JP2004129155A - Electricity quantity amplification processing system - Google Patents

Electricity quantity amplification processing system Download PDF

Info

Publication number
JP2004129155A
JP2004129155A JP2002293979A JP2002293979A JP2004129155A JP 2004129155 A JP2004129155 A JP 2004129155A JP 2002293979 A JP2002293979 A JP 2002293979A JP 2002293979 A JP2002293979 A JP 2002293979A JP 2004129155 A JP2004129155 A JP 2004129155A
Authority
JP
Japan
Prior art keywords
processed
electric quantity
amplification
analog
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002293979A
Other languages
Japanese (ja)
Inventor
Satoru Sasagawa
笹川 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002293979A priority Critical patent/JP2004129155A/en
Publication of JP2004129155A publication Critical patent/JP2004129155A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Analogue/Digital Conversion (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the accuracy of an amplification process of a small analog AC electricity quantity is substantially lower than that of a large analog AC electricity quantity due to the fact that an amplification factor of an amplification circuit is limited by a maximum value of processed electricity quantity that is amplified in the circuit and input in an electronic processing means. <P>SOLUTION: An electricity quantity amplification processing system comprises an amplification circuit 3 in which an amplification factor for amplifying an analog AC electricity quantity of 1A changes when it is input and controlled, an A/D converter 5 in which an output from the amplification circuit 3 is input and converted into a digital electricity quantity, and an electronic processing means 6 which receives an output of the digital electricity quantity from the A/D converter 5 and processes it digitally. The amplification circuit 3 is controlled according to the variation of electricity quantity to be processed to change the amplification factor of the circuit 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、被処理アナログ交流電気量を増幅する増幅回路の出力をA/Dコンバ−タにより被処理ディジタル電気量に変換しこの被処理ディジタル電気量をディジタル的に処理する電気量増幅処理方式に関するもので、例えば、ディジタル形保護制御装置、計測装置、他に摘用されるものである。
【0002】
【従来の技術】
ディジタル形保護リレー装置、計測装置、他において使用される電気量増幅処理装置は、一般的には図6に示すように、当該装置に入力された電圧、電流等の被処理アナログ交流電気量1Aを、CT、PT、他の被処理アナログ交流電気量抽出要素2で抽出し、前記被処理アナログ交流電気量抽出要素2の出力である被処理アナログ交流電気量1Aを増幅回路3で増幅し、当該増幅回路3で増幅された被処理アナログ交流電気量1Aを、アナログフィルタ4に入力して処理に不要なノイズ成分を除去した後に、A/Dコンバ−5により被処理ディジタル交流電気量(デ−タ)1Dに変換し、このA/Dコンバ−タ5により変換された被処理ディジタル交流電気量(デ−タ)1Dを、CPU等の電子的処理手段6により、電圧、電流、他の計測、短絡、地絡、漏電、他の検出等を行うリレ−動作、表示、等の必要な処理を行うようになされている。
【0003】
前記増幅回路4は、一般的には、図7に示すように、その入力端3inと出力端3outとの間に図示のように接続されたオペアンプOPAと抵抗R1と抵抗R2とアナログ接地端3gとで構成され、反転増幅回路の場合は図7(A)に、正相増幅回路の場合は図7(B)に、夫々示す接続となっている。なお、図7(A)、図7(B)も何れにおいても、前記入力端3inに入力される前記被処理アナログ交流電気量1Aの波形の最大値はaで示し、前記出力端3outに出力される前記被処理アナログ交流電気量1Aの波形の最大値はbで示してあり、b=(R2/R1)×aの関係が成り立つ。前記増幅率は(R2/R1)である。
【0004】
ここで、例えば前述のような図7(A)、図7(B)の構成の増幅回路4を備えた電気量増幅処理装置においては、CPU等の前記電子的処理手段6へ入力される電圧範囲は、例えば0〜5V等、低く狭い範囲で一定であるため、入力される被処理電気量の被処理範囲が広い場合は、前記増幅回路の増幅率は、前記増幅回路で増幅され電子的処理手段に入力される被処理電気量の最大値に制約される。即ち、増幅された被処理電気量の最大値が前記電子的処理手段6の電圧、例えば5V、となるように増幅率を決める必要がある。従って、入力される被処理電気量の被処理範囲が広い場合においては、電子的処理手段6における処理精度は、被処理電気量が大きい場合に比べて、被処理電気量が小さい場合に悪化することとなる。
【0005】
このような被処理電気量が小さい場合における処理精度の悪化を防ぐため、従来では、一般的には、図8のように、小さい被処理アナログ交流電気量1Aに対して増幅率の大きい専用の増幅回路31と大きい被処理アナログ交流電気量1Aに対して増幅率の小さい専用の増幅回路32とを設けていた。なお、前記増幅回路31及び32は何れも、増幅用の抵抗R1、R2、サ−ジ吸収抵抗R3、オペアンプOPA、アナログ接地3gを備えた同一構成で、増幅率を左右する抵抗R1、R2を異なる値としたものである。
【0006】
ところで、例えば電力系統における計測、監視、制御の分野等においては、前記CPU等の電子的処理手段6の処理対象が、例えば、負荷監視、漏電検出、短絡、地絡、過負荷、等の異常状態の検出および除去、等々、被処理アナログ交流電気量の被処理範囲が大きな量から小さな量まで可成り広範となる傾向がある。被処理アナログ交流電気量の被処理範囲が大きな量から小さな量まで可成り広範となった場合は、例えば前述の図7に示すような小さい被処理アナログ交流電気量1Aに対して大きな増幅率に固定された専用の増幅回路31を、大きい被処理アナログ交流電気量1Aに対して小さな増幅率に固定された専用の増幅回路32をそれぞれ設ける対応の仕方では、異なる増幅率に固定された専用の増幅回路を31、32、・・・3nと多数設ける必要があり、電気量増幅処理装置の構成要素の一である基板における増幅回路の占有する面積および使用する部品点数が増大し大型化且つ高価になるという問題点がある。
【0007】
また、図9に示すように、増幅回路における抵抗R2として可変抵抗を用いる手法も理論的には考えられるが、手動にて可変抵抗を調整する或いは切り替える必要があるため、現実には使用されてない。
【0008】
なお、多数の抵抗からなるラダ−抵抗を、多数のゲ−ト回路により、アナログ交流入力信号の極性が変わる毎に接続切替することにより増幅器の増幅率を自動的に変え、アナログ入力信号から徐々に減衰させたり漸増させた歪の無いアナログ出力信号を得る波形整形に適用される増幅装置は、特開平6−164283号公報に開示されている。しかし、このような多数の抵抗からなるラダ−抵抗を、多数のゲ−ト回路により、アナログ交流入力信号の極性が変わる毎に接続切替することにより増幅器の増幅率を自動的に変える増幅装置は、被処理アナログ交流電気量を増幅する増幅回路の出力をA/Dコンバ−タにより被処理ディジタル電気量に変換しこの被処理ディジタル電気量を電子的処理手段でディジタル的に処理する電気量増幅処理方式には使用されていない。
【0009】
【特許文献】
特開平6−164283号公報(段落番号0001、0012〜0016、0026、及び図1)
【0010】
【発明が解決しようとする課題】
前述のように、電力系統他における計測、監視、制御の分野等において電気量の増幅処理を行う場合、被処理アナログ交流電気量を増幅する増幅回路の出力をA/Dコンバ−タにより被処理ディジタル電気量に変換しこの被処理ディジタル電気量を電子的処理手段でディジタル的に処理する方式では、前記増幅回路の増幅率は、前記増幅回路で増幅され電子的処理手段に入力される被処理電気量の最大値に制約される。即ち、前記増幅回路で増幅され電子的処理手段に入力される被処理電気量の最大値が前記電子的処理手段の電圧、例えば5V、となるように増幅率を決める必要がある。
【0011】
CPU等の前記電子的処理手段の処理対象が、例えば、負荷監視、漏電検出、短絡、地絡、過負荷、等の異常状態の検出及び除去、等々、被処理アナログ交流電気量の被処理範囲が大きな量から小さな量まで可成り広範となる傾向下においては、前記増幅回路の増幅率は、前記増幅回路で増幅され電子的処理手段に入力される被処理電気量の最大値に制約されることから、被処理アナログ交流電気量が小さな量の処理を行う場合の精度が、被処理アナログ交流電気量が大きな量の処理を行う場合に比べ可成り低くなる。
【0012】
被処理アナログ交流電気量が小さな量の処理を行う場合の精度を上げるため、例えば小さい被処理アナログ交流電気量に対して大きな増幅率に固定された専用の増幅回路を、大きい被処理アナログ交流電気量に対して小さな増幅率に固定された専用の増幅回路を夫々設ける対応の仕方を採用することも考えられるが、被処理アナログ交流電気量の被処理範囲が大きな量から小さな量まで可成り広範となる場合には、異なる増幅率に固定された専用の増幅回路を多数設ける必要があり、電気量増幅処理装置の構成要素の一である基板における増幅回路の占有する面積および使用する部品点数が増大するという課題が生じる。
【0013】
この発明は、前述のような実情に鑑みてなされたもので、電子的処理手段に入力される被処理電気量の被処理範囲が大きな量から小さな量まで広範な場合、被処理電気量の被処理範囲が大きな量から小さな量まで必要な処理精度を確保し、しかも電気量増幅処理装置の構成要素の一である基板における増幅回路の占有する面積および使用する部品点数の増大を抑制できるようにすることを目的とするものである。
【0014】
【課題を解決するための手段】
この発明に係る電気量増幅処理方式は、被処理アナログ交流電気量を入力し制御されることにより前記被処理アナログ交流電気量を増幅する増幅率が変わる増幅回路、この増幅回路の出力を入力し被処理ディジタル電気量に変換するA/Dコンバ−タ、及びこのA/Dコンバ−タの出力を入力し前記被処理ディジタル電気量をディジタル的に処理する電子的処理手段を備え、被処理電気量の大きさにより前記増幅回路を制御して当該増幅回路の増幅率を変えるものである。
【0015】
実施の形態1.
図1はこの発明の実施の形態1の一例を、反転増幅回路形式の場合について示す回路構成図、図2は入力波形の多きさの算出方法の一例を説明する説明図である。
【0016】
図1において、電圧、電圧に変換された電流、他の被処理アナログ電気量1Aは、例えば前述の図5における前記被処理アナログ交流電気量抽出要素2等の出力であり、入力端3inに供給される。この入力端3inの直後に増幅回路3が接続され、この増幅回路3の後段に、増幅された被処理アナログ電気量1Aから処理に不要な成分、例えば、サ−ジ電圧、第3高調波等の高調波、ノイズ、等、を除去するアナログフィルタ4が接続され、このアナログフィルタ4の後段に、前記処理に不要な成分が除去された被処理アナログ電気量1Aを被処理ディジタル電気量1Dに変換するA/Dコンバ−タ5が接続され、このA/Dコンバ−タ5の出力である被処理ディジタル電気量1Dを、CPU等の前記電子的処理手段6がサンプリングにより得、このサンプリングにより得た被処理ディジタル電気量1Dを基に、前記電子的処理手段6は、当該サンプリングにより得た被処理ディジタル電気量1Dの状態に応じて、その保護リレ−機能、増幅率制御機能、負荷の監視・制御機能、電力系統を構成する機器・設備の監視・制御機能等の各種機能を実行する。
【0017】
前記増幅回路3は、抵抗R1,R21,R22で構成される増幅用抵抗RAと、オペアンプ(演算増幅器)OPAと、マルチプレクサ(図ではMUXと略記する)等の電子的増幅率切替器7とで構成されている。前記電子的増幅率切替器7は、論理積回路などの論理ゲ−トAND1及びAND2とで構成され、前記論理ゲ−トAND1は抵抗R21に直列接続され、前記論理ゲ−トAND2は抵抗R22に直列接続されている。また、前記抵抗R21,R22は互いに並列をなして接続され、前記抵抗R21,R22は前記抵抗R1に直列接続されている。前記オペアンプ(演算増幅器)OPAの負入力端は、前記抵抗R1を介して前記被処理アナログ電気量1Aの入力端3in接続され、前記オペアンプ(演算増幅器)OPAの正入力端は、アナログ接地3gに接続されている。
【0018】
前記電子的増幅率切替器7の出力端は、前記オペアンプ(演算増幅器)OPAの出力端に接続され、この接続により、前記電子的処理手段6により制御用バス8を介して前記被処理アナログ電気量1Aの大きさに応じて選択された論理ゲ−トAND1またはAND2に対応する抵抗R21またはR22と、抵抗R1とで決まる増幅率で増幅された被処理アナログ電気量1Aが、前記アナログフィルタ4に入力されることになる。なお、前記論理ゲ−トAND1が前記選択をされた場合、当該論理ゲ−トAND1に対応する抵抗R21と抵抗R1とにより増幅率はR21/R1となり、前記論理ゲ−トAND2が前記選択をされた場合、当該論理ゲ−トAND2に対応する抵抗R22と抵抗R1とにより増幅率はR22/R1となる。
【0019】
ここで、前記抵抗R21、R22の抵抗値の大小関係が、R21>R22としてある場合、前記増幅率R21/R1と前記増幅率R22/R1との大小関係は(R21/R1)>(R22/R1)となる。一方、前記電子的処理手段6は、前記被処理アナログ電気量1Aが事故電流等で大きい場合は、前記抵抗R22に対応した前記論理ゲ−トAND2に選択的に制御信号を送り、前記増幅回路3の増幅率が小さい方の増幅率R22/R1となるように、前記被処理アナログ電気量1Aが事故電流等以外で小さい場合は、前記抵抗R21に対応した前記論理ゲ−トAND1に選択的に制御信号を送り、前記増幅回路3の増幅率が大きい方の増幅率R21/R1となるように、前記被処理アナログ電気量1Aの大きさに応じた制御をする。
【0020】
次に、前記電子的増幅率切替器7を前記電子的処理手段6により制御する事例を図2により説明する。前記電子的処理手段6(図1)は、一定周期tで前記A/Dコンバ−タ5の出力をサンプリングしており、サンプリングされた値が、0レベルより小さな値−v2となった場合、前回サンプリングされた値v1と今回サンプリングされた値−v2との差Δvから、前回サンプリングと今回サンプリングの間隔tの傾きaを算出する。
【0021】
ここで、前記差Δvは、式Δv=v1−(−v2)=v1+v2により前記電子的処理手段6で得られ、前記傾きaは式a=Δv/tにより前記電子的処理手段6で得られる。なお、前記差Δvは、前回サンプリングから今回サンプリングまでの被処理入力電気量の変化量である。
【0022】
入力波形の大きさによりこの傾きaは変化し、入力が小さい場合は傾きaは小さく、入力が大きい場合は傾きaが大きくなるため、この傾きaの値の大きさに応じて前記電子的処理手段6は前記電子的増幅率切替器7の制御を行う。この傾きaの値が希望する基準値より大きな場合は、前記増幅回路3の増幅率を小さくするため抵抗値の小さな抵抗R22に、希望する基準値より小さな場合は、前記増幅回路3の増幅率を大きくするため抵抗値の大きな抵抗R21に、それぞれ切り替えるように、前記電子的処理手段6は前記電子的増幅率切替器7の制御を行う。
【0023】
なお、実際の回路における前記希望する基準値は、使用者が計測範囲等および精度を考慮して決定する。また、前記被処理アナログ電気量1Aの波形における0の前後の直線部分での前記傾きaが、前記被処理アナログ電気量1Aの波形の大きさを最も正確に判別できる。従って、前述のように、前記電子的処理手段6によりサンプリングされた値が、0レベルより小さな値−v2となった場合、前回サンプリングされた値v1と今回サンプリングされた値−v2との差Δvから、前回サンプリングと今回サンプリングの間隔tの傾きaを算出する。
【0024】
図1及び図2に示すこの発明の実施の形態1は前述のように構成され前述のように機能するので、例えば前述の図7に示すような小さい被処理アナログ交流電気量1Aに対して大きな増幅率に固定された専用の増幅回路31を、大きい被処理アナログ交流電気量1Aに対して小さな増幅率に固定された専用の増幅回路32をそれぞれ設ける従来方式による対応の仕方のように、抵抗R1、オペアンプOPA、及びサ−ジ吸収抵抗R3を、各増幅回路31,32毎に設けるようなことをしんなくて済む。
【0025】
つまり、被処理ディジタル交流電気量1Dの大きさ、即ち被処理アナログ交流電気量1Aの大きさ、に応じて、小さい被処理アナログ交流電気量1Aに対して大きな増幅率とすると共に大きい被処理アナログ交流電気量1Aに対して小さな増幅率とすることができ、しかも、大きな増幅率、小さい増幅率を、共通の1個の抵抗R1、共通の1個のオペアンプOPA、共通の1個のアナログフィルタ4で実現でき、電気量増幅処理装置の構成要素の一である基板における増幅回路の占有する面積および使用する部品点数が増大し大型化かつ高価になるという従来の問題点を軽減できる。
【0026】
実施の形態2.
図3はこの発明の実施の形態2の一例を、正相増幅回路形式の場合について示す回路構成図で、オペアンプ(演算増幅器)OPAの負入力端は、前記抵抗R1を介してアナログ接地3gに接続され、前記オペアンプ(演算増幅器)OPAの正入力端は、前記被処理アナログ電気量1Aの入力端3in接続されている。増幅回路3、増幅回路3の電子的増幅率切替器7、アナログフィルタ4、A/Dコンバ−タ5、電子的処理手段6の構成及び機能は、前述のこの発明の実施の形態1と同じであるので、説明は省略する。
【0027】
実施の形態3.
図4はこの発明の実施の形態3の一例を、反転増幅回路形式の場合について示す回路構成図で、増幅率を3段以上の多段切替を可能とするものである。前述の図1に示す反転増幅回路形式のこの発明の実施の形態1の一例と異なる点は、前述の図1に示す反転増幅回路形式のこの発明の実施の形態1では、2個の抵抗R21、R22と、2個の論理ゲ−トAND1、AND2であるのに対して、図4に示すこの発明の実施の形態3の一例では、増幅率を3段以上の多段切替を可能とする為、n個の抵抗R21、R22、・・・Rnとすると共に、n個の論理ゲ−トAND1、AND2、・・・ANDnとして電子的増幅率切替器7を多チャンネル電子的増幅率切替器とし、増幅率をn段切替可能としたものである。
【0028】
前述のように、例えば電力系統における計測、監視、制御の分野等においては、前記CPU等の電子的処理手段6の処理対象が、例えば、負荷監視、漏電検出、短絡、地絡、過負荷、等の異常状態の検出および除去、等々、被処理アナログ交流電気量の被処理範囲が大きな量から小さな量まで可成り乃至非常に広範となる傾向がある。例えば、検出或いは測定して遮断器へのトリップ信号を発生する処理を行う必要がある短絡発生時における事故電流(数100〜数1000A)、検出或いは測定して漏電ブレ−カへのトリップ信号を発生する処理を行う必要がある漏電発生時の漏電電流(数mA)等は、検出或いは測定して処理を行う対象の被処理アナログ交流電気量が非常に大きな量、非常に小さな量の代表的なものである。
【0029】
このように被処理アナログ交流電気量の被処理範囲が大きな量から小さな量まで可成り乃至非常に広範な場合は、増幅率をn段切替可能としたこの発明の実施の形態3(図4)が好適である。例えば、事故電流が数100A、漏電電流が数mAの負荷回線で当該事故電流および当該漏電電流をCPU等の電子的処理手段6で検出或いは測定して前記処理を行う場合、増幅率を10段前後切替可能とすれば当該事故電流および当該漏電電流の何れも的確に検出或いは測定して前記処理を行うことが可能である。
【0030】
この場合、例えば前述の図7に示すような小さい被処理アナログ交流電気量1Aに対して大きな増幅率に固定された専用の増幅回路31を、大きい被処理アナログ交流電気量1Aに対して小さな増幅率に固定された専用の増幅回路32をそれぞれ設ける従来方式による対応の仕方では、抵抗R1、オペアンプOPA、及びサ−ジ吸収抵抗R3を、増幅率の段数分の10個前後設ける必要があるが、この発明の実施の形態3(図4)では、抵抗R21,R22,・・Rn、及び論理ゲ−トAND1,AND2,・・ANDnの数を10個前後とするだけでよく、前述の従来方式のように抵抗R1、オペアンプOPA、及びアナログフィルタは各1個でよく、前述の従来の増幅率の段数分の10個前後も設ける必要はなく、電気量増幅処理装置の構成要素の一である基板における増幅回路の占有する面積および使用する部品点数が増大し大型化かつ高価になるという従来の問題点を軽減できる。
【0031】
実施の形態4.
図5はこの発明の実施の形態4の一例を、正相増幅回路形式の場合について示す回路構成図で、オペアンプ(演算増幅器)OPAの負入力端は、前記抵抗R1を介してアナログ接地3gに接続され、前記オペアンプ(演算増幅器)OPAの正入力端は、前記被処理アナログ電気量1Aの入力端3in接続されている。増幅回路3、増幅回路3の電子的増幅率切替器7、アナログフィルタ4、A/Dコンバ−タ5、電子的処理手段6の構成及び機能は、前述のこの発明の実施の形態3と同じであるので、説明は省略する。
【0032】
実施の形態5.
前述の実施の形態1〜4においては、前記増幅回路3、アナログフィルタ4、A/Dコンバ−タ5の経路で得た被処理ディジタル電気量から被処理電気量の大きさを判別する場合を例示したが、大きさを判別する対象の被処理交流電気量は、他の経路から電子的処理手段に取り込まれたものであってもよい。また、大きさを判別する対象の被処理交流電気量は被処理アナログ電気量から被処理電気量の大きさを判別するようにしてもよい。
【0033】
実施の形態6.
前述の実施の形態1においては、前記電子的処理手段6によりサンプリングされた値が、0レベルより小さな値−v2となった場合、前回サンプリングされた値v1と今回サンプリングされた値−v2との差Δvから、前回サンプリングと今回サンプリングの間隔tの傾きaを算出する場合を例示したが、例えば、検出あるいは計測した被処理電気量の各種大きさに対する必要な増幅率に見合った制御レベルを制御テ−ブルとして準備しておき、当該テ−ブルに基づいて前記電子的処理手段6が、制御されることにより前記被処理アナログ交流電気量を増幅する増幅率が変わる増幅回路3の増幅率を制御するようにしてもよく、前述の実施の形態1で例示した被処理電気量の大きさ応じた制御方式に限られるものではない。
【0034】
【発明の効果】
この発明による電気量増幅処理方式は、前述のように被処理アナログ交流電気量を入力し制御されることにより前記被処理アナログ交流電気量を増幅する増幅率が変わる増幅回路、この増幅回路の出力を入力し被処理ディジタル電気量に変換するA/Dコンバ−タ、及びこのA/Dコンバ−タの出力を入力し前記被処理ディジタル電気量をディジタル的に処理する電子的処理手段を備え、被処理電気量の大きさにより前記増幅回路を制御して当該増幅回路の増幅率を変えるので、電子的処理手段に入力される被処理電気量の被処理範囲が大きな量から小さな量まで広範な場合、被処理電気量の被処理範囲が大きな量から小さな量まで必要な処理精度を確保し、しかも電気量増幅処理装置の構成要素の一である基板における増幅回路の占有する面積および使用する部品点数の増大を抑制でき、ひいては電気量増幅処理装置の低コスト化、小型化が可能となる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1の一例を、反転増幅回路形式の場合について示す回路構成図。
【図2】この発明の実施の形態1における被処理電気量の波形の多きさの算出方法の一例を説明する説明図。
【図3】この発明の実施の形態2の一例を、正相増幅回路形式の場合について示す回路構成図。
【図4】この発明の実施の形態3の一例を、反転増幅回路形式の場合について示す回路構成図。
【図5】この発明の実施の形態4の一例を、正相増幅回路形式の場合について示す回路構成図。
【図6】ディジタル形保護リレー装置、計測装置、他において使用される電気量増幅処理装置の一般的な回路図で、この発明の適用対象の一例でもある回路図。
【図7】従来の一般的な増幅回路を示す図。
【図8】被処理電気量が小さい場合における処理精度の悪化を防ぐための従来の一般的な増幅回路を示す図。
【図9】被処理電気量が小さい場合における処理精度の悪化を防ぐために論理的に考えられ増幅回路における増幅率に関係する抵抗として可変抵抗を用いる場合の回路を示す回路図。
【符号の説明】
1A 被処理アナログ電気量、   3 増幅回路、
5 A/Dコンバ−タ、       6 電子的処理手段、
7 電子的増幅率切替器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electric quantity amplification processing system for converting the output of an amplifier circuit for amplifying a processed analog AC electric quantity into a digital electric quantity to be processed by an A / D converter and digitally processing the digital electric quantity to be processed. For example, a digital protection control device, a measuring device, and others are used.
[0002]
[Prior art]
As shown in FIG. 6, an electric quantity amplification processing device used in a digital protection relay device, a measuring device, and the like generally has a processed analog AC electric quantity of 1 A such as a voltage and current input to the device. Is extracted by the CT, PT, and other processed analog AC electrical quantity extraction element 2, and the processed analog AC electrical quantity 1A output from the processed analog AC electrical quantity extraction element 2 is amplified by the amplifier circuit 3. The analog AC electric quantity 1A to be processed amplified by the amplifier circuit 3 is input to an analog filter 4 to remove noise components unnecessary for processing, and then the digital AC electric quantity (data) to be processed by an A / D converter 5. 1) The digital AC electric data (data) 1D converted by the A / D converter 5 and converted by the A / D converter 5 is converted into a voltage, a current, and the like by electronic processing means 6 such as a CPU. measurement Short, ground fault, leakage, relay performs another detection such - operation, display, have been made to perform the necessary processing and the like.
[0003]
As shown in FIG. 7, the amplifying circuit 4 generally includes an operational amplifier OPA, a resistor R1, a resistor R2, and an analog ground terminal 3g connected between an input terminal 3in and an output terminal 3out as shown in FIG. 7A for the inverting amplifier circuit and FIG. 7B for the positive-phase amplifier circuit. In both FIGS. 7A and 7B, the maximum value of the waveform of the processed analog AC electric quantity 1A input to the input terminal 3in is indicated by a, and the maximum value is output to the output terminal 3out. The maximum value of the waveform of the processed analog AC electric quantity 1A to be processed is indicated by b, and a relationship of b = (R2 / R1) × a is established. The amplification factor is (R2 / R1).
[0004]
Here, for example, in the electric quantity amplification processing device provided with the amplification circuit 4 having the configuration of FIGS. 7A and 7B as described above, the voltage input to the electronic processing means 6 such as a CPU. Since the range is constant in a low and narrow range such as 0 to 5 V, for example, when the processing range of the input amount of electricity to be processed is wide, the amplification factor of the amplifier circuit is amplified by the amplifier circuit and It is restricted by the maximum value of the amount of electricity to be processed input to the processing means. That is, it is necessary to determine the amplification factor so that the maximum value of the amplified electric quantity to be processed becomes the voltage of the electronic processing means 6, for example, 5V. Therefore, when the processing range of the input electric quantity to be processed is wide, the processing accuracy of the electronic processing means 6 is deteriorated when the electric quantity to be processed is small as compared with when the electric quantity to be processed is large. It will be.
[0005]
In order to prevent the processing accuracy from deteriorating when the amount of electricity to be processed is small, conventionally, as shown in FIG. 8, generally, as shown in FIG. An amplifying circuit 31 and a dedicated amplifying circuit 32 having a small amplification factor for a large amount of processed analog AC electricity 1A are provided. Each of the amplifier circuits 31 and 32 has the same configuration including amplification resistors R1 and R2, a surge absorption resistor R3, an operational amplifier OPA, and an analog ground 3g, and includes resistors R1 and R2 that affect the amplification factor. These are different values.
[0006]
By the way, in the field of measurement, monitoring, and control in an electric power system, for example, the processing target of the electronic processing means 6 such as the CPU is an abnormality such as load monitoring, leakage detection, short circuit, ground fault, overload, and the like. There is a tendency that the processing range of the analog AC electric quantity to be processed is considerably wide from a large quantity to a small quantity, such as detection and removal of a state. In the case where the processing range of the processed analog AC electricity amount is considerably wide from a large amount to a small amount, for example, a large amplification factor is applied to the small processed analog AC electricity amount 1A as shown in FIG. In a corresponding manner in which the fixed dedicated amplification circuit 31 is provided and the dedicated amplification circuit 32 fixed to a small amplification rate with respect to the large amount of processed analog AC electricity 1A, the dedicated dedicated amplification circuits fixed to different amplification rates are provided. It is necessary to provide a large number of amplifier circuits 31, 32,... 3n, and the area occupied by the amplifier circuits and the number of parts used on the substrate, which is one of the components of the electric quantity amplification processing device, are increased, resulting in an increase in size and cost. There is a problem that becomes.
[0007]
Further, as shown in FIG. 9, a method using a variable resistor as the resistor R2 in the amplifier circuit is theoretically conceivable. However, since it is necessary to manually adjust or switch the variable resistor, it is actually used. Absent.
[0008]
The ladder resistor composed of a large number of resistors is connected and switched by a large number of gate circuits each time the polarity of the analog AC input signal changes, so that the amplification factor of the amplifier is automatically changed, and gradually from the analog input signal. An amplifying apparatus applied to waveform shaping to obtain an analog output signal without distortion which is attenuated or gradually increased is disclosed in Japanese Patent Application Laid-Open No. 6-164283. However, an amplifying apparatus that automatically changes the amplification factor of an amplifier by switching the connection of such a ladder resistor composed of a large number of resistors by a large number of gate circuits each time the polarity of an analog AC input signal changes is known. The output of an amplifier circuit for amplifying a processed analog AC electric quantity is converted into a processed digital electric quantity by an A / D converter, and the processed digital electric quantity is digitally processed by electronic processing means. Not used for processing method.
[0009]
[Patent Document]
JP-A-6-164283 (paragraph numbers 0001, 0012 to 0016, 0026, and FIG. 1)
[0010]
[Problems to be solved by the invention]
As described above, when an electric quantity is amplified in the fields of measurement, monitoring, and control in a power system or the like, the output of an amplifier circuit for amplifying an analog AC electric quantity to be processed is processed by an A / D converter. In a system in which the digital electric quantity is converted into a digital electric quantity and the digital electric quantity to be processed is digitally processed by electronic processing means, the amplification factor of the amplifier circuit is increased by the amplifier circuit and input to the electronic processing means. It is limited by the maximum value of the quantity of electricity. That is, it is necessary to determine the amplification factor such that the maximum value of the amount of electricity to be processed, which is amplified by the amplifier circuit and input to the electronic processing means, becomes the voltage of the electronic processing means, for example, 5V.
[0011]
The target of processing by the electronic processing means such as a CPU is, for example, load monitoring, leakage detection, detection and removal of abnormal conditions such as short circuit, ground fault, overload, etc. Under the tendency that the amount of power is considerably widened from a large amount to a small amount, the amplification factor of the amplifier circuit is limited by the maximum value of the amount of electricity to be processed which is amplified by the amplifier circuit and input to the electronic processing means. Therefore, the accuracy when the amount of the processed analog AC electric power is small is considerably lower than that when the amount of the processed analog AC electric power is large.
[0012]
In order to increase the accuracy when processing a small amount of analog AC electric power to be processed, for example, a dedicated amplifier circuit fixed to a large amplification factor for the small amount of analog AC electric power to be processed is replaced with a large analog AC electric power to be processed. It is conceivable to adopt a method of providing a dedicated amplifier circuit fixed to a small amplification factor with respect to the amount, but the processing range of the processed analog AC electricity amount is from a large amount to a small amount. In this case, it is necessary to provide a large number of dedicated amplifier circuits fixed to different amplification factors, and the area occupied by the amplifier circuit and the number of parts used on the substrate, which is one of the components of the electric quantity amplification processing device, are required. The problem of increasing occurs.
[0013]
The present invention has been made in view of the above-described circumstances, and in the case where the processing range of the amount of electricity to be input to the electronic processing means is wide from a large amount to a small amount, the amount of electricity to be processed is In order to secure the required processing accuracy from a large processing amount to a small processing range, and to suppress an increase in the area occupied by the amplifier circuit and the number of parts used on the substrate, which is one of the components of the electric quantity amplification processing device. It is intended to do so.
[0014]
[Means for Solving the Problems]
An electric quantity amplification processing method according to the present invention includes an amplification circuit that changes an amplification factor for amplifying the processed analog AC electric quantity by inputting and controlling the processed analog AC electric quantity, and an output of the amplification circuit. An A / D converter for converting the digital electric quantity to be processed; and an electronic processing means for inputting the output of the A / D converter and digitally processing the digital electric quantity to be processed. The amplification circuit is controlled by the magnitude of the amount to change the amplification factor of the amplification circuit.
[0015]
Embodiment 1 FIG.
FIG. 1 is a circuit configuration diagram showing an example of the first embodiment of the present invention in the case of an inverting amplifier circuit type, and FIG. 2 is an explanatory diagram for explaining an example of a method of calculating the size of an input waveform.
[0016]
In FIG. 1, a voltage, a current converted into a voltage, and another analog electric quantity to be processed 1A are, for example, the output of the above-mentioned analog electric quantity extracting element 2 to be processed in FIG. 5 and supplied to the input terminal 3in. Is done. An amplifier circuit 3 is connected immediately after the input terminal 3in, and a component unnecessary for processing from the amplified analog electric quantity 1A to be processed, for example, a surge voltage, a third harmonic, etc., is provided after the amplifier circuit 3. An analog filter 4 for removing higher harmonics, noise, and the like is connected, and a downstream analog electric quantity 1A from which components unnecessary for the processing are removed is converted into a digital electric quantity 1D to be processed. An A / D converter 5 for conversion is connected, and a digital electric quantity to be processed 1D, which is an output of the A / D converter 5, is obtained by sampling by the electronic processing means 6 such as a CPU. On the basis of the obtained digital electric quantity to be processed 1D, the electronic processing means 6 has a protection relay function according to the state of the digital electric quantity to be processed 1D obtained by the sampling. Width ratio control function, monitoring and control functions of the load, to perform the various functions of the monitoring and control functions of equipment and facilities which constitute the electric power system.
[0017]
The amplifying circuit 3 includes an amplifying resistor RA including resistors R1, R21, and R22, an operational amplifier (operational amplifier) OPA, and an electronic amplification factor switch 7 such as a multiplexer (abbreviated as MUX in the figure). It is configured. The electronic amplification factor switch 7 is composed of logical gates AND1 and AND2 such as a logical AND circuit. The logical gate AND1 is connected in series to a resistor R21, and the logical gate AND2 is connected to a resistor R22. Are connected in series. The resistors R21 and R22 are connected in parallel with each other, and the resistors R21 and R22 are connected in series to the resistor R1. The negative input terminal of the operational amplifier (operational amplifier) OPA is connected to the input terminal 3in of the analog electric quantity to be processed 1A via the resistor R1, and the positive input terminal of the operational amplifier (operational amplifier) OPA is connected to the analog ground 3g. It is connected.
[0018]
An output terminal of the electronic amplification factor switch 7 is connected to an output terminal of the operational amplifier (operational amplifier) OPA. With this connection, the electronic processing means 6 controls the analog electric processing target via the control bus 8. The processed analog electric quantity 1A amplified at an amplification factor determined by the resistor R21 or R22 corresponding to the logic gate AND1 or AND2 selected according to the magnitude of the quantity 1A and the resistor R1 is output to the analog filter 4. Will be entered. When the logic gate AND1 is selected, the amplification factor becomes R21 / R1 by the resistors R21 and R1 corresponding to the logic gate AND1, and the logic gate AND2 selects the selection. In this case, the amplification factor is R22 / R1 due to the resistor R22 and the resistor R1 corresponding to the logic gate AND2.
[0019]
Here, when the magnitude relation between the resistance values of the resistors R21 and R22 is R21> R22, the magnitude relation between the amplification rate R21 / R1 and the amplification rate R22 / R1 is (R21 / R1)> (R22 / R1). On the other hand, the electronic processing means 6 selectively sends a control signal to the logic gate AND2 corresponding to the resistor R22 when the analog electric quantity to be processed 1A is large due to a fault current or the like, and In the case where the analog electric quantity 1A to be processed is small other than the fault current, etc., the logic gate AND1 corresponding to the resistor R21 is selectively provided so that the amplification factor R3 becomes the smaller amplification factor R22 / R1. And the control according to the magnitude of the analog electric quantity to be processed 1A so that the amplification factor of the amplification circuit 3 becomes the larger amplification factor R21 / R1.
[0020]
Next, an example in which the electronic amplification factor switch 7 is controlled by the electronic processing means 6 will be described with reference to FIG. The electronic processing means 6 (FIG. 1) samples the output of the A / D converter 5 at a constant period t, and when the sampled value becomes a value -v2 smaller than 0 level, The slope a of the interval t between the previous sampling and the current sampling is calculated from the difference Δv between the value v1 sampled last time and the value −v2 sampled this time.
[0021]
Here, the difference Δv is obtained by the electronic processing means 6 according to the equation Δv = v1 − (− v2) = v1 + v2, and the slope a is obtained by the electronic processing means 6 according to the equation a = Δv / t. . The difference Δv is a change amount of the input electric quantity to be processed from the previous sampling to the current sampling.
[0022]
The slope a changes depending on the magnitude of the input waveform. The slope a is small when the input is small, and the slope a is large when the input is large. Therefore, the electronic processing is performed according to the magnitude of the slope a. Means 6 controls the electronic amplification factor switch 7. When the value of the gradient a is larger than the desired reference value, the resistance R22 having a small resistance value is used to reduce the amplification factor of the amplifier circuit 3, and when the value of the slope a is smaller than the desired reference value, the amplification factor of the amplifier circuit 3 is used. The electronic processing means 6 controls the electronic amplification factor switch 7 so as to switch to the resistor R21 having a large resistance value in order to increase the resistance value.
[0023]
The desired reference value in the actual circuit is determined by the user in consideration of the measurement range and the like and the accuracy. Further, the slope a in the linear portion around 0 in the waveform of the processed analog electric quantity 1A can most accurately determine the magnitude of the waveform of the processed analog electric quantity 1A. Therefore, as described above, when the value sampled by the electronic processing means 6 becomes a value −v2 smaller than the 0 level, the difference Δv between the value v1 sampled last time and the value −v2 sampled this time. Then, the gradient a of the interval t between the previous sampling and the current sampling is calculated.
[0024]
Since the first embodiment of the present invention shown in FIGS. 1 and 2 is configured as described above and functions as described above, for example, a large amount of analog AC electricity 1A to be processed as shown in FIG. As in the conventional method of providing a dedicated amplifier circuit 31 fixed to an amplification factor and a dedicated amplifier circuit 32 fixed to a small amplification factor for a large amount of processed analog AC electric power 1A, a conventional method is used. It is not necessary to provide R1, the operational amplifier OPA, and the surge absorption resistor R3 for each of the amplifier circuits 31, 32.
[0025]
That is, according to the magnitude of the processed digital AC electric quantity 1D, that is, the magnitude of the processed analog AC electric quantity 1A, a large amplification factor is set for the small processed analog AC electric quantity 1A and the large processed analog AC electric quantity 1A. A small amplification factor can be obtained with respect to the AC electric current of 1A, and a large amplification factor and a small amplification factor can be obtained by using a common resistor R1, a common operational amplifier OPA, and a common analog filter. 4 can reduce the conventional problem that the area occupied by the amplifier circuit and the number of components used on the substrate, which is one of the components of the electric quantity amplification processing device, increase, and the size and cost increase.
[0026]
Embodiment 2 FIG.
FIG. 3 is a circuit diagram showing an example of the second embodiment of the present invention in the case of a positive-phase amplifier circuit type. The negative input terminal of an operational amplifier (operational amplifier) OPA is connected to an analog ground 3g via the resistor R1. The positive input terminal of the operational amplifier (operational amplifier) OPA is connected to the input terminal 3in of the analog electric quantity to be processed 1A. The configurations and functions of the amplifying circuit 3, the electronic gain switching unit 7, the analog filter 4, the A / D converter 5, and the electronic processing means 6 of the amplifying circuit 3 are the same as those of the first embodiment of the present invention. Therefore, the description is omitted.
[0027]
Embodiment 3 FIG.
FIG. 4 is a circuit configuration diagram showing an example of Embodiment 3 of the present invention in the case of an inverting amplifier circuit type, which enables multi-stage switching of an amplification factor of three or more stages. The difference between the inverting amplifier circuit type shown in FIG. 1 and the first embodiment of the present invention is that the inverting amplifier circuit type in the first embodiment shown in FIG. , R22 and the two logic gates AND1 and AND2, whereas in the example of the third embodiment of the present invention shown in FIG. 4, the amplification factor can be switched to three or more stages. , Rn, and n logical gates AND1, AND2,..., ANDn, and the electronic gain switch 7 is a multi-channel electronic gain switch. , And the amplification factor can be switched in n stages.
[0028]
As described above, for example, in the fields of measurement, monitoring, and control in a power system, the processing target of the electronic processing unit 6 such as the CPU is, for example, load monitoring, leakage detection, short circuit, ground fault, overload, For example, the detection range and the removal of abnormal conditions, such as, for example, the amount of analog AC electricity to be processed tends to be very large or small from a large amount to a small amount. For example, the fault current (several hundreds to several thousand amps) at the occurrence of a short circuit that needs to be detected or measured to generate a trip signal to the circuit breaker, and the trip signal to the earth leakage breaker is detected or measured and measured. The leakage current (several mA) at the time of leakage, which needs to perform the generated processing, is representative of a very large amount and a very small amount of the processed analog AC electricity to be detected or measured and processed. It is something.
[0029]
As described above, when the processing range of the processed analog AC electricity amount is from a large amount to a small amount or very wide, the amplification factor can be switched to n stages according to the third embodiment of the present invention (FIG. 4). Is preferred. For example, when the fault current and the leak current are detected or measured by an electronic processing means 6 such as a CPU in a load line having a fault current of several hundred A and a leak current of several mA, the amplification factor is increased by 10 steps. If it is possible to switch back and forth, it is possible to accurately detect or measure both the fault current and the earth leakage current to perform the processing.
[0030]
In this case, for example, a dedicated amplification circuit 31 fixed to a large amplification factor for the small analog AC electric power 1A as shown in FIG. According to the conventional method in which the dedicated amplification circuits 32 each having a fixed ratio are provided, it is necessary to provide about ten resistors R1, the operational amplifier OPA, and the surge absorption resistor R3 corresponding to the number of stages of the amplification factor. In the third embodiment of the present invention (FIG. 4), the number of the resistors R21, R22,... Rn and the logic gates AND1, AND2,. As in the system, the number of the resistor R1, the operational amplifier OPA, and the analog filter may be one each, and it is not necessary to provide around ten stages of the conventional amplification factor. The conventional problem occupied to the area and number of parts to be used to become large and expensive increase in the amplifier circuit in the substrate, which is an adult element can be reduced.
[0031]
Embodiment 4 FIG.
FIG. 5 is a circuit diagram showing an example of the fourth embodiment of the present invention in the case of a positive-phase amplifier circuit type. The negative input terminal of an operational amplifier (operational amplifier) OPA is connected to an analog ground 3g via the resistor R1. The positive input terminal of the operational amplifier (operational amplifier) OPA is connected to the input terminal 3in of the analog electric quantity to be processed 1A. The configurations and functions of the amplifying circuit 3, the electronic amplification factor switch 7 of the amplifying circuit 3, the analog filter 4, the A / D converter 5, and the electronic processing means 6 are the same as those of the third embodiment of the present invention. Therefore, the description is omitted.
[0032]
Embodiment 5 FIG.
In the first to fourth embodiments, the case where the magnitude of the electric quantity to be processed is determined from the digital electric quantity to be processed obtained through the path of the amplifier circuit 3, the analog filter 4, and the A / D converter 5 will be described. Although illustrated, the AC electric quantity to be processed whose size is to be determined may be taken into the electronic processing means from another route. In addition, the magnitude of the processed electric quantity may be determined from the processed analog electric quantity of the processed AC electric quantity whose size is to be determined.
[0033]
Embodiment 6 FIG.
In the first embodiment, when the value sampled by the electronic processing means 6 becomes a value -v2 smaller than the 0 level, the value of the previous sampled value v1 and the value of the current sampled -v2 are compared. The case where the slope a of the interval t between the previous sampling and the current sampling is calculated from the difference Δv is exemplified. For example, a control level corresponding to a necessary amplification factor for various sizes of the detected or measured electric quantity to be processed is controlled. The amplification factor of the amplification circuit 3 is prepared as a table, and the electronic processing means 6 is controlled based on the table to change the amplification factor for amplifying the analog AC electric quantity to be processed. The control may be performed, and the control method is not limited to the control method according to the magnitude of the amount of electricity to be processed illustrated in the first embodiment.
[0034]
【The invention's effect】
The electric quantity amplification processing method according to the present invention is an amplification circuit that changes the amplification factor for amplifying the processed analog AC electric quantity by inputting and controlling the processed analog AC electric quantity as described above, and the output of this amplification circuit. An A / D converter for inputting an A.D. and converting it to a digital electric quantity to be processed, and electronic processing means for inputting the output of the A / D converter and digitally processing the digital electric quantity to be processed, Since the amplification circuit is controlled by the magnitude of the amount of electricity to be processed and the amplification factor of the amplifier circuit is changed, the processing range of the amount of electricity to be input to the electronic processing means is wide from a large amount to a small amount. In this case, the required processing accuracy is ensured from a large amount to a small amount of the amount of electricity to be processed, and the amplification circuit occupies a substrate which is one of the constituent elements of the electrical quantity amplification processing device. It can suppress an increase in the number of parts product and used, thus the cost of the electric quantity amplification device, there is an effect that downsizing is possible.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an example of a first embodiment of the present invention in the case of an inverting amplifier circuit type.
FIG. 2 is an explanatory diagram for explaining an example of a method of calculating a largeness of a waveform of an amount of electricity to be processed according to the first embodiment of the present invention.
FIG. 3 is a circuit diagram showing an example of a second embodiment of the present invention in the case of a positive-phase amplifier circuit type.
FIG. 4 is a circuit configuration diagram showing an example of Embodiment 3 of the present invention in the case of an inverting amplifier circuit type.
FIG. 5 is a circuit configuration diagram showing an example of Embodiment 4 of the present invention in the case of a positive-phase amplifier circuit type.
FIG. 6 is a general circuit diagram of an electric quantity amplification processing device used in a digital protection relay device, a measuring device, and others, and is also a circuit diagram which is an example of an application target of the present invention.
FIG. 7 is a diagram showing a conventional general amplifier circuit.
FIG. 8 is a diagram showing a conventional general amplifier circuit for preventing deterioration in processing accuracy when the amount of electricity to be processed is small.
FIG. 9 is a circuit diagram showing a circuit in the case of using a variable resistor as a resistor that is logically considered to prevent a decrease in processing accuracy when the amount of electricity to be processed is small and is related to an amplification factor in the amplifier circuit.
[Explanation of symbols]
1A processed analog electric quantity, 3 amplifier circuit,
5 A / D converter, 6 electronic processing means,
7 Electronic amplification factor switch.

Claims (3)

被処理アナログ交流電気量を入力し制御されることにより前記被処理アナログ交流電気量を増幅する増幅率が変わる増幅回路、この増幅回路の出力を入力し被処理ディジタル電気量に変換するA/Dコンバ−タ、及びこのA/Dコンバ−タの出力を入力し前記被処理ディジタル電気量をディジタル的に処理する電子的処理手段を備え、被処理電気量の大きさにより前記増幅回路を制御して当該増幅回路の増幅率を変える電気量増幅処理方式。Amplification circuit for changing the amplification factor for amplifying the processed analog AC electric quantity by inputting and controlling the processed analog AC electric quantity, A / D for inputting the output of this amplification circuit and converting it into a processed digital electric quantity A converter and electronic processing means for receiving the output of the A / D converter and digitally processing the digital electric quantity to be processed, and controlling the amplifying circuit according to the magnitude of the electric quantity to be processed; Amplification method for changing the amplification factor of the amplifier circuit. 請求項1に記載の電気量増幅処理方式において、前記電気量の大きさを、入力された交流波形の傾きを算出して判定することを特徴とする電気量増幅処理方式。2. The electric quantity amplification processing method according to claim 1, wherein the magnitude of the electric quantity is determined by calculating a gradient of an input AC waveform. 請求項1及び請求項2の何れか一に記載の電気量増幅処理方式において、被処理電気量の大きさが大きい場合より被処理電気量の大きさが小さい場合の方が増幅率が大きくなるように前記増幅回路を制御することを特徴とする電気量増幅処理方式。In the electric quantity amplification processing method according to any one of claims 1 and 2, the amplification factor is larger when the magnitude of the electric quantity to be processed is small than when the magnitude of the electric quantity to be processed is large. Controlling the amplifying circuit as described above.
JP2002293979A 2002-10-07 2002-10-07 Electricity quantity amplification processing system Pending JP2004129155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293979A JP2004129155A (en) 2002-10-07 2002-10-07 Electricity quantity amplification processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293979A JP2004129155A (en) 2002-10-07 2002-10-07 Electricity quantity amplification processing system

Publications (1)

Publication Number Publication Date
JP2004129155A true JP2004129155A (en) 2004-04-22

Family

ID=32284724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293979A Pending JP2004129155A (en) 2002-10-07 2002-10-07 Electricity quantity amplification processing system

Country Status (1)

Country Link
JP (1) JP2004129155A (en)

Similar Documents

Publication Publication Date Title
EP1924862B1 (en) Arc fault circuit interrupter system
EP0881732A2 (en) Apparatus for RMS current approximation
CN113866504A (en) Detection circuit, detection device and detection method for insulation impedance
JP2001215247A (en) Leakage current measuring instrument
KR101955245B1 (en) Integrated circuit for leakage current detection and earth leakage circuit breaker having the same
JP2004129155A (en) Electricity quantity amplification processing system
JP4451415B2 (en) Current / voltage conversion circuit
JP3628948B2 (en) Current / voltage conversion circuit
JP2862296B2 (en) Voltage applied current measuring device and current applied voltage measuring device
JP5012430B2 (en) DC test equipment and semiconductor test equipment
JP2005167429A (en) Current/voltage conversion circuit
JP2721477B2 (en) Grid-connected inverter for solar cells
KR0179877B1 (en) Break-down decision method of grounded overvoltage relay
JPH08331752A (en) Detecting method of ground fault
JP2003202354A (en) Electrification-information measuring apparatus
KR101514248B1 (en) Power equipment for preventing mal-operation
JP2004347446A (en) Solenoid abnormality detection device
JP2002062317A (en) Capacitor-current measuring apparatus
JP4989594B2 (en) Digital protection controller
JP4511717B2 (en) Current / voltage measuring device
JP4103789B2 (en) Protection control device
JPH0915266A (en) Measuring device
BR0005389B1 (en) METHOD FOR FILTERING AN ELECTRIC SIGNAL AND FILTER ASSOCIATED WITH A PROTECTION RELAY
JP3128584B2 (en) Ground fault line detection method and ground fault line cutoff method
KR950025808A (en) Selective Ground Relay and Control Method