JP3128584B2 - Ground fault line detection method and ground fault line cutoff method - Google Patents

Ground fault line detection method and ground fault line cutoff method

Info

Publication number
JP3128584B2
JP3128584B2 JP02193554A JP19355490A JP3128584B2 JP 3128584 B2 JP3128584 B2 JP 3128584B2 JP 02193554 A JP02193554 A JP 02193554A JP 19355490 A JP19355490 A JP 19355490A JP 3128584 B2 JP3128584 B2 JP 3128584B2
Authority
JP
Japan
Prior art keywords
zero
ground fault
phase
voltage
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02193554A
Other languages
Japanese (ja)
Other versions
JPH0479720A (en
Inventor
孝司 別井
由明 美濃
裕昭 山口
忠嗣 中尾
稔 日吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP02193554A priority Critical patent/JP3128584B2/en
Publication of JPH0479720A publication Critical patent/JPH0479720A/en
Application granted granted Critical
Publication of JP3128584B2 publication Critical patent/JP3128584B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電力系統においていずれかの回線に地絡事
故が生じたときにその地絡回線を検出する地絡回線検出
方法、およびこの方法によって検出した地絡回線が複数
である場合における地絡回線遮断方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a ground fault line detection method for detecting a ground fault line when any ground fault occurs in a power system, and this method. The present invention relates to a ground fault line disconnection method in a case where a plurality of ground fault lines are detected.

[従来の技術] 電力系統のいずれかの回線に地絡事故が発生した場
合、従来は地絡継電器によって地絡が検出されると、予
め定められた順に回線を遮断してゆくことにより、事故
回線を検出するようにしていた。
[Prior Art] When a ground fault occurs in any line of a power system, conventionally, when a ground fault is detected by a ground fault relay, the line is cut off in a predetermined order, thereby causing an accident. The line was to be detected.

しかしながら、上記のように回線を予め定められた順
に遮断した場合、事故回線以外の健全回線を遮断してし
まうという問題があった。
However, when the lines are cut off in a predetermined order as described above, there is a problem that a healthy line other than the accident line is cut off.

こうした問題を解決するために、特公昭59−194631号
公報に開示されるように、母線の零相電圧および前記母
線から分岐された各回線の零相電流を検出して、地絡発
生前後の母線の零相電圧の変化分および各回線毎の地絡
発生前後の零相電流の変化分を算出し、前記零相電圧の
変化分とそれぞれの回線の零相電流の変化分の位相差に
基づいて地絡回線を検出する方法が開示されている。こ
こに開示される方法では、その電力系統の周波数をてい
倍した周波数のサンプリング信号を発生させ、このサン
プリング信号が発生される毎に零相電圧および零相電流
をホールドし、零相電圧が所定値以上となったときに、
ホールドされた時間が異なる零相電圧同士の変化分およ
び回線毎の零相電流同士の変化分を算出するようにして
いた。
In order to solve such a problem, as disclosed in Japanese Patent Publication No. 59-194631, a zero-phase voltage of a bus and a zero-phase current of each line branched from the bus are detected, and before and after a ground fault occurs. The change in the zero-phase voltage of the bus and the change in the zero-phase current before and after the occurrence of ground fault for each line are calculated, and the phase difference between the change in the zero-phase voltage and the change in the zero-phase current in each line is calculated. A method for detecting a ground fault line based on the ground fault is disclosed. In the method disclosed herein, a sampling signal having a frequency that is twice the frequency of the power system is generated, and the zero-phase voltage and the zero-phase current are held each time the sampling signal is generated, so that the zero-phase voltage becomes a predetermined value. When the value is greater than or equal to
The amount of change between zero-sequence voltages having different hold times and the amount of change between zero-phase currents for each line are calculated.

[発明が解決しようとする課題] 上記公報に開示されているような方法によると、各回
線において相毎の対地容量にアンバランスがある場合で
も、比較的適確に地絡回線を検出することができる。
[Problems to be Solved by the Invention] According to the method disclosed in the above publication, even if there is an imbalance in the ground capacity for each phase in each line, a ground fault line can be detected relatively accurately. Can be.

しかしながら、上記公報に開示されているような公知
の方法では、間欠地絡のような外乱的要素で一時的に零
相分が大きくなった場合に、この一時的に大きくなった
零相分を残留零相分のデータとすることになるため、所
定値以上の零相電圧が検出された場合に算出される前記
検出前後の零相分の変化量が不適正なものとなる虞があ
った。
However, according to the known method disclosed in the above publication, when the zero-phase component temporarily increases due to a disturbance element such as an intermittent ground fault, the temporarily increased zero-phase component is removed. Since the residual zero-phase data is used, the amount of change in the zero-phase voltage before and after the detection, which is calculated when a zero-phase voltage equal to or higher than a predetermined value is detected, may be inappropriate. .

また、上記のような公知の方法では、二以上の回線で
地絡事故が発生した場合には、検出した回線を予め定め
た順に遮断しなければならず、重大な事故が発生してい
る回線を遮断するまでに時間を要する可能性がある。
Further, according to the known method as described above, if a ground fault occurs on two or more lines, the detected lines must be shut down in a predetermined order, and the lines on which a serious accident has occurred. It may take some time to shut off the traffic.

本発明はこのような事情に鑑みなされたもので、母線
の零相電圧および前記母線から分岐された各回線の零相
電流を検出して、地絡発生前後の零相電圧の変化分およ
び各回線毎の地絡発生前後の零相電流の変化分を算出
し、前記零相電圧の変化分とそれぞれの回線の零相電流
の変化分の位相差に基づいて地絡回線を検出する地絡回
線検出方法において、所定値以上の零相電圧が検出され
た場合に、例え検出前に間欠地絡のような外乱要素で一
時的に零相分が大きくなった場合でも、ほぼ正確にその
検出前後の零相分の変化量を得て地絡回線を正確に検出
することができるようにした地絡回線検出方法を提供す
ることを目的としている。
The present invention has been made in view of such circumstances, and detects a zero-phase voltage of a bus and a zero-phase current of each line branched from the bus to detect a change in the zero-phase voltage before and after the occurrence of a ground fault and each of the zero-phase currents. A ground fault for calculating a change in the zero-phase current before and after the occurrence of a ground fault for each line, and detecting a ground fault line based on the phase difference between the change in the zero-phase voltage and the change in the zero-phase current in each line. In the line detection method, when a zero-phase voltage equal to or greater than a predetermined value is detected, even if the zero-phase component temporarily increases due to a disturbance element such as an intermittent ground fault before detection, the detection is almost accurately performed. It is an object of the present invention to provide a ground fault line detection method capable of accurately detecting a ground fault line by obtaining a change amount of the preceding and following zero phases.

本発明の他の目的は、上記方法により複数の回線が検
出された多重事故の場合に、事故程度の大きな回線から
順に遮断することができるようにした地絡回線遮断方法
を提供することにある。
Another object of the present invention is to provide a ground fault line disconnection method capable of sequentially disconnecting from a line having a large accident level in the case of a multiple accident in which a plurality of lines are detected by the above method. .

[課題を解決するための手段] 第1の発明による地絡回線検出方法は、上記目的を達
成するために、 前記零相電圧および各零相電流を所定間隔で測定し、
これら測定零相電圧および測定零相電流のデータをディ
ジタル低域フィルタに入力して、(定数M×前回のこの
ディジタル低域フィルタの出力のデータ+測定零相電圧
および測定零相電流のデータ)/(定数M+1)なる出
力演算を行なうとともに、測定零相電圧を各相毎に起動
整定電圧と比較し、 その比較の結果、測定零相電圧が起動整定電圧以上で
あるとき、その時点における各ディジタル低域フィルタ
の出力をホールドし、 このホールド後に、測定零相電圧のデータとこのデー
タを入力したディジタル低域フィルタのホールド出力と
の差を地絡発生前後の零相電圧の変化分として算出する
とともに、各回線における前記測定零相電流のデータと
このデータを入力したディジタル低域フィルタのホール
ド出力との差を地絡発生前後の零相電流の変化分として
算出すること、 を特徴としている。
[Means for Solving the Problems] The ground fault line detection method according to the first invention, in order to achieve the above object, measures the zero-sequence voltage and each zero-sequence current at predetermined intervals,
The data of the measured zero-sequence voltage and the measured zero-sequence current are input to the digital low-pass filter, and the result is (constant M × data of the previous output of the digital low-pass filter + data of the measured zero-sequence voltage and the measured zero-sequence current). / (Constant M + 1), and compares the measured zero-phase voltage with the starting settling voltage for each phase. As a result of the comparison, when the measured zero-phase voltage is equal to or more than the starting settling voltage, Hold the output of the digital low-pass filter, and after this hold, calculate the difference between the measured zero-sequence voltage data and the hold output of the digital low-pass filter that receives this data as the change in the zero-sequence voltage before and after the ground fault occurs And the difference between the measured zero-sequence current data in each line and the hold output of the digital low-pass filter to which this data was input is the zero-sequence before and after the ground fault occurs. Calculated as a change in current.

第2の発明による地絡回線遮断方法では、上記第1の
発明の方法、すなわち、母線の零相電圧および母線から
分岐された各回線の零相電流を所定間隔で測定し、これ
ら測定零相電圧と測定零相電流のデータをディジタル低
域フィルタに入力して、(定数M×前回のこのディジタ
ル低域フィルタの出力のデータ+測定零相電圧および測
定零相電流のデータ)/(定数M+1)なる出力演算を
行なうとともに、測定零相電圧を各相毎に起動整定電圧
と比較し、 その比較の結果、測定零相電圧が起動整定電圧以上で
あるとき、その時点における各ディジタル低域フィルタ
の出力をホールドし、このホールド後に、測定零相電圧
のデータとこのデータを入力したディジタル低域フィル
タのホールド出力との差を地絡発生前後の零相電圧の変
化分として算出するとともに、各回線における前記測定
零相電流のデータとこのデータを入力したディジタル低
域フィルタのホールド出力との差を地絡発生前後の零相
電流の変化分として算出することにより検出された回線
が複数ある場合に、測定零相電流と残留零相電流の変化
分の絶対値の大きい回線の順に遮断することを特徴とし
ている。
In the ground fault line interruption method according to the second invention, the method of the first invention, that is, the zero-phase voltage of the bus and the zero-phase current of each line branched from the bus are measured at predetermined intervals, and the measured zero-phase current is measured. The data of the voltage and the measured zero-sequence current are input to the digital low-pass filter, and (constant M × data of the previous digital low-pass filter output + measured zero-sequence voltage and measured zero-sequence current data) / (constant M + 1 ), The measured zero-sequence voltage is compared with the starting settling voltage for each phase, and as a result of the comparison, when the measured zero-sequence voltage is equal to or more than the starting settling voltage, each digital low-pass filter at that time is determined. After this hold, the difference between the measured zero-sequence voltage data and the hold output of the digital low-pass filter to which this data was input is defined as the change in the zero-sequence voltage before and after the occurrence of the ground fault. And the difference between the data of the measured zero-sequence current in each line and the hold output of the digital low-pass filter to which this data was input was detected as a change in the zero-sequence current before and after the occurrence of the ground fault. When there are a plurality of lines, the lines are disconnected in the order of the absolute value of the change between the measured zero-sequence current and the residual zero-sequence current.

[作 用] 上記第1の発明による地絡回線検出方法によると、デ
ィジタル低域フィルタの減衰特性により、測定零相分が
急峻に立ち上がるとディジタル低域フィルタの出力との
間に差が生じる。ここで、ディジタル低域フィルタの出
力を(定数M×前回のこのディジタル低域フィルタの出
力のデータ+測定零相電圧および測定零相電流のデー
タ)/(定数M+1)なる演算式で表されるように、測
定零相電圧および測定零相電流のデータと前回のディジ
タル低域フィルタの出力のデータを用いて減衰特性の適
宜なものに設定することにより、測定零相電圧が所定値
に達した時点における前記ディジタル低域フィルタの出
力を測定零相電流の立ち上がり時の値にきわめて近いも
のとしておくことができる。したがって、測定零相分の
データとこのデータを入力したディジタル低域フィルタ
の出力の差は、ほぼ地絡により増加した零相分にきわめ
て近似する。
[Operation] According to the ground fault line detection method according to the first aspect of the present invention, a difference occurs between the output of the digital low-pass filter and the output of the digital low-pass filter when the measured zero-phase component rises sharply due to the attenuation characteristic of the digital low-pass filter. Here, the output of the digital low-pass filter is represented by an arithmetic expression of (constant M × data of previous digital low-pass filter output + data of measured zero-sequence voltage and measured zero-sequence current) / (constant M + 1). As described above, the measured zero-sequence voltage reaches the predetermined value by setting the attenuation characteristic appropriately using the data of the measured zero-sequence voltage and the measured zero-sequence current and the data of the output of the previous digital low-pass filter. The output of the digital low-pass filter at a point in time can be very close to the value at the rise of the measured zero-sequence current. Therefore, the difference between the measured zero-phase data and the output of the digital low-pass filter to which this data is input is very close to the zero-phase component that has increased due to ground fault.

第2の発明による地絡回線遮断方法によると、多重事
故が発生した場合に、事故程度の大きな回線から遮断さ
れるため、事故の程度が軽度である回線を無用に遮断せ
ずに済む。
According to the ground fault line blocking method according to the second invention, when multiple accidents occur, the line is cut off from the line with a large accident level, so that the line with a light accident level does not need to be shut down unnecessarily.

[実施例] 以下に、本発明による地絡回線検出方法を第1図に概
略図で示す電力系統Sにおいて地絡事故が発生した場合
について説明する。
[Embodiment] Hereinafter, a ground fault detection method according to the present invention will be described in the case where a ground fault has occurred in a power system S schematically shown in FIG.

上記電力系統Sは変圧器Tの二次側に母線Mから分岐
する第1回線F1から第12回線F12までの12の回線を有し
ている。各回線F1〜F12にはそれぞれ零相変流器ZCT1〜Z
CT12が設けられている。また、変圧器Tの二次側には母
線Mの零相電圧を取り出すことができる接地形計器用変
圧器GPTが接続されている。上記零相変流器ZCT1〜ZCT12
の二次側出力および接地形計器用変圧器GPTの三次側出
力はディジタル形配電線地絡選択制御継電装置1に入力
されている。
The power system S has twelve lines from a first line F1 to a twelfth line F12 branched from the bus M on the secondary side of the transformer T. Each line F1-F12 has a zero-phase current transformer ZCT1-Z
CT12 is provided. Further, a transformer GPT for a grounded instrument capable of extracting a zero-phase voltage of the bus M is connected to the secondary side of the transformer T. The above zero-phase current transformers ZCT1 to ZCT12
And the tertiary output of the ground-type instrument transformer GPT are input to the digital type distribution line ground fault selection control relay device 1.

この継電装置1は、前記接地形計器用変圧器GPTから
出力される母線Mの零相電圧と各零相変流器ZCT1〜ZCT1
2から出力される各回線F1〜F12の零相電流に基づき、以
下のようにして地絡回線を選択する。
The relay device 1 includes a zero-phase voltage of the bus M output from the ground-type instrument transformer GPT and the zero-phase current transformers ZCT1 to ZCT1.
Based on the zero-phase current of each of the lines F1 to F12 output from 2, a ground fault line is selected as follows.

継電装置1はまず、入力した零相電圧と各零相電流を
所定間隔、例えば200msec毎に測定する。
The relay device 1 first measures the input zero-phase voltage and each zero-phase current at predetermined intervals, for example, every 200 msec.

これら測定零相電圧および各測定零相電流(以下、両
者を総称するときは測定零相分という)のデータはA/D
変換された後、それぞれディジタル低域フィルタ11…に
入力される。これらディジタル低域フィルタ11…は、そ
の出力Y[n]が(M・Y[n−1]+X[n])/
(M+1)なる演算式で表されるものである。ここで、
Y[n−1]はこれらディジタル低域フィルタ11…の前
回の出力値、X[n]は測定零相分のデータである。ま
た、Mは定数であり、このディジタルフィルタ11の時定
数の関数として得られる。このようなディジタル低域フ
ィルタ11…の出力Y[n]は、第2図に示すように時刻
t1に測定零相分X[n]が急激に上昇した場合、それよ
りはるかに緩やかな勾配で上昇する。
The data of the measured zero-sequence voltage and each measured zero-sequence current (hereinafter referred to as the measured zero-sequence component) are A / D
After the conversion, they are input to the digital low-pass filters 11. These digital low-pass filters 11 have outputs Y [n] of (MY [n-1] + X [n]) /
(M + 1). here,
Y [n-1] is the previous output value of these digital low-pass filters 11..., And X [n] is the data for the measured zero phase. M is a constant, which is obtained as a function of the time constant of the digital filter 11. The output Y [n] of the digital low-pass filters 11...
If the measured zero-phase component X [n] rises sharply at t1, it rises with a much gentler gradient.

一方、測定零相分のうち測定零相電圧はA/D変換され
た後、コンパレータ12に入力される。このコンパレータ
12は入力した測定零相電圧値を各相毎に起動整定値と比
較する。この起動整定値は、この電力系統Sにおいて、
例えば6000オームの一線地絡事故に対して作動するよう
に、経験により得られる値が設定されている。この場
合、測定零相電圧の絶対値を起動整定値と比較するよう
にしてもよいが、測定零相電圧の座標データを起動整定
値と比較するようにしておくと、その位相角の比較によ
り、地絡以外の原因で増加した零相電圧による回線遮断
を回避できるのでより好ましい。
On the other hand, the measured zero-phase voltage of the measured zero-phase component is subjected to A / D conversion, and then input to the comparator 12. This comparator
Reference numeral 12 compares the input measured zero-sequence voltage value with a start set value for each phase. This startup set value is
For example, an empirical value is set to operate for a 6000 ohm single line ground fault. In this case, the absolute value of the measured zero-sequence voltage may be compared with the start set value, but if the coordinate data of the measured zero-sequence voltage is compared with the start set value, the phase angle can be compared. This is more preferable because it is possible to avoid line interruption due to an increased zero-phase voltage due to causes other than a ground fault.

次に、以上のようにして上記コンパレータ12において
測定零相電圧と起動整定値を比較した結果、測定零相電
圧が起動整定電圧に達している場合には、その時点にお
ける前記ディジタル低域フィルタ11…の出力Y[n]を
ホールド回路13…にホールドする。第2図で説明する
と、時刻t2で起動整定値(ア)のデータと測定零相電圧
値X[nx]のデータを比較したとき、起動整定値(ア)
≦測定零相電圧値X[nx]であれば、この時刻t2におい
て、全てのディジタル低域フィルタ11…の出力Y[nx]
をホールド回路13…にホールドする。このようにして時
刻t2にホールドされた全ての出力Y[nx]は、上記定数
Mを適宜選択することにより、地絡事故発生により上昇
し始めた零相分の立ち上がり時の値、すなわち地絡事故
発生前の残留零相分に近似させることができる。したが
って、前記出力Y[nx]はほぼ残留零相分と見做すこと
ができる(以下、出力Y[nx]を計算残留零相分とい
う)。
Next, as a result of comparing the measured zero-sequence voltage and the start set value in the comparator 12 as described above, if the measured zero-sequence voltage has reached the start set voltage, the digital low-pass filter 11 Are held by the hold circuits 13. Referring to FIG. 2, when the data of the start set value (A) and the data of the measured zero-sequence voltage value X [nx] are compared at time t2, the start set value (A)
If ≦ measured zero-phase voltage value X [nx], at this time t2, outputs Y [nx] of all digital low-pass filters 11.
Are held in the hold circuits 13. All outputs Y [nx] held at time t2 in this manner are values at the time of the rising of the zero phase, which has started to rise due to the occurrence of the ground fault, that is, the ground fault, by appropriately selecting the above constant M. It can be approximated to the residual zero-phase component before the accident occurred. Therefore, the output Y [nx] can be regarded as substantially a residual zero-phase component (hereinafter, the output Y [nx] is referred to as a calculated residual zero-phase component).

したがって、次に測定零相分X[nx]のデータとこの
測定零相分X[nx]のデータを入力したデジタル低域フ
ィルタ11に対応するホールド回路13にホールドされた出
力Y[nx]の差を算出することによって地絡事故発生前
後での母線の零相電圧の変化分、および各回線の零相電
流の変化分が得られる。この場合、測定零相分X[nx]
のデータと出力Y[nx]の差の算出は、タイマを設ける
ことにより、前記ホールド後の所定時間後に行うように
する。この所定時間内に測定零相電圧が起動整定値を下
回った場合には、測定零相分X[nx]のデータと出力Y
[nx]の差の算出は行わず、このホールドした出力Y
[nx]を前回の出力値として新たなY[n]を算出する
ようにする。
Therefore, next, the data of the measured zero-phase component X [nx] and the output Y [nx] held by the holding circuit 13 corresponding to the digital low-pass filter 11 to which the data of the measured zero-phase component X [nx] are inputted. By calculating the difference, a change in the zero-phase voltage of the bus before and after the occurrence of the ground fault and a change in the zero-phase current of each line can be obtained. In this case, the measured zero-phase component X [nx]
The calculation of the difference between this data and the output Y [nx] is performed after a predetermined time after the hold by providing a timer. If the measured zero-phase voltage falls below the start set value within this predetermined time, the data of the measured zero-phase component X [nx] and the output Y
The calculation of the difference of [nx] is not performed, and the held output Y
A new Y [n] is calculated using [nx] as the previous output value.

所定時間後もなお測定零相電圧が起動整定値以上であ
り、測定零相分X[nx]のデータと出力Y[nx]の差が
算出された場合には、次に、このようにして得られた零
相電圧の変化分に対する各回線の零相電流の変化分の位
相差に基づいて地絡回線を検出する。この実施例では、
前記測定零相電圧の座標データXv,Yvと計算残留零相電
圧の座標データXvo,Yvo、および測定零相電圧の座標デ
ータXi,Yiと計算残留零相電流の座標データXio,Yioにお
いて、(Xv−Xvo)(Yi−Yio)<(Xi−Xio)(Yv−Yv
o)が成立する回線、すなわち、第3A図および第3B図に
示すように、零相電圧の変化分Voの位相角に対し零相電
流の変化分Ioの位相角が−180゜の範囲に存在する回線
を地絡回線として検出している。一方、第3C図に示すよ
うに、零相電圧の変化分の位相角Voに対し零相電流の変
化分Ioの位相角が+180゜の範囲に存在する回線は健全
回線としている。
If the measured zero-sequence voltage is still equal to or greater than the start settling value after the predetermined time and the difference between the data of the measured zero-sequence X [nx] and the output Y [nx] is calculated, A ground fault line is detected based on the obtained phase difference of the change of the zero-phase current of each line with respect to the change of the zero-phase voltage. In this example,
In the coordinate data Xv, Yv of the measured zero-sequence voltage, the coordinate data Xvo, Yvo of the calculated residual zero-sequence voltage, the coordinate data Xi, Yi of the measured zero-sequence voltage, and the coordinate data Xio, Yio of the calculated residual zero-sequence current, Xv−Xvo) (Yi−Yio) <(Xi−Xio) (Yv−Yv
o), that is, as shown in FIGS. 3A and 3B, the phase angle of the change Io of the zero-phase current is in the range of -180 ° with respect to the phase angle of the change Vo of the zero-phase voltage. An existing line is detected as a ground fault line. On the other hand, as shown in FIG. 3C, a line in which the phase angle of the change Io of the zero-phase current is in the range of + 180 ° with respect to the phase angle Vo of the change of the zero-phase voltage is regarded as a healthy line.

以上のようにして、地絡回線を検出するようにしてお
くと、検出対象となるような地絡が発生する前に間欠地
絡等の外乱で零相分に変化が発生していても、それには
何等影響を受けることなく地絡発生前後の零相分の正確
な変化分を得ることができる。
As described above, if a ground fault line is detected, even if a change occurs in the zero-phase component due to a disturbance such as an intermittent ground fault before a ground fault to be detected is generated, It is possible to obtain an accurate change of the zero phase before and after the occurrence of the ground fault without any influence.

次に、以上のようにして検出された地絡回線が複数で
ある場合にこれを遮断する地絡回線遮断方法を説明す
る。
Next, a description will be given of a ground fault line blocking method for blocking a plurality of ground fault lines detected as described above.

上記のように検出された地絡回線が複数であるとき、
本発明による地絡回線遮断方法では、これら複数の地絡
回線を上記零相電流の変化分の絶対値が大きい回線から
例えば2秒毎に順次遮断してゆく。すなわち、第3A図と
第3B図の場合であれば、零相電流の変化分Ioの絶対値が
大きい第3A図に対応する回線が第3B図に対応する回線よ
りも先に遮断される。これによって、地絡抵抗が小さく
重大な事故が発生している回路が真っ先に遮断される。
When there are multiple ground fault lines detected as described above,
In the ground fault line interrupting method according to the present invention, the plurality of ground fault lines are sequentially interrupted, for example, every two seconds from a line having a large absolute value of the change in the zero-phase current. That is, in the case of FIGS. 3A and 3B, the line corresponding to FIG. 3A in which the absolute value of the change Io of the zero-phase current is large is cut off before the line corresponding to FIG. 3B. As a result, a circuit having a small ground fault resistance and causing a serious accident is cut off first.

上記のようにして一つの回線を遮断することにより、
測定零相電圧が起動整定電圧を下回った場合には、時間
t2においてした各出力Y[nx]に対するホールドを解除
し、これらの出力Y[nx]をディジタル低域フィルタ11
…の前回の出力値Y[n−1]として新たな出力Y
[n]を算出する。したがって、遮断の必要がない回線
を無用に遮断することがない。
By blocking one line as described above,
If the measured zero-sequence voltage falls below the startup settling voltage,
The hold for each output Y [nx] performed at t2 is released, and these outputs Y [nx] are output to the digital low-pass filter 11.
.. As a previous output value Y [n-1].
[N] is calculated. Therefore, a line that does not need to be cut off is not unnecessarily cut off.

以上のような手順で検出地絡回線を全て遮断したにも
拘らず測定零相電圧が起動整定値に達している場合に
は、検出地絡回線以外の回線の中で零相電流の変化分の
絶対値が最も大きい回線を遮断してゆく。
If the measured zero-sequence voltage has reached the start-up set value even though all of the detection ground fault lines have been shut off in the above procedure, the change in the zero-phase current in circuits other than the detection ground fault line The line with the largest absolute value is cut off.

尚、上記方法において、ディジタル低域フィルタの出
力Y[n]をホールドする時点、すなわち起動時点を選
択する手段は必ずしも上述のように起動整定値を設定す
る手段でなくてもよく、例えば測定零相電圧の変化の勾
配に基づいて行うなど、他の手段によってもよい。
In the above method, the means for holding the output Y [n] of the digital low-pass filter, that is, the means for selecting the starting time, is not necessarily the means for setting the starting set value as described above. Other means may be used, such as based on the gradient of the change in phase voltage.

[発明の効果] 請求項1の第1の発明によれば、間欠地絡等の外乱の
影響を受けることなく、地絡事故発生前の残留零相分に
きわめて近い出力を得て地絡により増加した零相分を検
出することができるから、それに基づいて正確に地絡回
線を検出することができるという効果を奏する。
According to the first aspect of the present invention, an output very close to the residual zero-phase component before the occurrence of the ground fault is obtained without being affected by disturbances such as intermittent ground faults. Since the increased zero-phase component can be detected, there is an effect that the ground fault line can be accurately detected based on the detected zero-phase component.

請求項2の第2の発明によれば、複数の回線に地絡事
故が発生した場合、事故程度の大きい地絡事故が発生し
ている回線から遮断することができるから、事故による
被害を最少限に止どめることができるという効果を奏す
る。
According to the second aspect of the present invention, when a ground fault has occurred in a plurality of lines, it is possible to cut off from the line in which the ground fault having a large accident level has occurred. The effect is that it can be limited to the limit.

【図面の簡単な説明】[Brief description of the drawings]

第1図は発明方法を説明するため概略電力系統図、第2
図は測定零相分とディジタル低域フィルタの出力の関係
を示す説明図、第3A図〜第3C図は零相電圧の変化分と零
相電流の変化分のベクトル図である。
FIG. 1 is a schematic power system diagram for explaining the method of the invention, and FIG.
3A to 3C are vector diagrams of a change in a zero-sequence voltage and a change in a zero-sequence current.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 裕昭 大阪府摂津市千里丘3丁目14番40号 東 光精機株式会社内 (72)発明者 中尾 忠嗣 大阪府摂津市千里丘3丁目14番40号 東 光精機株式会社内 (72)発明者 日吉 稔 大阪府摂津市千里丘3丁目14番40号 東 光精機株式会社内 (56)参考文献 特開 昭59−194631(JP,A) 特開 平2−96668(JP,A) 特開 昭62−81925(JP,A) 特開 平1−202120(JP,A) 特開 平5−76132(JP,A) 特開 昭62−236322(JP,A) 特開 平1−264530(JP,A) 特開 平4−79718(JP,A) 特開 平2−202119(JP,A) 実開 平1−127332(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02H 7/26 G01R 31/08 H02H 3/00 - 3/44 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroaki Yamaguchi 3-14-40 Senrioka, Settsu-shi, Osaka Higashi Koseiki Co., Ltd. (72) Inventor Tadashi Nakao 3-14-40 Senrioka, Settsu-shi, Osaka Higashi Within Kosei Seiki Co., Ltd. (72) Inventor Minoru Hiyoshi 3--14-40 Senrioka, Settsu-shi, Osaka Toko Kosei Seiki Co., Ltd. (56) References JP-A-59-194631 (JP, A) JP-A-2- 96668 (JP, A) JP-A-62-81925 (JP, A) JP-A-1-202120 (JP, A) JP-A-5-76132 (JP, A) JP-A-62-236322 (JP, A) JP-A-1-264530 (JP, A) JP-A-4-79718 (JP, A) JP-A-2-202119 (JP, A) JP-A-1-127332 (JP, U) (Int.Cl. 7 , DB name) H02H 7/26 G01R 31/08 H02H 3/00-3/44

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】母線の零相電圧および前記母線から分岐さ
れた各回線の零相電流を検出し、地絡発生前後の零相電
圧の変化分および各回線毎の地絡発生前後の零相電流の
変化分を算出し、前記零相電圧の変化分とそれぞれの回
線の零相電流の変化分の位相差に基づいて地絡回線を検
出する地絡回線検出方法において、 前記零相電圧および各零相電流を所定間隔で測定し、こ
れら測定零相電圧および測定零相電流のデータをディジ
タル低域フィルタに入力して、(定数M×前回のこのデ
ィジタル低域フィルタの出力のデータ+測定零相電圧お
よび測定零相電流のデータ)/(定数M+1)なる出力
演算を行なうとともに、測定零相電圧を各相毎に起動整
定電圧と比較し、 その比較の結果、測定零相電圧が起動整定電圧以上であ
るとき、その時点における各ディジタル低域フィルタの
出力をホールドし、 このホールド後に、測定零相電圧のデータとこのデータ
を入力したディジタル低域フィルタのホールド出力との
差を地絡発生前後の零相電圧の変化分として算出すると
ともに、各回線における前記測定零相電流のデータとこ
のデータを入力したディジタル低域フィルタのホールド
出力との差を地絡発生前後の零相電流の変化分として算
出すること、 を特徴とする地絡回線検出方法。
1. A zero-phase voltage of a bus and a zero-phase current of each line branched from the bus are detected, and a change in the zero-phase voltage before and after a ground fault occurs and a zero-phase voltage before and after a ground fault occurs for each line. A ground fault line detection method of calculating a change in current and detecting a ground fault line based on a phase difference between the change in the zero-phase voltage and a change in the zero-phase current in each line. Each zero-sequence current is measured at predetermined intervals, and the data of these measured zero-sequence voltage and measured zero-sequence current are input to the digital low-pass filter. (Constant M × data of previous digital low-pass filter output + measurement An output operation of (zero-phase voltage and measured zero-phase current data) / (constant M + 1) is performed, and the measured zero-phase voltage is compared with the starting settling voltage for each phase. As a result of the comparison, the measured zero-phase voltage is started. When the voltage is higher than the settling voltage, The output of each digital low-pass filter at this time is held, and after this hold, the difference between the measured zero-sequence voltage data and the hold output of the digital low-pass filter that receives this data is calculated as the change in the zero-sequence voltage before and after the ground fault occurs. And calculating the difference between the measured zero-sequence current data in each line and the hold output of the digital low-pass filter to which the data is input as a change in the zero-sequence current before and after the occurrence of a ground fault. Ground fault line detection method.
【請求項2】母線の零相電圧および母線から分岐された
各回線の零相電流を所定間隔で測定し、これら測定零相
電圧および測定零相電流のデータをディジタル低域フィ
ルタに入力して、(定数M×前回のこのディジタル低域
フィルタの出力のデータ+測定零相電圧および測定零相
電流のデータ)/(定数M+1)なる出力演算を行なう
とともに、測定零相電圧を各相毎に起動整定電圧と比較
し、 その比較の結果、測定零相電圧が起動整定電圧以上であ
るとき、その時点における各ディジタル低域フィルタの
出力をホールドし、 このホールド後に、測定零相電圧のデータとこのデータ
を入力したディジタル低域フィルタのホールド出力との
差を地絡発生前後の零相電圧の変化分として算出すると
ともに、各回線における前記測定零相電流のデータとこ
のデータを入力したディジタル低域フィルタのホールド
出力との差を地絡発生前後の零相電流の変化分として算
出することにより検出された地絡回線が複数ある場合
に、測定零相電流と残留零相電流の変化分の絶対値の大
きい回線から順に遮断することを特徴とする地絡回線遮
断方法。
2. A zero-phase voltage of a bus and a zero-phase current of each line branched from the bus are measured at predetermined intervals, and the data of the measured zero-phase voltage and measured zero-phase current are input to a digital low-pass filter. , (Constant M × data of previous digital low-pass filter output + data of measured zero-sequence voltage and measured zero-sequence current) / (constant M + 1), and the measured zero-sequence voltage is calculated for each phase. When the measured zero-sequence voltage is equal to or higher than the start settling voltage, the output of each digital low-pass filter at that time is held, and after this hold, the measured zero-sequence voltage data and The difference between the input data and the hold output of the digital low-pass filter is calculated as the change in the zero-sequence voltage before and after the occurrence of the ground fault. If there are multiple ground fault lines detected by calculating the difference between the data and the hold output of the digital low-pass filter that inputs this data as the change in the zero-phase current before and after the occurrence of the ground fault, the measured zero-phase current And a line in which the absolute value of the change of the residual zero-sequence current is interrupted in order.
JP02193554A 1990-07-20 1990-07-20 Ground fault line detection method and ground fault line cutoff method Expired - Lifetime JP3128584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02193554A JP3128584B2 (en) 1990-07-20 1990-07-20 Ground fault line detection method and ground fault line cutoff method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02193554A JP3128584B2 (en) 1990-07-20 1990-07-20 Ground fault line detection method and ground fault line cutoff method

Publications (2)

Publication Number Publication Date
JPH0479720A JPH0479720A (en) 1992-03-13
JP3128584B2 true JP3128584B2 (en) 2001-01-29

Family

ID=16309981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02193554A Expired - Lifetime JP3128584B2 (en) 1990-07-20 1990-07-20 Ground fault line detection method and ground fault line cutoff method

Country Status (1)

Country Link
JP (1) JP3128584B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224783B2 (en) * 2007-11-08 2013-07-03 中国電力株式会社 Distribution line ground fault protection system

Also Published As

Publication number Publication date
JPH0479720A (en) 1992-03-13

Similar Documents

Publication Publication Date Title
US7180300B2 (en) System and method of locating ground fault in electrical power distribution system
US20210075210A1 (en) Method and apparatus for use in earth-fault protection
CA1099782A (en) Ground fault protective apparatus of field windings
KR20030010616A (en) Sensitive ground fault detection system for use in compensated electric power distribution networks
CN111426908B (en) Single-phase earth fault protection method, device and system for small current earthing system
CA2764088A1 (en) Rate of change differential protection
US4560922A (en) Method for determining the direction of the origin of a disturbance affecting an element of an electrical energy transfer network
US5576618A (en) Process and apparatus for comparing in real time phase differences between phasors
US10338122B2 (en) Method and device for detecting a fault in an electrical network
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
JP3128584B2 (en) Ground fault line detection method and ground fault line cutoff method
CA2427821C (en) Current compensation method and device for power system protection
JP2904748B2 (en) Ground fault protection device
US4409636A (en) Device for detecting faulty phases in a multi-phase electrical network
US20230142049A1 (en) Fault detection in a power transmission system
RU2711296C1 (en) Method of correlation protection of three-phase network with isolated neutral from single-phase earth faults
JP2969468B2 (en) Disconnection detection method for zero-phase input device
JPH04236124A (en) Method for detecting small ground fault of high-voltage distribution line
JP2006010608A (en) Insulation level monitoring method for non-earthing electric line and device thereof
JPH01202119A (en) Device for cutting grounding-fault line in high tension distribution line
JP2686191B2 (en) Direction distance relay
JPH0438118A (en) Variation width detector
KR20030037095A (en) Method and apparatus for detecting error of digital protective relay
JP2002101549A (en) Ground directional relay
JP2001258146A (en) Method of monitoring analog input circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10