JPH0324129B2 - - Google Patents

Info

Publication number
JPH0324129B2
JPH0324129B2 JP62303977A JP30397787A JPH0324129B2 JP H0324129 B2 JPH0324129 B2 JP H0324129B2 JP 62303977 A JP62303977 A JP 62303977A JP 30397787 A JP30397787 A JP 30397787A JP H0324129 B2 JPH0324129 B2 JP H0324129B2
Authority
JP
Japan
Prior art keywords
section
power receiving
support insulator
substation
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62303977A
Other languages
Japanese (ja)
Other versions
JPH01148018A (en
Inventor
Takashi Isozaki
Katsuro Shinoda
Toshuki Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62303977A priority Critical patent/JPH01148018A/en
Publication of JPH01148018A publication Critical patent/JPH01148018A/en
Publication of JPH0324129B2 publication Critical patent/JPH0324129B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複数台の変圧器を備えた変電所におい
て故障が発生した場合に、故障区間を外部から容
易に知ることができるようにした変電所の故障区
間検出システムに関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a substation that makes it possible to easily know the faulty section from the outside when a fault occurs in a substation equipped with a plurality of transformers. The present invention relates to a fault section detection system.

(従来の技術) 無人変電所の基本設備形態は、単母線の両端に
2回線の受電部が接続され、1回線あるいは2回
線受電を行うとともに、これらの母線には複数台
の変圧器が同時に接続され、それぞれの変圧器が
複数の負荷に対して送電を行うのが普通である。
そして受電部の線路側には変流器等が設けてある
ので、故障が生じた場合に変電所の内部故障か外
部故障かは受電部の変流器の作動状態によつて遠
方の制御所からも知ることができる。しかし変電
所の母線部等で内部故障が発生した場合にはその
故障区間を外部からは知ることができず、作業員
が現場まで出向いて故障位置を発見するまでは複
数の変圧器をすべて停止せざるを得ないため、停
電が大規模かつ長時間となる欠点がある。
(Conventional technology) The basic equipment configuration of an unmanned substation is that a two-line power receiving section is connected to both ends of a single bus, and power is received from one or two lines, and multiple transformers are connected to these buses at the same time. They are typically connected together, with each transformer transmitting power to multiple loads.
Since current transformers are installed on the line side of the power receiving section, in the event of a failure, whether it is internal or external to the substation depends on the operating state of the current transformer at the power receiving section, so if a malfunction occurs, it will be sent to a remote control station. You can also know from. However, if an internal failure occurs in the busbar section of a substation, the failure area cannot be known from the outside, and all multiple transformers are shut down until workers go to the site and discover the location of the failure. This has the disadvantage that power outages can be large-scale and long-lasting.

(発明が解決しようとする問題点) 本発明は上記したような従来の問題点を解決し
て、変電所で内部故障が発生した場合にその故障
区間を遠方の制御所等から容易に知ることがで
き、故障区間の切離しによつて健全区間の再送電
を直ちに行うことが可能な変電所の故障区間検出
システムを目的として完成されたものである。
(Problems to be Solved by the Invention) The present invention solves the conventional problems as described above, and makes it possible to easily know the faulty section from a remote control center when an internal failure occurs in a substation. This system was developed for the purpose of a substation failure section detection system that can immediately retransmit power to a healthy section by isolating the faulty section.

(問題点を解決するための手段) 本発明は受電部に接続された母線を光電流セン
サ付きの母線支持碍子により複数の変圧器が接続
される複数の区画A、B、Cに区画しておき、故
障が発生した区画を、受電部に取付けた変流器及
び地絡、短絡継電器の出力信号と、母船支持碍子
に取付けた光電流センサの出力信号とからマトリ
クス方式により判定することを特徴とするもので
ある。
(Means for Solving the Problems) The present invention divides a busbar connected to a power receiving unit into a plurality of sections A, B, and C to which a plurality of transformers are connected by a busbar support insulator equipped with a photocurrent sensor. A matrix method is used to determine the section where a failure has occurred based on the output signals of the current transformer, ground fault, and short circuit relays attached to the power receiving section, and the output signal of the photocurrent sensor attached to the mothership support insulator. That is.

(実施例) 次に本発明を図示の実施例に従つて更に詳細に
説明する。
(Example) Next, the present invention will be explained in more detail according to the illustrated example.

第1図は代表的な無人配電変電所の設備形態を
示す平面図であり、1,2は第1及び第2の受電
部、3は母線部、4,5,6は第1、第2、第3
の変圧器である。母線部3には3相交流の各相に
対応する3本の引出し線3a,3b,3cが張設
されており、これらの各線3a,3b,3cに対
して図示のように3台の変圧器4,5,6がそれ
ぞれ接続されている。そして受電は通常いずれか
一方の受電部1,2において行われ、これらの引
出し線3a,3b,3cを介して3台の変圧器
4,5,6に給電され、各変圧器がそれぞれの負
荷側へ配電を行うものである。受電部1,2には
断路器7、変流器8、遮断器9がそれぞれ設けら
れ、更にこの変流器8にはOCR、OCGRなどの
地絡、短絡継電器10,11が接続されていて変
電所内における地絡事故及び短絡事故を検出でき
るようになつている。一方、母線部3の各引出し
線3a,3b,3cは母線断路器12,13によ
つてA、B、Cの3つの区間に区画されている
が、本発明においてはこれらの母線断路器12,
13の支持碍子は第2図に示されるような光電流
センサ14を備えたものとされている。
FIG. 1 is a plan view showing the equipment form of a typical unmanned distribution substation, where 1 and 2 are the first and second power receiving sections, 3 is the bus bar section, and 4, 5, and 6 are the first and second power receiving sections. , 3rd
It is a transformer. Three lead wires 3a, 3b, 3c corresponding to each phase of three-phase alternating current are stretched on the bus bar 3, and three transformers are connected to each of these wires 3a, 3b, 3c as shown in the figure. The devices 4, 5, and 6 are connected to each other. Power is normally received by one of the power receiving units 1 and 2, and power is supplied to the three transformers 4, 5, and 6 via these lead wires 3a, 3b, and 3c, and each transformer is connected to its respective load. It distributes power to the side. The power receiving units 1 and 2 are each provided with a disconnector 7, a current transformer 8, and a circuit breaker 9, and the current transformer 8 is further connected to ground fault and short circuit relays 10 and 11 such as OCR and OCGR. It is now possible to detect ground faults and short circuits within substations. On the other hand, each lead line 3a, 3b, 3c of the busbar section 3 is divided into three sections A, B, and C by busbar disconnectors 12 and 13, but in the present invention, these busbar disconnectors 12 ,
The support insulator 13 is equipped with a photocurrent sensor 14 as shown in FIG.

即ち、第2図おいて15は母線断路器12を支
持するための母線支持碍子であつて、12aは断
路器のブレード、12bは接触子、12cは端子
板である。この端子板12cの周囲にはドーナツ
状の鉄心14aとセンサ素子14bとからなる光
電流センサ14が取付けられており、母線を流れ
る電流を光信号として取り出している。センサ素
子14bとしてはYIG、BSOなどのフアラデイ
素子を用いることが好ましく、光信号は母線支持
碍子15に内蔵された光フアイバ16を介して外
部へ取出される。なお17,18は母線支持碍子
15の上下に設けられた気密パイプと気密容器で
あつて、光フアイバ16部の絶縁低下を防止して
いる。この光電流センサを取付けた支持碍子は断
路器とは別の位置に取付けてもよい。第3図に示
されるように、光電流センサ14には発行素子1
9と受光素子20が接続され、電流の変化が検出
された場合にはレベル検出器21によつて地絡、
短絡を判別し、更に故障区間判別器22において
受電部1,2の変流器8、地絡、短絡継電器1
0,11からの信号と合わせて故障区間の判別が
行われる。この判別はマトリクス方式によつて行
われるが、その具体的な内容は以下に説明すると
おりである。
That is, in FIG. 2, 15 is a busbar support insulator for supporting the busbar disconnector 12, 12a is a blade of the disconnector, 12b is a contact, and 12c is a terminal plate. A photocurrent sensor 14 consisting of a doughnut-shaped iron core 14a and a sensor element 14b is attached around the terminal plate 12c, and extracts the current flowing through the bus bar as an optical signal. It is preferable to use a Faraday element such as YIG or BSO as the sensor element 14b, and the optical signal is taken out to the outside via an optical fiber 16 built into the bus bar support insulator 15. Note that 17 and 18 are airtight pipes and airtight containers provided above and below the bus bar support insulator 15 to prevent the insulation of the optical fiber 16 from deteriorating. The support insulator to which this photocurrent sensor is attached may be attached at a different location from the disconnector. As shown in FIG. 3, the photocurrent sensor 14 includes an emitting element 1
9 and the light receiving element 20 are connected, and when a change in current is detected, the level detector 21 detects a ground fault.
A short circuit is determined, and a fault section discriminator 22 detects current transformers 8 of power receiving units 1 and 2, ground faults, and short circuit relays 1.
The failure section is determined in conjunction with the signals from 0 and 11. This determination is performed using a matrix method, and the specific details thereof will be explained below.

(作用) 次に第1の受電部1で受電中に内部事故が発生
した場合について、マトリクス方式による判別方
法を説明する。まず母線部3のA区間において故
障が発生した場合には受電部1の変流器8は作動
するが、A区間とB区間を区画する母線断路器1
2,13の光電流センサ14がいずれも作動しな
いので、これによつてA区間の故障を知ることが
できる。この場合には母線断路器12を開くこと
によつて故障区間を切離し、また受電を第2の受
電部2で行うようにすれば健全区間であるB、C
区間への配電を直ちに再開することが可能とな
る。次にB区間において故障が発生した場合には
受電部1の変流器8と、A、B間の母線支持碍子
15の光電流センサ14とが作動するが、B、C
間の母線支持碍子15の光電流センサ14は作動
しないので、これによつてB区間において故障が
発生したことを知ることができる。この場合には
母線断路器12,13をともに開くことによつて
故障区間を切離し、また第1、第2の両方の受電
部1,2で受電を行うことによつて健全区間であ
るA、C区間への配電を直ちに再開することがで
きる。更にC区間における故障の発生は、受電部
1の変流器8と母線支持碍子15の光電流センサ
14がすべて作動することから知ることができ
る。この場合には、B、C間の母線断路器13を
開くことによつて故障区間を切離し、健全区間で
あるA、B区間への配電を直ちに再開することが
できる。
(Operation) Next, a determination method using a matrix method will be described in the case where an internal accident occurs during power reception in the first power receiving unit 1. First, when a failure occurs in the A section of the bus section 3, the current transformer 8 of the power receiving section 1 operates, but the bus disconnect switch 1 that separates the A section and B section
Since both photocurrent sensors 14 2 and 13 do not operate, it is possible to know from this that there is a failure in section A. In this case, by opening the bus disconnector 12, the faulty section is isolated, and if power is received by the second power receiving section 2, the sections B and C are healthy.
It will be possible to immediately resume power distribution to the area. Next, when a failure occurs in section B, the current transformer 8 of the power receiving section 1 and the photocurrent sensor 14 of the busbar support insulator 15 between A and B are activated, but
Since the photocurrent sensor 14 of the busbar support insulator 15 in between does not operate, it is possible to know that a failure has occurred in section B. In this case, the faulty section is isolated by opening both the bus disconnectors 12 and 13, and the healthy section A, by receiving power at both the first and second power receiving sections 1 and 2, Power distribution to section C can be resumed immediately. Further, the occurrence of a failure in section C can be known from the fact that the current transformer 8 of the power receiving section 1 and the photocurrent sensor 14 of the bus support insulator 15 are all activated. In this case, by opening the bus disconnector 13 between B and C, the failed section can be disconnected and power distribution to the healthy sections A and B can be immediately resumed.

なお以上の説明は第1の受電部1で受電してい
る場合についてなされたが、第2の受電部2によ
り受電している場合にも同様にマトリクス方式に
よる判別が可能である。またどの区間で故障が発
生した場合にも、受電部1,2の変流器7に接続
されている地絡、短絡継電器10,11が作動す
ることは言うまでもない。なお、変流器3の出力
が利用できない場合には、第4図に示されるよう
に光電流センサ14の出力を位相比較し2台の光
電流センサ14間で発した事故がその外部で発生
した事故か否かを判別することもできる。
Note that although the above explanation has been made regarding the case where power is being received by the first power receiving section 1, determination using the matrix method is similarly possible when power is being received by the second power receiving section 2. It goes without saying that even if a failure occurs in any section, the ground fault and short circuit relays 10 and 11 connected to the current transformers 7 of the power receiving units 1 and 2 are activated. If the output of the current transformer 3 is not available, the phase of the output of the photocurrent sensor 14 is compared as shown in FIG. It is also possible to determine whether or not an accident occurred.

(発明の効果) 本発明は以上の説明から明らかなように、複数
の変圧器を備えた配電変電所の内部で故障が発生
した際に母線支持碍子に取付けた光電流センサを
利用して故障区間を直ちに判別することができる
ものであるから、故障区間の切離しと健全区間へ
の送電を自動的に、あるいは遠隔の制御所からの
指令によつて短時間のうちに実施することができ
る。従つて停電時間及び停電区域を最小限とする
ことができるうえ、復旧作業を迅速に行ううえで
も有効なものである。しかも本発明においては母
線支持碍子に光電流センサを取付けたので余分の
スペースを必要とせず、スペースの小さい無人変
電所等にも取付けが容易に行えるうえ、光電流セ
ンサおよび光フアイバ伝送路は周囲の電界や磁界
等によるノイズを拾いにくいので極めて信頼性の
高いシステムを構築できることとなる。よつて本
発明は従来の問題点を一掃した変電所の故障区間
検出システムとして、産業の発展に寄与するとこ
ろは極めて大である。
(Effects of the Invention) As is clear from the above description, the present invention utilizes a photocurrent sensor attached to a bus support insulator to detect a failure when a failure occurs inside a distribution substation equipped with a plurality of transformers. Since the section can be immediately identified, the disconnection of the faulty section and the transmission of power to the healthy section can be carried out automatically or in a short time by commands from a remote control center. Therefore, the power outage time and power outage area can be minimized, and it is also effective in speeding up restoration work. Moreover, in the present invention, since the photocurrent sensor is attached to the busbar support insulator, no extra space is required, and it can be easily installed in unmanned substations with small spaces. Since it is difficult to pick up noise caused by electric fields, magnetic fields, etc., it is possible to construct an extremely reliable system. Therefore, the present invention greatly contributes to the development of industry as a substation fault section detection system that eliminates the problems of the conventional system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す平面図、第2図
は本発明に使用される母線支持碍子への光電流セ
ンサの取付状態を示す断面図、第3図はシステム
全体のブロツク図、第4図は既設変流器の出力が
利用できない場合の検出方法を説明する回路図及
び電流図である。 1,2:受電部、3a,3b,3c:母線、
4,5,6:変圧器、8:変流器、10,11:
地絡、短絡継電器、14:光電流センサ、15:
母線支持碍子、16:光フアイバ。
FIG. 1 is a plan view showing an embodiment of the present invention, FIG. 2 is a cross-sectional view showing how a photocurrent sensor is attached to a busbar support insulator used in the present invention, and FIG. 3 is a block diagram of the entire system. FIG. 4 is a circuit diagram and a current diagram illustrating a detection method when the output of an existing current transformer cannot be used. 1, 2: power receiving section, 3a, 3b, 3c: bus bar,
4, 5, 6: Transformer, 8: Current transformer, 10, 11:
Earth fault, short circuit relay, 14: Photocurrent sensor, 15:
Busbar support insulator, 16: Optical fiber.

Claims (1)

【特許請求の範囲】 1 受電部1,2に接続された母線3a,3b,
3cを光電流センサ14付きの母線支持碍子15
により複数の変圧器4,5,6が接続される複数
の区画A、B、Cに区画しておき、故障が発生し
た区画を、受電部1,2に取付けた変流器8及び
地絡、短絡継電器10,11の出力信号と、母船
支持碍子15に取付けた光電流センサ14の出力
信号とからマトリクス方式により判定することを
特徴とする変電所の故障区間検出システム。 2 光電流センサ14がYIGやBSOなどのフア
ラデイ素子をセンサ素子とする鉄心付のものであ
り、母線支持碍子15に内蔵された光フアイバ1
6を通じて信号を取出す特許請求の範囲第1項記
載の変電所の故障区間検出システム。
[Claims] 1 Bus bars 3a, 3b connected to power receiving units 1, 2,
3c as a bus bar support insulator 15 with a photocurrent sensor 14
It is divided into multiple sections A, B, and C to which multiple transformers 4, 5, and 6 are connected, and the section where the failure occurred is connected to the current transformer 8 attached to the power receiving parts 1 and 2 and the ground fault. A fault section detection system for a substation, characterized in that determination is made by a matrix method from output signals of short-circuit relays 10 and 11 and an output signal of a photocurrent sensor 14 attached to a mother ship support insulator 15. 2 The photocurrent sensor 14 is one with an iron core that uses a Faraday element such as YIG or BSO as a sensor element, and the optical fiber 1 built in the bus bar support insulator 15
6. The fault section detection system for a substation according to claim 1, wherein the signal is taken out through the substation.
JP62303977A 1987-12-01 1987-12-01 System for detecting fault section of substation Granted JPH01148018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303977A JPH01148018A (en) 1987-12-01 1987-12-01 System for detecting fault section of substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303977A JPH01148018A (en) 1987-12-01 1987-12-01 System for detecting fault section of substation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4026687A Division JPH0568333A (en) 1992-02-13 1992-02-13 Fault section detection system for substation

Publications (2)

Publication Number Publication Date
JPH01148018A JPH01148018A (en) 1989-06-09
JPH0324129B2 true JPH0324129B2 (en) 1991-04-02

Family

ID=17927557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303977A Granted JPH01148018A (en) 1987-12-01 1987-12-01 System for detecting fault section of substation

Country Status (1)

Country Link
JP (1) JPH01148018A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529005U (en) * 1991-09-27 1993-04-16 日本碍子株式会社 End structure of insulator with built-in optical fiber
JPH05137249A (en) * 1991-11-13 1993-06-01 Takaoka Electric Mfg Co Ltd Faulty section detecting system for substation

Also Published As

Publication number Publication date
JPH01148018A (en) 1989-06-09

Similar Documents

Publication Publication Date Title
JPH0572171B2 (en)
JPH0324129B2 (en)
JPH08251841A (en) Emergency power interconnecting apparatus for atomic power station
JPH03251031A (en) Fault zone detector
JPS59203967A (en) Detection system for wire breaking of ungrounded system distribution line
JP3641567B2 (en) Ground fault protection device for distribution substation
JP2503961B2 (en) Loop line protection device
JP2971410B2 (en) Substation equipment fault location detector
JPS63287321A (en) Fault section detecting/separating device for distribution line
JPH05137249A (en) Faulty section detecting system for substation
JP2793669B2 (en) Switching control device for indoor high-voltage distribution
JPH0520976B2 (en)
JPH0140286Y2 (en)
JP2600746B2 (en) Ring protection relay
JP2860477B2 (en) Distribution line switch control method
JPH0568333A (en) Fault section detection system for substation
JPS6330195Y2 (en)
JPS6223222Y2 (en)
JPS63287322A (en) Relay for detecting ground fault section in distribution line
JPH02223334A (en) Fault section detection system in substation
KR20230000299A (en) Distributed power source separation method and device according to disconnction of distribution line
SU1347116A1 (en) Method of protecting inverter substation
JPH0421317A (en) Detecting and disconnecting method for predictive ground-fault section of high voltage power distribution line
Coomer et al. An economical distribution system for high-density commercial and industrial loads
Briscombe et al. Stanford University Palou Substation Modernization Project

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 17