JPH0437651B2 - - Google Patents

Info

Publication number
JPH0437651B2
JPH0437651B2 JP6897183A JP6897183A JPH0437651B2 JP H0437651 B2 JPH0437651 B2 JP H0437651B2 JP 6897183 A JP6897183 A JP 6897183A JP 6897183 A JP6897183 A JP 6897183A JP H0437651 B2 JPH0437651 B2 JP H0437651B2
Authority
JP
Japan
Prior art keywords
line
zero
sequence
ground fault
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6897183A
Other languages
Japanese (ja)
Other versions
JPS59194631A (en
Inventor
Seiichi Sakai
Toshihiko Gange
Tokuo Emura
Naritsugi Toyohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP6897183A priority Critical patent/JPS59194631A/en
Publication of JPS59194631A publication Critical patent/JPS59194631A/en
Publication of JPH0437651B2 publication Critical patent/JPH0437651B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は高圧配電線地絡故障回線検出方式に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high voltage distribution line ground fault line detection system.

高圧配電線の地絡故障検出のために、通常は方
向地絡継電器を用いるが、これでは検出できない
ような微地絡故障については微地絡継電器を用い
ることがある。この微地絡継電器は、母線の零相
電圧を入力とし、この零相電圧が一定時間にわた
つて一定レベル以上断続したとき地絡故障が発生
したものとみなし、しや断器を予め定められた順
序に従つてしや断していき、前記零相電圧が消滅
したとき、そのときのしや断回線をもつて地絡故
障回線とするようにしたものである。しかしこの
ような継電器によるときは、母線に連なる他の健
全回線をもしや断するので、不必要な停電をとも
なうといつた欠点がある。
Directional ground fault relays are normally used to detect ground faults in high-voltage distribution lines, but small ground fault relays may be used for small ground faults that cannot be detected by this method. This small ground fault relay takes the zero-sequence voltage of the bus as an input, and when this zero-sequence voltage is intermittent at a certain level or more for a certain period of time, it is assumed that a ground fault has occurred, and the small ground fault is set in advance. When the zero-sequence voltage disappears, the line that is interrupted at that time is regarded as the ground fault line. However, when such a relay is used, it has the disadvantage that it may disconnect other healthy lines connected to the busbar, resulting in unnecessary power outage.

この発明は健全回線のしや断を必要とせずにし
かも高速で地絡故障回線を検出することを目的と
する。
The object of the present invention is to detect a faulty ground fault line at high speed without requiring disconnection of a healthy line.

この発明は、母線の零相電圧と、各回線の零相
電流との位相関係から或は、地絡故障前後の母線
の零相電圧の変化分と各回線の零相電流の変化分
との位相関係から故障回線を検出することを特徴
とする。
This invention is based on the phase relationship between the zero-sequence voltage of the bus and the zero-sequence current of each line, or the difference between the change in the zero-sequence voltage of the bus and the change in the zero-sequence current of each line before and after a ground fault fault. It is characterized by detecting faulty lines based on phase relationships.

まずこの発明の動作原理について説明する。第
1図はA,B,Cの各相の母線に複数の回線1F
〜nFを接続した配電線系統を示すものである。
なお同図において、母線の線間電圧をE〓ab,
E〓bc,E〓ca,対地電圧をV〓,V〓b,V〓c,相電流を
I〓a,I〓b,I〓c,各回線の相電流をI〓1a,I〓1b,I
1c〜
I〓na,I〓nb,I〓nc,各回線の対地容量をC1a,C1b,
C1c〜Cna,Cnb,Cncとする。このときの各回
線の合成対地容量C1〜Cn、逆相容量C′1〜C′nを C1=C1a+C1b+C1c,C′1=C1a+α2C1b+αC1c …… Cn=Cna+Cnb+Cnc,C′n=Cna+α2Cnb+αCnc (α=1+j√3/2) とする。
First, the operating principle of this invention will be explained. Figure 1 shows multiple lines 1F on the busbars of each phase of A, B, and C.
This shows the distribution line system connecting ~nF.
In addition, in the same figure, the line voltage of the bus bar is E〓ab,
E〓bc, E〓ca, voltage to ground is V〓, V〓b, V〓c, phase current is
I〓a, I〓b, I〓c, the phase current of each line is I〓 1 a, I〓 1 b, I
1 c~
I〓na, I〓nb, I〓nc, the ground capacity of each line is C1a, C1b,
Let C1c~Cna, Cnb, Cnc. At this time, the combined ground capacity C 1 to Cn and negative phase capacitance C' 1 to C'n of each line are C 1 = C 1 a + C 1 b + C 1 c, C' 1 = C 1 a + α 2 C 1 b + αC 1 c ... ... Cn=Cna+Cnb+Cnc, C′n=Cna+α 2 Cnb+αCnc (α=1+j√3/2).

GPTは巻線比を1:nとする接地変圧器、z〓n
は接地変圧器GPTの3次巻線のオープンデルタ
にそう入されるインピーダンス、I〓nは中性点に流
れる電流である。
GPT is a grounding transformer with a turns ratio of 1:n, z〓n
is the impedance so inserted into the open delta of the tertiary winding of the grounding transformer GPT, and I〓n is the current flowing to the neutral point.

このような配電系統において今、回線1Fのa
相線路に故障点抵抗Rgを介して地絡が生じたと
すると、このときの母線の零相電圧V〓0と、各回
線の零相電流I〓10〜I〓n0との関係は次式で与えられ
る。
In such a power distribution system, the a of line 1F is now
If a ground fault occurs in the phase line through the fault point resistance R g , then the relationship between the zero-sequence voltage V〓 0 of the bus bar and the zero-sequence current I〓 10 to I〓n 0 of each line is as follows. It is given by Eq.

V〓0=−1/Rg+Y〓2/1/Rg+(1/Zn+Y〓0)V〓1 =−1+RgY〓2/1+Rg(1/Zn+Y〓0)V〓1 (1) 3I〓10=Y〓10V〓0+Y〓12V〓1 +1/RgV〓0+1/RgV〓1 (2) 3I〓20=Y〓20V〓0+Y〓22V〓1 … 3I〓n0=Y〓n0V〓0+Y〓n2V〓1 (3) ここで Y〓10=jωC1,……,Y〓no=jωCn Y〓12=jωC′1,……,Y〓n2=jωC′n Y〓0=Y〓10+Y〓20+……+Y〓n0 =jω(C1+C2+……+Cn) Y〓2=Y〓12+Y〓22+……+Y〓n2 =jω(C′1+C′2+……+C′n) (ω=2πf f:系統の周波数) Z・n=n2/9Z・n(インピーダンスz〓nの1次側換
算 値) V〓0=V〓+V〓b+V〓c(零相電圧) V〓1=V〓+αV〓b+α2V〓C(正相電圧) 第1図に示す系統の零相等価回路を、(1)〜(3)式
に基いて画いたのが第2図である。ここで
jωC′1V〓1,jωC′2V〓1,……jωC′nV〓1等は、地
絡故
障の有無にかかわらず、各回線の相ごとの対地容
量のアンバランスで生ずるものであり、常時残留
零相電流I〓0が流れる。故障がない場合(すなわち
Rgg無限大の場合)にも、この残留零相電流I〓0
より残留零相電圧V〓0が発生している。
V〓 0 =-1/R g +Y〓 2 /1/R g + (1/Zn+Y〓 0 )V〓 1 =-1+R g Y〓 2 /1+R g (1/Zn+Y〓 0 )V〓 1 (1 ) 3I〓 10 =Y〓 10 V〓 0 +Y〓 12 V〓 1 +1/R g V〓 0 +1/R g V〓 1 (2) 3I〓 20 =Y〓 20 V〓 0 +Y〓 22 V〓 1 … 3I〓n 0 =Y〓n 0 V〓 0 +Y〓n 2 V〓 1 (3) Here, Y〓 10 = jωC 1 , ..., Y〓no=jωCn Y〓 12 = jωC′ 1 , ... ,Y〓n 2 =jωC′n Y〓 0 =Y〓 10 +Y〓 20 +……+Y〓n 0 =jω(C 1 +C 2 +……+Cn) Y〓 2 =Y〓 12 +Y〓 22 +… …+Y〓n 2 =jω(C′ 1 +C′ 2 +……+C′n) (ω=2πf f: System frequency) Z・n=n 2 /9Z・n (primary side of impedance z〓n Converted value) V〓 0 = V〓 + V〓b + V〓c (zero-sequence voltage) V〓 1 = V〓 + αV〓b + α 2 V〓C (positive-sequence voltage) The zero-sequence equivalent circuit of the system shown in Figure 1 is Figure 2 is drawn based on equations (1) to (3). here
jωC′ 1 V〓 1 , jωC′ 2 V〓 1 , ...jωC′nV〓 1, etc. are caused by an imbalance in the ground capacity for each phase of each line, regardless of the presence or absence of a ground fault. A residual zero-sequence current I〓 0 always flows. If there is no fault (i.e.
Even in the case where R g g is infinite), a residual zero-sequence voltage V〓 0 is generated due to this residual zero-sequence current I〓 0 .

今対地容量のアンバランスがないとしたとき、
すなわち、Y〓12=Y〓22=……=Y〓n2=0であるとき
は、(1)〜(3)式より V〓0=−1/1+Rg(1/Zn+Y〓0)V〓1 (4) I〓g=V〓0+V〓1/Rg=−(1/Zn+Y〓0)V〓0 (5) 3I〓10=Y〓10V〓0+V〓0+V〓1/Rg =Y〓10V〓0+I〓g =−(1/Zn+Y〓)V〓0+Y〓10V〓0 (6) 3I〓20=Y〓20V〓0,……, 3I〓n0=Y〓n0V〓0 (7) (6)、(7)式から理解できるように故障回路の零相
電流I〓10と、健全回線の零相電流I〓20,……,I〓n0

は異なる値を呈し、故障回線では対地充電電流に
I〓gが加わつた値となる。
Assuming that there is no imbalance in ground capacity,
That is, when Y〓 12 = Y〓 22 =...=Y〓n 2 = 0, from equations (1) to (3), V〓 0 = -1/1 + R g (1/Zn + Y〓 0 )V 〓 1 (4) I〓 g =V〓 0 +V〓 1 /R g =-(1/Zn+Y〓 0 )V〓 0 (5) 3I〓 10 =Y〓 10 V〓 0 +V〓 0 +V〓 1 / R g =Y〓 10 V〓 0 +I〓 g = - (1/Zn+Y〓)V〓 0 +Y〓 10 V〓 0 (6) 3I〓 20 =Y〓 20 V〓 0 ,..., 3I〓n 0 =Y〓n 0 V〓 0 (7) As can be understood from equations (6) and (7), the zero-sequence current I〓 10 of the faulty circuit and the zero-sequence current I〓 20 ,...,I〓 of the healthy line n 0
and the ground charging current in the faulty circuit.
I〓 becomes the value with g added.

I〓gは(5)式から理解されるように、インピーダン
スZ・nにより変化し、Z・nは一般的に、抵抗方式
或いは抵抗と消弧コイルとの並列方式が採られて
いる。以下後者をPC系、前者を非PC系と呼ぶこ
とにする。PC系の場合、消弧コイルの容量は系
統のトータル対地容量Y〓0を補償する値とされる。
As understood from equation (5), I〓g changes depending on the impedance Z.n, and Z.n generally adopts a resistance method or a parallel method of a resistor and an arc-extinguishing coil. Hereinafter, the latter will be referred to as PC type, and the former will be referred to as non-PC type. In the case of a PC system, the capacitance of the arc-extinguishing coil is set to a value that compensates for the total ground capacity of the system, Y = 0 .

上記の各点及び第2図から、1線地絡故障時の
ベクトル図を示したのが第3図乃至第5図であ
る。第3図は非PC系のベクトル図、第4図は不
足補償時のPC系のベクトル図、第5図は過補償
時のPC系のベクトル図である。なおこれらの各
ベクトル図は回線を4回路(1F〜4F)として
示している。第3図〜5図から理解されるよう
に、PC系、非PC系を問わず、故障回線の零相電
流I〓10と、健全回線の零相電流I〓20〜I〓40とは、−V
0
からの位相角に差があり、かつ故障回線の零相電
流は、健全回線の零相電流よりも、−V〓0に対する
位相差が最も小さい。すなわち各回線の零相電流
のうち、−V〓0と最も位相差角が近い零相電流を知
れば、故障回線を検出することができることにな
る。
Based on the above points and FIG. 2, FIGS. 3 to 5 show vector diagrams at the time of a one-wire ground fault. FIG. 3 is a vector diagram of the non-PC system, FIG. 4 is a vector diagram of the PC system at the time of undercompensation, and FIG. 5 is a vector diagram of the PC system at the time of overcompensation. Note that each of these vector diagrams shows lines as four circuits (1F to 4F). As can be understood from Figures 3 to 5, the zero-sequence current I〓 10 of a faulty line and the zero-sequence current I〓 20 to I〓 40 of a healthy line, regardless of whether it is a PC system or a non-PC system, are as follows. −V
0
, and the zero-sequence current of the failed line has the smallest phase difference with respect to −V〓 0 than the zero-sequence current of the healthy line. That is, by knowing the zero-sequence current whose phase difference angle is closest to -V〓0 among the zero-sequence currents of each line, it is possible to detect a faulty line.

次に対地容量にアンバランスがある場合につい
て説明する。この場合、Y〓12〜Y〓n2は必ずしも零
とはならない。したがつて(2)、(3)式より 3I〓10=Y〓V〓+Y〓12V〓1+I〓g (8) 3I〓20=Y〓20V〓0+Y〓22V〓1 (9) … 3I〓n0=Y〓n0V〓0+Y〓n2V〓1 (9) となる。しかしY〓12V〓1,Y〓22,V〓1,……,Y〓n2V
1
等の影響により、たとえば第6図のように、健全
回線の零相電流I〓20の、−V〓0に対する位相差が、故
障回線の零相電流I〓10のそれより小さくなること
がある。そのためにこのようにアンバランス分が
あるときは、前に説明したアンバランス分がない
ときのような方法で故障回線を演出しようとする
と、誤検出が生ずるようになるのである。
Next, a case where there is an imbalance in ground capacity will be explained. In this case, Y〓 12 to Y〓n 2 are not necessarily zero. Therefore, from equations (2) and (3), 3I〓 10 =Y〓V〓+Y〓 12 V〓 1 +I〓 g (8) 3I〓 20 =Y〓 20 V〓 0 +Y〓 22 V〓 1 (9 ) … 3I〓n 0 =Y〓n 0 V〓 0 +Y〓n 2 V〓 1 (9). However, Y〓 12 V〓 1 , Y〓 22 , V〓 1 , ..., Y〓n 2 V
1
Due to the influence of . Therefore, when there is such an unbalanced portion, if an attempt is made to create a faulty line using the method described above when there is no unbalanced portion, erroneous detection will occur.

そこでアンバランス分があつても、−V〓0と各回
線の零相電流との位相差角から誤検出することな
く故障回線を検出することができるかどうかにつ
いて検討した結果、故障の前後における零相電圧
と各零相電流の変化分を用いて検出するようにし
たところ、誤検出を起こさないことが判明した。
以下これについて説明する。
Therefore, even if there is an unbalanced component, we investigated whether it is possible to detect a faulty line without false detection from the phase difference angle between −V〓 0 and the zero-sequence current of each line. When detection was performed using changes in the zero-sequence voltage and each zero-sequence current, it was found that false detection did not occur.
This will be explained below.

前述したように、1線地絡故障時の、V〓0,I〓0
関係は(1)〜(3)式に示すとおりである。故障前は
Rgは無限大であるが、各回線の相間で、対地容
量にアンバランスがあるとすると、常時残留零相
電圧、残留零相電流が発生する。これらの大きさ
は V〓0=−Y〓2/(1/Zn+Y〓0)V〓1 (10) 3I〓10=Y〓10V〓0+Y〓12V〓1 (11) 3I〓20=Y〓20V〓0+Y〓22V〓1 … 3I〓n0=Y〓n0V〓0+Y〓n2V〓1 (12) として与えられている。
As mentioned above, the relationships between V〓 0 and I〓 0 at the time of a one-wire ground fault are as shown in equations (1) to (3). Before the failure
Although R g is infinite, if there is an imbalance in ground capacity between the phases of each line, residual zero-sequence voltage and residual zero-sequence current will always occur. These magnitudes are V〓 0 = −Y〓 2 / (1/Zn + Y〓 0 )V〓 1 (10) 3I〓 10 = Y〓 10 V〓 0 +Y〓 12 V〓 1 (11) 3I〓 20 = Y〓 20 V〓 0 +Y〓 22 V〓 1 … 3I〓n 0 =Y〓n 0 V〓 0 +Y〓n 2 V〓 1 (12).

ここで故障前後の変化分に着目すると △V〓0=V〓0V〓0=−1/Zn+Y〓0−Y〓2/〔1+Rg
(1/Zn+Y〓0)〕〔1/Zn+Y〓0〕V〓1 =−1/1+Rg(1/Zn+Y〓0)〔1−−Y〓2/1/
Zn+Y〓0〕V〓1=−1/1+Rg(1/Zn+Y〓0)(V〓
+V〓1)(13) 3△I〓10=3I〓10−3I〓10=Y〓10△V〓0+1/Rg
V〓0+V〓1) =Y〓10△V〓0+1/Rg(V〓0−V〓0+V〓0+V〓1
=Y〓10V〓0+1/Rg△V〓0+1/Rg(V〓0+V〓1) =Y〓10△V〓0+1/Rg△V〓0−1/Rg△V〓0−(1
/Z/・n+Y〓0)△V〓0 =−(1/Zn+Y〓0)△V〓0+Y〓10△V〓0 (14) 3△I〓20=3I〓20−3I〓20=Y〓20△V〓0 … 3△I〓n0=3I〓0−3I〓n0=Y〓n0△V〓0 (15) となる。
Now, focusing on the changes before and after the failure: △V〓 0 =V〓 0 V〓 0 = -1/Zn+Y〓 0 -Y〓 2 / [1+R g
(1/Zn+Y〓 0 )〕[1/Zn+Y〓 0 ]V〓 1 =-1/1+R g (1/Zn+Y〓 0 ) [1--Y〓 2 /1/
Zn+Y〓 0 〕V〓 1 =-1/1+R g (1/Zn+Y〓 0 )(V〓
+V〓 1 ) (13) 3△I〓 10 =3I〓 10 −3I〓 10 =Y〓 10 △V〓 0 +1/R g (
V〓 0 +V〓 1 ) =Y〓 10 △V〓 0 +1/R g (V〓 0 −V〓 0 +V〓 0 +V〓 1 )
=Y〓 10 V〓 0 +1/R g △V〓 0 +1/R g (V〓 0 +V〓 1 ) =Y〓 10 △V〓 0 +1/R g △V〓 0 −1/R g △V 〓 0 − (1
/Z/・n+Y〓 0 )△V〓 0 =-(1/Zn+Y〓 0 )△V〓 0 +Y〓 10 △V〓 0 (14) 3△I〓 20 =3I〓 20 −3I〓 20 =Y 〓 20 △V〓 0 … 3△I〓n 0 =3I〓 0 −3I〓n 0 =Y〓n 0 △V〓 0 (15).

このように変化分を求めると、(14)、(15)式のいず
れにもアンバランス分Y〓12〜Y〓n2の項はなく、す
なわち原理的に対地的容量のアンバランス分がキ
ヤンセルされた形となる。したがつて△V〓0に対
する△I〓0の関係式は(6)、(7)式におけるV〓0、I〓0

V〓0、△I〓に置換えたものとして取扱うことができ
るようになる。以上の結果、変化分を使用すれ
ば、第3図乃至第5図に示すベクトル図において
述べたところから理解されるように、−△V〓0との
位相差が最も小さい零相電流変化分を呈した回線
を検出することによつて、故障回線が検出できる
ようになるのである。
When calculating the change in this way, there is no term for the unbalance Y〓 12 ~ Y〓n 2 in either equations (14) or (15), which means that in principle the unbalance of the ground capacity can be canceled. It becomes a shape. Therefore, the relational expression of △I〓 0 with respect to △V〓 0 is expressed as V〓 0 and I〓 0 in equations (6) and (7)
It becomes possible to treat it as replacing V〓 0 and △I〓. As a result of the above, if the variation is used, as can be understood from the vector diagrams shown in Figures 3 to 5, the zero-sequence current variation with the smallest phase difference from -△V〓 0 By detecting lines exhibiting this, faulty lines can be detected.

以上述べた検出原理に基く実施例を示したのが
第7図である。同図は高圧配電線の零相電圧V〓0
と、各回線の零相電流I〓10〜I〓n0をサンプルホール
ド回路11A〜11Nによりサンプルホールドす
る。このときのサンプリング信号は、変化量検出
時の誤差を避けるため母線の線間電圧等の周波数
に同期していることが望ましいところから、図の
ようにたとえば線間電圧E〓abを周波数てい倍回路
12に与え、その周波数をてい倍した周波数のサ
ンプリング信号を発生させ、これによつて各サン
プルホールド回路11A〜11Nを動作させると
よい。
FIG. 7 shows an embodiment based on the detection principle described above. The figure shows the zero-sequence voltage of the high-voltage distribution line V〓 0
Then, the zero-sequence currents I〓 10 to I〓n 0 of each line are sampled and held by the sample and hold circuits 11A to 11N. It is desirable that the sampling signal at this time be synchronized with the frequency of the line-to-line voltage of the bus to avoid errors when detecting the amount of change, so as shown in the figure, for example, the line-to-line voltage E〓ab is multiplied by the frequency. It is preferable to apply the sampling signal to the circuit 12 to generate a sampling signal having a frequency multiplied by that frequency, and to operate each sample-and-hold circuit 11A to 11N using this signal.

各サンプルホールド回路11A〜11Nによる
ホールド値はマルチプレクサ13を経てA/D変
換器14によりデイジタル量に変換され、続いて
メモリ15に貯えられる。演算回路16は、メモ
リ15に貯えられたサンプルデータから、零相電
圧V〓0、各零相電流I〓10〜I〓n0の大きさ、位相を演算
し、メモリ15に貯える。そして零相電圧V〓0
大きさがあらかじめ定められた値より小さいとき
は、さきに貯えられた各大きさ、位相データは最
新の値といれ換えられてメモリ15に貯えられ
る。
The values held by each sample and hold circuit 11A to 11N are converted into digital quantities by an A/D converter 14 via a multiplexer 13, and then stored in a memory 15. The arithmetic circuit 16 calculates the zero-sequence voltage V〓 0 and the magnitude and phase of each of the zero-sequence currents I〓 10 to I〓n 0 from the sample data stored in the memory 15 and stores them in the memory 15 . When the magnitude of the zero-sequence voltage V〓 0 is smaller than a predetermined value, the previously stored magnitude and phase data are replaced with the latest values and stored in the memory 15.

今零相電圧V〓0が、或る値以上となり、しかも
その状態があらかじめ定められた時間以上断続す
ると配電線で地絡故障が発生しているものとし、
メモリ15から各データをとり出し、演算回路1
6によつて故障前後の変化分△V〓0、△I〓10〜△I〓0
〜△I〓n0を算出し、変化分△I〓10〜△I〓n0のうちで

−△V〓0との位相差が最も小さい変化分を示した
回線を検出する。この検出回路を地絡故障回線と
判定する。演算回路16は、地絡故障回線と判定
した回線をしや断するために故障回線に対応する
信号をインターフエイス17を経てリレー駆動回
路18に送る。リレー駆動回路18は各回線のト
リツプリレー19A〜19Nのうち故障回線のト
リツプリレーを選択して駆動する。これにより故
障回線は母線から切離されることになる。地絡故
障が発生してから故障回線が切離されるまでの
間、健全回線は何ら停電することはない。以上の
説明は変化分を用いた場合であるが、故障時の零
相電圧V〓0と各零相電流I〓10〜I〓n0を用いて故障回線
を判定する場合についても同じ回路構成で行なえ
ることはいうまでもない。
If the current zero-phase voltage V〓 0 exceeds a certain value and this state continues for a predetermined period of time, it is assumed that a ground fault has occurred in the distribution line.
Each data is taken out from the memory 15 and the arithmetic circuit 1
6, the change before and after failure △V〓 0 , △I〓 10 to △I〓 0
〜△I〓n 0 is calculated, and among the change △I〓 10 〜△I〓n 0 ,
−△V〓 Detect the line showing the smallest change in phase difference from 0 . This detection circuit is determined to be a ground fault line. The arithmetic circuit 16 sends a signal corresponding to the faulty line to the relay drive circuit 18 via the interface 17 in order to disconnect the line that has been determined to be a ground fault line. The relay drive circuit 18 selects and drives the trip relay of the faulty line from among the trip relays 19A to 19N of each line. This causes the faulty line to be disconnected from the busbar. From the time a ground fault occurs until the faulty line is disconnected, there will be no power outage on the healthy line. The above explanation is for the case using the variation, but the same circuit configuration can also be used when determining a faulty line using the zero-sequence voltage V〓 0 and each zero-sequence current I〓 10 to I〓n 0 at the time of failure. Needless to say, it can be done with

以上詳述したようにこの発明によれば、地絡故
障回線の検出が、健全回線のしや断をともなわず
に検出でき、又このように健全回線を順次しや断
していかなくても検出できるから、高速検出が可
能となるといつた効果を奏する。
As detailed above, according to the present invention, it is possible to detect a faulty ground fault line without disconnecting or disconnecting the healthy lines, and it is also possible to detect the failure line without disconnecting the healthy lines one after another. Since it can be detected, high-speed detection is possible, which has the advantage of being able to perform high-speed detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高圧配電線の系統図、第2図は第1図
の系統の零相等価回路図、第3図乃至第6図は動
作説明用のベクトル図、第7図はこの発明の実施
例を示すブロツク図である。 11A〜11N……サンプルホールド回路、1
3……マルチプレクサ、15……メモリ、16…
…演算回路。
Fig. 1 is a system diagram of a high-voltage distribution line, Fig. 2 is a zero-phase equivalent circuit diagram of the system shown in Fig. 1, Figs. 3 to 6 are vector diagrams for explaining operation, and Fig. 7 is an implementation of the present invention. FIG. 2 is a block diagram showing an example. 11A~11N...Sample hold circuit, 1
3...Multiplexer, 15...Memory, 16...
...Arithmetic circuit.

Claims (1)

【特許請求の範囲】 1 母線の零相電圧と、前記母線に連る複数の回
線についてのそれぞれの零相電流とにつき、前記
回線が地絡故障を起こした際に、零相電圧に対し
て最も位相差の小さい零相電流を呈した回線を地
絡故障回線と検出してなる高圧配電線地絡故障回
線検出方式。 2 母線の零相電圧と、前記母線に連る複数の回
線についてのそれぞれの零相電流とにつき、前記
回線が地絡故障を起こした際の、その前後におけ
る変化分を検出し、零相電圧変化分に対して最も
位相差の小さい零相電流変化分を呈した回線を地
絡故障回線と検出してなる高圧配電線地絡故障回
線検出方式。
[Claims] 1. Regarding the zero-sequence voltage of the bus bar and the respective zero-sequence currents of a plurality of lines connected to the bus bar, when a ground fault occurs in the line, the zero-sequence voltage A high-voltage distribution line ground fault line detection method that detects the line exhibiting a zero-sequence current with the smallest phase difference as the ground fault line. 2. With respect to the zero-sequence voltage of the bus and each zero-sequence current of a plurality of lines connected to the bus, detect the changes before and after a ground fault occurs in the line, and calculate the zero-sequence voltage. A high-voltage distribution line ground fault line detection method that detects a line exhibiting a zero-sequence current change with the smallest phase difference with respect to the change as a ground fault line.
JP6897183A 1983-04-18 1983-04-18 High voltage distribution line ground-fault defect channel detecting system Granted JPS59194631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6897183A JPS59194631A (en) 1983-04-18 1983-04-18 High voltage distribution line ground-fault defect channel detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6897183A JPS59194631A (en) 1983-04-18 1983-04-18 High voltage distribution line ground-fault defect channel detecting system

Publications (2)

Publication Number Publication Date
JPS59194631A JPS59194631A (en) 1984-11-05
JPH0437651B2 true JPH0437651B2 (en) 1992-06-22

Family

ID=13389061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6897183A Granted JPS59194631A (en) 1983-04-18 1983-04-18 High voltage distribution line ground-fault defect channel detecting system

Country Status (1)

Country Link
JP (1) JPS59194631A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127332U (en) * 1988-02-20 1989-08-31
JPH01214221A (en) * 1988-02-20 1989-08-28 Nissin Electric Co Ltd Instantaneous ground fault detector for high voltage distribution line
JP5224783B2 (en) * 2007-11-08 2013-07-03 中国電力株式会社 Distribution line ground fault protection system

Also Published As

Publication number Publication date
JPS59194631A (en) 1984-11-05

Similar Documents

Publication Publication Date Title
US4398232A (en) Protective relaying methods and apparatus
EP3506445B1 (en) System for identification of a feeder with high-ohmic earth fault in a distribution network
WO1995024014A2 (en) One-terminal data fault location system
JP2004312848A (en) Load unbalance resolution control system for three-phase circuit
CN106058829A (en) Fault protection system for distribution system
US4366474A (en) Identification of electric power network phases experiencing disturbances
JPH0245422B2 (en)
JPH027248B2 (en)
US3958153A (en) Method and apparatus for fault detection in a three-phase electric network
JPH0437651B2 (en)
EP0316202B1 (en) Selecting a faulty phase in a multi-phase electrical power system
US5960372A (en) Method of monitoring electrical wear on selector switch disconnectors in a high voltage station
JP2001352663A (en) Method and apparatus for detecting electrical leak in low-voltage ground electrical circuit
US20230129666A1 (en) Coordination of protective elements in an electric power system
JP2717320B2 (en) Predicted ground fault accident detection method for high voltage distribution line and predicted ground fault accident section detection method
SU1201951A1 (en) Device for current protection of zero-phase sequence without time delay in system with double reactor and with isolated neutral against double earth leakages outside different branches
JPH04281327A (en) Faint ground fault selective interruption system for distribution system
JPH03251031A (en) Fault zone detector
JPH0458257B2 (en)
JPS59204418A (en) Trestle multichannel ground-fault protecting relay
JPH043510B2 (en)
JPH04236124A (en) Method for detecting small ground fault of high-voltage distribution line
JPH04223280A (en) Detecting fault section in power cable
JPH01148018A (en) System for detecting fault section of substation
JPH0532972B2 (en)