending amount of the water reducing agent is 0.1 to 4.0 parts by mass in terms of solid content with respect to 100 parts by mass of cement, and the blending amount of water is cement. Cement composition characterized by being 10-30 mass parts with respect to 100 mass parts .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008067661A JP5101355B2 (en) | 2008-03-17 | 2008-03-17 | Cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008067661A JP5101355B2 (en) | 2008-03-17 | 2008-03-17 | Cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009221053A JP2009221053A (en) | 2009-10-01 |
JP5101355B2 true JP5101355B2 (en) | 2012-12-19 |
Family
ID=41238248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008067661A Expired - Fee Related JP5101355B2 (en) | 2008-03-17 | 2008-03-17 | Cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5101355B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011037672A (en) * | 2009-08-12 | 2011-02-24 | Taiheiyo Cement Corp | High strength porous concrete composition and high strength porous concrete hardened body |
JP2011157242A (en) * | 2010-02-03 | 2011-08-18 | Taiheiyo Cement Corp | Method for producing cement hardened body |
JP5417238B2 (en) * | 2010-03-30 | 2014-02-12 | 株式会社トクヤマ | Mortar composition and method for producing the same |
JP2011214231A (en) * | 2010-03-31 | 2011-10-27 | Taiheiyo Cement Corp | Paving concrete |
JP2013023416A (en) * | 2011-07-22 | 2013-02-04 | Taiheiyo Cement Corp | Cement composition |
EP3434656A1 (en) | 2017-07-27 | 2019-01-30 | Basf Se | Engineered cementitious composites comprising pbo fibers |
JP7433031B2 (en) * | 2019-12-06 | 2024-02-19 | 太平洋セメント株式会社 | Cement composition and method for producing hardened cementitious body |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54155222A (en) * | 1978-05-29 | 1979-12-07 | Asahi Chemical Ind | Production of fiber reinforced cement product |
JPS5562832A (en) * | 1978-11-06 | 1980-05-12 | Asahi Chemical Ind | Manufacture of fiber reinforced cement product |
JP2882677B2 (en) * | 1990-10-30 | 1999-04-12 | 積水化学工業株式会社 | Fiber-reinforced inorganic curable composition and method for producing the same |
JP2001058887A (en) * | 1999-08-19 | 2001-03-06 | Asahi Chem Ind Co Ltd | Fiber-reinforced lightweight concrete |
JP2006036596A (en) * | 2004-07-28 | 2006-02-09 | Teijin Techno Products Ltd | Concrete, mortar and cement material |
JP2006083046A (en) * | 2004-09-17 | 2006-03-30 | Mitsubishi Materials Corp | Binder for porous concrete and method for producing porous concrete |
JP2006117452A (en) * | 2004-10-20 | 2006-05-11 | Ishikawajima Constr Materials Co Ltd | Cement hardened body |
-
2008
- 2008-03-17 JP JP2008067661A patent/JP5101355B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009221053A (en) | 2009-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5101355B2 (en) | Cement composition | |
WO2002096825A1 (en) | Hydraulic composition | |
JP3397775B2 (en) | Hydraulic composition | |
JP2009227574A (en) | Cement composition and method for producing the same | |
JP2011084458A (en) | Cement composition | |
JP3397774B2 (en) | Hydraulic composition | |
JP2002348167A (en) | Hydraulic composition | |
JP2010228953A (en) | Cement composition | |
JP4039801B2 (en) | Hydraulic composition | |
JP2004115315A (en) | High-flow concrete | |
JP3888685B2 (en) | High-strength concrete board containing organic fibers reinforced with high-strength mesh | |
JP5069073B2 (en) | Manufacturing method of cement concrete pipe using cement for centrifugal force forming and its cement concrete pipe | |
JP5863296B2 (en) | Method for producing ultra-high-strength cement-based hardened body | |
JP2004155623A (en) | Prestressed concrete | |
JP2001220201A (en) | Fiber reinforced concrete | |
JP4165992B2 (en) | Hydraulic composition | |
JP4376409B2 (en) | Joint joint material for post tension prestressed concrete plate | |
JP6154114B2 (en) | Refractory cement composition | |
JP2006137630A (en) | Concrete | |
JP4850747B2 (en) | Hardened cementitious body | |
JP2010120798A (en) | Cement composition | |
JP2004224639A (en) | Slab member | |
JP2001213661A (en) | Composite material | |
JP5107072B2 (en) | Method for producing hardened cementitious body | |
JP2001205581A (en) | Surface plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100813 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120925 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120926 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5101355 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |