JPH01148018A - System for detecting fault section of substation - Google Patents

System for detecting fault section of substation

Info

Publication number
JPH01148018A
JPH01148018A JP62303977A JP30397787A JPH01148018A JP H01148018 A JPH01148018 A JP H01148018A JP 62303977 A JP62303977 A JP 62303977A JP 30397787 A JP30397787 A JP 30397787A JP H01148018 A JPH01148018 A JP H01148018A
Authority
JP
Japan
Prior art keywords
section
bus
substation
transformers
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62303977A
Other languages
Japanese (ja)
Other versions
JPH0324129B2 (en
Inventor
Takashi Isozaki
磯崎 孝
Katsuro Shinoda
篠田 克郎
Toshiyuki Kawaguchi
川口 敏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62303977A priority Critical patent/JPH01148018A/en
Publication of JPH01148018A publication Critical patent/JPH01148018A/en
Publication of JPH0324129B2 publication Critical patent/JPH0324129B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To quickly execute restoration work, by using an photocurrent sensor fitted to a bus supporting insulator to discriminate a fault section when a fault is generated in a distribution substation provided with a plurality of transformers. CONSTITUTION:An unattended distribution substation is provided with a first - a second incoming sections 1-2, a bus-bar section 3, and a first - a third transformers 4-6, and via the respective leaders 3a-3c of the bus-bar section 3, current is fed to the three transformers 4-6 and is distributed to the side of a load. Besides, the incoming sections 1-2 are respectively provided with disconnectors 7, current transformers 8, and breakers 9, and to the current transformers 8, the grounding and short circuit relays 10-11 of an OCR and the like are connected, and grounding and short-circuit accidents in the substation are detected. The respective leaders 3a-3c are divided into three sections A-C with bus line disconnectors 12-13, and the supporting insulator 15 is provided with an photocurrent sensor 14. Then, grounding and short-circuit are discriminated by the sensor 14, and a fault section is discriminated, and the fault section is separated from, and current is automatically transmitted to a sound section.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複数台の変圧器を備えた変電所において故障が
発生した場合に、故障区間を外部から容易に知ることが
できるようにした変電所の故障区・量検出システムに関
するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a substation that makes it possible to easily know the faulty section from the outside when a fault occurs in a substation equipped with a plurality of transformers. This is related to the failure area/quantity detection system at the facility.

(従来の技術) 無人変電所の基本設備形態は、単母線の両端に2回−の
受電部が接続され、1回線あるいは2回線受電を行うと
ともに、これらの母線には複数台の変圧器が同時に接続
され、それぞれの変圧器が複数の負荷に対して送電を行
うのが普通である。
(Conventional technology) The basic equipment configuration of an unmanned substation is that two power receiving sections are connected to both ends of a single bus, receiving power from one or two circuits, and multiple transformers are installed on these buses. They are typically connected at the same time, with each transformer transmitting power to multiple loads.

そして受電部の線路側には変流器等が設けであるので、
故障が生じた場合に変電所の内部故障か外部故障かは受
電部の変流器の作動状態によって遠方の制御所からも知
ることができる。しかし変電所の母線部等で内部故障が
発生した場合にはその故障区間を外部からは知ることが
できず、作業員が現場まで出向いて故障位置を発見する
までは複数の変圧器をすべて停止せざるを得ないため、
停電が大規模かつ長時間となる欠点がある。
And since a current transformer etc. is installed on the line side of the power receiving part,
When a failure occurs, whether it is an internal failure or an external failure in the substation can be known from a remote control center based on the operating status of the current transformer in the power receiving section. However, if an internal failure occurs in the bus bar section of a substation, the failure area cannot be known from the outside, and all multiple transformers are shut down until workers go to the site and discover the location of the failure. Because I have no choice but to
The disadvantage is that power outages are large-scale and last for a long time.

(発明が解決しようとする問題点) 本発明は上記したような従来の問題点を解決して、変電
所で内部故障が発生した場合にその故障区間を遠方の制
御所等から容易に知ることができ、故障区間の切離しに
よって健全区間の再送電を直ちに行うことが可能な変電
所の故障区間検出システムを目的として完成されたもの
である。
(Problems to be Solved by the Invention) The present invention solves the conventional problems as described above, and makes it possible to easily know the faulty section from a remote control center when an internal failure occurs in a substation. This system was developed for the purpose of creating a faulty section detection system for substations that can immediately retransmit power to a healthy section by isolating the faulty section.

(問題点を解決するための手段) 本発明は受電部に接続された母線を光電流センサ付きの
母線断路器により複数の変圧器が接続される複数の区画
A、B、Cに区画しておき、故障が発生した区画を、受
電部に取付けた変流器及び地絡、短絡継電器の出力信号
と、母線新路器に取付けた光電流センサの出力信号とか
らマトリクス方式により判定することを特徴とするもの
である(実施例) 次に本発明を図示の実施例に従って更に詳細に説明する
(Means for Solving the Problems) The present invention divides a bus connected to a power receiving unit into a plurality of sections A, B, and C to which a plurality of transformers are connected by a bus disconnector equipped with a photocurrent sensor. The section in which the fault has occurred is determined using a matrix method based on the output signals of the current transformer, ground fault, and short circuit relay installed in the power receiving section, and the output signal of the photocurrent sensor installed in the busbar new line switch. Characteristics (Examples) Next, the present invention will be described in more detail according to illustrated embodiments.

第1図は代表的な無人配電変電所の設備形態を示す平面
図であり、(l)、(2)は第1及び第2の受電部、(
3)は母線部、(4)、(5)、(6)は第11第2、
第3の変圧器である。母線部(3)には3相交流の各相
に対応する3本の母NIA(3a)、(3b)、(3c
)が張設されており、これらの各母線(3a)、(3b
)、(3c)に対して図示のように3台の変圧器(4)
、(5)、(6)がそれぞれ接続されている。そして受
電はいずれか一方の受電部(1)、(2)において行わ
れ、これらの母1t!(3a)、(3b)、(3c)を
介して3台の変圧器(4)、(5)、(6)に給電され
、各変圧器がそれぞれの負荷側へ配電を行うものである
。受電部(1)、(2)には新路器(7)、変流器(8
)、遮断器(9)がそれぞれ設けられ、更にこの変流器
(8)にはOCR,0CGRなどの地絡、短絡継電器(
10)、(11)が接続されていて変電所内における地
絡事故及び短絡事故を検出できるようになっている。一
方、母線部(3)の各社′1IA(3a)、(3b)、
(3c)は母線断路器(12)、(13)によってA、
B、Cの3つの区間に区画されているが、本発明におい
てはこれらの母線断路器(12)、(13)は第2図に
示されるような光電流センサ(14)を備えたものとさ
れている。
FIG. 1 is a plan view showing the equipment form of a typical unmanned distribution substation, (l) and (2) are the first and second power receiving sections, (
3) is the busbar part, (4), (5), and (6) are the 11th and 2nd parts,
This is the third transformer. The bus bar section (3) has three bus NIAs (3a), (3b), (3c) corresponding to each phase of the three-phase AC.
) are stretched, and each of these busbars (3a) and (3b
), (3c), three transformers (4) as shown.
, (5), and (6) are connected to each other. Then, power is received by one of the power receiving units (1) and (2), and these mother units 1t! Power is supplied to three transformers (4), (5), and (6) via (3a), (3b), and (3c), and each transformer distributes power to its respective load side. The power receiving parts (1) and (2) are equipped with a new line switch (7) and a current transformer (8).
), a circuit breaker (9) is provided, and this current transformer (8) is equipped with a ground fault and short circuit relay (such as OCR, 0CGR).
10) and (11) are connected so that ground faults and short circuits within the substation can be detected. On the other hand, each company'1IA (3a), (3b) of the busbar part (3),
(3c) is connected to A by the bus disconnectors (12) and (13).
Although it is divided into three sections B and C, in the present invention, these bus disconnectors (12) and (13) are equipped with a photocurrent sensor (14) as shown in FIG. has been done.

即ち、第2図おいて(15)は母線断路器(12)を支
持するための支持碍子であり、(12a)は断路器のブ
レード、(12b)は接触子、(12c)は端子板であ
る。この端子板(12c)の周囲にはドーナツ状の鉄心
(14a)とセンサ素子(14b)とからなる光電流セ
ンサ(14)が取付けられており、母線を流れる電流を
光信号として取り出している。センサ素子(14b)と
してはYIG、BSOなどのファラデイ素子を用いるこ
とが好ましく、光信号は支持碍子(15)に内蔵された
光ファイバ(16)を介して外部へ取出される。なお(
17)、(18)は支持碍子(15)の上下に設けられ
た気密パイプと気密容器であって光ファイバ(16)部
の絶縁低下を防止している。この光電流センサを取付け
た支持碍子は断路器とは別の位置に取付けてもよい。第
3図に示されるように、光電流センサ(14)には発光
素子(19)と受光素子(20)が接続され、電流の変
化が検出された場合にはレベル検出器(21)によって
地絡、短絡を判別し、更に故障区間判別器(22)にお
いて受電部+1)、(2)の変流器(8)、地絡、短絡
継電器(10)、(11)からの信号と合わせて故障区
間の判別が行われる。この判別はマトリクス方式によっ
て行われるが、その具体的な内容は以下に説明するとお
りである。
That is, in Fig. 2, (15) is a support insulator for supporting the bus disconnector (12), (12a) is the blade of the disconnector, (12b) is the contact, and (12c) is the terminal plate. be. A photocurrent sensor (14) consisting of a donut-shaped iron core (14a) and a sensor element (14b) is attached around the terminal plate (12c), and extracts the current flowing through the bus bar as an optical signal. It is preferable to use a Faraday element such as YIG or BSO as the sensor element (14b), and the optical signal is taken out to the outside via an optical fiber (16) built into the support insulator (15). In addition(
17) and (18) are airtight pipes and airtight containers provided above and below the support insulator (15) to prevent the insulation of the optical fiber (16) from deteriorating. The support insulator to which this photocurrent sensor is attached may be attached at a different location from the disconnector. As shown in Figure 3, a light emitting element (19) and a light receiving element (20) are connected to the photocurrent sensor (14), and when a change in current is detected, a level detector (21) is used to ground the light. It distinguishes between circuits and short circuits, and furthermore, in the fault section discriminator (22), it combines the signals from the current transformers (8) of power receiving sections +1) and (2), ground faults, and short circuit relays (10) and (11). The fault section is determined. This determination is performed using a matrix method, and the specific details thereof will be explained below.

(作用) 次に第1の受電部(1)で受電中に内部事故が発生した
場合について、マトリクス方式による判別方法を説明す
る。まず母線部(3)のA区間において故障が発生した
場合には、受電部+11の変流器(8)は作動するが、
A区間とB区間を区画する母線断路器(12)、(13
)の光電流センサ(14)がいずれも作動しないので、
これによってA区間の故障を知ることができる。この場
合には母線断路器(12)を開くことによって故障区間
を切離し、また受電を第2の受電部(2)で行うように
すれば健全区間であるB。
(Function) Next, a determination method using a matrix method will be described in the case where an internal accident occurs while receiving power in the first power receiving unit (1). First, if a failure occurs in section A of the busbar section (3), the current transformer (8) of the power receiving section +11 will operate, but
Busbar disconnectors (12) and (13) that partition A section and B section
) photocurrent sensor (14) does not operate,
This makes it possible to know the failure in section A. In this case, if the faulty section is disconnected by opening the bus disconnector (12) and power is received by the second power receiving section (2), the section B becomes a healthy section.

C区間への配電を直ちに再開することが可能となる。次
にB区間において故障が発生した場合には受電部+11
の変流器(8)と、A、B間の母線断路器(12)の光
電流センサ(14)とが作動するが、B、C間の母線断
路器(13)の光電流センサ(14)は作動しないので
、これによってB区間において故障が発生したことを知
ることができる。この場合には母線断路器(12)、(
13)をともに開(ことよって故障区間を切離し、また
第1、第2の両方の受電部+1)、(2)で受電を行う
ことによって健全区間であるA1C区間への配電を直ち
に再開することができる。
It will be possible to immediately resume power distribution to section C. Next, if a failure occurs in section B, the power receiving unit +11
The current transformer (8) and the photocurrent sensor (14) of the bus disconnector (12) between A and B operate, but the photocurrent sensor (14) of the bus disconnector (13) between B and C operates. ) does not operate, so it can be known that a failure has occurred in section B. In this case, the bus disconnector (12), (
13) (thereby isolating the faulty section, and both the first and second power receiving sections +1) and receiving power at (2), immediately resume power distribution to the A1C section, which is a healthy section. Can be done.

更にC区間における故障の発生は、受電部(11の変流
器(8)と母線断路器(12)、(13)の光電流セン
サ(14)がすべて作動することから知ることができる
Further, the occurrence of a failure in section C can be known from the fact that the current transformer (8) of the power receiving section (11) and the photocurrent sensors (14) of the bus disconnectors (12) and (13) are all activated.

この場合には、B、C間の母線断路器(13)を開くこ
とによって故障区間を切離し、健全区間であるA、B区
間への配電を直ちに再開することができる。
In this case, by opening the bus disconnector (13) between B and C, the failed section can be disconnected and power distribution to the healthy sections A and B can be immediately resumed.

なお以上の説明は第1の受電部+11で受電している場
合についてなされたが、第2の受電部(2)により受電
している場合にも同様にマトリクス方式による判別が可
能である。またどの区間で故障が発生した場合にも、受
電部+1)、(2)の変流器(7)に接続されている地
絡、短絡継電器(10)、(11)が作動することは言
うまでもない。なお、変流器(8)の出力が利用できな
い場合には、第4図に示されるように光電流センサ(1
4)の出力を位相比較し2台の光電流センサ(14)間
で発した事故がその外部で発生した事故かを判別するこ
ともできる。
Note that although the above explanation has been made regarding the case where power is being received by the first power receiving unit +11, determination using the matrix method is similarly possible when power is being received by the second power receiving unit (2). Also, it goes without saying that if a failure occurs in any section, the ground fault and short circuit relays (10) and (11) connected to the current transformers (7) of power receiving sections +1) and (2) will be activated. stomach. In addition, if the output of the current transformer (8) is not available, the photocurrent sensor (1) is used as shown in FIG.
It is also possible to compare the phases of the outputs of step 4) and determine whether the accident occurring between the two photocurrent sensors (14) is an accident occurring outside of the two photocurrent sensors (14).

(発明の効果) 本発明は以上の説明からも明らかなように、複数の変圧
器を備えた配電変電所の内部で故障が発生した際に母線
断路器に取付けた光電流センサを利用して故障区間を直
ちに判別することができるものであるから、故障区間の
切離しと健全区間への送電を自動的に、あるいは遠隔の
制御所からの指令によって短時間のうちに実施すること
ができる。従って停電時間及び停電区域を最少限とする
ことができるうえ、復旧作業を迅速に行ううえでも有効
なものである。しかも本発明においては母線断路器自体
に光電流センサを取付けたので余分のスペースを必要と
せず、スペースの小さい無人変電所等にも取付けが容易
に行えるうえ、光電流センサは周囲の電界等によるノイ
ズを拾いにくいので極めて信頼性の高いシステムを構築
できることとなる。よって本発明は従来の問題点を一掃
した変電所の故障区間検出システムとして、産業の発展
に寄与するところは極めて大である。
(Effects of the Invention) As is clear from the above description, the present invention utilizes a photocurrent sensor attached to a bus disconnect switch when a failure occurs inside a distribution substation equipped with a plurality of transformers. Since a faulty section can be immediately identified, isolation of a faulty section and power transmission to a healthy section can be carried out automatically or in a short time by commands from a remote control center. Therefore, the power outage time and power outage area can be minimized, and it is also effective in speeding up restoration work. Moreover, in the present invention, since the photocurrent sensor is attached to the bus disconnect switch itself, no extra space is required, and it can be easily installed in unmanned substations with small spaces. Since it is difficult to pick up noise, it is possible to construct an extremely reliable system. Therefore, the present invention greatly contributes to the development of industry as a substation fault section detection system that eliminates the problems of the conventional system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す平面図、第2図は本発明
に使用される母線断路器への光電流センサの取付状態を
示す断面図、第3図はシステム全体のブロック図、第4
図は既設変流器の出力が利用できない場合の検出方法を
説明する回路図及び電流図である。 11)、(2):受電部、(3a)、(3b)、(3c
) :母線、(4)、(5)、(6):変圧器、(8)
:変流器、(10)、(11):地絡、短絡継電器、(
12)、(13) :母線新路器、(14) :光電流
センサ、(15) :支持碍子、(16):光ファイバ
。 第1図 16:fC,、プアイノ( 第2図 第4図 イ「不Qkと較上ピ伜°差■〃不灸出器(eL)Fl 
rの%N            (b)F2でQsa
t(光tンサ間ズめ亭1丈)          (外
音p拳名史)手続補正書(自発) 昭和63年11月24日
FIG. 1 is a plan view showing an embodiment of the present invention, FIG. 2 is a sectional view showing how a photocurrent sensor is attached to a bus disconnector used in the present invention, and FIG. 3 is a block diagram of the entire system. Fourth
The figure is a circuit diagram and a current diagram illustrating a detection method when the output of an existing current transformer cannot be used. 11), (2): Power receiving section, (3a), (3b), (3c
): Busbar, (4), (5), (6): Transformer, (8)
: Current transformer, (10), (11): Earth fault, short circuit relay, (
12), (13): Busbar new circuit device, (14): Photocurrent sensor, (15): Support insulator, (16): Optical fiber. Fig. 1 16: fC,, Puaino ( Fig. 2
%N of r (b) Qsa in F2
t (Hikari t Nsa Mazumetei 1 Jo) (Gai-on p-ken name history) Procedural amendment (voluntary) November 24, 1988

Claims (1)

【特許請求の範囲】 1、受電部(1)、(2)に接続された母線(3a)、
(3b)、(3c)を光電流センサ(14)付きの母線
断路器(12)、(13)により複数の変圧器(4)、
(5)、(6)が接続される複数の区画A、B、Cに区
画しておき、故障が発生した区画を、受電部(1)、(
2)に取付けた変流器(8)及び地絡、短絡継電器(1
0)、(11)の出力信号と、母線断路器(12)、(
13)に取付けた光電流センサ(14)の出力信号とか
らマトリクス方式により判定することを特徴とする変電
所の故障区間検出システム。 2、光電流センサ(14)がYIGやBSOなどのファ
ラディ素子をセンサ素子とするものであり、母線断路器
の支持碍子(15)に内蔵された光ファイバ(16)を
通じて信号を取出す特許請求の範囲第1項記載の変電所
の故障区間検出システム。
[Claims] 1. Bus bar (3a) connected to power receiving units (1) and (2);
(3b) and (3c) are connected to a plurality of transformers (4) by bus disconnectors (12) and (13) with photocurrent sensors (14),
(5), (6) are connected to multiple sections A, B, and C, and the section where the failure occurred is connected to the power receiving section (1), (
2) installed on the current transformer (8) and ground fault/short circuit relay (1)
0), (11) and bus disconnectors (12), (
13) A fault section detection system for a substation, characterized in that a determination is made by a matrix method based on an output signal of a photocurrent sensor (14) attached to a substation. 2. The photocurrent sensor (14) uses a Faraday element such as YIG or BSO as a sensor element, and the photocurrent sensor (14) takes out a signal through an optical fiber (16) built in a support insulator (15) of a bus disconnector. A fault section detection system for a substation according to scope 1.
JP62303977A 1987-12-01 1987-12-01 System for detecting fault section of substation Granted JPH01148018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303977A JPH01148018A (en) 1987-12-01 1987-12-01 System for detecting fault section of substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303977A JPH01148018A (en) 1987-12-01 1987-12-01 System for detecting fault section of substation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4026687A Division JPH0568333A (en) 1992-02-13 1992-02-13 Fault section detection system for substation

Publications (2)

Publication Number Publication Date
JPH01148018A true JPH01148018A (en) 1989-06-09
JPH0324129B2 JPH0324129B2 (en) 1991-04-02

Family

ID=17927557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303977A Granted JPH01148018A (en) 1987-12-01 1987-12-01 System for detecting fault section of substation

Country Status (1)

Country Link
JP (1) JPH01148018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529005U (en) * 1991-09-27 1993-04-16 日本碍子株式会社 End structure of insulator with built-in optical fiber
JPH05137249A (en) * 1991-11-13 1993-06-01 Takaoka Electric Mfg Co Ltd Faulty section detecting system for substation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529005U (en) * 1991-09-27 1993-04-16 日本碍子株式会社 End structure of insulator with built-in optical fiber
JPH05137249A (en) * 1991-11-13 1993-06-01 Takaoka Electric Mfg Co Ltd Faulty section detecting system for substation

Also Published As

Publication number Publication date
JPH0324129B2 (en) 1991-04-02

Similar Documents

Publication Publication Date Title
JP2004312848A (en) Load unbalance resolution control system for three-phase circuit
KR20230028738A (en) Leakage current limit DC distribution system and construction method
JPH01148018A (en) System for detecting fault section of substation
CN210016327U (en) Monitoring device and monitoring system for automatic switch of distributed power distribution network
JPH08251841A (en) Emergency power interconnecting apparatus for atomic power station
CN205941699U (en) Detection apparatus for photovoltaic conflux case direct current system insulation resistance detecting system
CN205941698U (en) Photovoltaic conflux case direct current system insulation resistance detecting system
JP3328365B2 (en) Islanding detection device
JPH04158274A (en) Method for detecting breakage of high voltage power distribution system
JPS6330195Y2 (en)
JP3641567B2 (en) Ground fault protection device for distribution substation
JPH03251031A (en) Fault zone detector
JPH01180469A (en) Accident section detecting device for power transmission line
JPS63287321A (en) Fault section detecting/separating device for distribution line
JP2503961B2 (en) Loop line protection device
JPH02223334A (en) Fault section detection system in substation
JP2971410B2 (en) Substation equipment fault location detector
JPH0520976B2 (en)
JPH0556521A (en) Distribution transformer
JPH0568333A (en) Fault section detection system for substation
JPH11308758A (en) Grounding detector
JPS639232Y2 (en)
JPH0421317A (en) Detecting and disconnecting method for predictive ground-fault section of high voltage power distribution line
JPH05137249A (en) Faulty section detecting system for substation
JPS63287322A (en) Relay for detecting ground fault section in distribution line

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 17