JP3641567B2 - Ground fault protection device for distribution substation - Google Patents

Ground fault protection device for distribution substation Download PDF

Info

Publication number
JP3641567B2
JP3641567B2 JP2000021339A JP2000021339A JP3641567B2 JP 3641567 B2 JP3641567 B2 JP 3641567B2 JP 2000021339 A JP2000021339 A JP 2000021339A JP 2000021339 A JP2000021339 A JP 2000021339A JP 3641567 B2 JP3641567 B2 JP 3641567B2
Authority
JP
Japan
Prior art keywords
ground fault
zero
distribution substation
distribution
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000021339A
Other languages
Japanese (ja)
Other versions
JP2001218358A (en
Inventor
健一郎 渡辺
鉄郎 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2000021339A priority Critical patent/JP3641567B2/en
Publication of JP2001218358A publication Critical patent/JP2001218358A/en
Application granted granted Critical
Publication of JP3641567B2 publication Critical patent/JP3641567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は配電用変電所の地絡保護装置に関し、特に、ループ点常開方式の地絡保護に適した装置に関する。
【0002】
【従来の技術】
高圧幹線のループ化は、配電用変電所の電力供給システムとして大規模ビルやインテリジェントビルを中心に採用されており、事故時の停電時間や停電範囲を極小化し、供給信頼性の向上を図っている。
【0003】
高圧ループ幹線の系統構成には、ループ区分開閉器が常時閉路又は開路しているかで、常閉ループ式と常開ループ式の2方式がある。
【0004】
常閉ループ式は高圧系統間の負荷を融通し合い、電圧改善、利用率向上等の利点があるが、常時の循環電流による方向地絡継電器の誤動作、地絡検出感度の低下、また地絡事故時には両系統から地絡電流が地絡点に流れ込むため、両系統が遮断され健全な区間や配電所まで全停止となるなどの課題がある。
【0005】
これに対し、常開ループ式は、高圧ループ幹線の結合点を常時電気的に開路しておき、故障時にだけ健全回路側から故障回線の末端健全区間に自動的に逆送するようにし、常閉ループ式の技術的な課題を解決することができる。
【0006】
図2および図3は、常開ループ式における地絡保護方式の従来例で、図2はA高圧幹線、B高圧幹線夫々受電側変電所で一括して地絡検出保護を行う場合、図3は各配電用変電所で地絡検出保護を行う場合である。
【0007】
図2において10は受電側変電所で、A高圧幹線とB高圧幹線の2回路で複数の配電用変電所に電力を供給する。11は変圧器、12は受電側母線、GPTは接地形計器用変圧器を示し、この受電側母線12にA高圧幹線およびB高圧幹線の給電所10Aおよび10Bが接続される。
【0008】
これら給電所10Aおよび10Bは夫々送り出し遮断器13a,および13b,零相変流器ZCTに接続された地絡方向継電器14aおよび14bを夫々備えている。地絡方向継電器14a,14bは通常使用されているもので零相変流器ZCTおよび零相電圧検出器ZPDで零相電流と零相電圧を検出して方向性を判断して動作するものである。
【0009】
20Aおよび30Aは、A高圧幹線に接続された配電用変電所、20Bおよび30Bは、B高圧幹線に接続された配電用変電所を示し、各配電用変電所は夫々同じ機器および同じ回路により構成されている。
【0010】
配電用変電所20Aに例をとって説明すれば、配電用変電所20Aは、入力側(電源側)高圧幹線BUiと出力側(負荷側)高圧幹線BUoを有し、これら入力側と出力側の高圧幹線は夫々の高圧幹線に設けられた入力側開閉器21aおよび出力側開閉器22aを介して互いに接続され、その接続線から配電用変圧器23a及び配電線24aを介して負荷に給電される。なお、図中25aは開閉器21aと22aの間の電路のもつ対地静電容量を示している。また、接続ケーブル1aおよび1bも対地静電容量をもつが省略してある。
【0011】
他の配電用変電所30A,20B,30Bも同様に構成されているので、配電用変電所20と同じ部分には、各配電用変電所の番号の1の桁の数字を同じくし、その後にA高圧幹線用はa、B高圧幹線用はbの符号を付して詳細な説明を省略する。
【0012】
配電用変電所20Aの入力側開閉器21aはA高圧幹線側の接続ケーブル1aを介してA高圧幹線の給電所10Aに接続され、出力側開閉器22aは隣接の配電用変電所30Aの入力側開閉器31aと接続ケーブル2aによって接続され、配電用変電所30Aの出力側開閉器32aは、接続ケーブル3aによりループ点区分開閉器LLSに接続されている。
【0013】
配電用変電所20Bおよび30Bも同様にB線側の接続ケーブル1bを介してB高圧幹線側給電所10Bに接続され、出力側開閉器22bは、接続ケーブル2bを介して配電用変電所30Bの入力側開閉器31bに接続され、配電用変電所30Bの出力側開閉器32bは、接続ケーブル3bによりループ点区分開閉器LLSに接続されている。このようにA高圧幹線とB高圧幹線とはループ点区分開閉器LLSを介してループ状に接続されているが、このループ点区分開閉器LLSは常時開路されている。
【0014】
このような常開ループ式における地絡保護は、例えば、A高圧幹線に接続された配電用変電所30AのF1点で地絡事故が発生すると、A高圧幹線の給電所10A内に設けてある零相変流器ZCTと零相電圧検出器ZPDがこれを検出し、地絡方向継電器14aが作動して送り出し遮断器13aを遮断する。B高圧幹線側はループ点区分開閉器LLSが開路しているが、対地静電容量35b,25bに代表される対地静電容量に充電電流が流れ、この電流が零相電流として検出される。しかし、動作する電流位相と180°違うため、地絡方向継電器14bは動作することがない。
【0015】
図3は各配電用変電所に地絡検出保護手段を備えた場合で、図2と同一又は相当部分にはこれと同じ符号を付して説明を省略する。なお、図中C1〜C5は零相電流を確実に検出するために、各配電用変電所に設けられた接地コンデンサを示している。
【0016】
各配電用変電所は夫々A高圧幹線側からの給電と、B高圧幹線側からの給電に対応した地絡方向継電器を備えている。配電用変電所20Aに例をとって説明すると、26a,27aはA高圧幹線側からの給電の地絡に対し負荷側に流れる地絡電流を検出して動作する地絡方向継電器、66b,67bはB高圧幹線側からの給電時の地絡に対し負荷側事故点に流れる地絡電流を検出して動作する地絡方向継電器で、各地絡方向継電器は、夫々の零相変流器ZCTに接続され、かつ零相電圧検出器ZPDに接続されている。
【0017】
なお、地絡方向継電器66b,67bは、A高圧幹線側からの給電の地絡に対して電源側事故点から流れる充電電流を検出して動作することもある。同様に、地絡方向継電器26a,27aはB高圧幹線側からの給電の地絡に対し電源側事故点から流れる充電電流を検出して動作する場合もある。
【0018】
そして、変電所内に地絡事故が起きたとき、事故点に流れる地絡電流を検出して動作する地絡方向継電器26aと、事故点から流れる充電電流を検出して動作する地絡方向継電器66bの両方が同時に動作したとき(アンド条件成立時)に、入力側と出力側の開閉器21aと22aが同時に遮断される。
【0019】
また、配電用変電所20Aと配電用変電所30Aを接続する接続ケーブル2aに地絡事故が起きたとき、事故点に流れる地絡電流を検出して動作する地絡方向継電器27aと、事故点から流れる充電電流を検出して動作する配電用変電所30Aの57bの両方が同時に動作したとき、出力側と入力側の開閉器22a,31aが同時に遮断される。
【0020】
なお、地絡方向継電器67b,27a,57b,37a,47b,47a,56a,36b,66a,26bは配電用変電所をつなぐ接続ケーブルの地絡事故に対応した地絡方向継電器なので、以下説明を省略する。
【0021】
以上は配電用変電所20Aについて説明したが、他の配電用変電所30A,40Aおよび20B,30Bも同様に構成されており、配電用変電所20と同じ部分には、配電用変電所の番号の1の桁の数字を同じくし、説明を省略する。
【0022】
通常はループ点区分開閉器LLSは開路されているので、A高圧幹線側の配電用変電所20A,30Aおよび40Aの地絡保護は、夫々の地絡方向継電器26a・36a・46aおよび46b,56b,66bによって行われている。
【0023】
今、配電用変電所30AのF2点で地絡事故が発生すると、地絡電流(零相電流)Igが流れる。このとき地絡方向継電器26aと36aの零相変流器が夫々(Ig−Ic1−Ic2−Ic3),(Ig−Ic2−Ic3)の零相電流を検出して動作する。
【0024】
また、電源側事故点から流れる充電電流を検出し、地絡方向継電器56b(Ic3),27b(Ic4)は夫々( )内の零相電流を検出して感度整定値以上であれば動作する。
【0025】
地絡方向継電器46bと37bはループ点区分開閉器LLSは開路していて接続ケーブルがもつ対地静電容量だけとなり動作しない場合が考えられる。その他の地絡方向継電器は電流位相が動作位相と逆なので動作しない。
【0026】
この場合、配電用変電所30Aだけが、地絡方向継電器36aと56bが動作しアンド条件が成立しているので、入出力側の遮断器31aと32aが同時に遮断される。
【0027】
この遮断器31aと32aが遮断されると、ループ点区分開閉器LLSの一方の電圧が無くなるので、一定時間後に当該ループ点区分開閉器LLSは投入され配電用変電所40AにはB高圧幹線側から電力が供給される。
【0028】
【発明が解決しようとする課題】
図2の一括地絡保護方式は、地絡方向継電器が各回線に1台設置すれば足りるという利点はあるが、しかし、A高圧幹線中の一つの配電用変電所で地絡事故が発生すると、その高圧幹線に接続されている全配電用変電所が停電となり、停電後に事故発生の変電所を探索して切り離した後、A回線から再び給電し、同時にループ点区分開閉器を投入してB高圧幹線からも給電することになるが、その間A高圧幹線に接続されている健全な配電用変電所は停電状態を続けることになる。特に近年は、高層ビル,インテリジェントビルの各階に配電用変電所を分散して設置し、一つの高圧幹線に数拾の配電用変電所が設置されるようになっているので、事故の配電用変電所を発見し、これを切り離して再び給電するまでに相当の時間がかかるという問題がある。
【0029】
また、図3の地絡保護方式は、地絡事故を発生した配電用変電所が、自己の変電所内でそれを検出して切り離すので停電箇所を最小限にして上記の課題は完全に解決されるが、一つの配電用変電所で多数の零相変流器を含む地絡方向継電器が必要となる。
【0030】
また、これらの地絡方向継電器を確実に動作させるために接地コンデンサC1〜C5を設置する必要がある。即ち、図3のループ点区分開閉器LLSが開路していて対地静電容量が無いので動作しない地絡方向継電器46bと同様に、地絡方向継電器56bの零相電流は、対地静電容量に流れるIc3だけでなので、Ic3が感度整定値以上でないと継電器が動作しないことになり正常な判断ができなくなる。これを避けるために、接地コンデンサを設けて強制的に対地静電容量を増やし、感度整定値以上の零相電流を流し、地絡方向継電器の動作を確実なものにする必要がある。特に、常開ループ式においては、ループ点区分開閉器をどの箇所に設置するかは特定されていないし、一度地絡事故が起きた後は、開閉器を解放し給電方向を変えるため、各開離点毎に感度電流値以上の零相電流を流すことのできる静電容量の接地コンデンサを必ず設置する必要がある。
【0031】
2点の地絡事故で開閉器31a,32aとそののちLLSが働いた後の監視状態で、配電用変電所30Bで地絡事故が起きたときは同様に保護できる。しかし、配電用変電所40Aで地絡事故が起きたときは、事故前の地絡方向継電器37bと同様に地絡方向継電器46aの零相電流はケーブルが持つ対地静電容量に流れるだけとなり正常な動作ができない場合があり、地絡方向継電器46bと46aのアンド条件が成立しない不確実な保護方式となっている。(6.6kVの電路において完全地絡の10%零相電圧感度で零相電流を200mA流すのに必要な対地静電容量は1.4μFとなり、CVケーブル150mm2のとき2.5km必要となる。これよりケーブルが短いと地絡方向継電器46aは正常な動作ができず確実な保護ができない)
本発明は、以上の点に鑑み、一つの配電用変電所に一つの地絡検出保護手段を設ければ足りるようにするとともに、接地コンデンサの必要のない配電用変電所の地絡保護装置を提供することを目的とする。
【0032】
【課題を解決するための手段】
本発明は、配電用変電所においては、入力側高圧幹線から流入する負荷電流および零相電流は通常そのまま出力側高圧幹線から流出すること、しかも、自己の配電用変電所内での地絡事故の場合は、流入側と流出側ではアンバランスとなること、および、この現象は、常開ループ式のように出力側高圧幹線から入力側高圧幹線に電流の流れ方向が変わった場合でも変わらないこと、負荷電流にくらべ零相電流は小さい(30A程度)ことに着目してなされたものである。
【0033】
その具体的手段における実施の形態は、配電用変電所の入力側高圧幹線と出力側高圧幹線を、夫々の高圧幹線に設けた入力側開閉器および出力側開閉器を介して接続し、該接続線から分岐線により負荷に電力を供給するようにした配電用変電所の地絡保護装置において、前記入力側高圧幹線と出力側高圧幹線とを電流の流れ方向が互いに逆向きとなるように一括して零相変流器の鉄心窓を貫通し、該零相変流器により、保護範囲外の地絡事故では零相電流が打ち消し合い、保護範囲内の地絡事故による零相電流はこれを検出して該零相電流があらかじめ設定した設定値以上となったとき動作する地絡検出保護手段を設け、該地絡検出保護手段の動作により前記入力側と出力側の開閉器を遮断するようにしたことを特徴とする。
【0034】
以上のように構成することにより、ループ配電方式における常開ループ式のように、A高圧幹線側又はB高圧幹線側のいずれから電力が供給されても、一つの地絡検出保護手段で保護が可能となり、また、接地コンデンサが無くとも確実に保護範囲内の地絡事故を検出することが可能となる。
【0035】
【発明の実施の形態】
以下、本発明の実施の形態を図面によって説明する。
【0036】
図1は本発明の実施の形態で、図3に示す複数の配電用変電所の中の一つの配電用変電所を示し、(A)は単線結線による回路構成図、(B)は地絡検出保護の説明図である。
【0037】
図1において、1は入力側(電源側)高圧幹線、2は出力側(負荷側)高圧幹線で、これらの高圧幹線は入力側開閉器1aおよび出力側開閉器2aを介して接続され、その接続線3aから分岐して、変圧器3が接続されて負荷に電力を供給することは図3の場合と同じである。本発明においては零相変流器4の設置手段に特徴を有する。即ち、図1に示すように、入力側高圧幹線1と出力側高圧幹線2の両方(三相の場合は6本)を零相変流器4の1次導体として鉄心窓を貫通し、2次巻線の誘起電圧を地絡検出保護手段5で検出する。
【0038】
この地絡検出保護手段5は、方向性の有しない地絡継電器のように、単に零相電流を検出し、この零相電流があらかじめ設定した設定値以上となったときに動作信号を出力するものであればよい。そして、地絡検出保護手段5の動作信号により入力側および出力側の開閉器1aおよび2aを同時に遮断する。
【0039】
このように構成することにより、正常時における負荷電流および自己の配電用変電所以外(保護範囲外)のF点から入力側高圧幹線1を通して流入する零相電流IoAと、出力側高圧幹線2から出力する零相電流IoBとは等しく、零相変流器4内を通る1次電流の総和は0となり、地絡検出保護手段5に入力される零相変流器による検出信号も0となり、地絡検出保護手段5は動作しない。(図1(A))
しかし、図1(B)に示すように、自己の配電用変電所内(保護範囲内)の、F3点で地絡事故が発生し、地絡電流(零相電流)Igが流れると、入力側および出力側に流れる零相電流IoCおよびIoDは、通常IoC>IoDとなり、地絡検出保護手段5は、この差の信号を検出して動作信号を出力し入力側および出力側の開閉器1aおよび2aを同時に遮断する。
【0040】
以上は、入力側高圧幹線の方から出力側高圧幹線に電力が供給する場合であるが、反対に出力側高圧幹線の方から入力側高圧幹線の方向に電力の供給方向が変わっても何等影響されることなく保護動作を確実に実現することができる。
【0041】
なお、以上は一つの配電用変電所についてのみ説明したが、これを図3のようにA高圧幹線及びB高圧幹線に複数の配電用変電所を常開のループ点区分開閉器を介してループ状に設置して使用される。
【0042】
設置に際しては、各配電用変電所の機器を配電盤内に収納して、これを列盤構成とし、隣接する配電盤間の接続は、ケーブルによる周知のジョイント方式でループ状に接続するようにすることが望ましい。
【0043】
以上はループ区分開閉器LLSを設けたループ回線の場合について説明したが、このループ区分開閉器LLSは、隣接する配電用変電所の入出側開閉器で兼ねることが出来る。例えば、図3の配電用変電所40Aの出力側開閉器42aと、30Bの出力側開閉器31bを常時開路することでループ区分開閉LLSは不要となる。このように全体を中央監視システムとし、各入出力側開閉器でループ点区分開閉器を兼ねた場合、任意の点でループ区分点を変更でき、電力需要にあった配電を行いながら各配電用変電所内の地絡事故を保護する地絡保護装置となる。
【0044】
なお、配電盤間の接続導体の地絡保護は、通常行われているケーブルシールドアース線に保護継電器を設置する方法で保護される。
【0045】
【発明の効果】
以上のように本発明は、各配電用変電所には一つの地絡検出保護手段を備えるだけで地絡保護でき、また、A高圧幹線とB高圧幹線のループ方式における常開ループ式に使用すれば高圧幹線切り換えが行われた場合でも、この地絡検出保護手段で保護範囲外では動作せず、保護範囲内のときのみ確実に動作することができる。しかもこの地絡検出保護手段は方向性を持つ必要がないので、零相電圧検出器も不要となる。
【0046】
従って、従来は、零相変流器と地絡方向継電器の組みを4組および零相電圧検出器から零相電圧信号を必要としていたものを本発明器は不要となる。更に接地コンデンサも不要となるので、電力供給の信頼性向上や、配電用変電所の設置面積縮少、およびコストの低減が実現できる。この効果は、特に配電用変電所を配電盤構成とし、これをループ状に接続する配電方式に適用した場合は、接続盤数が増えれば増えるほど顕著に現れるという極めて優れた効果を奏する。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態の単線結線による回路構成図と動作説明図。
【図2】 従来のループ方式の地絡保護方式の説明図。
【図3】 従来のループ方式の他の地絡保護方式の説明図。
【符号の説明】
1…入力側高圧幹線
2…出力側高圧幹線
1a…入力側開閉器
2a…出力側開閉器
3…変圧器
4…零相変流器
5…地絡検出保護手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground fault protection device for a distribution substation, and more particularly to a device suitable for loop fault normally open type ground fault protection.
[0002]
[Prior art]
The looping of high-voltage trunk lines has been adopted mainly for large-scale buildings and intelligent buildings as power supply systems for distribution substations, minimizing power outage times and power outage ranges in the event of accidents, and improving supply reliability Yes.
[0003]
There are two types of system configurations of the high-voltage loop trunk line: a normally closed loop type and a normally open loop type depending on whether the loop section switch is normally closed or open.
[0004]
The normally closed loop type has advantages such as interchange of loads between high-voltage systems, voltage improvement, utilization improvement, etc., but malfunction of direction ground fault relay due to constant circulating current, decrease in ground fault detection sensitivity, and ground fault accident Sometimes ground fault current flows from both systems into the ground fault point, causing problems such as both systems are shut off and the entire section or power distribution station is stopped.
[0005]
On the other hand, the normally open loop type always opens the connection point of the high-voltage loop trunk line electrically, and automatically reverses from the healthy circuit side to the terminal healthy section of the fault line only at the time of failure. The technical problem of the closed loop type can be solved.
[0006]
2 and 3 are conventional examples of the ground fault protection method in the normally open loop type, and FIG. 2 shows a case where the ground fault detection protection is performed collectively at the power receiving side substation in the A high voltage main line and the B high voltage main line. Is the case of ground fault detection protection at each distribution substation.
[0007]
In FIG. 2, reference numeral 10 denotes a power receiving side substation that supplies power to a plurality of distribution substations by two circuits of an A high voltage main line and a B high voltage main line. Reference numeral 11 denotes a transformer, 12 denotes a power receiving side bus, and GPT denotes a grounded instrument transformer. Power receiving stations 10A and 10B of the A high voltage main line and the B high voltage main line are connected to the power receiving side bus 12.
[0008]
These power stations 10A and 10B are respectively provided with feed-off circuit breakers 13a and 13b and ground fault direction relays 14a and 14b connected to the zero-phase current transformer ZCT. The ground fault direction relays 14a and 14b are normally used and operate by detecting the zero phase current and the zero phase voltage with the zero phase current transformer ZCT and the zero phase voltage detector ZPD to determine the directionality. is there.
[0009]
20A and 30A are distribution substations connected to the A high-voltage trunk line, 20B and 30B are distribution substations connected to the B high-voltage trunk line, and each distribution substation is composed of the same equipment and the same circuit. Has been.
[0010]
Taking the distribution substation 20A as an example, the distribution substation 20A has an input side (power supply side) high voltage trunk line BUi and an output side (load side) high voltage trunk line BUo. These input side and output side Are connected to each other via an input-side switch 21a and an output-side switch 22a provided on each of the high-voltage trunk lines, and the load is fed to a load via a distribution transformer 23a and a distribution line 24a. The In addition, 25a in the figure has shown the earth capacitance which the electric circuit between switch 21a and 22a has. The connection cables 1a and 1b also have a ground capacitance, but are omitted.
[0011]
Since the other distribution substations 30A, 20B and 30B are configured in the same manner, the same number as the distribution substation 20 is set to the same one-digit number of each distribution substation, and thereafter A for the A high-voltage trunk line and b for the B high-voltage trunk line will be denoted with a detailed description thereof.
[0012]
The input-side switch 21a of the distribution substation 20A is connected to the A-high-voltage trunk power supply station 10A via the A-high-voltage trunk-side connection cable 1a, and the output-side switch 22a is connected to the input side of the adjacent distribution substation 30A. The output switch 32a of the distribution substation 30A is connected to the loop point section switch LLS by the connection cable 3a.
[0013]
Similarly, the distribution substations 20B and 30B are connected to the B high-voltage main line power supply station 10B via the connection cable 1b on the B line side, and the output side switch 22b is connected to the distribution substation 30B via the connection cable 2b. The output side switch 32b of the distribution substation 30B is connected to the loop point division switch LLS via the connection cable 3b. As described above, the A high voltage main line and the B high voltage main line are connected in a loop via the loop point section switch LLS, and the loop point section switch LLS is always open.
[0014]
Ground fault protection in such normally open loop, for example, when the ground fault occurs at F 1 point of distribution substations 30A which is connected to the A high pressure mains, provided the feeding stations within 10A of A high pressure mains A certain zero-phase current transformer ZCT and a zero-phase voltage detector ZPD detect this, and the ground fault direction relay 14a is operated to shut off the sending circuit breaker 13a. On the B high voltage main line side, the loop point section switch LLS is open, but a charging current flows through the ground capacitance represented by the ground capacitances 35b and 25b, and this current is detected as a zero-phase current. However, since the operating current phase is 180 ° different, the ground fault direction relay 14b does not operate.
[0015]
FIG. 3 shows a case where each distribution substation is provided with a ground fault detection protection means. The same or corresponding parts as in FIG. In addition, C1-C5 in the figure has shown the grounding capacitor provided in each distribution substation in order to detect a zero phase current reliably.
[0016]
Each distribution substation is provided with a ground fault direction relay corresponding to power supply from the A high voltage main line side and power supply from the B high voltage main line side. Taking the distribution substation 20A as an example, reference numerals 26a and 27a denote ground fault direction relays that operate by detecting a ground fault current flowing to the load side with respect to the ground fault of the power supply from the A high voltage main line side, 66b and 67b. B is a ground fault direction relay that operates by detecting the ground fault current that flows to the load side accident point against the ground fault at the time of power supply from the high voltage main line side, and the local fault direction relay is connected to each zero-phase current transformer ZCT. And connected to a zero-phase voltage detector ZPD.
[0017]
Note that the ground fault direction relays 66b and 67b may operate by detecting the charging current flowing from the power source side fault point with respect to the ground fault of the power feeding from the A high voltage main line side. Similarly, the ground fault direction relays 26a and 27a may operate by detecting a charging current flowing from the power source side fault point with respect to the ground fault of power feeding from the B high voltage main line side.
[0018]
Then, when a ground fault occurs in the substation, a ground fault direction relay 26a that operates by detecting a ground fault current flowing at the fault point, and a ground fault direction relay 66b that operates by detecting a charging current flowing from the fault point. Are operated simultaneously (when the AND condition is satisfied), the input-side and output-side switches 21a and 22a are simultaneously shut off.
[0019]
In addition, when a ground fault occurs in the connection cable 2a that connects the distribution substation 20A and the distribution substation 30A, a ground fault direction relay 27a that operates by detecting a ground fault current flowing at the fault point, When both 57b of the distribution substation 30A that operates by detecting the charging current flowing from are operated simultaneously, the output-side and input-side switches 22a, 31a are simultaneously shut off.
[0020]
The ground fault direction relays 67b, 27a, 57b, 37a, 47b, 47a, 56a, 36b, 66a, and 26b are ground fault direction relays corresponding to the ground fault of the connection cable connecting the distribution substations. Omitted.
[0021]
The distribution substation 20A has been described above, but the other distribution substations 30A, 40A and 20B, 30B are also configured in the same manner, and the same part as the distribution substation 20 includes the number of the distribution substation. The same one-digit number is omitted, and the description is omitted.
[0022]
Since the loop point section switch LLS is normally opened, the ground fault protection of the distribution substations 20A, 30A and 40A on the A high-voltage main line side is protected by the respective ground fault direction relays 26a, 36a, 46a and 46b, 56b. , 66b.
[0023]
If a ground fault occurs at point F 2 of the distribution substation 30A, a ground fault current (zero phase current) Ig flows. At this time, the zero-phase current transformers of the ground fault direction relays 26a and 36a operate by detecting the zero-phase currents of (Ig-Ic1-Ic2-Ic3) and (Ig-Ic2-Ic3), respectively.
[0024]
Further, the charging current flowing from the power point side fault point is detected, and the ground fault direction relays 56b (Ic3) and 27b (Ic4) operate if they detect the zero-phase current in the parentheses and exceed the sensitivity set value.
[0025]
In the ground fault direction relays 46b and 37b, the loop point section switch LLS is open, and only the ground capacitance of the connection cable is considered to be inoperative. Other ground fault relays do not operate because the current phase is opposite to the operating phase.
[0026]
In this case, since only the distribution substation 30A operates the ground fault direction relays 36a and 56b and the AND condition is established, the input / output side circuit breakers 31a and 32a are simultaneously disconnected.
[0027]
When the circuit breakers 31a and 32a are cut off, one voltage of the loop point section switch LLS disappears, so that the loop point section switch LLS is turned on after a certain time, and the distribution substation 40A has the B high voltage main line side. Is supplied with power.
[0028]
[Problems to be solved by the invention]
The ground fault protection method shown in Fig. 2 has the advantage that only one ground fault direction relay is required for each circuit. However, when a ground fault occurs at one distribution substation in the A high voltage trunk line. , All distribution substations connected to the high-voltage trunk line were out of power, and after searching for and disconnecting the substation where the accident occurred, power was supplied again from the A line, and at the same time, the loop point switch was turned on. Power is supplied also from the B high-voltage trunk line, but during that time, the healthy distribution substation connected to the A high-voltage trunk line continues to be in a power failure state. Especially in recent years, distribution substations have been distributed on each floor of high-rise buildings and intelligent buildings, and several distribution substations have been installed on one high-voltage trunk line. There is a problem that it takes a considerable amount of time to discover a substation, disconnect it, and supply power again.
[0029]
In addition, the ground fault protection method shown in FIG. 3 completely eliminates the above problem by minimizing the number of power outages because the distribution substation that caused the ground fault detects and disconnects it in its own substation. However, a ground fault direction relay including a number of zero-phase current transformers in one distribution substation is required.
[0030]
Moreover, it is necessary to install grounding capacitors C1 to C5 in order to operate these ground fault direction relays with certainty. That is, the zero-phase current of the ground fault direction relay 56b is equal to the ground capacitance as in the case of the ground fault direction relay 46b that does not operate because the loop point section switch LLS of FIG. 3 is open and has no ground capacitance. Since only Ic3 flows, the relay will not operate unless Ic3 is equal to or higher than the sensitivity setting value, and normal judgment cannot be made. In order to avoid this, it is necessary to provide a grounding capacitor to forcibly increase the ground capacitance, to allow a zero-phase current greater than the sensitivity set value to flow, and to ensure the operation of the ground fault direction relay. In particular, in the normally open loop type, it is not specified where to install the loop point class switch, and once a ground fault has occurred, each switch is opened to release the switch and change the feeding direction. It is necessary to install a grounding capacitor with a capacitance that can flow a zero-phase current greater than the sensitivity current value at each separation point.
[0031]
Switch 31a at ground fault F 2 points, the monitoring state after the worked 32a and then its LLS, can similarly protected when a ground fault accident at the power distribution substation 30B. However, when a ground fault occurs in the distribution substation 40A, the zero-phase current of the ground fault direction relay 46a flows only to the ground capacitance of the cable as in the case of the ground fault direction relay 37b before the accident. Operation is not possible, and the AND condition of the ground fault direction relays 46b and 46a is an uncertain protection method. (Capacity to ground required to flow 200 mA of zero-phase current with 10% zero-phase voltage sensitivity of a complete ground fault in a 6.6 kV circuit is 1.4 μF, and 2.5 km is required when the CV cable is 150 mm 2. (If the cable is shorter than this, the ground fault relay 46a cannot operate normally and cannot be reliably protected.)
In view of the above points, the present invention provides a ground fault protection device for a distribution substation that does not require a grounding capacitor, as long as one ground fault detection protection means is provided in one distribution substation. The purpose is to provide.
[0032]
[Means for Solving the Problems]
In the distribution substation, the load current and the zero-phase current flowing from the input high-voltage trunk line normally flow out of the output high-voltage trunk line as it is, and in addition, a ground fault in the distribution substation In this case, the inflow side and the outflow side become unbalanced, and this phenomenon does not change even when the current flow direction changes from the output-side high-voltage main line to the input-side high-voltage main line like the normally open loop type. The zero-phase current is smaller than the load current (about 30 A).
[0033]
In the embodiment of the specific means, the input-side high-voltage trunk line and the output-side high-voltage trunk line of the distribution substation are connected via the input-side switch and the output-side switch provided in each high-voltage trunk line, and the connection In a ground fault protection device for a distribution substation that supplies power to a load by a branch line from a line, the input side high-voltage trunk line and the output-side high-voltage trunk line are bundled so that current flow directions are opposite to each other. Through the iron core window of the zero-phase current transformer, the zero-phase current transformer cancels the zero-phase current in the case of a ground fault outside the protection range, and the zero-phase current due to the ground fault in the protection range And a ground fault detection protection means that operates when the zero-phase current exceeds a preset value, and the input side and output side switches are shut off by the operation of the ground fault detection protection means. It is characterized by doing so.
[0034]
By configuring as described above, even if power is supplied from either the A high-voltage main line side or the B high-voltage main line side as in the normally open loop type in the loop power distribution system, protection is provided by one ground fault detection protection means. In addition, it is possible to reliably detect a ground fault within the protection range without a grounding capacitor.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0036]
FIG. 1 shows an embodiment of the present invention, and shows one distribution substation among the plurality of distribution substations shown in FIG. 3, (A) is a circuit configuration diagram by single wire connection, and (B) is a ground fault. It is explanatory drawing of detection protection.
[0037]
In FIG. 1, 1 is an input side (power supply side) high voltage main line, 2 is an output side (load side) high voltage main line, and these high voltage main lines are connected via an input side switch 1a and an output side switch 2a. Branching from the connection line 3a and connecting the transformer 3 to supply power to the load is the same as in the case of FIG. The present invention is characterized by the installation means of the zero-phase current transformer 4. That is, as shown in FIG. 1, both the input-side high-voltage main line 1 and the output-side high-voltage main line 2 (six in the case of three phases) are used as the primary conductors of the zero-phase current transformer 4 and penetrate the iron core window. The induced voltage of the next winding is detected by the ground fault detection protection means 5.
[0038]
The ground fault detection protection means 5 simply detects a zero-phase current and outputs an operation signal when the zero-phase current exceeds a preset value, like a ground fault relay having no directionality. Anything is acceptable. Then, the input side and output side switches 1a and 2a are simultaneously shut off by the operation signal of the ground fault detection protection means 5.
[0039]
By configuring in this way, the zero-phase current IoA flowing through the input side high-voltage trunk line 1 from the point F other than the normal load current and its own distribution substation (outside the protection range) and the output-side high voltage trunk line 2 It is equal to the output zero-phase current IoB, the sum of the primary current passing through the zero-phase current transformer 4 is 0, and the detection signal from the zero-phase current transformer input to the ground fault detection protection means 5 is also 0, The ground fault detection protection means 5 does not operate. (Fig. 1 (A))
However, as shown in FIG. 1 (B), the self-power distribution substation (the protection scope), ground fault occurs at three points F, ground fault current (zero-phase current) when Ig flows, input The zero-phase currents IoC and IoD flowing to the output side and the output side normally satisfy IoC> IoD, and the ground fault detection protection means 5 detects this difference signal and outputs an operation signal to output the input side and output side switches 1a. And 2a are shut off simultaneously.
[0040]
The above is the case where power is supplied from the input high-voltage main line to the output high-voltage main line. On the contrary, even if the power supply direction changes from the output high-voltage main line to the input high-voltage main line, there is no effect. Thus, the protection operation can be surely realized.
[0041]
Although only one distribution substation has been described above, a plurality of distribution substations are looped through normally-open loop point division switches as shown in FIG. It is installed and used in the shape.
[0042]
When installing, place each distribution substation equipment in the switchboard and use it as a row board configuration, and connect adjacent switchboards in a loop using a well-known joint method using cables. Is desirable.
[0043]
Although the above has described the case of a loop line provided with a loop section switch LLS, the loop section switch LLS can also serve as an input / output side switch of an adjacent distribution substation. For example, the loop section opening / closing LLS becomes unnecessary by always opening the output side switch 42a of the distribution substation 40A and the output side switch 31b of 30B in FIG. In this way, when the entire monitoring system is a central monitoring system and each input / output switch also serves as a loop point division switch, the loop division point can be changed at any point, and each distribution can be performed while distributing power according to power demand. It will be a ground fault protection device that protects against ground faults in substations.
[0044]
In addition, the earth fault protection of the connection conductor between switchboards is protected by the method of installing a protective relay in the cable shield earth line currently performed normally.
[0045]
【The invention's effect】
As described above, the present invention can provide ground fault protection by providing a single ground fault detection protection means in each distribution substation, and can be used in a normally open loop system in the loop system of the A high voltage main line and the B high voltage main line. Thus, even when the high-voltage main line is switched, the ground fault detection protection means does not operate outside the protection range, and can operate reliably only within the protection range. In addition, since this ground fault detection protection means does not need to have directionality, a zero-phase voltage detector is also unnecessary.
[0046]
Therefore, the present invention eliminates the need for four sets of zero-phase current transformers and ground fault direction relays and a zero-phase voltage signal from the zero-phase voltage detector. Furthermore, since no grounding capacitor is required, the reliability of power supply can be improved, the installation area of the distribution substation can be reduced, and the cost can be reduced. In particular, when the distribution substation has a distribution board configuration and is applied to a distribution system in which the distribution substations are connected in a loop shape, the effect is remarkable as the number of connection boards increases.
[Brief description of the drawings]
1A and 1B are a circuit configuration diagram and an operation explanatory diagram of single-wire connection according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of a conventional loop-type ground fault protection method.
FIG. 3 is an explanatory diagram of another ground fault protection method of the conventional loop method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Input side high voltage main line 2 ... Output side high voltage main line 1a ... Input side switch 2a ... Output side switch 3 ... Transformer 4 ... Zero phase current transformer 5 ... Ground fault detection protection means

Claims (1)

配電用変電所の入力側高圧幹線と出力側高圧幹線を、夫々の高圧幹線に設けた入力側開閉器および出力側開閉器を介して接続し、該接続線から分岐線により負荷に電力を供給するようにした配電用変電所の地絡保護装置において、
前記入力側高圧幹線と出力側高圧幹線とを電流の流れ方向が互いに逆向きとなるように一括して零相変流器の鉄心窓を貫通し、該零相変流器により保護範囲外の地絡事故では零相電流が打ち消し合い、保護範囲内の地絡事故による零相電流はこれを検出して該零相電流があらかじめ設定した設定値以上となったとき動作する地絡検出保護手段を設け、該地絡検出保護手段の動作により前記入力側と出力側の開閉器を遮断するようにしたことを特徴とする配電用変電所の地絡保護装置。
Connect the input high-voltage trunk line and the output high-voltage trunk line of the distribution substation via the input-side switch and output-side switch provided on each high-voltage trunk line, and supply power to the load from the connection line via the branch line In the ground fault protection device for distribution substations,
The input-side high-voltage trunk line and the output-side high-voltage trunk line are collectively penetrated through the iron core window of the zero-phase current transformer so that the current flow directions are opposite to each other. Zero-phase currents cancel each other out in the case of a ground fault, and the zero-phase current caused by a ground fault within the protection range is detected, and when this zero-phase current exceeds a preset value, a ground fault detection protection means is activated. And a ground fault protection device for a distribution substation characterized in that the input side and output side switches are shut off by the operation of the ground fault detection protection means.
JP2000021339A 2000-01-31 2000-01-31 Ground fault protection device for distribution substation Expired - Fee Related JP3641567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021339A JP3641567B2 (en) 2000-01-31 2000-01-31 Ground fault protection device for distribution substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021339A JP3641567B2 (en) 2000-01-31 2000-01-31 Ground fault protection device for distribution substation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004344410A Division JP3869841B2 (en) 2004-11-29 2004-11-29 Normally open loop power distribution ground fault detection protection system

Publications (2)

Publication Number Publication Date
JP2001218358A JP2001218358A (en) 2001-08-10
JP3641567B2 true JP3641567B2 (en) 2005-04-20

Family

ID=18547757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021339A Expired - Fee Related JP3641567B2 (en) 2000-01-31 2000-01-31 Ground fault protection device for distribution substation

Country Status (1)

Country Link
JP (1) JP3641567B2 (en)

Also Published As

Publication number Publication date
JP2001218358A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
CN105655879B (en) The voltage arrangement of 110 kilovolts of system busbar combining unit duplicate system retrofits of intelligent substation double bus scheme mode
US6714395B2 (en) Method for detecting faults internal to a distribution equipment configuration
CN111313379B (en) Disconnection protection method for comparing line voltage on two sides of line and spare power automatic switching
CN104407265A (en) Method and device for monitoring line defects in bus differential protective current analog quantity of transformer substation
KR102664843B1 (en) Three-phase batch breaker and networked distribution system using it
JP3641567B2 (en) Ground fault protection device for distribution substation
JP3611476B2 (en) Power distribution equipment circuit
CN111224384B (en) Method for comparing line voltage vector difference on two sides of line and protecting line breakage by adopting loop closing and opening operation
JP3480671B2 (en) Bus protection system for spot network power receiving equipment
JP7347952B2 (en) protection device
JP3869841B2 (en) Normally open loop power distribution ground fault detection protection system
JP4334997B2 (en) Ground fault protection for normally open loop power distribution
JPH06311642A (en) Fault point isolating system for distribution line
JPH01180469A (en) Accident section detecting device for power transmission line
JPS63287321A (en) Fault section detecting/separating device for distribution line
JPH04244729A (en) Spot network system
JP2860477B2 (en) Distribution line switch control method
KR20230000299A (en) Distributed power source separation method and device according to disconnction of distribution line
JPH0324129B2 (en)
JPH11308758A (en) Grounding detector
CN109378805A (en) In ring network power supply system between substation/over-current protection method and device of interior route
CN116316469A (en) Power transmission system
JPS63287322A (en) Relay for detecting ground fault section in distribution line
JPH0159821B2 (en)
JPS63287324A (en) Fault section detecting/separating device for distribution line

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees