JP3888685B2 - High-strength concrete board containing organic fibers reinforced with high-strength mesh - Google Patents

High-strength concrete board containing organic fibers reinforced with high-strength mesh Download PDF

Info

Publication number
JP3888685B2
JP3888685B2 JP2003097553A JP2003097553A JP3888685B2 JP 3888685 B2 JP3888685 B2 JP 3888685B2 JP 2003097553 A JP2003097553 A JP 2003097553A JP 2003097553 A JP2003097553 A JP 2003097553A JP 3888685 B2 JP3888685 B2 JP 3888685B2
Authority
JP
Japan
Prior art keywords
strength
concrete
mesh
organic fiber
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003097553A
Other languages
Japanese (ja)
Other versions
JP2004300001A (en
Inventor
勝司 清原
勉 横田
誠 片桐
伸平 前掘
章一 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Nippon Steel Corp
Original Assignee
Taiheiyo Cement Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Nippon Steel Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003097553A priority Critical patent/JP3888685B2/en
Publication of JP2004300001A publication Critical patent/JP2004300001A/en
Application granted granted Critical
Publication of JP3888685B2 publication Critical patent/JP3888685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00318Materials characterised by relatively small dimensions, e.g. small thickness

Description

【0001】
【発明の属する技術分野】
本発明は土木・建築の技術分野で用いられる高強度コンクリート板に関する。
【0002】
【従来の技術】
特開2001−207516号公報には、セメント、ポゾラン質微粉末、粒径2mm以下の骨材、減水剤及び水を含む無機系複合材料に有機質繊維を混練し硬化させてなる高強度コンクリートが開示されている。
【0003】
【特許文献1】
特開2001−207516号公報
【0004】
【発明が解決しようとする課題】
上記従来例に示されるようなセメントを基材とした反応微粉末を使用した無機系複合材料に有機質繊維を混入した高強度コンクリートを薄板構造に適用した場合、圧縮強度が150MPaと、図1に示すように、高い曲げ耐力、靭性が確保できないという問題を生じるものであった。
【0005】
本発明は、上記従来の高強度コンクリート部材の持つ問題点を解決する高強度コンクリート部材を提供することを目的とする。(図1参照)
【0006】
【問題を解決するための手段】
第1発明は、上記課題を解決するために、高強度メッシュを配置した成形用型枠内にコンクリートを打設し、養生することにより、前記コンクリート内に前記高強度メッシュを配置して補強した高強度コンクリート板であって、前記高強度メッシュは、直径d(mm)が0.5〜5.0mmで、引張強さ(TS)が下記数式(A)で示される範囲内であり、降伏点(0.2%耐力)が下記数式(B)で示される範囲内である素線を、網目サイズが5〜60mmの格子状に編み上げたものであり、前記コンクリートは、セメント、最大粒度が2mm以下の骨材、一次粒子粒度が1μm以下のポゾラン質微粉末、平均粒径3〜20μmの石英粉末、平均粒度が1mm以下の針状もしくは薄片状粒子、減水剤、有機繊維および水を含有し、かつ前記セメントと前記ポゾラン質微粉末との合計質量に対する前記水の質量比率が8〜24%の範囲にあり、前記有機繊維の長さが2mm以上で、前記有機繊維の直径に対する長さの比率が20以上、前記骨材の最大粒度に対する前記有機繊維の平均長さの比が10以上で、前記有機繊維の量が凝結後のコンクリート体積の8%未満である有機繊維含有高強度コンクリートであることを特徴とする。

Figure 0003888685
【0007】
第2発明は、本第1発明の高強度コンクリート薄肉板において、前記有機繊維含有高強度コンクリートは、圧縮強度120MPa(平均値)以上、曲げ強度20MPa(平均値)以上であることを特徴とする
【0008】
第3発明は、本願第1または第2発明の高強度コンクリート薄肉板において、建築・土木用埋設型枠、薄肉床版、外壁または内壁として使用されることを特徴とする
【0009】
【発明の実施の形態】
本発明の高強度コンクリート薄肉板を構成する有機繊維含有高強度コンクリートに使用するセメントは、ポルトランドセメント、混合セメント、速硬セメントなどの各種セメントを使用することができる。セメントの使用量は、後述するポゾラン質微粉末の使用量と併せて決定されるが、配合物中の単位セメント量が500〜1000kg/m3、好ましくは700〜850kg/m3の範囲とすることにより、各種配合物との作用と相俟って、圧縮強度が120MPa以上の高強度コンクリートを得ることができる。セメント使用量が500kg/m3を下回ると、目的とする高強度コンクリートを得ることが困難となり、また、セメント使用量が1000kg/m3を超えると、ポラゾン質微粉末の使用と併せて、コンクリートの練り混ぜが困難となり好ましくない。
【0010】
ポラゾン質微粉末は、セメントとのポラゾン反応に関与する微粉末であり、シリカフューム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゾル、沈降シリカ等の平均粒径が1μm以下のものが用いられる。中でもシリカフュームは、平均粒径が1.0μm以下であり、粉砕する必要がなく、ポゾラン反応に好適である。ポゾラン質微粉末は、そのマイクロフィラー効果およびセメント分散効果によりコンクリートが緻密化し、圧縮強度が向上する。一方、微粉末の添加量が多くなると使用水量が増大するので、ポゾラン質微粉末の使用量はセメント100重量部に対して5〜50重量部が好ましい。
【0011】
骨材は通常のコンクリートに使用されている砂、例えば、川砂、陸砂、海砂、砕砂、珪砂およびこれらの混合物を用いることができるが、粒径は2mm篩通過量が85重量%以上、好ましくは1.5mm篩通過量が85重量%以上、さらに好ましくは1.2mm篩通過量が85重量%以上の均一な良質材を使用する。このような骨材粒子を使用することにより、コンクリートの流動性および分離抵抗性を高めると共に、コンクリートの充填度および強度発現性を高めることができる。骨材の配合量は、セメント100重量部に対して、50〜250重量部の範囲とすることにより、コンクリートの作業性や分離抵抗性に優れ、硬化後の強度発現性やクラックに対する抵抗性を有する高強度コンクリートを得ることができる。
【0012】
上記骨材に加えて、3〜20μmの石英粉を配合することにより、さらに硬化体の充填密度を高めることができる。石英粉としては、石英や非晶質石英、オパール質やクリストバライト質のシリカ含有粉末、あるいは、岩石粉末、高炉スラグ、火山灰、分級フライアッシュ等が使用できる。セメント100重量部に対して石英粉が50重量部以下の範囲、好ましくは20〜35重量部の範囲で含まれると、流動性が良く、硬化体が強度発現性に優れた緻密な充填構造を形成しやすいものとなる。
【0013】
コンクリート部材の靭性を高める観点から、配合物に、平均粒度が1mm以下の針状粒子または薄片状粒子を配合する。粒子の粒度とは、その最大寸法の大きさ(特に、針状粒子では、その長さ)をいう。針状粒子としては、例えば、ウォラストナイト、ボーキサイト、ムライト等が挙げられる。薄片状粒子としては、例えば、マイカフレーク、タルクフレーク、バーミキュライトフレーク、アルミナフレーク等が挙げられる。針状粒子と薄片状粒子は、各々単独で用いてよいし、併用してもよい。針状粒子または薄片状粒子の配合量はコンクリートの流動性や強度発現性や靭性から、セメント100重量部に対して35重量部以下が好ましく、10〜25重量部がより好ましい。なお、針状粒子においては、コンクリート部材の靭性を高める観点から、長さ/直径の比で表される針状度が3以上のものが好ましい。
【0014】
減水剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系の減水剤、AE減水剤、高性能減水剤、高性能AE減水剤を使用することができる。中でも、高性能減水剤、高性能AE減水剤を使用することが好ましい。この発明においては、従来のコンクリートに比べて硬化体中に占める微粉体の体積が多いことが特徴の一つであるが、この場合においても、減水剤の添加量を適切に調整することにより、コンクリートに所定の流動性を与えることができる。減水剤の添加量(セメントに対して外割)は、コンクリートの流動性や分離抵抗性、硬化後の強度、さらにはコスト等から、セメントに対して、固形分換算で、0.1〜4.0重量%、好ましくは0.5〜2.0重量%とする。添加量が0.1重量%未満では減水効果が実質無く、またこれを4.0重量%超えて添加しても減水性、流動性の改善効果が頭打ちとなる。
【0015】
有機繊維としては、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維、炭素繊維等が挙げられ、市場性やコスト面でビニロン繊維やポリプロピレン繊維が好ましい。有機繊維は、コンクリート打込みの作業性や機械的特性の向上から、直径0.005〜1.0mm、長さ2〜30mmのもので、有機繊維の直径に対する長さの比率が20以上、骨材の最大粒度に対する有機繊維の平均長さの比が10以上であることが好ましい。有機繊維の含有量は、凝結後の硬化体体積の8%未満が好ましい。
【0016】
セメントとポゾラン質微粉末の合計質量に対する水の質量比率は8〜24%の範囲であり、好ましくは10〜20%である。8%未満では、コンクリートの練り混ぜが困難となり、逆に24%を超えると目的とするコンクリート強度が得られない。
【0017】
前記各成分の混合及び混練方法に制限は無く、均一に混合混練できればよく、オムニミキサ、パン型ミキサ、二軸練ミキサ、強制練り混ぜミキサ等、各種ミキサを使用することができる。さらに、配合成分の添加順序にも特に制限はない。
【0018】
混練された有機繊維含有コンクリートが打設される薄肉板成形用型枠内に、素線径が0.5mm〜5.0mmで、引張強さTS≧−2.4d3+46.4d2−307.1d+1650.3、降伏点0.2%耐力≧−1.0d3+23.3d2−197.4d+1373 (d:素線径mm)を有する硬鋼線材により、網目サイズが5mm〜60mmの格子状に編み上げた高強度メッシュを配置する。高強度メッシュをサンドイッチに配置することもできる。
【0019】
高強度メッシュを配置した薄肉板成形用型枠内に前記有機繊維含有コンクリートを打設する。有機繊維含有コンクリートを打設した後の養生は、常温養生、高温養生、常圧蒸気養生、高温高圧養生のいずれの方法も採用できる。必要に応じて、これらの組み合わせにより高強度なコンクリート薄肉板を得ることができる。
【0020】
このようにして成形される高強度メッシュで補強された有機繊維含有高強度コンクリート薄肉板は、厚みが30〜50mmで、高強度コンクリートの有する高弾性領域を最大限に生かしつつ、高強度メッシュを配置することによってより高い靭性が確保される。(図1)さらに、薄肉板内に高強度メッシュをサンドイッチに配置することにより、必要十分な耐力を任意に確保することができる。
【0021】
高強度メッシュで補強された有機繊維含有高強度コンクリート薄肉板の用途として、ハーフプレキャスト構造物に用いられる枠材、埋設型枠材、床版、外壁材、内壁材などの薄肉軽量かつ高強度の建築・土木部材として利用できる。
図1は、普通コンクリート▲3▼、有機繊維含有高強度コンクリート▲2▼、本願発明の高強度メッシュで補強された有機繊維含有高強度コンクリート▲1▼で成形されたコンクリート薄肉板との曲げ載荷荷重に応じた変位量を対比したものである。このように、有機繊維単独では高い曲げ強度を発揮できず、この問題を高強度メッシュで補強することにより、曲げ強度、靭性共向上を図ることが可能ならしめる。さらに、適切な高強度メッシュを配することにより、高強度、高靭性の特性を得ることができる。
【0022】
【実施例】
以下、実施例により本発明を説明する。
1.使用材料
以下に示す材料を使用した。
1)セメント;低熱ポルトランドセメント
2)ポゾラン質微粉末;シリカフューム(平均粒径0.7μm)
3)細骨材;珪砂5号
4)有機繊維;ビニロン繊維(長さ/直径>20)
5)高性能AE減水剤;ポリカルボン酸系高性能AE減水剤
6)水;水道水
7)無機粉末;石英粉(平均粒径7μm)
8)繊維状粒子;ウォラストナイト(平均長さ0.3mm、長さ/直径の比4)
9)高強度メッシュ;JIS G3521硬鋼線のSW−A相当の高強度線材(直径1〜2mm)使用のメッシュ(網目:5〜10mm)
【0023】
実施例1
低熱ポルトランドセメント100重量部、シリカフューム32.5重量部、細骨材120重量部、高性能AE減水剤1.0重量部(セメントに対する固形分)、水22重量部、石英粉30重量部、ウォラストナイト24重量部、ビニロン繊維(配合物中の体積3%)を二軸練りミキサに投入し、混練した。
該配合物のフロー値を、「JISR5201(セメントの物理試験方法)11.フロー試験」に記載された方法において、15回の落下運動を行わないで測定した。その結果、フロー値は240mmであった。
混練した材料を15mmの平枠に一度流し込み、前述の各種メッシュ筋2をサンドイッチ状態にして、さらに同混練した材料を流し込み、成形し図2に示されるような高強度コンクリート薄肉板1を製造する。
この時、前記配合物をφ50×100mmの型枠に流し込み、20℃で48時間前置き後90℃で48時間恒温水内での2次養生した。該硬化体の圧縮強度(3本の平均値)は155MPaであった。また、前記配合物を4×4×6cmの型枠に流し込み、20℃で48時間前置き後90℃で48時間恒温水内での2次養生した。該硬化体の曲げ強度(3本の平均値)は26MPaであった。
これらの成形された薄肉板を曲げ載荷試験機にて載荷した場合の荷重と変位の関係を示したものが図1である。
【0024】
【発明の効果】
本発明の構成により、従来の有機繊維含有高強度コンクリート薄肉板の有する高弾性領域を有効に生かしつつ、高い靭性の確保できる高強度コンクリート薄肉板を得ることができ、土木・建築用の表面に露出する軽量高強度コンクリート薄肉板として活用できる。
【図面の簡単な説明】
【図1】本発明の高強度メッシュで補強された有機繊維含有高強度コンクリートと従来のものとの曲げ載荷荷重と変位の関係を比較した図。
【図2】本発明の高強度メッシュで補強された有機繊維含有高強度コンクリート薄肉板を示す図。
【符号の説明】
1:高強度コンクリート薄肉板
2:高強度メッシュ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to high strength concrete plate used in the art of civil engineering and construction.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 2001-207516 discloses high-strength concrete obtained by kneading and curing organic fibers in an inorganic composite material including cement, pozzolanic fine powder, aggregate having a particle size of 2 mm or less, a water reducing agent, and water. Has been.
[0003]
[Patent Document 1]
JP-A-2001-207516 [0004]
[Problems to be solved by the invention]
When high-strength concrete mixed with organic fibers in an inorganic composite material using a reaction fine powder based on cement as shown in the above conventional example is applied to a thin plate structure, the compressive strength is 150 MPa. As shown, a problem arises that high bending strength and toughness cannot be ensured.
[0005]
An object of this invention is to provide the high strength concrete member which solves the problem which the said conventional high strength concrete member has. (See Figure 1)
[0006]
[Means for solving problems]
The gun first invention, in order to solve the above problems, and Da設the concrete molding form in which is disposed a high-strength mesh, by curing, by arranging the high-strength mesh to the inside concrete A reinforced high-strength concrete board, wherein the high-strength mesh has a diameter d (mm) of 0.5 to 5.0 mm and a tensile strength (TS) within a range represented by the following formula (A). , A wire having a yield point (0.2% proof stress) within a range represented by the following mathematical formula (B) is knitted into a grid having a mesh size of 5 to 60 mm, and the concrete is cement, Aggregates with a particle size of 2 mm or less, pozzolanic fine powder with a primary particle size of 1 μm or less, quartz powder with an average particle size of 3 to 20 μm, acicular or flaky particles with an average particle size of 1 mm or less, water reducing agents, organic fibers and water Containing and before The mass ratio of the water to the total mass of the cement and the pozzolanic fine powder is in the range of 8 to 24%, the length of the organic fiber is 2 mm or more, and the ratio of the length to the diameter of the organic fiber is 20 or more, the ratio of the average length of the organic fibers to the maximum particle size of the aggregate in the 10 or more, the amount of the organic fiber is an organic fiber-containing high-strength concrete is less than 8% of the concrete volume after setting It is characterized by.
Figure 0003888685
[0007]
That the present gun second invention, in the high strength concrete thin plate of the present Application the first invention, the organic fiber-containing high-strength concrete is compressed strength 120 MPa (average value) or more, the flexural strength 20 MPa (average value) or It is characterized by .
[0008]
This gun third invention, in the high strength concrete thin plate of the present first or second invention, construction and civil engineering for buried type frame, thin slab, characterized in that it is used as an outer wall or inner wall.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As the cement used for the organic fiber-containing high-strength concrete constituting the high-strength concrete thin plate of the present invention, various cements such as Portland cement, mixed cement, and quick-hardening cement can be used. The amount of cement used is determined together with the amount of pozzolanic fine powder to be described later, but the unit cement amount in the blend is 500 to 1000 kg / m 3 , preferably 700 to 850 kg / m 3. Thus, combined with the action of various blends, high-strength concrete having a compressive strength of 120 MPa or more can be obtained. When the cement usage is below 500 kg / m 3, it becomes difficult to obtain high strength concrete of interest, and if the cement usage exceeds 1000 kg / m 3, in conjunction with the use of powder Porazon fine powder, concrete It is not preferable because kneading is difficult.
[0010]
The fine powder of the polarazone is a fine powder involved in the polyazone reaction with cement, and silica fume, silica dust, fly ash, slag, volcanic ash, silica sol, precipitated silica and the like having an average particle diameter of 1 μm or less are used. Among these, silica fume has an average particle size of 1.0 μm or less and does not need to be pulverized and is suitable for pozzolanic reaction. The pozzolanic fine powder is densified by the micro filler effect and cement dispersing effect, and the compressive strength is improved. On the other hand, since the amount of water used increases as the amount of fine powder added increases, the amount of pozzolanic fine powder used is preferably 5 to 50 parts by weight per 100 parts by weight of cement.
[0011]
Aggregate can be sand that is used for ordinary concrete, such as river sand, land sand, sea sand, crushed sand, silica sand, and mixtures thereof. Preferably, a uniform high quality material having a 1.5 mm sieve passage amount of 85% by weight or more, more preferably a 1.2 mm sieve passage amount of 85% by weight or more is used. By using such aggregate particles, it is possible to increase the fluidity and separation resistance of the concrete, and to increase the degree of filling and strength development of the concrete. The amount of aggregate is 50 to 250 parts by weight with respect to 100 parts by weight of cement, so that the workability and separation resistance of the concrete are excellent, and the strength development after hardening and resistance to cracking are improved. The high-strength concrete which has can be obtained.
[0012]
In addition to the above-mentioned aggregate, the filling density of the cured body can be further increased by blending 3 to 20 μm quartz powder. As the quartz powder, quartz, amorphous quartz, opal or cristobalite silica-containing powder, rock powder, blast furnace slag, volcanic ash, classified fly ash, or the like can be used. When quartz powder is contained in the range of 50 parts by weight or less, preferably in the range of 20 to 35 parts by weight with respect to 100 parts by weight of cement, it has a dense filling structure in which fluidity is good and the cured body has excellent strength development. It is easy to form.
[0013]
From the viewpoint of increasing the toughness of the concrete member, acicular particles or flaky particles having an average particle size of 1 mm or less are blended into the blend. The particle size of the particle means the size of the maximum dimension (particularly, the length of the acicular particle). Examples of the acicular particles include wollastonite, bauxite, mullite, and the like. Examples of the flaky particles include mica flakes, talc flakes, vermiculite flakes, and alumina flakes. The acicular particles and the flaky particles may be used alone or in combination. The blending amount of the acicular particles or the flaky particles is preferably 35 parts by weight or less, more preferably 10 to 25 parts by weight with respect to 100 parts by weight of cement, from the fluidity, strength development and toughness of concrete. In addition, in a needle-like particle | grain, the needle-like degree represented by ratio of length / diameter is 3 or more from a viewpoint of improving the toughness of a concrete member.
[0014]
As the water reducing agent, lignin type, naphthalene sulfonic acid type, melamine type, polycarboxylic acid type water reducing agent, AE water reducing agent, high performance water reducing agent, high performance AE water reducing agent can be used. Among these, it is preferable to use a high performance water reducing agent and a high performance AE water reducing agent. In this invention, it is one of the features that the volume of fine powder in the hardened body is larger than that of conventional concrete, but even in this case, by appropriately adjusting the amount of water reducing agent added, Predetermined fluidity can be given to concrete. The amount of water-reducing agent added (extra split with respect to cement) is 0.1 to 4 in terms of solid content with respect to cement due to the fluidity and separation resistance of concrete, strength after curing, and cost. 0.0% by weight, preferably 0.5 to 2.0% by weight. If the addition amount is less than 0.1% by weight, there is substantially no water reducing effect, and even if it is added in excess of 4.0% by weight, the effect of improving water reduction and fluidity will reach its peak.
[0015]
Examples of the organic fiber include vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, and carbon fiber, and vinylon fiber and polypropylene fiber are preferable in terms of marketability and cost. The organic fiber has a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm, and the ratio of the length to the diameter of the organic fiber is 20 or more from the viewpoint of improving workability and mechanical properties of concrete placing. The ratio of the average length of the organic fibers to the maximum particle size is preferably 10 or more. The organic fiber content is preferably less than 8% of the volume of the cured product after condensation.
[0016]
The mass ratio of water to the total mass of the cement and the pozzolanic fine powder is in the range of 8 to 24%, preferably 10 to 20%. If it is less than 8%, it becomes difficult to knead the concrete. Conversely, if it exceeds 24%, the intended concrete strength cannot be obtained.
[0017]
There is no limitation on the mixing and kneading method of the above components, and it is sufficient that they can be uniformly mixed and kneaded. Various mixers such as an omni mixer, a pan mixer, a biaxial mixer, and a forced kneading mixer can be used. Furthermore, there is no restriction | limiting in particular also in the addition order of a mixing | blending component.
[0018]
The wire diameter is 0.5 mm to 5.0 mm and the tensile strength TS ≧ −2.4d 3 + 46.4d 2 −307 in a thin plate forming mold into which the kneaded organic fiber-containing concrete is placed. .1d + 1650.3, yield point 0.2% proof stress ≧ −1.0d 3 + 23.3d 2 -197.4d + 1373 (d: wire diameter mm), a grid shape having a mesh size of 5 mm to 60 mm Place a high-strength mesh knitted on. A high strength mesh can also be placed in the sandwich.
[0019]
The organic fiber-containing concrete is placed in a thin plate forming mold having a high-strength mesh. Curing after placing the organic fiber-containing concrete can employ any method of normal temperature curing, high temperature curing, normal pressure steam curing, and high temperature high pressure curing. If necessary, a high strength concrete thin plate can be obtained by combining these.
[0020]
The organic fiber-containing high-strength concrete thin plate reinforced with the high-strength mesh formed in this way has a thickness of 30 to 50 mm, and uses the high-strength mesh while making the best use of the high-elasticity area of the high-strength concrete. Arrangement ensures higher toughness. (FIG. 1) Furthermore, a necessary and sufficient yield strength can be arbitrarily ensured by arranging a high-strength mesh in a sandwich in a thin plate.
[0021]
Thin-walled, lightweight and high-strength materials such as frame materials, embedded mold materials, floor slabs, outer wall materials, and inner wall materials used in half-precast structures as applications for organic fiber-containing high-strength concrete thin plates reinforced with high-strength mesh It can be used as a construction / civil engineering member.
Fig. 1 shows the bending load of ordinary concrete (3), organic fiber-containing high-strength concrete (2), and a concrete thin plate formed from organic fiber-containing high-strength concrete (1) reinforced with the high-strength mesh of the present invention. This is a comparison of the amount of displacement according to the load. Thus, organic fibers alone cannot exhibit high bending strength, and it is possible to improve both bending strength and toughness by reinforcing this problem with a high-strength mesh. Furthermore, by arranging an appropriate high strength mesh, it is possible to obtain high strength and high toughness characteristics.
[0022]
【Example】
Hereinafter, the present invention will be described by way of examples.
1. Materials used The following materials were used.
1) Cement; Low heat Portland cement 2) Pozzolanic fine powder; Silica fume (average particle size 0.7 μm)
3) Fine aggregate; Silica sand No. 5 4) Organic fiber; Vinylon fiber (length / diameter> 20)
5) High-performance AE water reducing agent; polycarboxylic acid-based high-performance AE water reducing agent 6) Water; tap water 7) Inorganic powder; Quartz powder (average particle size 7 μm)
8) Fibrous particles; wollastonite (average length 0.3 mm, length / diameter ratio 4)
9) High-strength mesh; JIS G3521 hard steel wire SW-A equivalent mesh (diameter: 1 to 2 mm) (mesh: 5 to 10 mm)
[0023]
Example 1
Low heat Portland cement 100 parts by weight, silica fume 32.5 parts by weight, fine aggregate 120 parts by weight, high performance AE water reducing agent 1.0 part by weight (solid content with respect to cement), water 22 parts by weight, quartz powder 30 parts by weight, 24 parts by weight of lastite and vinylon fiber (volume 3% in the blend) were charged into a biaxial kneader and kneaded.
The flow value of the blend was measured in the method described in “JISR5201 (Cement physical test method) 11. Flow test” without performing 15 drop motions. As a result, the flow value was 240 mm.
The kneaded material is poured once into a 15 mm flat frame, the above-mentioned various mesh streaks 2 are sandwiched, the kneaded material is further poured and molded, and a high-strength concrete thin plate 1 as shown in FIG. 2 is manufactured. .
At this time, the blend was poured into a mold of φ50 × 100 mm, pre-set at 20 ° C. for 48 hours, and then subjected to secondary curing in constant temperature water at 90 ° C. for 48 hours. The compressive strength (average value of 3 pieces) of the cured body was 155 MPa. The blend was poured into a 4 × 4 × 6 cm mold, pre-set at 20 ° C. for 48 hours, and then subjected to secondary curing in constant temperature water at 90 ° C. for 48 hours. The bending strength (average value of 3 pieces) of the cured body was 26 MPa.
FIG. 1 shows the relationship between load and displacement when these formed thin plates are loaded by a bending load tester.
[0024]
【The invention's effect】
With the configuration of the present invention, it is possible to obtain a high-strength concrete thin plate that can ensure high toughness while effectively utilizing the high-elasticity area of the conventional organic fiber-containing high-strength concrete thin plate, and on the surface for civil engineering and construction It can be used as an exposed lightweight high-strength concrete thin plate.
[Brief description of the drawings]
FIG. 1 is a diagram comparing the relationship between bending load and displacement between organic fiber-containing high-strength concrete reinforced with a high-strength mesh of the present invention and a conventional one.
FIG. 2 is a view showing an organic fiber-containing high-strength concrete thin plate reinforced with a high-strength mesh of the present invention.
[Explanation of symbols]
1: High-strength concrete thin plate 2: High-strength mesh

Claims (3)

高強度メッシュを配置した成形用型枠内にコンクリートを打設し、養生することにより、前記コンクリート内に前記高強度メッシュを配置して補強した高強度コンクリート板であって、
前記高強度メッシュは、直径d(mm)が0.5〜5.0mmで、引張強さ(TS)が下記数式(A)で示される範囲内であり、降伏点(0.2%耐力)が下記数式(B)で示される範囲内である素線を、網目サイズが5〜60mmの格子状に編み上げたものであり、
前記コンクリートは、セメント、最大粒度が2mm以下の骨材、一次粒子粒度が1μm以下のポゾラン質微粉末、平均粒径3〜20μmの石英粉末、平均粒度が1mm以下の針状もしくは薄片状粒子、減水剤、有機繊維および水を含有し、かつ前記セメントと前記ポゾラン質微粉末との合計質量に対する前記水の質量比率が8〜24%の範囲にあり、前記有機繊維の長さが2mm以上で、前記有機繊維の直径に対する長さの比率が20以上、前記骨材の最大粒度に対する前記有機繊維の平均長さの比が10以上で、前記有機繊維の量が凝結後のコンクリート体積の8%未満である有機繊維含有高強度コンクリートであることを特徴とする高強度コンクリート板
Figure 0003888685
A high-strength concrete plate reinforced by placing the high-strength mesh in the concrete by placing and curing the concrete in a molding form in which the high-strength mesh is disposed,
The high-strength mesh has a diameter d (mm) of 0.5 to 5.0 mm, a tensile strength (TS) within the range represented by the following formula (A), and a yield point (0.2% yield strength). Is knitted into a lattice shape having a mesh size of 5 to 60 mm, in which the wire is within the range represented by the following formula (B)
The concrete is cement, aggregate having a maximum particle size of 2 mm or less, pozzolanic fine powder having a primary particle size of 1 μm or less, quartz powder having an average particle size of 3 to 20 μm, acicular or flaky particles having an average particle size of 1 mm or less, It contains a water reducing agent, organic fibers and water, and the mass ratio of the water to the total mass of the cement and the pozzolanic fine powder is in the range of 8 to 24%, and the length of the organic fibers is 2 mm or more. The ratio of the length to the diameter of the organic fiber is 20 or more, the ratio of the average length of the organic fiber to the maximum particle size of the aggregate is 10 or more, and the amount of the organic fiber is 8% of the concrete volume after setting high strength concrete plate, characterized in that an organic fiber-containing high-strength concrete is less than.
Figure 0003888685
前記有機繊維含有高強度コンクリートは、圧縮強度120MPa(平均値)以上、曲げ強度20MPa(平均値)以上であることを特徴とする請求項1に記載の高強度コンクリート板The organic fiber-containing high-strength concrete, compressive strength 120 MPa (average value) or more, the flexural strength 20MPa high strength concrete plate according to claim 1, characterized in that the (average value) or more. 建築・土木用埋設型枠、薄肉床版、外壁または内壁として使用されることを特徴とする請求項1又は2に記載の高強度コンクリート板Construction and civil engineering for buried type frame, thin slab, high strength concrete plate according to claim 1 or 2, characterized in that it is used as an outer wall or inner wall.
JP2003097553A 2003-04-01 2003-04-01 High-strength concrete board containing organic fibers reinforced with high-strength mesh Expired - Fee Related JP3888685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097553A JP3888685B2 (en) 2003-04-01 2003-04-01 High-strength concrete board containing organic fibers reinforced with high-strength mesh

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097553A JP3888685B2 (en) 2003-04-01 2003-04-01 High-strength concrete board containing organic fibers reinforced with high-strength mesh

Publications (2)

Publication Number Publication Date
JP2004300001A JP2004300001A (en) 2004-10-28
JP3888685B2 true JP3888685B2 (en) 2007-03-07

Family

ID=33409303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097553A Expired - Fee Related JP3888685B2 (en) 2003-04-01 2003-04-01 High-strength concrete board containing organic fibers reinforced with high-strength mesh

Country Status (1)

Country Link
JP (1) JP3888685B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969423B2 (en) * 2003-09-30 2005-11-29 The Regents Of The University Of Michigan Lightweight strain hardening brittle matrix composites
JP2006336195A (en) * 2005-05-31 2006-12-14 Nippon Concrete Ind Co Ltd Foundation structure and its construction method
JP4781303B2 (en) * 2006-03-30 2011-09-28 太平洋セメント株式会社 Adjustment ring
JP4752596B2 (en) * 2006-04-28 2011-08-17 東洋紡績株式会社 Concrete structure with excellent explosion resistance
CZ305168B6 (en) * 2012-11-20 2015-05-27 České vysoké učení technické v Praze, Fakulta stavební, Experimentální centrum High-quality cement composite
JP6889478B2 (en) * 2018-04-18 2021-06-18 田中建設株式会社 Concrete composition
CN114290481B (en) * 2021-12-17 2023-05-16 中建三局集团有限公司 Manufacturing method of high-strength HPC plate

Also Published As

Publication number Publication date
JP2004300001A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
WO2002096825A1 (en) Hydraulic composition
JP2004507431A (en) Fiber-containing concrete with high strength and ductility
JP4374106B2 (en) High strength mortar and high strength concrete
JP5101355B2 (en) Cement composition
JP3397774B2 (en) Hydraulic composition
JP3888685B2 (en) High-strength concrete board containing organic fibers reinforced with high-strength mesh
JP2002348167A (en) Hydraulic composition
JP4298247B2 (en) High fluidity concrete
JP4413532B2 (en) Reinforcing fiber for hydraulic composition and hydraulic composition containing the same
JP4056696B2 (en) Cement slurry
JP4039801B2 (en) Hydraulic composition
JP4519252B2 (en) Seismic reinforcement panel
JP2004155623A (en) Prestressed concrete
JP4056841B2 (en) Prestressed hydraulic cured body
JP4376409B2 (en) Joint joint material for post tension prestressed concrete plate
JP2001220201A (en) Fiber reinforced concrete
JP4167787B2 (en) Composite material
JP4745480B2 (en) Steel pipe concrete pile
JP4342701B2 (en) Hardened cement and method for producing the same
JP2003149387A (en) Neutron shielding structure
JP4850747B2 (en) Hardened cementitious body
JP2001212817A (en) Method for producing fiber-reinforced concrete
JP2004224639A (en) Slab member
JP4526627B2 (en) Steel pipe filling concrete
JP2001207442A (en) Sheet pile

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3888685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees