JP7347952B2 - protection device - Google Patents

protection device Download PDF

Info

Publication number
JP7347952B2
JP7347952B2 JP2019063903A JP2019063903A JP7347952B2 JP 7347952 B2 JP7347952 B2 JP 7347952B2 JP 2019063903 A JP2019063903 A JP 2019063903A JP 2019063903 A JP2019063903 A JP 2019063903A JP 7347952 B2 JP7347952 B2 JP 7347952B2
Authority
JP
Japan
Prior art keywords
ground fault
fault current
transformer
circuit breaker
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019063903A
Other languages
Japanese (ja)
Other versions
JP2020167774A (en
Inventor
寛 山川
忠彰 安田
浩幸 古川
卓也 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Densetsu Service Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Tokyo Densetsu Service Co Ltd
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Tokyo Densetsu Service Co Ltd, Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2019063903A priority Critical patent/JP7347952B2/en
Publication of JP2020167774A publication Critical patent/JP2020167774A/en
Application granted granted Critical
Publication of JP7347952B2 publication Critical patent/JP7347952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、保護装置に関し、例えば、電力用変圧器の事故を電気的に検出する保護装置に関する。 The present invention relates to a protection device, and for example, to a protection device that electrically detects a fault in a power transformer.

一般に、電力系統(例えば、特別高圧系統)における電力用変圧器(以下、単に「変圧器」とも称する。)は、地絡事故時の安全性を向上させるため、二次側(低圧側)のY結線の中性点を接地している。例えば、275kV以上の電力系統の変圧器では、抵抗を介さずに中性点を接地する直接接地方式が採用され、66kV以下の変圧器では、抵抗を介して中性点を接地する抵抗接地方式が採用されることが多い。 In general, power transformers (hereinafter also simply referred to as "transformers") in power systems (e.g., special high voltage systems) are installed on the secondary side (low voltage side) in order to improve safety in the event of a ground fault. The neutral point of the Y connection is grounded. For example, transformers for power systems of 275 kV or higher use the direct grounding method, which grounds the neutral point without using a resistor, and transformers of 66 kV or less use the resistance grounding method, which grounds the neutral point through a resistor. is often adopted.

また、変圧器には、変圧器の事故を電気的に検出する保護装置が取り付けられている(例えば、特許文献1参照)。この保護装置としては、変圧器の1次側と2次側の電流比に基づいて変圧器の異常の有無を監視する比率差動リレーが知られている。 Further, a protection device is attached to the transformer to electrically detect an accident in the transformer (see, for example, Patent Document 1). As this protection device, a ratio differential relay is known that monitors the presence or absence of abnormality in a transformer based on the current ratio between the primary side and the secondary side of the transformer.

しかしながら、変圧器の中性点が抵抗を介して接地されている側に接続されている系統(抵抗接地系統)で地絡事故が発生した場合、事故電流の大きさが変圧器の定格電流に比べて小さいので、比率差動リレーによって当該地絡事故を検出することは一般的に困難である。このため、変圧器の抵抗接地系統側の地絡事故を検出することを目的として、比率差動リレーよりも高感度に事故検出が可能な地絡方向リレー(DGR:Directional Ground Relay)を抵抗接地系統側に設置している。 However, if a ground fault occurs in a system where the neutral point of the transformer is connected to the grounded side via a resistor (resistance grounding system), the magnitude of the fault current will exceed the rated current of the transformer. Because of their relatively small size, it is generally difficult to detect such ground faults by ratiometric differential relays. Therefore, for the purpose of detecting ground faults on the resistive grounding system side of transformers, a directional ground relay (DGR), which can detect faults with higher sensitivity than a ratio differential relay, is connected to a resistive grounding system. It is installed on the system side.

特開2000-78754号公報Japanese Patent Application Publication No. 2000-78754

ところで、変電所によっては、2台以上の変圧器を設置し、それらの変圧器を並列に接続して運転する並列運転(並行運転)が行われる場合がある。 By the way, depending on the substation, two or more transformers may be installed and parallel operation (parallel operation) in which the transformers are connected and operated in parallel may be performed.

例えば、66kV以下の変圧器が並列運転される変電所においては、それぞれの変圧器の中性点を抵抗(「中性点接地抵抗」とも称する。)を介して接地することが好ましい。 For example, in a substation where transformers of 66 kV or less are operated in parallel, it is preferable to ground the neutral point of each transformer via a resistor (also referred to as "neutral point grounding resistance").

一方で、地絡事故が発生した場合に、地絡電流の大きさによっては、電磁誘導障害が発生する虞がある。そのため、地絡事故の発生時に流れる地絡電流には、系統毎に上限値(許容値)が定められている。 On the other hand, when a ground fault occurs, there is a possibility that electromagnetic induction disturbance may occur depending on the magnitude of the ground fault current. Therefore, an upper limit value (tolerable value) is determined for each system for the ground fault current that flows when a ground fault occurs.

上述したように、中性点接地抵抗を全ての変圧器に接続して並列運転させているときに地絡事故が発生した場合、各中性点接地抵抗を経由して地絡電流が流れ、地絡電流の総量が許容値を超える虞がある。そのため、従来、万が一地絡事故が発生したときに地絡電流が許容値を超えないように、並列運転する複数の変圧器のうち一台の変圧器の中性点にのみ中性点接地抵抗を接続して運用せざるを得ない場合があった。 As mentioned above, if a ground fault occurs when a neutral point grounding resistor is connected to all transformers and they are operated in parallel, a ground fault current will flow through each neutral point grounding resistor. There is a possibility that the total amount of ground fault current will exceed the allowable value. For this reason, in the past, in order to prevent the ground fault current from exceeding the allowable value in the event of a ground fault accident, a neutral point grounding resistance was used only at the neutral point of one transformer among multiple transformers operating in parallel. There were cases where it was necessary to connect and operate the

しかしながら、中性点接地抵抗が接続された変圧器が中性点接地抵抗が接続されていない変圧器と並列運転を行っているときに地絡事故が起こった場合、事故原因の除去の遅延や停電範囲の拡大を招く虞があることが、本願発明者らの検討により明らかとなった。以下、図を用いて詳細に説明する。 However, if a ground fault occurs when a transformer to which a neutral point grounding resistor is connected is operating in parallel with a transformer to which a neutral point grounding resistor is not connected, there may be a delay in eliminating the cause of the accident. The inventors of the present invention have found that this may lead to an expansion of the power outage range. Hereinafter, this will be explained in detail using figures.

図7Aおよび図7Bは、従来の並列運転を行う2台の変圧器を有する変電所の構成例を示す図である。
図7A,図7Bに示すように、変電所900は、発電設備(発電所)99から一次側母線98を介して供給された電力を変圧して二次側母線97に供給する2台の変圧器90_1,90_2と、変圧器90_1,90_2毎に対応して設けられた遮断器93および地絡方向リレー(DGR)92と、を備えている。
FIGS. 7A and 7B are diagrams showing an example of the configuration of a substation having two transformers that operate in parallel in the related art.
As shown in FIGS. 7A and 7B, the substation 900 transforms power supplied from a power generation facility (power plant) 99 via a primary bus 98 and supplies it to a secondary bus 97. transformers 90_1 and 90_2, and a circuit breaker 93 and a ground fault direction relay (DGR) 92 provided correspondingly to each of the transformers 90_1 and 90_2.

変圧器90_1,90_2は、一次側巻線および二次側巻線がともにY結線(スター結線)された三相2巻線変圧器である。変圧器90_1,90_2は並列運転可能に構成されており、並列運転させる場合には、一方の変圧器にのみ中性点接地抵抗Rを接続し、地絡事故の発生時に流れる地絡電流が許容値を超えないようにしている。図7A、図7Bでは、一例として、変圧器90_1が中性点接地抵抗Rを介して接地されている場合が示されている。 The transformers 90_1 and 90_2 are three-phase two-winding transformers in which both the primary winding and the secondary winding are Y-connected (star-connected). The transformers 90_1 and 90_2 are configured to be able to operate in parallel. When operating in parallel, a neutral point grounding resistor R is connected to only one transformer to ensure that the ground fault current that flows in the event of a ground fault accident is permissible. I try not to exceed the value. 7A and 7B, as an example, a case is shown in which the transformer 90_1 is grounded via a neutral point grounding resistor R.

変圧器90_1側の遮断器93は、変圧器90_1の一次側と一次側母線98との間、変圧器90_1の二次側と二次側母線97との間にそれぞれ接続されている。変圧器90_2側の遮断器93は、変圧器90_2の一次側と一次側母線98との間、変圧器90_2の二次側と二次側母線97との間にそれぞれ接続されている。地絡方向リレー92は、二次側母線97側から変圧器90_1,90_2の二次側に流れる地絡電流をそれぞれ検出したとき、対応する遮断器93をそれぞれ開制御する。 The circuit breaker 93 on the transformer 90_1 side is connected between the primary side of the transformer 90_1 and the primary bus 98, and between the secondary side of the transformer 90_1 and the secondary bus 97, respectively. The circuit breaker 93 on the transformer 90_2 side is connected between the primary side of the transformer 90_2 and the primary bus 98, and between the secondary side of the transformer 90_2 and the secondary bus 97, respectively. When the ground fault direction relay 92 detects the ground fault current flowing from the secondary side bus bar 97 side to the secondary side of the transformers 90_1 and 90_2, it controls the corresponding circuit breaker 93 to open.

ここで、中性点接地抵抗Rが接続されている変圧器90_1と、中性点接地抵抗Rが接続されていない変圧器90_2とが並列運転を行っているときに地絡事故が発生した場合について考える。 Here, if a ground fault occurs when the transformer 90_1 to which the neutral point grounding resistance R is connected and the transformer 90_2 to which the neutral point grounding resistance R is not connected are operating in parallel. think about.

例えば、図7Aに示すように、中性点接地抵抗Rが接続されていない変圧器90_2の二次側で地絡事故が発生した場合、地絡電流は、グラウンドから、変圧器90_1の二次側の中性点接地抵抗Rおよび二次側母線97を経由して変圧器90_2側の地絡点Eに流れ込む。このため、変圧器90_2側の地絡方向リレー92の電流検出器(変流器)CTによって地絡電流が検出され、当該地絡方向リレー92によって変圧器90_2側の各遮断器93が開(オフ)制御される。これにより、地絡事故が発生した変圧器90_2が母線98および二次側母線97から切り離される。このとき、変圧器90_1側の遮断器93は閉(オン)状態であるので、変圧器90_1から二次側母線97への電力供給が継続される。 For example, as shown in FIG. 7A, if a ground fault occurs on the secondary side of transformer 90_2 to which neutral point grounding resistance R is not connected, the ground fault current will flow from the ground to the secondary side of transformer 90_1. It flows into the ground fault point E on the transformer 90_2 side via the neutral point grounding resistance R on the side and the secondary side bus bar 97. Therefore, the ground fault current is detected by the current detector (current transformer) CT of the ground fault direction relay 92 on the transformer 90_2 side, and the ground fault direction relay 92 opens each circuit breaker 93 on the transformer 90_2 side ( off) controlled. As a result, the transformer 90_2 in which the ground fault occurred is separated from the bus bar 98 and the secondary bus bar 97. At this time, the circuit breaker 93 on the transformer 90_1 side is in the closed (on) state, so power supply from the transformer 90_1 to the secondary bus 97 is continued.

一方、図7Bに示すように、中性点接地抵抗Rが接続されている変圧器90_1の二次側で地絡事故が発生した場合、地絡電流は、グラウンドから変圧器90_1の二次側の中性点接地抵抗Rを経由して地絡点Eに流れ込むものの、変圧器90_1側の地絡方向リレー92の電流検出器CTが設置されている箇所には流れない。そのため、変圧器90_1側の地絡方向リレー92は、地絡電流を検出することができず、変圧器90_1側の遮断器93の閉(オン)状態が維持される。その結果、地絡電流が流れ続け、事故原因の特定および除去の遅れや停電範囲の拡大を招く虞がある。 On the other hand, as shown in FIG. 7B, if a ground fault occurs on the secondary side of the transformer 90_1 to which the neutral grounding resistor R is connected, the ground fault current will flow from the ground to the secondary side of the transformer 90_1. Although the current flows to the ground fault point E via the neutral point grounding resistance R, it does not flow to the location where the current detector CT of the ground fault direction relay 92 on the transformer 90_1 side is installed. Therefore, the ground fault direction relay 92 on the transformer 90_1 side cannot detect the ground fault current, and the closed (on) state of the circuit breaker 93 on the transformer 90_1 side is maintained. As a result, the ground fault current continues to flow, which may lead to delays in identifying and eliminating the cause of the accident and an expansion of the power outage range.

本発明は、上述した課題に鑑みてなされたものであり、複数の変圧器が並列運転される変電所において、地絡事故を確実に検出できるようにすることを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to enable reliable detection of ground faults in a substation where a plurality of transformers are operated in parallel.

本発明の代表的な実施の形態に係る保護装置は、変圧器の中性点とグラウンドとの間に接続された中性点接地抵抗に流れる地絡電流を検出する第1地絡電流検出リレーと、前記変圧器と母線との間の接続と遮断を切り替える遮断器と、前記母線に流れる地絡電流を検出する第2地絡電流検出リレーと、前記第1地絡電流検出リレーの検出結果と前記第2地絡電流検出リレーの検出結果に基づく所定条件を満足した場合に、前記遮断器を開制御する制御装置とを備えることを特徴とする。 A protective device according to a typical embodiment of the present invention includes a first ground fault current detection relay that detects a ground fault current flowing through a neutral point grounding resistor connected between a neutral point of a transformer and the ground. , a circuit breaker that switches connection and disconnection between the transformer and the bus, a second ground fault current detection relay that detects the ground fault current flowing in the bus, and a detection result of the first ground fault current detection relay. and a control device that controls opening of the circuit breaker when a predetermined condition based on the detection result of the second ground fault current detection relay is satisfied.

本発明に係る探査方法によれば、複数の変圧器が並列運転される変電所において、地絡事故を確実に検出することが可能となる。 According to the exploration method according to the present invention, it is possible to reliably detect a ground fault in a substation where a plurality of transformers are operated in parallel.

本発明の一実施の形態に係る保護装置を備えた変電所の構成を示す図である。1 is a diagram showing the configuration of a substation equipped with a protection device according to an embodiment of the present invention. 制御装置の構成例を示す図である。It is a figure showing an example of composition of a control device. 各地絡過電流リレーの検出結果に基づく遮断器の制御状態を示す図である。It is a figure which shows the control state of a circuit breaker based on the detection result of each fault overcurrent relay. 中性点接地抵抗の接続の有無を考慮した場合の各地絡過電流リレーの検出結果に基づく遮断器の制御状態を示す図である。FIG. 6 is a diagram showing the control state of the circuit breaker based on the detection results of each fault overcurrent relay when the presence or absence of connection of a neutral point grounding resistor is taken into consideration. 本実施の形態に係る保護装置の動作を説明するための図である。FIG. 3 is a diagram for explaining the operation of the protection device according to the present embodiment. 本実施の形態に係る保護装置の動作を説明するための図である。FIG. 3 is a diagram for explaining the operation of the protection device according to the present embodiment. 制御装置の別の構成例を示す図である。It is a figure showing another example of composition of a control device. 従来の並列運転を行う2台の変圧器を有する変電所の構成例を示す図である。1 is a diagram illustrating an example of the configuration of a substation having two transformers that operate in parallel in the related art. 従来の並列運転を行う2台の変圧器を有する変電所の構成例を示す図である。1 is a diagram illustrating an example of the configuration of a substation having two transformers that operate in parallel in the related art.

1.実施の形態の概要
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. Overview of Embodiments First, an overview of typical embodiments of the invention disclosed in this application will be described. In the following description, as an example, reference numerals on the drawings corresponding to constituent elements of the invention are written in parentheses.

〔1〕本発明の代表的な実施の形態に係る保護装置(10,10_1,10_2)は、変圧器(1,1_1,1_2)の中性点とグラウンドとの間に接続された中性点接地抵抗(R)に流れる地絡電流を検出する第1地絡電流検出リレー(4A)と、前記変圧器と母線との間の接続と遮断を切り替える遮断器(3)と、前記母線に流れる地絡電流を検出する第2地絡電流検出リレー(4B/2)と、前記第1地絡電流検出リレーの検出結果と前記第2地絡電流検出リレーの検出結果に基づく所定条件を満足した場合に、前記遮断器を開制御する制御装置(6,6A)と、を備えることを特徴とする。 [1] A protective device (10, 10_1, 10_2) according to a typical embodiment of the present invention has a neutral point connected between a neutral point of a transformer (1, 1_1, 1_2) and the ground. A first ground fault current detection relay (4A) that detects the ground fault current flowing through the grounding resistor (R), a breaker (3) that switches connection and disconnection between the transformer and the bus, and a ground fault current that flows to the bus. A second ground fault current detection relay (4B/2) that detects a ground fault current, and a predetermined condition based on the detection result of the first ground fault current detection relay and the detection result of the second ground fault current detection relay is satisfied. In this case, the circuit breaker is characterized by comprising a control device (6, 6A) that controls opening of the circuit breaker.

〔2〕上記保護装置において、前記制御装置は、前記第1地絡電流検出リレーが地絡電流を検出している状態において、前記第2地絡電流検出リレーが地絡電流を検出していない場合に前記所定条件を満足したと判定し、前記遮断器を開制御してもよい。 [2] In the above-mentioned protection device, the control device determines that the second ground-fault current detection relay is not detecting a ground-fault current while the first ground-fault current detection relay is detecting a ground-fault current. In this case, it may be determined that the predetermined condition is satisfied, and the circuit breaker may be controlled to open.

〔3〕上記保護装置において、前記制御装置は、前記変圧器に前記中性点接地抵抗が接続され、且つ前記第1地絡電流検出リレーが地絡電流を検出した状態において、前記第2地絡電流検出リレーが地絡電流を検出していない場合に前記所定条件を満足したと判定し、前記遮断器を開制御してもよい。 [3] In the above-mentioned protection device, the control device is configured to connect the second grounding resistor to the second grounding resistor in a state where the neutral point grounding resistor is connected to the transformer and the first grounding current detection relay detects a grounding current. If the fault current detection relay does not detect a ground fault current, it may be determined that the predetermined condition is satisfied, and the circuit breaker may be controlled to open.

〔4〕上記保護装置において、前記制御装置(6A)は、前記所定条件を満足した状態が所定期間継続した場合に、前記遮断器を開制御してもよい。 [4] In the above protection device, the control device (6A) may control the circuit breaker to open when the state in which the predetermined condition is satisfied continues for a predetermined period.

2.実施の形態の具体例
以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
2. Specific Examples of Embodiments Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In addition, in the following description, the same reference numerals are given to the same component in each embodiment, and repeated description is omitted. Furthermore, it should be noted that the drawings are schematic, and the dimensional relationship of each element, the ratio of each element, etc. may differ from reality. Drawings may also include portions that differ in dimensional relationships and ratios.

図1は、本発明の一実施の形態に係る保護装置を備えた変電所の構成を示す図である。
同図に示される変電所100は、複数の変圧器の並列運転が可能な変電設備を備えるとともに、各変圧器において発生した事故を検出するための保護装置を備えている。
FIG. 1 is a diagram showing the configuration of a substation equipped with a protection device according to an embodiment of the present invention.
A substation 100 shown in the figure includes substation equipment capable of parallel operation of a plurality of transformers, and also includes a protection device for detecting an accident occurring in each transformer.

具体的に、変電所100は、発電設備(発電所)9から一次側母線8を介して供給された電力を変圧して二次側母線7に供給する複数の変圧器1_1~1_n(nは2以上の整数)と、保護装置10_1~10_nとを備えている。 Specifically, the substation 100 includes a plurality of transformers 1_1 to 1_n (n is (an integer greater than or equal to 2) and protection devices 10_1 to 10_n.

なお、以下の説明では、変電所100が二台の変圧器1_1,1_2(n=2)を備え、変圧器1_1,1_2毎に保護装置10_1,10_2が設置される場合を例にとり説明するが、変圧器の台数(n)は特に制限されない。
また、変圧器1_1と変圧器1_2について、特に区別しない場合には、サフィックスを省略して「変圧器1」と表記する。保護装置10_1と保護装置10_2についても同様に、「保護装置10」と表記する。
In addition, in the following description, an example will be explained in which the substation 100 is equipped with two transformers 1_1 and 1_2 (n=2), and protection devices 10_1 and 10_2 are installed for each transformer 1_1 and 1_2. , the number (n) of transformers is not particularly limited.
Moreover, when there is no particular distinction between the transformer 1_1 and the transformer 1_2, the suffix will be omitted and the transformer 1_2 will be referred to as "transformer 1." The protection device 10_1 and the protection device 10_2 are also written as “protection device 10”.

変圧器1_1,1_2は、電力用変圧器であって、例えば、一次巻線および二次巻線がそれぞれY結線(スター結線)された三相2巻線変圧器である。例えば、変圧器1_1,1_2の一次側の定格電圧は154kVであり、二次側の定格電圧は66kVである。 The transformers 1_1 and 1_2 are power transformers, and are, for example, three-phase two-winding transformers in which the primary winding and the secondary winding are each Y-connected (star-connected). For example, the rated voltage on the primary side of transformers 1_1 and 1_2 is 154 kV, and the rated voltage on the secondary side is 66 kV.

変圧器1_1,1_2は並列運転可能に構成されている。変圧器1_1,1_2を並列運転させる場合には、地絡事故の発生時の地絡電流が許容値を超えないようにするために、一方の変圧器の二次側の中性点に中性点接地抵抗Rが接続される。本実施の形態では、変圧器1_1,1_2毎に中性点接地抵抗Rが設けられ、各中性点接地抵抗Rは、例えばスイッチ等により、変圧器1_1,1_2の二次側の中性点とグラウンドとの間に接続可能に構成されている。ここでは、一例として、変圧器1_1の二次側が中性点接地抵抗Rを介して接地されているものとする。 The transformers 1_1 and 1_2 are configured to be able to operate in parallel. When operating transformers 1_1 and 1_2 in parallel, in order to prevent the ground fault current from exceeding the permissible value in the event of a ground fault, a neutral point is connected to the neutral point on the secondary side of one transformer. A point grounding resistor R is connected. In this embodiment, a neutral point grounding resistance R is provided for each transformer 1_1, 1_2, and each neutral point grounding resistance R is connected to the neutral point of the secondary side of the transformer 1_1, 1_2 by, for example, a switch or the like. and ground. Here, as an example, it is assumed that the secondary side of the transformer 1_1 is grounded via a neutral point grounding resistor R.

保護装置10_1,10_2は、変圧器1_1,1_2において発生した地絡事故を検出するための装置である。保護装置10_1,10_2は、変圧器1_1,1_2毎に設けられている。
なお、保護装置10_1と保護装置10_2とは、同一の構成であるため、代表して保護装置10_1について、具体的に説明する。
The protection devices 10_1 and 10_2 are devices for detecting a ground fault occurring in the transformers 1_1 and 1_2. Protective devices 10_1 and 10_2 are provided for each transformer 1_1 and 1_2.
Note that since the protection device 10_1 and the protection device 10_2 have the same configuration, the protection device 10_1 will be specifically explained as a representative.

図1に示すように、保護装置10_1は、遮断器(CB:Circuit Breaker)3、地絡電流検出リレー4A,4B、地絡方向リレー(DGR)2、および制御装置(CNTR)6を有している。 As shown in FIG. 1, the protection device 10_1 includes a circuit breaker (CB) 3, ground fault current detection relays 4A, 4B, a ground fault direction relay (DGR) 2, and a control device (CNTR) 6. ing.

遮断器3は、変圧器1_1と母線との間の接続と遮断を切り替える装置である。図1に示されるように、遮断器3は、変圧器1_1の一次側と一次側母線8との間、変圧器1_1の二次側と二次側母線7との間に、それぞれ接続されている。通常時においては、遮断器3は閉状態となり、変圧器1_1の一次側と一次側母線8とが接続され、変圧器1_1の二次側と二次側母線7とが接続される。 The circuit breaker 3 is a device that switches connection and disconnection between the transformer 1_1 and the bus bar. As shown in FIG. 1, the circuit breaker 3 is connected between the primary side of the transformer 1_1 and the primary side bus 8, and between the secondary side of the transformer 1_1 and the secondary side bus 7. There is. In normal times, the circuit breaker 3 is in a closed state, the primary side of the transformer 1_1 and the primary side bus 8 are connected, and the secondary side of the transformer 1_1 and the secondary side bus 7 are connected.

遮断器3は、制御装置6および地絡方向リレー2からの制御信号によって開制御(オフ)される。制御装置6からの制御信号と地絡方向リレー2からの制御信号の少なくとも一方が“開(オフ)制御”を指示する信号である場合に、開(遮断)状態となり、変圧器1_1を一次側母線7,8からそれぞれ切り離す。 The circuit breaker 3 is controlled to open (turned off) by control signals from the control device 6 and the ground fault direction relay 2 . When at least one of the control signal from the control device 6 and the control signal from the ground fault direction relay 2 is a signal instructing "open (off) control", the state becomes open (cut off), and the transformer 1_1 is switched to the primary side. Separate from busbars 7 and 8 respectively.

地絡電流検出リレー4A,4Bは、母線に流れる過電流を検出する装置である。地絡電流検出リレー4A,4Bは、例えば、地絡過電流リレー(OCGR:Over Current Ground Relay)である。以下、地絡電流検出リレー4A,4Bを「地絡過電流リレー4A,4B」とも称する。 The ground fault current detection relays 4A and 4B are devices that detect overcurrent flowing through the bus bar. The ground fault current detection relays 4A and 4B are, for example, over current ground relays (OCGR). Hereinafter, the ground fault current detection relays 4A, 4B are also referred to as "ground fault overcurrent relays 4A, 4B."

第1地絡電流検出リレーとしての地絡過電流リレー(OCGR)4Aは、変圧器1_1の中性点とグラウンドとの間に接続された中性点接地抵抗Rに流れる地絡電流を検出する装置である。具体的に、地絡過電流リレー4Aは、変圧器1_1の二次側の中性点とグラウンドとの間の中性点接地抵抗Rを通る経路に設置された電流検出器CT1によって、中性点接地抵抗Rに流れる地絡電流(地絡電流の向きは不問)が検出された場合に、その検出結果を制御装置6に出力する。 The earth fault overcurrent relay (OCGR) 4A as the first earth fault current detection relay is a device that detects the earth fault current flowing through the neutral point grounding resistor R connected between the neutral point of the transformer 1_1 and the ground. It is. Specifically, the earth fault overcurrent relay 4A detects the neutral point by the current detector CT1 installed in a path passing through the neutral point grounding resistance R between the neutral point on the secondary side of the transformer 1_1 and the ground. When a ground fault current flowing through the ground resistor R (the direction of the ground fault current does not matter) is detected, the detection result is output to the control device 6.

第2地絡電流検出リレーとしての地絡過電流リレー(OCGR)4Bは、二次側母線7と変圧器1_1の間に流れる地絡電流を検出する装置である。具体的に、地絡過電流リレー4Bは、上述した遮断器3と二次側母線7とを接続する電線に設置された電流検出器CT2によって、二次側母線7側から、または二次側母線7側に向かって流れる地絡電流(地絡電流の向きは不問)が検出された場合に、その検出結果を制御装置6に出力する。 An earth fault overcurrent relay (OCGR) 4B serving as a second ground fault current detection relay is a device that detects a ground fault current flowing between the secondary bus 7 and the transformer 1_1. Specifically, the ground fault overcurrent relay 4B detects the current from the secondary bus 7 side or When a ground fault current (the direction of the ground fault current does not matter) flowing toward the 7 side is detected, the detection result is output to the control device 6.

地絡方向リレー(DGR)2は、二次側母線7側から変圧器1_1側に流れる地絡電流を検出した場合に、遮断器3を開制御する。具体的に、地絡方向リレー2は、遮断器3と二次側母線7とを接続する電線に設置された電流検出器(変流器)CT2によって二次側母線7側から変圧器1_1に向かって流れる地絡電流が検出されたとき、各遮断器3を接続状態から遮断状態にするための制御信号を遮断器3に出力する。遮断器3は、地絡方向リレー2からの開制御を指示する制御信号に応じて遮断状態となり、変圧器1_1を一次側母線8および二次側母線7から切り離す。 The ground fault direction relay (DGR) 2 controls the circuit breaker 3 to open when detecting a ground fault current flowing from the secondary bus 7 side to the transformer 1_1 side. Specifically, the ground fault direction relay 2 uses a current detector (current transformer) CT2 installed on the wire connecting the circuit breaker 3 and the secondary bus 7 to connect the ground fault direction relay 2 from the secondary bus 7 side to the transformer 1_1. When a ground fault current flowing towards the circuit breaker 3 is detected, a control signal for changing each circuit breaker 3 from a connected state to a disconnected state is output to the circuit breaker 3. The circuit breaker 3 enters a cutoff state in response to a control signal instructing opening control from the ground fault direction relay 2, and disconnects the transformer 1_1 from the primary bus 8 and the secondary bus 7.

制御装置6は、地絡過電流リレー4Aの検出結果および地絡過電流リレー4Bの検出結果に基づいて、遮断器3を制御する装置である。
具体的に、制御装置6は、地絡過電流リレー4Aの検出結果と地絡過電流リレー4Bの検出結果とに基づく所定条件を満足した場合に、遮断器3を開制御する。
The control device 6 is a device that controls the circuit breaker 3 based on the detection results of the ground fault overcurrent relay 4A and the detection result of the ground fault overcurrent relay 4B.
Specifically, the control device 6 controls the circuit breaker 3 to open when a predetermined condition based on the detection result of the ground fault overcurrent relay 4A and the detection result of the ground fault overcurrent relay 4B is satisfied.

図2は、制御装置6の構成例を示す図である。
図2に示すように、制御装置6は、条件判定部61と信号出力部62とを有する。
条件判定部61は、地絡過電流リレー4Aの検出結果と地絡過電流リレー4Bの検出結果とに基づく所定条件を満足したか否かを判定する機能部である。具体的に、条件判定部61は、地絡過電流リレー4Bが地絡電流を検出していない状態において、地絡過電流リレー4Aが地絡電流を検出した場合に所定条件を満足したと判定し、上記以外の場合に、所定条件を満足していないと判定する。
FIG. 2 is a diagram showing an example of the configuration of the control device 6. As shown in FIG.
As shown in FIG. 2, the control device 6 includes a condition determination section 61 and a signal output section 62.
The condition determining unit 61 is a functional unit that determines whether a predetermined condition is satisfied based on the detection result of the ground fault overcurrent relay 4A and the detection result of the ground fault overcurrent relay 4B. Specifically, the condition determining unit 61 determines that the predetermined condition is satisfied when the ground fault overcurrent relay 4A detects a ground fault current in a state where the ground fault overcurrent relay 4B does not detect a ground fault current, In cases other than the above, it is determined that the predetermined condition is not satisfied.

信号出力部62は、条件判定部61の判定結果に基づいて、各遮断器3の開制御するための制御信号を出力する。具体的に、信号出力部62は、条件判定部61が所定条件を満足したと判定した場合に、各遮断器3の開制御(遮断)を指示する制御信号を出力する。 The signal output section 62 outputs a control signal for controlling the opening of each circuit breaker 3 based on the determination result of the condition determination section 61. Specifically, the signal output unit 62 outputs a control signal instructing opening control (breaking) of each circuit breaker 3 when the condition determining unit 61 determines that the predetermined condition is satisfied.

ここで、制御装置6は、例えば、CPU等のプロセッサが各種メモリに記憶されたプログラムにしたがってデータ処理を行うプログラム処理装置を含む電子機器によって実現してもよいし、専用ロジック回路等を含む電子機器によって実現してもよく、制御装置6のハードウェア構成は特に制限されない。 Here, the control device 6 may be realized, for example, by an electronic device including a program processing device in which a processor such as a CPU processes data according to programs stored in various memories, or by an electronic device including a dedicated logic circuit or the like. It may be realized by a device, and the hardware configuration of the control device 6 is not particularly limited.

図3Aは、地絡過電流リレー4A,4Bの検出結果に基づく遮断器3への制御出力を示す図である。同図において、“H”は地絡電流が検出されていることを表し、“L”は地絡電流が検出されていないことを表している。 FIG. 3A is a diagram showing the control output to the circuit breaker 3 based on the detection results of the ground fault overcurrent relays 4A and 4B. In the figure, "H" represents that a ground fault current is detected, and "L" represents that a ground fault current is not detected.

図3Aに示すように、制御装置6は、上述した条件判定部61および信号出力部62により、地絡過電流リレー4Aによって地絡電流が検出され(OCGR4A:H)、且つ地絡過電流リレー4Bによって地絡電流が検出されていない(OCGR4B:L)場合に、各遮断器3を開制御(遮断)して、変圧器1_1を一次側母線8および二次側母線7から切り離す。上記以外の場合には、制御装置6は、制御出力を行わない。すなわち、遮断器3は、閉状態が維持される。 As shown in FIG. 3A, the control device 6 detects that the ground fault current is detected by the ground fault overcurrent relay 4A (OCGR4A:H) by the condition determination unit 61 and the signal output unit 62, and that the ground fault current is detected by the ground fault overcurrent relay 4B. When a ground fault current is not detected (OCGR4B:L), each circuit breaker 3 is controlled to open (blocked) to disconnect the transformer 1_1 from the primary bus 8 and the secondary bus 7. In cases other than the above, the control device 6 does not perform control output. That is, the circuit breaker 3 is maintained in the closed state.

なお、制御装置6は、地絡過電流リレー4A,4Bの検出結果に加えて、中性点接地抵抗Rの接続の有無を所定条件に加えてもよい。すなわち、条件判定部61は、変圧器1_1に中性点接地抵抗Rが接続され、且つ地絡過電流リレー4Bが地絡電流を検出していない状態において、地絡過電流リレー4Aが地絡電流を検出した場合に所定条件を満足したと判定する。 In addition to the detection results of the ground fault overcurrent relays 4A and 4B, the control device 6 may also include the presence or absence of connection of the neutral point grounding resistor R as a predetermined condition. That is, the condition determination unit 61 determines whether the ground fault overcurrent relay 4A detects a ground fault current when the neutral point grounding resistor R is connected to the transformer 1_1 and the ground fault overcurrent relay 4B is not detecting a ground fault current. If detected, it is determined that the predetermined condition is satisfied.

これによれば、図3Bに示すように、制御装置6は、中性点接地抵抗Rが変圧器1_1の二次側に接続されている状態において、地絡過電流リレー4Aによって地絡電流が検出され(OCGR4A:H)、且つ地絡過電流リレー4Bによって地絡電流が検出されていない(OCGR4B:L)場合に、遮断器3を開制御(遮断)して、変圧器1_1を母線8および送電線7から切り離す。 According to this, as shown in FIG. 3B, the control device 6 detects a ground fault current by the ground fault overcurrent relay 4A in a state where the neutral point grounding resistor R is connected to the secondary side of the transformer 1_1. (OCGR4A:H) and no ground fault current is detected by the ground fault overcurrent relay 4B (OCGR4B:L), the circuit breaker 3 is controlled to open (blocked) and the transformer 1_1 is connected to the bus 8 and the transmission line. Disconnect from wire 7.

次に、保護装置10の具体的な動作について説明する。
図4、図5は、本実施の形態に係る保護装置10の動作を説明するための図である。
Next, the specific operation of the protection device 10 will be explained.
4 and 5 are diagrams for explaining the operation of the protection device 10 according to this embodiment.

図4に示すように、変圧器1_1,1_2の並列運転中に、中性点接地抵抗Rが接続された変圧器1_1の二次側で地絡事故が発生した場合を考える。 As shown in FIG. 4, consider a case where a ground fault occurs on the secondary side of transformer 1_1 to which neutral point grounding resistor R is connected during parallel operation of transformers 1_1 and 1_2.

この場合、地絡電流は、図4に示すように、グラウンドから変圧器1_1の二次側の中性点接地抵抗Rを経由して地絡点Eに流れ込む。
このとき、変圧器1_1(保護装置10_1)側では、電流検出器CT1によって地絡電流が検出されるため、地絡過電流リレー4Aは、地絡電流が検出されたことを示す検出結果(H)を制御装置6に出力する。一方で、地絡電流は二次側母線7には流れ込まないため、保護装置10_1側の電流検出器CT2は地絡電流を検出しない。そのため、地絡過電流リレー4Bは、地絡電流が検出されていないこと(L)を制御装置6に出力する。このとき、地絡方向リレー2は、電流検出器CT2によって地絡電流が検出されていないため、開制御(遮断)を指示する制御信号を遮断器3に引き続き出力しない。
In this case, as shown in FIG. 4, the ground fault current flows from the ground to the ground fault point E via the neutral point grounding resistance R on the secondary side of the transformer 1_1.
At this time, on the transformer 1_1 (protective device 10_1) side, a ground fault current is detected by the current detector CT1, so the ground fault overcurrent relay 4A outputs a detection result (H) indicating that a ground fault current has been detected. is output to the control device 6. On the other hand, since the ground fault current does not flow into the secondary bus 7, the current detector CT2 on the protection device 10_1 side does not detect the ground fault current. Therefore, the ground fault overcurrent relay 4B outputs to the control device 6 that the ground fault current is not detected (L). At this time, the ground fault direction relay 2 does not continue to output a control signal instructing opening control (blocking) to the circuit breaker 3 because the ground fault current is not detected by the current detector CT2.

保護装置10_1側の制御装置6は、地絡過電流リレー4Aによって地絡電流が検出され(検出結果:H)、且つ地絡過電流リレー4Bによって地絡電流が検出されていない(検出結果:L)ことから、所定条件を満足していると判定し、遮断器3を開(オフ)制御する(図3A参照)。これにより、保護装置10_1側の各遮断器3が開制御(遮断)され、地絡事故が発生した変圧器1_1が一次側母線8および二次側母線7から切り離される。 The control device 6 on the protection device 10_1 side detects that the ground fault current is detected by the ground fault overcurrent relay 4A (detection result: H), and that the ground fault current is not detected by the ground fault overcurrent relay 4B (detection result: L). Therefore, it is determined that the predetermined condition is satisfied, and the circuit breaker 3 is controlled to open (off) (see FIG. 3A). As a result, each circuit breaker 3 on the protection device 10_1 side is controlled to open (cut off), and the transformer 1_1 in which the ground fault has occurred is separated from the primary bus 8 and the secondary bus 7.

一方、変圧器1_2(保護装置10_2)側では、地絡電流が流れないため、保護装置10_2側の各遮断器3の閉状態(接続)が維持され、変圧器1_2から二次側母線7への電力供給が継続される。 On the other hand, since no ground fault current flows on the transformer 1_2 (protective device 10_2) side, the closed state (connection) of each circuit breaker 3 on the protective device 10_2 side is maintained, and from the transformer 1_2 to the secondary bus 7. Electricity supply will continue.

したがって、保護装置10_1,10_2によれば、図4に示すように複数の変圧器の並列運転中に中性点接地抵抗が接続されている変圧器側において地絡事故が発生した場合であっても、地絡事故が発生した変圧器を一次側母線8および二次側母線7から確実に切り離し、且つ地絡事故が発生していない変圧器から二次側母線7への電力供給を継続することが可能となる。 Therefore, according to the protection devices 10_1 and 10_2, when a ground fault occurs on the transformer side to which the neutral point grounding resistor is connected during parallel operation of multiple transformers as shown in FIG. Also, the transformer in which the ground fault has occurred is reliably separated from the primary bus 8 and the secondary bus 7, and power is continued to be supplied to the secondary bus 7 from the transformer in which the ground fault has not occurred. becomes possible.

次に、図5に示すように、変圧器1_1,1_2の並列運転中に、中性点接地抵抗Rが接続されていない変圧器1_2の二次側で地絡事故が発生した場合を考える。 Next, as shown in FIG. 5, consider a case where, during parallel operation of transformers 1_1 and 1_2, a ground fault occurs on the secondary side of transformer 1_2 to which neutral point grounding resistor R is not connected.

この場合、地絡電流は、図5に示すように、グラウンドから、変圧器1_1の二次側の中性点接地抵抗R、保護装置10_1側の遮断器3、二次側母線7、および保護装置10_2側の遮断器3を経由して、地絡点Eに流れ込む。
このとき、変圧器1_2(保護装置10_2)側では、電流検出器CT2によって地絡電流が検出されるため、地絡過電流リレー4Bが、地絡電流が検出されたことを示す検出結果(H)を制御装置6に出力する。その一方で、変圧器1_2には中性点接地抵抗Rが接続されていないため、変圧器1_2の中性点を経由して地絡点Eに流れ込む地絡電流は発生しない。そのため、保護装置10_2側の電流検出器CT1によって地絡電流は検出されず、地絡過電流リレー4Aは、地絡電流が検出されていないことを示す検出結果(L)を制御装置6に出力する。保護装置10_2側の制御装置6は、地絡過電流リレー4Aによって地絡電流が検出されず(検出結果:L)、且つ地絡過電流リレー4Bによって地絡電流が検出されている(検出結果:H)ことから、所定条件を満足していないと判定し、遮断器3に対し開制御(遮断)を指示する制御信号を出力しない(図3A参照)。
In this case, as shown in FIG. It flows into the ground fault point E via the circuit breaker 3 on the device 10_2 side.
At this time, on the transformer 1_2 (protective device 10_2) side, the ground fault current is detected by the current detector CT2, so the ground fault overcurrent relay 4B outputs a detection result (H) indicating that the ground fault current has been detected. is output to the control device 6. On the other hand, since the neutral point grounding resistor R is not connected to the transformer 1_2, no ground fault current flows into the ground fault point E via the neutral point of the transformer 1_2. Therefore, the ground fault current is not detected by the current detector CT1 on the protection device 10_2 side, and the ground fault overcurrent relay 4A outputs a detection result (L) indicating that no ground fault current is detected to the control device 6. . The control device 6 on the protection device 10_2 side detects that the ground fault current is not detected by the ground fault overcurrent relay 4A (detection result: L), and the ground fault current is detected by the ground fault overcurrent relay 4B (detection result: H ), it is determined that the predetermined condition is not satisfied, and a control signal instructing the circuit breaker 3 to open (block) is not output (see FIG. 3A).

また、図5に示すように、保護装置10_2側の電流検出器CT2は、二次側母線7側から変圧器1_2の二次側に向かって流れる地絡電流を検出する。これにより、保護装置10_2側の地絡方向リレー2が開制御(遮断)を指示する制御信号を保護装置10_2側の各遮断器3に出力する。これにより、保護装置10_2側の各遮断器3が開制御(遮断)され、地絡事故が発生した変圧器1_2を一次側母線8および二次側母線7から切り離すことができる。 Moreover, as shown in FIG. 5, the current detector CT2 on the protection device 10_2 side detects the ground fault current flowing from the secondary side bus 7 side toward the secondary side of the transformer 1_2. Thereby, the ground fault direction relay 2 on the protection device 10_2 side outputs a control signal instructing opening control (cutoff) to each circuit breaker 3 on the protection device 10_2 side. As a result, each circuit breaker 3 on the protection device 10_2 side is controlled to open (cut off), and the transformer 1_2 in which the ground fault has occurred can be separated from the primary bus 8 and the secondary bus 7.

一方、変圧器1_1(保護装置10_1)側では、電流検出器CT2によって地絡電流が検出されるため、地絡過電流リレー4Bが、地絡電流が検出されたことを示す検出結果(H)を制御装置6に出力する。また、電流検出器CT1によって地絡電流が検出されるため、地絡過電流リレー4Aが、地絡電流が検出されたことを示す検出結果(H)を制御装置6に出力する。保護装置10_1側の制御装置6は、地絡過電流リレー4Aによって地絡電流が検出され(検出結果:H)、且つ地絡過電流リレー4Bによって地絡電流が検出された(検出結果:H)ことから、所定条件を満足していないと判定し、遮断器3の開制御(遮断)を指示する制御信号を出力しない(図3A参照)。 On the other hand, on the transformer 1_1 (protective device 10_1) side, since a ground fault current is detected by the current detector CT2, the ground fault overcurrent relay 4B sends a detection result (H) indicating that a ground fault current has been detected. Output to the control device 6. Furthermore, since the ground fault current is detected by the current detector CT1, the ground fault overcurrent relay 4A outputs a detection result (H) indicating that the ground fault current has been detected to the control device 6. The control device 6 on the protection device 10_1 side detects that the ground fault current is detected by the ground fault overcurrent relay 4A (detection result: H), and that the ground fault current is detected by the ground fault overcurrent relay 4B (detection result: H). Therefore, it is determined that the predetermined condition is not satisfied, and a control signal instructing opening control (cutting) of the circuit breaker 3 is not output (see FIG. 3A).

また、図5に示すように、保護装置10_1側の電流検出器CT2によって検出される地絡電流は、二次側母線7側から変圧器1_1の二次側に向かって流れる電流ではない。そのため、保護装置10_1側の地絡方向リレー2は、開制御(遮断)を指示する制御信号を出力しない。
これにより、保護装置10_1側の各遮断器3は閉状態(接続)が維持され、変圧器1_1から二次側母線7への電力供給が継続される。
Moreover, as shown in FIG. 5, the ground fault current detected by the current detector CT2 on the protection device 10_1 side is not a current flowing from the secondary side bus 7 side toward the secondary side of the transformer 1_1. Therefore, the earth fault direction relay 2 on the protection device 10_1 side does not output a control signal instructing opening control (blocking).
As a result, each circuit breaker 3 on the protection device 10_1 side is maintained in a closed state (connected), and power supply from the transformer 1_1 to the secondary bus 7 is continued.

したがって、保護装置10_1,10_2によれば、図5に示すように複数の変圧器の並列運転中に中性点接地抵抗が接続されていない変圧器側において地絡事故が発生した場合であっても、地絡事故が発生した変圧器を一次側母線8および二次側母線7から確実に切り離し、且つ地絡事故が発生していない変圧器から二次側母線7への電力供給を継続することが可能となる。 Therefore, according to the protection devices 10_1 and 10_2, as shown in FIG. 5, when a ground fault occurs on the transformer side to which the neutral point grounding resistor is not connected during parallel operation of multiple transformers, Also, the transformer in which the ground fault has occurred is reliably separated from the primary bus 8 and the secondary bus 7, and power is continued to be supplied to the secondary bus 7 from the transformer in which the ground fault has not occurred. becomes possible.

以上、本実施の形態に係る保護装置10は、変圧器1の中性点接地抵抗Rに流れる地絡電流を検出する地絡過電流リレー4Aと、変圧器1と電線(二次側母線7)との間の接続と遮断を切り替える遮断器3と、電線(二次側母線7)に流れる地絡電流を検出する地絡過電流リレー4Bと、地絡過電流リレー4Aの検出結果と地絡過電流リレー4Bの検出結果とに基づく所定条件を満足した場合に遮断器3を開制御する制御装置6と、を備えている。 As described above, the protection device 10 according to the present embodiment includes the ground fault overcurrent relay 4A that detects the ground fault current flowing through the neutral point grounding resistance R of the transformer 1, and the transformer 1 and the electric wire (secondary side bus bar 7). The circuit breaker 3 that switches connection and disconnection between the circuit breaker 3, the ground fault overcurrent relay 4B that detects the ground fault current flowing in the electric wire (secondary side bus 7), and the detection results of the ground fault overcurrent relay 4A and the ground fault overcurrent relay The control device 6 controls opening of the circuit breaker 3 when a predetermined condition based on the detection result of the circuit breaker 4B is satisfied.

保護装置10によれば、中性点接地抵抗Rが接続された変圧器1が中性点接地抵抗Rが接続されていない他の変圧器1と並列運転を行っているときに、中性点接地抵抗Rが接続されている変圧器1側で地絡事故が発生した場合であっても、上述したように、地絡事故が発生した変圧器1を一次側母線8および二次側母線7から確実に切り離し、且つ地絡事故が発生していない他の変圧器から二次側母線7への電力供給を継続することが可能となる。 According to the protection device 10, when the transformer 1 to which the neutral point grounding resistance R is connected is operating in parallel with another transformer 1 to which the neutral point grounding resistance R is not connected, the neutral point Even if a ground fault occurs on the transformer 1 side to which the grounding resistor R is connected, as described above, the transformer 1 where the ground fault has occurred is connected to the primary bus 8 and the secondary bus 7. It becomes possible to reliably disconnect from the transformer and continue supplying power to the secondary bus 7 from other transformers in which no ground fault has occurred.

具体的に、保護装置10の制御装置6は、地絡過電流リレー4Bが地絡電流を検出していない状態において地絡過電流リレー4Aが地絡電流を検出した場合に所定条件を満足したと判定し、遮断器3を開制御(遮断)する。 Specifically, the control device 6 of the protection device 10 determines that the predetermined condition is satisfied when the ground fault overcurrent relay 4A detects a ground fault current while the ground fault overcurrent relay 4B does not detect a ground fault current. Then, the circuit breaker 3 is controlled to open (cut off).

これによれば、地絡事故が発生していない変圧器を遮断することなく、地絡事故が発生した変圧器のみを確実に遮断することが可能となる。
例えば、仮に、制御装置6が、地絡過電流リレー4Bの検出結果を考慮せず、地絡過電流リレー4Aの検出結果のみに基づいて遮断器3の開閉制御を行う場合について考える。この場合において、例えば、中性点接地抵抗Rが接続されていない変圧器1_2側において地絡事故が発生したとき、上述した図5に示す経路で地絡電流が流れるため、変圧器1_1側の地絡過電流リレー4Aが地絡電流を検出したこと示す検出結果を制御装置6に出力する。制御装置6は、制御装置6から出力された検出結果のみに基づいて、遮断器3を開制御(遮断)する。これにより、地絡事故が発生していない変圧器1_1も一次側母線8および二次側母線7から切り離され、二次側母線7への電力供給が停止してしまう。
According to this, it is possible to reliably shut off only the transformer where a ground fault has occurred, without shutting off transformers where no ground fault has occurred.
For example, let us consider a case where the control device 6 performs opening/closing control of the circuit breaker 3 based only on the detection result of the ground fault overcurrent relay 4A without considering the detection result of the ground fault overcurrent relay 4B. In this case, for example, when a ground fault occurs on the transformer 1_2 side to which the neutral grounding resistor R is not connected, the ground fault current flows through the path shown in FIG. The ground fault overcurrent relay 4A outputs a detection result indicating that the ground fault current has been detected to the control device 6. The control device 6 controls opening (blocking) of the circuit breaker 3 based only on the detection result output from the control device 6 . As a result, the transformer 1_1 in which no ground fault has occurred is also disconnected from the primary bus 8 and the secondary bus 7, and power supply to the secondary bus 7 is stopped.

このように、中性点接地抵抗Rに流れる地絡電流を検出する地絡過電流リレー4Aの検出結果のみに基づいて遮断器3の開制御を行った場合、地絡事故が発生した変圧器1のみならず、地絡事故が発生していない変圧器1も遮断されてしまうため、変電所100から二次側母線7への電力供給が完全に停止してしまう。 In this way, when the circuit breaker 3 is controlled to open based only on the detection result of the ground fault overcurrent relay 4A that detects the ground fault current flowing through the neutral grounding resistor R, the transformer 1 where the ground fault has occurred is Not only that, the transformer 1 in which no ground fault has occurred is also cut off, so that the power supply from the substation 100 to the secondary bus 7 is completely stopped.

これに対し、本実施の形態に係る保護装置10によれば、地絡過電流リレー4Aの検出結果のみならず、二次側母線7に流れる地絡電流を検出する地絡過電流リレー4Bの検出結果も考慮して遮断器3の開制御を行うので、地絡事故が発生した変圧器1のみを確実に遮断した上で、地絡事故が発生していない変圧器1から二次側母線7への電力供給を確実に継続することが可能となる。 In contrast, according to the protection device 10 according to the present embodiment, not only the detection result of the ground fault overcurrent relay 4A but also the detection result of the ground fault overcurrent relay 4B that detects the ground fault current flowing to the secondary bus 7 Since the opening control of the circuit breaker 3 is carried out in consideration of the This makes it possible to reliably continue the power supply.

また、本実施の形態に係る保護装置10において、地絡過電流リレー4A,4Bの検出結果に加えて、中性点接地抵抗Rの接続の有無を、遮断器3の開制御のための所定条件に加えてもよい。すなわち、制御装置6は、変圧器1_1に中性点接地抵抗Rが接続され、且つ地絡過電流リレー4Bが地絡電流を検出していない状態において、地絡過電流リレー4Aが地絡電流を検出した場合に所定条件を満足したと判定し、遮断器3を開制御する。 Furthermore, in the protective device 10 according to the present embodiment, in addition to the detection results of the ground fault overcurrent relays 4A and 4B, the presence or absence of the connection of the neutral point grounding resistor R is determined as a predetermined condition for controlling the opening of the circuit breaker 3. May be added to. That is, in a state where the neutral point grounding resistor R is connected to the transformer 1_1 and the ground fault overcurrent relay 4B is not detecting a ground fault current, the control device 6 causes the ground fault overcurrent relay 4A to detect a ground fault current. If this happens, it is determined that the predetermined condition is satisfied, and the circuit breaker 3 is controlled to open.

これによれば、中性点接地抵抗Rが接続されていないにも関わらず、地絡過電流リレー4Aが誤検出して、地絡過電流リレー4A,4Bの検出結果に基づく所定条件を満足する状況が発生したとしても、遮断器3が誤って遮断されることを防止することが可能となる。 According to this, even though the neutral point grounding resistor R is not connected, the ground fault overcurrent relay 4A makes a false detection and the predetermined conditions based on the detection results of the ground fault overcurrent relays 4A and 4B are satisfied. Even if this occurs, it is possible to prevent the circuit breaker 3 from being erroneously shut off.

以上、本実施の形態に係る保護装置10によれば、複数の変圧器が並列運転される変電所において地絡事故を確実に検出することが可能となるので、地絡事故が発生した場合に、その事故原因の特定および除去の遅れや停電範囲の拡大を防止することが可能となる。 As described above, according to the protection device 10 according to the present embodiment, it is possible to reliably detect a ground fault in a substation where a plurality of transformers are operated in parallel, so that when a ground fault occurs, , it becomes possible to prevent delays in identifying and eliminating the cause of the accident and an expansion of the power outage range.

≪実施の形態の拡張≫
以上、本発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
≪Expansion of the embodiment≫
As above, the invention made by the present inventors has been specifically explained based on the embodiments, but it goes without saying that the present invention is not limited thereto and can be modified in various ways without departing from the gist thereof. stomach.

例えば、上記実施の形態では、地絡電流検出リレー4Bが地絡過電流リレーである場合を例示したが、これに限られない。例えば、地絡電流検出リレー4Bとして、地絡過電流リレーの代わりに地絡方向リレー(DGR)を用いてもよい。例えば、図1において、地絡電流検出リレー4Bとして、地絡過電流リレー(OCGR)に代えて地絡方向リレー(DGR)を設ける。この場合、地絡電流検出リレー4Bとしての地絡方向リレーは、変圧器1_1側から二次側母線7側に流れる地絡電流を検出する。制御装置6は、地絡電流検出リレー4Aとしての地絡過電流リレー(OCGR)の検出結果と地絡電流検出リレー4Bとしての地絡方向リレー(DGR)の検出結果に基づく所定条件を満足した場合に、遮断器3を開制御する。 For example, in the above embodiment, the case where the ground fault current detection relay 4B is a ground fault overcurrent relay is illustrated, but the present invention is not limited to this. For example, a ground fault direction relay (DGR) may be used as the ground fault current detection relay 4B instead of the ground fault overcurrent relay. For example, in FIG. 1, a ground fault direction relay (DGR) is provided as the ground fault current detection relay 4B instead of the ground fault overcurrent relay (OCGR). In this case, the ground fault direction relay serving as the ground fault current detection relay 4B detects the ground fault current flowing from the transformer 1_1 side to the secondary side bus 7 side. When the control device 6 satisfies a predetermined condition based on the detection result of the ground fault overcurrent relay (OCGR) as the ground fault current detection relay 4A and the detection result of the ground fault direction relay (DGR) as the ground fault current detection relay 4B. Then, the circuit breaker 3 is controlled to open.

また、上記実施の形態では、変圧器1_1,1_2が三相2巻線変圧器である場合を例示したが、三相3巻線変圧器であってもよい。例えば、変圧器1_1,1_2は、一次巻線および二次巻線がY結線、三次巻線がΔ結線の三相3巻線変圧器であってもよい。この場合も二次巻線側の中性点に中性点接地抵抗Rが接続可能にされる。 Further, in the above embodiment, the transformers 1_1 and 1_2 are three-phase two-winding transformers, but they may be three-phase three-winding transformers. For example, the transformers 1_1 and 1_2 may be three-phase, three-winding transformers in which the primary and secondary windings are Y-connected and the tertiary winding is Δ-connected. In this case as well, the neutral point grounding resistor R can be connected to the neutral point on the secondary winding side.

また、上記実施の形態では、変圧器1_1,1_2の二次側の地絡事故を検出するように保護装置10を構成する場合を例示したが、変圧器1_1,1_2の一次側の地絡事故を検出するように保護装置10を構成してもよい。 In addition, in the above embodiment, the protection device 10 is configured to detect a ground fault on the secondary side of the transformers 1_1, 1_2, but a ground fault on the primary side of the transformers 1_1, 1_2 The protection device 10 may be configured to detect.

また、上記実施の形態において、保護装置10は、所定条件を満足した状態が所定期間継続した場合に、遮断器3を開制御(遮断)してもよい。例えば、図6に示す制御装置6Aのように、条件判定部61と信号出力部62との間にタイマ63を更に設けてもよい。タイマ63は、条件判定部61が所定条件を満足したと判定した状態が所定期間、継続した場合に、信号出力部62に対して、各遮断器3の開制御を指示する制御信号を出力させる。
これによれば、例えば地絡事故以外の別の原因で、地絡過電流リレー4A,4Bの検出結果に基づく所定条件を満足する状況が一時的に発生した場合に、遮断器3が誤って開制御されて変圧器1が遮断されてしまうことを防止することが可能となる。
Further, in the embodiment described above, the protection device 10 may control the circuit breaker 3 to open (shut off) when a state in which a predetermined condition is satisfied continues for a predetermined period of time. For example, as in a control device 6A shown in FIG. 6, a timer 63 may be further provided between the condition determination section 61 and the signal output section 62. The timer 63 causes the signal output unit 62 to output a control signal instructing the opening control of each circuit breaker 3 when the condition determination unit 61 determines that a predetermined condition is satisfied continues for a predetermined period. .
According to this, for example, if a situation that satisfies a predetermined condition based on the detection results of the ground fault overcurrent relays 4A and 4B temporarily occurs due to another cause other than a ground fault accident, the circuit breaker 3 may open by mistake. It becomes possible to prevent the transformer 1 from being cut off due to the controlled operation.

1,1_1,1_2…変圧器、2…地絡方向リレー(DGR)、3…遮断器、4A…(第1)地絡過電流リレー(OCGR)、4B…(第2)地絡過電流リレー(OCGR)、6,6A…制御装置(CNTR)、7…二次側母線、8…一次側母線、9…発電設備(発電所)、10,10_1~10_n…保護装置、61…条件判定部、62…信号出力部、63…タイマ、100…変電所、CT1,CT2…電流検出器(変流器)、E…地絡点、R…中性点接地抵抗。 1, 1_1, 1_2...Transformer, 2...Ground fault directional relay (DGR), 3...Breaker, 4A...(1st) Ground fault overcurrent relay (OCGR), 4B...(2nd) Ground fault overcurrent relay (OCGR) ), 6, 6A...Control device (CNTR), 7...Secondary side bus, 8...Primary side bus, 9...Power generation equipment (power plant), 10,10_1 to 10_n...Protective device, 61...Condition determination section, 62 ...Signal output unit, 63...Timer, 100...Substation, CT1, CT2...Current detector (current transformer), E...Grounding point, R...Neutral point grounding resistance.

Claims (3)

変圧器の中性点とグラウンドとの間に接続された中性点接地抵抗に流れる地絡電流を検出する第1地絡電流検出リレーと、
前記変圧器と母線との間の接続と遮断を切り替える遮断器と、
前記母線に流れる地絡電流を検出する第2地絡電流検出リレーと、
前記第1地絡電流検出リレーの検出結果と前記第2地絡電流検出リレーの検出結果に基づく所定条件を満足した場合に、前記遮断器を開制御する制御装置と、を備え
前記制御装置は、前記第1地絡電流検出リレーが地絡電流を検出している状態において、前記第2地絡電流検出リレーが地絡電流を検出していない場合に前記所定条件を満足したと判定し、前記遮断器を開制御する
ことを特徴とする保護装置。
a first ground fault current detection relay that detects a ground fault current flowing through a neutral point grounding resistor connected between the neutral point of the transformer and the ground;
a circuit breaker that switches connection and disconnection between the transformer and the busbar;
a second ground fault current detection relay that detects a ground fault current flowing in the bus bar;
a control device that controls opening of the circuit breaker when a predetermined condition based on the detection result of the first ground fault current detection relay and the detection result of the second ground fault current detection relay is satisfied ;
The control device satisfies the predetermined condition when the second ground fault current detection relay is not detecting a ground fault current while the first ground fault current detection relay is detecting a ground fault current. and controls the circuit breaker to open.
A protective device characterized by:
変圧器の中性点とグラウンドとの間に接続された中性点接地抵抗に流れる地絡電流を検出する第1地絡電流検出リレーと、
前記変圧器と母線との間の接続と遮断を切り替える遮断器と、
前記母線に流れる地絡電流を検出する第2地絡電流検出リレーと、
前記第1地絡電流検出リレーの検出結果と前記第2地絡電流検出リレーの検出結果に基づく所定条件を満足した場合に、前記遮断器を開制御する制御装置と、を備え、
前記制御装置は、前記変圧器に前記中性点接地抵抗が接続され、且つ前記第1地絡電流検出リレーが地絡電流を検出した状態において、前記第2地絡電流検出リレーが地絡電流を検出していない場合に前記所定条件を満足したと判定し、前記遮断器を開制御する
ことを特徴とする保護装置。
a first ground fault current detection relay that detects a ground fault current flowing through a neutral point grounding resistor connected between the neutral point of the transformer and the ground;
a circuit breaker that switches connection and disconnection between the transformer and the busbar;
a second ground fault current detection relay that detects a ground fault current flowing in the bus bar;
a control device that controls opening of the circuit breaker when a predetermined condition based on the detection result of the first ground fault current detection relay and the detection result of the second ground fault current detection relay is satisfied;
The control device is configured such that when the neutral point grounding resistor is connected to the transformer and the first ground fault current detection relay detects a ground fault current, the second ground fault current detection relay detects a ground fault current. A protection device characterized in that if the predetermined condition is not detected, it is determined that the predetermined condition is satisfied, and the circuit breaker is controlled to open.
請求項1または2に記載の保護装置において、
前記制御装置は、前記所定条件を満足した状態が所定期間継続した場合に、前記遮断器を開制御する
ことを特徴とする保護装置。
The protective device according to claim 1 or 2 ,
The protection device is characterized in that the control device controls opening of the circuit breaker when a state in which the predetermined condition is satisfied continues for a predetermined period of time.
JP2019063903A 2019-03-28 2019-03-28 protection device Active JP7347952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019063903A JP7347952B2 (en) 2019-03-28 2019-03-28 protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019063903A JP7347952B2 (en) 2019-03-28 2019-03-28 protection device

Publications (2)

Publication Number Publication Date
JP2020167774A JP2020167774A (en) 2020-10-08
JP7347952B2 true JP7347952B2 (en) 2023-09-20

Family

ID=72717479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019063903A Active JP7347952B2 (en) 2019-03-28 2019-03-28 protection device

Country Status (1)

Country Link
JP (1) JP7347952B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600162B (en) * 2020-12-21 2023-02-03 广东电网有限责任公司 Operation control method and device for changing medium band to low band of three-winding transformer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074866A (en) 2008-09-16 2010-04-02 Meidensha Corp Grounding fault sequence breaker

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276672A (en) * 1993-03-17 1994-09-30 Fuji Electric Co Ltd Method for sensing and isolating groud fault

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074866A (en) 2008-09-16 2010-04-02 Meidensha Corp Grounding fault sequence breaker

Also Published As

Publication number Publication date
JP2020167774A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP5466302B2 (en) System and method for a multiphase ground fault circuit breaker
US6937453B2 (en) Directional comparison distance relay system
KR100920113B1 (en) OCGR protection algorithm for preventing mal-operation by Reverse power
JP2000188825A (en) Grounding system and protective system for incoming and distributing facility
JP2007209151A (en) Loop operational system in electrical distribution system and method
JP7347952B2 (en) protection device
JPS5810934B2 (en) Ground fault detection device
JP2012075250A (en) Insulation ground fault monitoring device with adoption lock
Perera et al. Application considerations when protecting lines with tapped and in-line transformers
Guzmán et al. Reliable busbar and breaker failure protection with advanced zone selection
JP2011199954A (en) Backup ground-fault protection device of reactor grounding power distribution system
JPS6355297B2 (en)
RU2695643C1 (en) Method of transforming power supply systems tn-cs and tt and power supply system for implementing method with protective input heterogeneous communication switching device
Duong et al. Bus protection a new and reliable approach
JPS605727A (en) Defect current breaking system
JPH0510512Y2 (en)
JP2024015626A (en) Distributed power distribution system and control method for distributed power distribution system
JP3843663B2 (en) Protection relay device
JPH0210770Y2 (en)
JP3641567B2 (en) Ground fault protection device for distribution substation
JPH0210654B2 (en)
JPS6347052B2 (en)
JPH04210727A (en) Protecting device for power distribution system
JPH0583844A (en) Distance relay unit
JPH02280618A (en) Protective relay device with countermeasure function to immobility of circuit breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230907

R150 Certificate of patent or registration of utility model

Ref document number: 7347952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150