JP2969468B2 - Disconnection detection method for zero-phase input device - Google Patents

Disconnection detection method for zero-phase input device

Info

Publication number
JP2969468B2
JP2969468B2 JP2193556A JP19355690A JP2969468B2 JP 2969468 B2 JP2969468 B2 JP 2969468B2 JP 2193556 A JP2193556 A JP 2193556A JP 19355690 A JP19355690 A JP 19355690A JP 2969468 B2 JP2969468 B2 JP 2969468B2
Authority
JP
Japan
Prior art keywords
zero
phase
ground fault
detecting
disconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2193556A
Other languages
Japanese (ja)
Other versions
JPH0480669A (en
Inventor
孝司 別井
由明 美濃
裕昭 山口
忠嗣 中尾
稔 日吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Denryoku KK
Toko Seiki Co Ltd
Original Assignee
Kansai Denryoku KK
Toko Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Denryoku KK, Toko Seiki Co Ltd filed Critical Kansai Denryoku KK
Priority to JP2193556A priority Critical patent/JP2969468B2/en
Publication of JPH0480669A publication Critical patent/JPH0480669A/en
Application granted granted Critical
Publication of JP2969468B2 publication Critical patent/JP2969468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 発明は、地絡事故を検出するために設けられる接地形
計器用変圧器や零相変流器といった零相分入力用機器の
断線を検出するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention detects a disconnection of a zero-phase component input device such as a ground-type instrument transformer or a zero-phase current transformer provided for detecting a ground fault. On how to do.

[従来の技術] 従来、この種の零相分入力用機器が断線しているか否
かは、例えば定期的な点検を行う等して個々の機器を検
査することにより知るようにしているのが一般的であっ
た。
[Prior Art] Conventionally, whether or not this kind of zero-phase component input device is disconnected is known by inspecting individual devices, for example, by performing a periodic check. Was common.

[発明が解決しようとする課題] しかしながら、このように個々を検査したときにしか
零相分入力用機器が断線しているか否かを知ることがで
きない場合、こうした零相分入力用機器が断線したまま
で地絡事故の検出作業が進められることになり、正確な
検出を行われない状態が継続するという虞があった。
[Problems to be Solved by the Invention] However, if it is only possible to know whether or not the zero-phase component input device is disconnected when the individual is inspected, the zero-phase component input device is disconnected. As a result, the ground fault accident detection work proceeds, and there is a possibility that the state where accurate detection is not performed continues.

発明は上記のような事故に鑑みなされたものであっ
て、地絡事故の検出に伴って零相分入力用機器の断線を
検出することにより、こうした断線を起こしたまま検出
を行う状態の継続時間を最少限に抑制することができる
ようにした零相分入力用機器の断線検出方法を提供する
ことを目的としている。
The present invention has been made in view of the above-described accident, and detects a disconnection of the zero-phase component input device in accordance with the detection of the ground fault, thereby continuing the state in which the detection is performed while the disconnection occurs. It is an object of the present invention to provide a method for detecting a disconnection of a zero-phase component input device that can minimize time.

[課題を解決するための手段] 上記目的を達成する第1の発明による零相分入力用器
の断線検出方法は、母線から複数の回線が分岐された電
力系統における地絡事故を検出するために設けられた零
相分入力用機器の断線検出方法であって、地絡が検出さ
れた時、母線に接続された接地形計器用変圧器の出力か
ら算出される残留分を補正された零相電圧が対地静電容
量を最大推定値に設定した場合における検出所望地絡事
故発生時の試算零相電圧以下であり、且つ各回線に接続
された零相変流器の出力から算出される残留分を補正さ
れた零相電流のうち最も大きな零相電流が少なくとも対
地静電容量を最少推定値に設定した場合における完全地
絡事故発生時の試算零相電流以上であるとき断線検出信
号を発生させることを特徴としている。
[Means for Solving the Problems] A method for detecting a disconnection of a zero-phase component input device according to a first invention for achieving the above object is to detect a ground fault in a power system in which a plurality of lines are branched from a bus. A method for detecting a disconnection of a zero-phase component input device provided in the system, wherein when a ground fault is detected, a residual component calculated from an output of a grounded type instrument transformer connected to a bus is corrected. The phase voltage is equal to or less than the estimated zero-phase voltage at the time of the occurrence of the ground fault desired to be detected when the ground capacitance is set to the maximum estimated value, and is calculated from the output of the zero-phase current transformer connected to each line. A disconnection detection signal is output when the largest zero-phase current of the zero-phase currents whose residuals have been corrected is greater than or equal to the estimated zero-phase current at the time of the complete ground fault at least when the ground capacitance is set to the minimum estimated value. It is characterized by generating.

上記目的を達成する第2の発明による零相分入力用機
器の断線検出方法は、母線から複数の回線が分岐された
電力系統における地絡事故を検出するために設けられた
零相分入力用機器の断線検出方法であって、地絡回線を
検出し、検出地絡回線遮断前の残留分を補正された零相
電圧が第1設定値以上で且つ遮断前の検出地絡回線の残
留分を補正された零相電流が第2設定値以下であって
も、しかも、前記検出地絡回線を遮断した後の残留分を
補正された零相電圧が前記第1設定値よりも十分に小さ
い健全復帰を示す第3設定値以下となったとき、断線検
出信号を発生することを特徴としている。
A method for detecting a disconnection of a zero-phase component input device according to a second aspect of the present invention, which achieves the above object, comprises a zero-phase component input device provided for detecting a ground fault in a power system in which a plurality of lines are branched from a bus. A method for detecting disconnection of a device, comprising detecting a ground fault line, correcting a residual before the detected ground fault line has a zero-phase voltage equal to or greater than a first set value, and detecting a residual ground fault line before the break. Is zero or less, the zero-phase voltage corrected for the residual after the detection ground fault line is cut off is sufficiently smaller than the first set value. It is characterized in that a disconnection detection signal is generated when the value becomes equal to or less than a third set value indicating the return to normal.

上記目的を達成する第3の発明による零相分入力用機
器の断線検出方法は、母線から複数の回線が分岐された
電力系統における地絡事故を検出するために設けられた
零相分入力用機器の断線検出方法であって、地絡回線を
検出し、少なくとも検出された回線のうち零相変流器の
出力から算出される残留分を補正された零相電流のうち
最も大きな零相電流が第4設定値以上であり、且つ全て
の回線の検出零相電流のベクトル加算値が第5設定値よ
りも大きいとき、断線検出信号を発生することを特徴と
している。
To achieve the above object, a method for detecting a disconnection of a zero-phase component input device according to a third aspect of the present invention is a zero-phase component input device provided for detecting a ground fault in a power system in which a plurality of lines are branched from a bus. A method for detecting disconnection of equipment, wherein a ground fault line is detected, and the largest zero-phase current among zero-phase currents of at least residual lines calculated from the output of a zero-phase current transformer among the detected lines is corrected. Is greater than or equal to the fourth set value, and when the vector addition value of the detected zero-phase currents of all the lines is larger than the fifth set value, a disconnection detection signal is generated.

[作 用] 第1の発明によれば、検出所望地絡事故が発生してい
る場合必ず出力されているはずの零相電圧が出力されて
ないにもかかわらず、最も対地静電容量が小さな場合の
完全地絡時には発生する補正零相電流が計測されている
ことにより、少なくとも完全地絡が発生した時点で接地
形計器用変圧器の断線を検出することができる。
[Operation] According to the first aspect of the present invention, even when the zero-phase voltage, which should have been output, is not output when the ground fault to be detected occurs, the capacitance to ground is the smallest. Since the corrected zero-phase current generated at the time of the complete ground fault is measured, it is possible to detect the disconnection of the grounded type instrument transformer at least at the time when the complete ground fault occurs.

第2の発明によれば、遮断前の残留分を補正された零
相電流が第2設定値以下であったにも拘らず、その回線
が遮断されたことにより、遮断前には第1設定値以上で
あった零相電圧が健全復帰を示す第3設定値以下となっ
たことにより、地絡事故を起こした回線の零相変流器が
断線を起こしていることを検出する。
According to the second invention, although the zero-phase current corrected for the residual before the cut-off is equal to or less than the second set value, the line is cut off. When the zero-sequence voltage, which has been equal to or greater than the value, has become equal to or less than the third set value indicating the restoration of soundness, it is detected that the zero-phase current transformer of the line in which the ground fault has occurred has broken.

第3の発明によれば、全ての回線の検出零相電流のベ
クトル加算値がの大きさが第5設定値よりも大きく、し
かも地絡回線と判定された回線中における残留分を除い
た零相電流のうち最も大きな零相電流が第4設定値以上
であることにより、母線側ではなく回線側に地絡が発生
しており且つ地絡事故回線以外の回線に接続された零相
変流器が断線していることを検出する。
According to the third invention, the magnitude of the vector addition value of the detected zero-sequence currents of all the lines is larger than the fifth set value, and the zero is obtained by removing the residual in the line determined to be the ground fault line. When the largest zero-phase current among the phase currents is equal to or larger than the fourth set value, a ground fault occurs on the line side instead of the bus side, and the zero-phase current transformer connected to a line other than the ground fault line. Detect that the device is disconnected.

[実施例] 以下、零相分入力機器を第1図に示すような電力系統
Sに装備された接地形計器用変圧器GPTおよび零相変流
器ZCT1〜12として本発明を説明する。
[Embodiment] Hereinafter, the present invention will be described as a zero-phase component input device as a grounded-type instrument transformer GPT and zero-phase current transformers ZCT1 to ZCT12 provided in a power system S as shown in FIG.

接地形計器用変圧器GPTは母線Mに接続され、一方零
相変流器ZCT1〜12は前記母線Mから分岐した第1回線F1
〜第12回線F12に設けられている。
The grounding type transformer GPT is connected to the bus M, while the zero-phase current transformers ZCT1 to ZCT12 are connected to the first line F1 branched from the bus M.
To the twelfth line F12.

この電力系統Sでは前記接地形計器用変圧器GPTおよ
び零相変流器ZCT1〜12から入力された零相分、すなわち
零相電圧および各回線の零相電流に基づいて地絡回線を
選択できるようになっている。この地絡回線の選択は、
以下のようにして行っている。
In this power system S, a ground fault line can be selected based on the zero-phase components input from the ground-type instrument transformer GPT and the zero-phase current transformers ZCT1 to 12, that is, the zero-phase voltage and the zero-phase current of each line. It has become. The choice of this ground fault line is
This is done as follows.

すなわちまず、前記零相電圧および各零相電流を所定
間隔で検出するとともに、これらの測定零相電圧と測定
零相電流をディジタル低域フィルタに入力し、地絡電圧
が起動整定電圧に達しているとき、その時点の各ディジ
タル低域フィルタの出力をホールドする。次に、前記測
定零相電圧とこの測定零相電圧を入力したディジタル低
域フィルタ出力のホールド値の差を地絡発生前後の零相
電圧の変化分として算出するとともに、各回線における
前記測定零相電流とこの測定零相電流を入力したディジ
タル低域フィルタ出力のホールド値の差を地絡発生前後
の零相電流の変化分として算出し、この算出した零相電
圧の変化分と零相電流の変化分の位相差に基づいて地絡
回線を選択する。すなわち、例えば、零相電圧の変化分
の位相に対し、零相電流の変化分の位相が+180゜以内
であれば健全回線、−180゜以内であれば地絡回線とし
て選択するのである。
That is, first, the zero-sequence voltage and each zero-sequence current are detected at predetermined intervals, and the measured zero-sequence voltage and the measured zero-sequence current are input to the digital low-pass filter, and the ground fault voltage reaches the start settling voltage. , The output of each digital low-pass filter at that time is held. Next, the difference between the measured zero-sequence voltage and the hold value of the digital low-pass filter output to which the measured zero-sequence voltage is input is calculated as a change in the zero-sequence voltage before and after the occurrence of a ground fault, and the measured zero-sequence voltage in each line is calculated. The difference between the phase current and the hold value of the digital low-pass filter output to which the measured zero-phase current is input is calculated as the change in the zero-phase current before and after the occurrence of the ground fault, and the calculated change in the zero-phase voltage and the zero-phase current are calculated. The ground fault line is selected based on the phase difference of the change. That is, for example, if the phase of the change in the zero-phase current is within + 180 ° with respect to the phase of the change in the zero-phase voltage, the line is selected as a healthy line, and if the phase is within -180 °, the ground line is selected.

但し、地絡回線の選択は上記の手段でなくても、公知
の他の手段(例えば特公昭59−194631号公報に開示され
る手段)を用いて行うようにしてもよい。
However, the selection of the ground fault line may be performed using other known means (for example, a means disclosed in Japanese Patent Publication No. 59-194631) instead of the above means.

この電力系統Sでは、上記のようにして地絡回線を選
択した場合には、地絡回線と判定した回線のうち零相電
流の絶対値が大きい回線から順に回線を遮断し、それで
もなお健全回線に復帰しない場合には地絡回線と判定さ
れなかった回線のうち零相電流の絶対値が大きい順に回
線を遮断するようにしている。
In this power system S, when the ground fault line is selected as described above, the line is sequentially cut off from the line determined to be the ground fault line, in which the absolute value of the zero-phase current is large. When the line does not return to the ground line, the lines that are not determined to be ground fault lines are disconnected in order of increasing absolute value of the zero-phase current.

さて、第1図に示すような系統Sにおいて、例えば母
線Mの電圧が6600Vで、接地形計器用変圧器GPTの1次3
次巻線比が 零相変流器ZCT1〜12の1次2次巻線比1.5/200、接地形
計器用変圧器GPTの電流制限抵抗50Ωで、しかも系統お
よび各回線の対地静電容量は平衡し、各回線の対地静電
容量は系統対地静電容量の1/12と仮定したとき、各回線
F1〜F12の各相あたりの対地容量が0.3μFで試算される
完全地絡時の零相変流器ZCT1〜12の2次電流すなわち残
留分を補正された零相電流(以下、補正零相電流)の実
効値は8.90mA、また、対地容量が7μFで試算される60
00Ω地絡時の接地形計器用変圧器GPTの3次電圧すなわ
ち残留分を補正された零相電圧(以下、補正零相電圧)
の実効値は2.31Vである。ここで、対地容量が0.3μFは
対地容量の最少推量値であり、7μFは対地容量の最大
推量値である。また、6000Ωは前記地絡回線の検出時に
おいて検出を所望する地絡抵抗の大きさである。
Now, in the system S as shown in FIG. 1, for example, when the voltage of the bus M is 6600 V and the primary
Next winding ratio The primary / secondary winding ratio of the zero-phase current transformers ZCT1 to 12 is 1.5 / 200, the current limiting resistance of the grounding type transformer GPT is 50Ω, and the capacitance of the system and each line to the ground is balanced. Is assumed to be 1/12 of the system ground capacitance,
Zero-phase currents of the zero-phase current transformers ZCT1 to ZCT12 at the time of complete ground fault, that is, zero-sequence currents in which residuals are corrected (hereinafter referred to as corrected zero-phase currents) The effective value of the current is 8.90 mA, and the ground capacitance is estimated at 7 μF.
Zero-phase voltage corrected for the tertiary voltage of the ground-type instrument transformer GPT at the time of a 00Ω ground fault, that is, the residual (hereinafter, corrected zero-phase voltage)
Is 2.31V. Here, the ground capacity of 0.3 μF is the minimum guess value of the ground capacity, and 7 μF is the maximum guess value of the ground capacity. 6000Ω is the magnitude of the ground fault resistance that is desired to be detected when the ground fault line is detected.

このような条件のもとで、補正零相電圧の実効値が2V
以下で、且つ最も大きな補正零相電流の実効値が8mA以
上である場合に接地形計器用変圧器GPTに断線があるも
のとして断線検出信号を発生する。すなわち、完全地絡
が発生した場合には対地静電容量が最少推量値であって
も発生する補正零相電流が検出されているにも拘らず、
補正零相電圧は6000Ω地絡のときに対地容量が最大推量
値である場合に発生する補正零相電圧より小さい場合に
は、接地形計器用変圧器GPTに断線があるものと判定し
ている。
Under these conditions, the effective value of the corrected zero-sequence voltage is 2V
Below, if the effective value of the largest corrected zero-phase current is 8 mA or more, a disconnection detection signal is generated on the assumption that the ground-type instrument transformer GPT has a disconnection. That is, when a complete ground fault occurs, even though the corrected zero-phase current that occurs is detected even if the ground capacitance is the minimum guess value,
If the corrected zero-sequence voltage is smaller than the corrected zero-sequence voltage that occurs when the ground capacity is the maximum guess value during a 6000 Ω ground fault, it is determined that the ground-type instrument transformer GPT has an open circuit. .

次に、零相変流器ZCT1〜12のいずれかに断線が発生し
ている場合には以下のようにしてその断線を検出する。
Next, when a disconnection has occurred in any of the zero-phase current transformers ZCT1 to ZCT, the disconnection is detected as follows.

まず、第2A図に示すように、断線した零相変流器ZCT1
を持つ回線F1に地絡が生じた場合には、回線F1を遮断す
る前の補正零相電圧が第1の設定値以上で且つその回線
F1の遮断前の補正零相電流が第2の設定値以下であっ
て、しかも、その回線F1を遮断した後の残留分を補正さ
れた零相電圧が健全復帰を示す第3の設定値以下となっ
たとき断線検出信号を発生する。すなわち、ある回線F1
を遮断した結果、補正零相電圧が第3の設定値以下とな
り、したがってその回線F1が地絡回線であると決定され
たにも拘らず、その回線F1の遮断前の補正零相電流が第
2の設定値に達していなかった場合、その回線F1に設け
られている零相変流器ZCT1は断線しているものとし、断
線検出信号を発生するようにしている。この場合、遮断
前の補正零相電流に対する第2の設定値は、対地容量が
最少推量値である場合に、検出したい地絡、すなわちこ
の実施例では6000Ω地絡で発生するものと試算される補
正零相電流3.84mAより小さい値、例えば3mAに設定する
ことができる。また、遮断前の補正零相電圧に対する第
1の設定値は、対地静電容量が最少推量値である場合
に、検出したい6000Ω地絡で発生すると試算される補正
零相電圧47.53Vより大きな値、例えば55Vに設定するこ
とができる。
First, as shown in FIG. 2A, the disconnected zero-phase current transformer ZCT1
If the ground fault occurs in the line F1 having the line, the corrected zero-phase voltage before the line F1 is cut off is equal to or more than the first set value and the line
The corrected zero-sequence current before the cutoff of F1 is equal to or less than the second set value, and the zero-sequence voltage corrected for the residual after the cutoff of the line F1 is equal to or less than the third set value indicating the return to normal. When it becomes, a disconnection detection signal is generated. That is, a certain line F1
As a result, the corrected zero-sequence voltage becomes equal to or less than the third set value, and therefore, although the line F1 is determined to be the ground fault line, the corrected zero-phase current before the line F1 is cut off is equal to or less than the third set value. If the set value has not reached 2, the zero-phase current transformer ZCT1 provided in the line F1 is assumed to be disconnected, and a disconnection detection signal is generated. In this case, the second set value for the corrected zero-sequence current before interruption is estimated to be generated at the ground fault to be detected, that is, at 6000Ω ground fault in this embodiment when the ground capacity is the minimum guess value. The value can be set to a value smaller than the corrected zero-phase current 3.84 mA, for example, 3 mA. In addition, the first set value for the corrected zero-sequence voltage before cutoff is a value larger than the corrected zero-sequence voltage 47.53 V which is estimated to be generated at a 6000Ω ground fault to be detected when the ground capacitance is the minimum guess value. For example, it can be set to 55V.

次に、第2B図に示すように、断線した零相変流器ZCT1
を持つ回線以外の回線F2に地絡が生じた場合には、前述
の地絡回線選択手段により地絡回線と判定された回線の
うち零相変流器の出力から算出される最も大きな補正零
相電流が第4設定値以上であり、且つ全ての回線の検出
零相電流のベクトル加算値が第5設定値より大きいとき
断線検出信号を発生する。すなわち、検出零相電流のベ
クトル加算値が0にならない場合には、第2B図に示すよ
うに、断線した零相変流器ZCT1を持つ回線以外の回線F2
に地絡が生じた場合の他、第2C図に示すように、断線し
た零相変流器がない状態で母線M側に地絡が生じた場合
が考えられる。しかし、第2C図の場合には、各回線には
その回線の対地静電容量に応じた電流が流れるだけであ
る。したがって、最も大きな補正零相電流が、零相変流
器が断線していない場合に予想される、対地静電容量に
より生じる補正零相電流よりも大きな補正零相電流であ
る場合には、第2B図に示すようにその最も大きな補正零
相電流が流れている回線F1に地絡が発生しており、且つ
他の回線F2の零相変流器ZCT2に断線が生じていると考え
ることができる。この場合、最も大きな補正零相電流に
対する第4設定値は、対地静電容量が最少推定値である
ときに検出したい6000Ω地絡が発生した場合の算出補正
零相電流3.84mA以下とすることが好ましいが、装置その
ものの精度に応じてそれ以上の値、例えば50mAに設定し
てもよい。また、検出零相電流のベクトル加算値に対す
る第5設定値は前記最も大きな補正零相電流よりも小さ
い値とし、例えば装置全体の誤差に合わせてこの補正零
相電流の10%とすることができる。
Next, as shown in FIG. 2B, the disconnected zero-phase current transformer ZCT1
When a ground fault occurs in the line F2 other than the line having the ground fault, the largest correction zero calculated from the output of the zero-phase current transformer among the lines determined to be the ground fault line by the above-described ground fault line selecting means. A disconnection detection signal is generated when the phase current is greater than or equal to the fourth set value and the vector addition value of the detected zero-phase currents of all the lines is larger than the fifth set value. That is, when the vector addition value of the detected zero-phase current does not become 0, as shown in FIG. 2B, the line F2 other than the line having the disconnected zero-phase current transformer ZCT1
In addition to the case where a ground fault has occurred, as shown in FIG. 2C, a case where a ground fault has occurred on the bus M side without a disconnected zero-phase current transformer can be considered. However, in the case of FIG. 2C, only a current flows in each line according to the capacitance of the line to the ground. Therefore, if the largest corrected zero-sequence current is larger than the corrected zero-sequence current caused by the capacitance to ground, which is expected when the zero-phase current transformer is not disconnected, As shown in Figure 2B, it can be considered that a ground fault has occurred in the line F1 where the largest corrected zero-sequence current is flowing, and that the zero-phase current transformer ZCT2 in the other line F2 is disconnected. it can. In this case, the fourth set value for the largest corrected zero-sequence current is set to be 3.84 mA or less, which is the calculated zero-sequence current when a ground fault of 6000Ω to be detected occurs when the ground capacitance is the minimum estimated value. Preferably, it may be set to a higher value, for example, 50 mA, depending on the accuracy of the device itself. The fifth set value of the detected zero-sequence current with respect to the vector addition value may be smaller than the largest corrected zero-sequence current, and may be, for example, 10% of the corrected zero-sequence current in accordance with the error of the entire apparatus. .

以上のようにすることで、第1図に示すような電力系
統Sにおける零相分入力用機器、すなわち接地形計器用
変圧器GPTあるいは零相変流器ZCT1〜12に生じた断線を
検出することができる。いずれかの断線が検出された場
合は、例えばLED等でなる表示手段を駆動させたり、記
録用データを出力するなどの対応を行う。
By doing so, the disconnection that occurs in the zero-phase component input device in the power system S as shown in FIG. 1, that is, the ground-type instrument transformer GPT or the zero-phase current transformers ZCT1 to ZCT12 is detected. be able to. When any of the disconnections is detected, a countermeasure such as driving a display unit such as an LED or outputting recording data is performed.

尚、上記実施例では、接地形計器用変圧器GPTの断
線、地絡が発生した故障回線の零相変流器の断線、およ
び地絡が発生していない健全回線の零相変流器の断線を
全て発明による検出方法で検出するようにしているが、
これらの検出方法は個々に採用することができる。地絡
が発生した故障回線の零相変流器の断線のみを発明の方
法で検出し、他の断線は発明の方法以外の方法で検出す
るようにしていてもよい。
In the above embodiment, the disconnection of the ground-type instrument transformer GPT, the disconnection of the zero-phase current transformer of the faulty line where the ground fault has occurred, and the zero-phase current transformer of the healthy line where the ground fault has not occurred. All disconnections are detected by the detection method according to the invention,
These detection methods can be individually adopted. Only the disconnection of the zero-phase current transformer of the faulty line in which the ground fault has occurred may be detected by the method of the invention, and other disconnections may be detected by a method other than the method of the invention.

[発明の効果] 請求項1〜3によれば、地絡事故の検出に伴って零相
分入力用機器の断線を検出することにより、こうした断
線を起こしたまま検出を行う状態の継続時間を最少限に
抑制することができ、もって以後の地絡事故検出に対す
る悪影響を迅速に解消することができる、という効果を
奏する。
[Effects of the Invention] According to claims 1 to 3, the disconnection of the zero-phase component input device is detected in accordance with the detection of the ground fault, so that the duration of the state in which the detection is performed with the disconnection occurring is reduced. It is possible to suppress the influence to a minimum, thereby quickly eliminating the adverse effect on the subsequent ground fault detection.

出する。Put out.

【図面の簡単な説明】[Brief description of the drawings]

第1図は発明による零相分入力用機器の断線検出方法を
採用する電力系統の概略図、第2A図は地絡が発生した回
線の零相変流器の断線を検出する方法を説明する回路
図、第2B図は健全回線の零相変流器の断線を検出する方
法を説明する回路図、第2C図は母線地絡の場合を説明す
る回路図である。 GPT……接地形計器用変圧器 ZCT1〜12……零相変流器
FIG. 1 is a schematic diagram of a power system employing a method for detecting disconnection of a zero-phase component input device according to the present invention, and FIG. 2A illustrates a method for detecting disconnection of a zero-phase current transformer in a line in which a ground fault has occurred. FIG. 2B is a circuit diagram illustrating a method for detecting a disconnection of a zero-phase current transformer in a healthy circuit, and FIG. 2C is a circuit diagram illustrating a case of a bus ground fault. GPT …… Transformers for grounded instruments ZCT1 ~ 12 …… Zero-phase current transformers

フロントページの続き (72)発明者 山口 裕昭 大阪府摂津市千里丘3丁目14番40号 東 光精機株式会社内 (72)発明者 中尾 忠嗣 大阪府摂津市千里丘3丁目14番40号 東 光精機株式会社内 (72)発明者 日吉 稔 大阪府摂津市千里丘3丁目14番40号 東 光精機株式会社内 (56)参考文献 特開 平1−77419(JP,A) 特開 平2−70220(JP,A) 特開 平2−188120(JP,A)Continuing on the front page (72) Inventor Hiroaki Yamaguchi 3-14-40 Senrioka, Settsu-shi, Osaka Toko Seiki Co., Ltd. (72) Inventor Tadashi Nakao 3-14-40 Senrioka, Settsu-shi, Osaka Toko Seiki Co., Ltd. In-company (72) Inventor Minoru Hiyoshi 3-14-40 Senrioka, Settsu-shi, Osaka Toko Seiki Co., Ltd. (56) References JP-A-1-77419 (JP, A) JP-A-2-70220 (JP) , A) JP-A-2-188120 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】母線から複数の回線が分岐された電力系統
における地絡事故を検出するために設けられた零相分入
力用機器の断線検出方法であって、 地絡が検出された時、母線に接続された接地形計器用変
圧器の出力から算出される残留分を補正された零相電圧
が対地静電容量を最大推定値に設定した場合における検
出所望地絡事故発生時の試算零相電圧以下であり、且つ
各回線に接続された零相変流器の出力から算出される残
留分を補正された零相電流のうち最も大きな零相電流が
少なくとも対地静電容量を最少推定値に設定した場合に
おける完全地絡事故発生時の試算零相電流以上であると
き断線検出信号を発生させることを特徴とする零相分入
力用機器の断線検出方法。
A method for detecting a disconnection of a zero-phase component input device provided for detecting a ground fault in a power system in which a plurality of lines are branched from a bus, comprising the steps of: Zero-phase voltage corrected for the residual calculated from the output of the grounded-type instrument transformer connected to the bus, and detection when the ground capacitance is set to the maximum estimated value. The largest zero-phase current among the zero-phase currents that are equal to or less than the phase voltage and whose residuals are calculated from the output of the zero-phase current transformer connected to each line is the least estimated value of at least the ground capacitance. A disconnection detection method for a zero-phase-sequence input device, wherein a disconnection detection signal is generated when the current is equal to or greater than a trial-calculated zero-phase current at the time of a complete ground-fault accident.
【請求項2】母線から複数の回線が分岐された電力系統
における地絡事故を検出するために設けられた零相分入
力用機器の断線検出方法であって、 地絡回線を検出し、検出地絡回線遮断前の残留分を補正
された零相電圧が第1設定値以上で且つ遮断前の検出地
絡回線の残留分を補正された零相電流が第2設定値以下
であって、しかも、前記検出地絡回線を遮断した後の残
留分を補正された零相電圧が前記第1設定値よりも十分
に小さい健全復帰を示す第3設定値以下となったとき、
断線検出信号を発生することを特徴とする零相分入力用
機器の断線検出方法。
2. A method for detecting a disconnection of a zero-phase component input device provided for detecting a ground fault in a power system in which a plurality of lines are branched from a bus, comprising detecting and detecting a ground fault line. The zero-phase voltage corrected for the residual before the ground fault line is cut off is equal to or greater than the first set value, and the zero-phase current corrected for the residual of the detected ground fault line before cut off is set to the second set value or less, In addition, when the zero-sequence voltage corrected for the residual after the detection ground fault line is cut off is equal to or less than a third set value indicating a healthy restoration sufficiently smaller than the first set value,
A method for detecting a disconnection of a zero-phase component input device, comprising generating a disconnection detection signal.
【請求項3】母線から複数の回線が分岐された電力系統
における地絡事故を検出するために設けられた零相分入
力用機器の断線検出方法であって、 地絡回線を検出し、少なくとも検出された回線のうち零
相変流器の出力から算出される残留分を補正された零相
電流のうち最も大きな零相電流が第4設定値以上であ
り、且つ全ての回線の検出零相電流のベクトル加算値が
第5設定値よりも大きいとき、断線検出信号を発生する
ことを特徴とする零相分入力用機器の断線検出方法。
3. A method for detecting a disconnection of a zero-phase component input device provided for detecting a ground fault in a power system in which a plurality of lines are branched from a bus, comprising: detecting a ground fault line; Among the detected lines, the largest zero-sequence current of the zero-sequence current corrected for the residual calculated from the output of the zero-phase current transformer is equal to or greater than the fourth set value, and the detected zero-sequence of all lines is A disconnection detection method for a zero-phase input device, wherein a disconnection detection signal is generated when a current vector addition value is greater than a fifth set value.
JP2193556A 1990-07-20 1990-07-20 Disconnection detection method for zero-phase input device Expired - Lifetime JP2969468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193556A JP2969468B2 (en) 1990-07-20 1990-07-20 Disconnection detection method for zero-phase input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193556A JP2969468B2 (en) 1990-07-20 1990-07-20 Disconnection detection method for zero-phase input device

Publications (2)

Publication Number Publication Date
JPH0480669A JPH0480669A (en) 1992-03-13
JP2969468B2 true JP2969468B2 (en) 1999-11-02

Family

ID=16310011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193556A Expired - Lifetime JP2969468B2 (en) 1990-07-20 1990-07-20 Disconnection detection method for zero-phase input device

Country Status (1)

Country Link
JP (1) JP2969468B2 (en)

Also Published As

Publication number Publication date
JPH0480669A (en) 1992-03-13

Similar Documents

Publication Publication Date Title
EP1939638B1 (en) System and method for determining location of phase-to-earth fault
EP2991181A1 (en) Systems and methods for identifying fault location using distributed communication
JP2007116893A (en) Device and method for detecting fault section by comparison of phase difference, and magnitude of zero-phase current in non-grounded distribution system
CN111426908B (en) Single-phase earth fault protection method, device and system for small current earthing system
JP2765907B2 (en) Transformer fault detection method and device
KR101989350B1 (en) Appatus for protecting of microgrid using superimposed reactive energy and method thereof
JP2969468B2 (en) Disconnection detection method for zero-phase input device
EP1610431A9 (en) Method and system for identifying faulted phase
JP4114929B2 (en) Distribution system ground fault detector
JP4177802B2 (en) Ground fault direction relay device
JP3128584B2 (en) Ground fault line detection method and ground fault line cutoff method
JP2021004855A (en) Ground fault detection method and device
JP2984198B2 (en) Method and apparatus for determining connection of outlet with ground electrode
RU2088012C1 (en) Method for adapting remote protective gear and fault detector to power transmission line using its model
JPS6039571A (en) Marking device of parallel multi-circuit ground-fault point
JP3376632B2 (en) Fault location device
JPH0442726A (en) Ground fault indicator for distribution line
JP2016152741A (en) Ground directional relay
JP3132011B2 (en) Harmonic filter equipment protection relay
JPH0437651B2 (en)
CN117741507A (en) Small-current grounding line selection auxiliary selection increment device and method
CN114725914A (en) High-sensitivity neutral point flexible grounding power distribution network fault handling method and system
JP2717320B2 (en) Predicted ground fault accident detection method for high voltage distribution line and predicted ground fault accident section detection method
JP3254765B2 (en) Phase protection equipment shunt reactor protection relay
JPH04236124A (en) Method for detecting small ground fault of high-voltage distribution line

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

EXPY Cancellation because of completion of term