JPS63287322A - Relay for detecting ground fault section in distribution line - Google Patents

Relay for detecting ground fault section in distribution line

Info

Publication number
JPS63287322A
JPS63287322A JP62119866A JP11986687A JPS63287322A JP S63287322 A JPS63287322 A JP S63287322A JP 62119866 A JP62119866 A JP 62119866A JP 11986687 A JP11986687 A JP 11986687A JP S63287322 A JPS63287322 A JP S63287322A
Authority
JP
Japan
Prior art keywords
section
signal
fault
ground fault
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62119866A
Other languages
Japanese (ja)
Other versions
JPH071979B2 (en
Inventor
Minoru Kitagawa
稔 北川
Kazuhiro Sawara
佐原 一弘
Hideto Kawazoe
川副 秀人
Tatsumi Ikeda
池田 龍美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Togami Electric Mfg Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Togami Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Togami Electric Mfg Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP62119866A priority Critical patent/JPH071979B2/en
Publication of JPS63287322A publication Critical patent/JPS63287322A/en
Publication of JPH071979B2 publication Critical patent/JPH071979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To separate fault section without interrupting power supply to sound sections by producing two types of signals with different timing according as a ground fault occurs on power source side or load side of a section switch. CONSTITUTION:A zero phase current detector 81 and a zero phase voltage detector 82 are arranged at each installing point of section switch. Detected values are taken into CPU85 which judges whether ground fault has occurred at power source side or load side based on the levels and the phases of zero phase current and voltage. When ground fault has occurred at power source side, signals OB, IA having different timings are produced while when ground fault has occurred at load side, signals OA, IB having different timings are produced. Then the signals are operated logically in order to detect fault section quickly and separate the fault section without interrupting power supply to sound sections.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高圧配電線において、地絡事故検出時にその
事故が保護区間内の事故であるかどうかを検出し、健全
区間を停電させることなく事故区間を他の健全区間と切
り離すために地絡事故発生方向を検出する継電器に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention detects whether or not a ground fault is within a protected area when a ground fault is detected in a high-voltage distribution line, and causes a power outage in a healthy area. This invention relates to a relay that detects the direction in which a ground fault occurs in order to separate the faulty section from other healthy sections.

〔従来の技術〕[Conventional technology]

電力供給の信頼性向上のため、従来より、配電線に事故
が生じた時に区分開閉器を順次投入して事故区間を自動
的に検出し、事故区間を切り離し、その後、事故区間以
降の区間については逆送電して他の健全区間に配電を行
うという、いわゆるDM方式が採用されている。
In order to improve the reliability of power supply, conventionally, when an accident occurs on a distribution line, sectional switches are turned on one after another to automatically detect the faulty section, disconnect the faulty section, and then switch on the sections after the faulty section. The so-called DM method is adopted, in which power is reversely transmitted and distributed to other healthy sections.

第5図はそのDM方式による配電系統のブロック図であ
る。DM方式の配電系統は、変電所SSの遮断器1−1
〜1−5、常閉区分開閉器2−1〜2−8.3−1゜4
−1.5−1.5−2、逆送融通用の常開区分開閉器2
−9゜2−10.2−11.前記遮断器1−1 によっ
て送電されている配電線路a、b、c、d、e、f、g
、h。
FIG. 5 is a block diagram of a power distribution system using the DM system. In the DM system distribution system, circuit breaker 1-1 of substation SS
~1-5, Normally closed section switch 2-1~2-8.3-1゜4
-1.5-1.5-2, Normally open section switch 2 for reverse transfer flexibility
-9°2-10.2-11. Distribution lines a, b, c, d, e, f, g that are transmitted by the circuit breaker 1-1
, h.

1、事故検出装置9及び前記各区分開閉器の事故区間検
出用制御装置7−1〜7−15により構成されている。
1. Consists of an accident detection device 9 and control devices 7-1 to 7-15 for detecting accident sections of the respective section switches.

従来においては、たとえば特公昭57−43021号公
報に記載された制御方法では、配電線路dに事故が発生
すると事故検出信号により変電所SSの遮断器1−1 
をトリップさせ、遮断器1−1 の再開路を待って電源
側より順次、区分開閉器2−1.2−2を投入し、次に
区分開閉器2−3 により事故区間を投入した時、再度
遮断器1−1 がトリップすることによって、事故区間
dの判定を行うというものである。
Conventionally, in the control method described in, for example, Japanese Patent Publication No. 57-43021, when an accident occurs on the distribution line d, an accident detection signal is used to activate the circuit breaker 1-1 of the substation SS.
tripped, and after waiting for circuit breaker 1-1 to restart, section switches 2-1, 2-2 were closed in sequence from the power supply side, and then section switch 2-3 was used to close the fault section. The fault zone d is determined by tripping the circuit breaker 1-1 again.

これにより、事故停電範囲1時間の縮小、短縮等の電力
供給信頼性が図られるようになった。
As a result, power supply reliability has been improved by reducing and shortening the one-hour accidental power outage range.

ご発明が解決しようとする問題点〕 しかしながら、この従来の方法の場合は、遮断器1−1
 のトリップ後、再度遮断器1−1 の再開路によって
事故区間を検出し、再々閉路により健全区間のみに送電
し、事故区間の電源側の区間a、  b。
Problems to be Solved by the Invention] However, in the case of this conventional method, the circuit breaker 1-1
After tripping, the fault section is detected by reopening circuit breaker 1-1, and power is transmitted only to the healthy section by closing circuit breaker 1-1 again, and the sections a and b on the power supply side of the fault section are connected.

C11には配電線1−1 より送電し、その後、負荷1
111の区間e、  f、  g、  hには配電線1
−4.1−5より逆送融通を行う必要があった。前記の
方法では、事故区間d以外の区間a、  b、  c、
  e、  f、  g。
Power is transmitted to C11 from distribution line 1-1, and then load 1
Distribution line 1 is installed in sections e, f, g, and h of 111.
-4. From 1-5, it was necessary to provide reverse transportation flexibility. In the above method, sections a, b, c, other than accident section d,
e, f, g.

h、lについても長時間の停電を伴うために電力安定供
給に支障を及ぼしている。
As for power outages h and l, they are also causing problems in stable power supply due to long-term power outages.

近年においては、OA、FA化が進展し、高度情報化社
会への変貌等から、短時間の停電であっても社会に与え
る影響が大となり、より高品質。
In recent years, with the advancement of OA and FA, and the transformation into a highly information-oriented society, even a short power outage has a large impact on society, resulting in higher quality products.

高信頼度の電力供給が要望されるようになった。There is a growing demand for highly reliable power supplies.

この要望は、事故発生から健全区間の配電に至るまでに
1〜2回の短時間の停電を伴うという従来のDM方式の
機能、性能では満足できず、新しい事故処理方式の開発
が要求されている。
This demand cannot be met with the functionality and performance of the conventional DM system, which involves one or two short power outages from the occurrence of an accident to the distribution of power to healthy sections, and requires the development of a new accident handling method. There is.

本発明は、このような社会的要求に鑑みてなされたもの
であり、事故区間をいち早く検出し、それが保護区間内
であるか否かを判定するための地絡事故発生方向信号を
発生する継電器を提供することを目的とする。
The present invention has been made in view of such social demands, and is designed to quickly detect an accident zone and generate a ground fault direction signal for determining whether or not it is within a protected zone. The purpose is to provide relays.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明の配電線地絡事故区間
検出用継電器は、配電用変電所母線、配電用遮断器、事
故検出装置1区分開閉器、逆送融通送電を行うための常
開区分開閉器及びそれら相互を接続する電線からなる配
電系統において、前記区分開閉器設置点における高圧配
電線の零相電圧及び零相電流のレベル及び位相に基づい
て、電源側の事故であるときにオン状態となる信号IA
In order to achieve this purpose, the relay for detecting a ground fault fault section of a distribution line of the present invention is applicable to a distribution substation busbar, a distribution circuit breaker, a fault detection device 1 section switch, and a normally open relay for performing reverse power interchange power transmission. In a power distribution system consisting of sectional switches and wires that connect them, when an accident occurs on the power supply side, based on the level and phase of the zero-sequence voltage and zero-sequence current of the high-voltage distribution line at the installation point of the sectional switch. Signal IA that turns on
.

負荷側の事故であるときにオン状態となる信号I8.同
じく負荷側の事故であるときにオン状態となり、前記信
号■8 が動作する前にオンとなる信号04及び電源側
の事故であるときにオン状態となり、前記信号IA が
動作する前にオンとなる信号OB という4つの信号を
発生する構成としたことを特徴とする。
Signal I8. which turns on when there is an accident on the load side. Similarly, signal 04 turns on when there is an accident on the load side and turns on before the signal 8 operates, and signal 04 turns on when there is an accident on the power supply side and turns on before the signal IA operates. The present invention is characterized in that it is configured to generate four signals, ie, signals OB.

ご実施例〕 以下、本発明を図面に示す実施例に基づいて具体的に説
明する。
Embodiments] The present invention will be specifically described below based on embodiments shown in the drawings.

第4図は、本発明が適用される配電線事故区間検出シス
テムの構成の一部を示すブロック図である。図において
、IOA、IOBはそれぞれ別の系統の変電所、 20
−1.・・・・、 20−3は常時は変電所10Aから
の送7のために投入されている常閉区分開閉器。
FIG. 4 is a block diagram showing a part of the configuration of a distribution line accident section detection system to which the present invention is applied. In the figure, IOA and IOB are substations of different systems, respectively.
-1. ..., 20-3 is a normally closed sectional switch that is normally turned on for the transmission 7 from the substation 10A.

20−4は常時は開いているが、他の変電所10Bから
の送電、すなわち逆送融通送電が必要な二きに投入する
常開区分開閉器である。各区分開閉器20−1〜20−
4にはそれぞれの開閉器を投入制御し、順次投入時に事
故区間を自動的に検出して切り離す機能を有する制御器
30−1〜30−4、過電流検出器、地絡方向継電器及
び親局50との通信回路が備えられており、区分開閉器
の設置点の配電線の零相電流及び零相電圧を監視するこ
とにより、地絡事故発生個所が区分開閉器設置点から見
て電源側か負荷側かを検出する機能を有するリレー子局
40−1〜4〇−4が設けられており、制御器30−1
〜30−4及びリレー子局40−1〜40−4からの指
令により各区分開閉器20−1〜20−4の投入、開放
を行う。親局50と各リレー子局40−1〜40−4間
は通信、転送投入用ケーブル60で接続されており、ま
た、隣接する区分開閉器設置個所のリレー子局同士は、
地絡区間検出用ケーブル70で接続されている。
Reference numeral 20-4 is a normally open section switch that is normally open, but is turned on whenever power transmission from another substation 10B, that is, reverse power interchange transmission is required. Each section switch 20-1 to 20-
4 includes controllers 30-1 to 30-4 that control the closing of each switch and have a function of automatically detecting and disconnecting the fault section when sequentially closing, an overcurrent detector, a ground fault direction relay, and a master station. By monitoring the zero-sequence current and zero-sequence voltage of the distribution line at the point where the sectional switch is installed, the system is equipped with a communication circuit with Relay slave stations 40-1 to 40-4 having a function of detecting whether the controller 30-1
- 30-4 and relay slave stations 40-1 to 40-4 to close and open each section switch 20-1 to 20-4. The master station 50 and each relay slave station 40-1 to 40-4 are connected by a communication and transfer input cable 60, and the relay slave stations at adjacent section switch installation locations are
They are connected by a ground fault section detection cable 70.

各区分開閉器20−1〜20−4にそれぞれ設置されて
いるリレー子局40の構成例を第1図に示す。配電線に
は、零相変流器ZCT、零相電圧検出器ZPD及び過電
流ロックのための過電流検出用変流器CTが設置されて
おり、その検出信号は、それぞれ零相電流検出・波形整
形回路81.零相電圧検出・波形整形回路82及び過電
流検出・波形整形回路83に人力される。これらの回路
81.82.83の出力lci 号はマイクロコンピュ
ータによるディジタル処理のため、ディジタル信号とし
て出力される。各信号は人出力インターフェース84を
通してCPU85に人力される。CP U85では、零
相電流及び零ト目電圧のレベルを検出するとともに、そ
れら零相電流の位相と零相電圧の位相とから、地絡事故
が各区分開閉器設置個所に対して電源側か負荷側かを判
定し、これを地絡発生方向信号として出力する。以下、
ある区分開閉器に対して電源側をA。
FIG. 1 shows an example of the configuration of relay slave stations 40 installed in each of the section switches 20-1 to 20-4. A zero-phase current transformer ZCT, a zero-phase voltage detector ZPD, and an overcurrent detection current transformer CT for overcurrent locking are installed on the distribution line. Waveform shaping circuit 81. The zero-phase voltage detection/waveform shaping circuit 82 and the overcurrent detection/waveform shaping circuit 83 are manually operated. The output lci of these circuits 81, 82, and 83 is output as a digital signal for digital processing by a microcomputer. Each signal is input to the CPU 85 through the input interface 84 . The CPU 85 detects the levels of the zero-sequence current and zero-sequence voltage, and uses the phase of the zero-sequence current and zero-sequence voltage to determine whether a ground fault is occurring on the power supply side for each section switch installation location. It determines whether it is on the load side and outputs this as a ground fault occurrence direction signal. below,
A for the power supply side for a certain sectional switch.

負荷側をBと呼ぶこととする。The load side will be called B.

本実施例においては、地絡発生方向信号として、A側で
あるという方向信号■□、B側゛であるという方向信号
111.A側でないという方向信号OA、’B側でない
という方向信号O6の4つの信号を各リレーの付勢信号
として出力することにしている。ここで、IA とOR
,In とOA とは、それぞれ同じ条件のときに出力
される信号であるが、それぞれ前者よりも後者の方が作
動レベルが低くなるように設定し、且つ速く作動するよ
うに感度設定している。第1図において、86はCPU
、85の動作プログラムを記憶するROM、87は人出
力インターフェース、88.89はそれぞれ制御器30
に内蔵された開閉器開放回路及び開閉器投入回路で、そ
れぞれCP U85より入出力インターフェース87を
経て開閉器開放信号及び開閉器投入信号が与えられる。
In this embodiment, the ground fault occurrence direction signals include a direction signal ■□ indicating that the ground fault is on the A side, and a direction signal 111 . Four signals are output as energizing signals for each relay: a direction signal OA indicating that it is not on the A side, and a direction signal O6 indicating that it is not on the B side. Here, IA and OR
, In and OA are signals that are output under the same conditions, but the latter is set to have a lower operating level than the former, and the sensitivity is set so that it operates faster. . In Figure 1, 86 is the CPU
, 85 is a ROM that stores operating programs, 87 is a human output interface, and 88 and 89 are controllers 30, respectively.
A switch open signal and a switch close signal are respectively provided from the CPU 85 via an input/output interface 87 to a switch open circuit and a switch close circuit built in the switch.

90は地絡区間検出用論理回路、91は書き替え可能な
ROMであり、零相電流、零相電圧等の動作レベルの設
定値等を記憶しておく不揮発性の外部メモリ、92は一
対の通信線を介して親局との通信及び地絡事故時の常開
区分開閉器投入指令信号を出力する通信回路である。前
記地絡区間検出用論理回路90は、自己の地絡方向信号
と隣接する区分開閉器の地絡方向信号との授受を行って
地絡区間検出を行い、地絡区間検出信号を発する。
90 is a logic circuit for detecting a ground fault section; 91 is a rewritable ROM, which is a nonvolatile external memory for storing operating level setting values such as zero-sequence current and zero-sequence voltage; and 92 is a pair of This is a communication circuit that communicates with the master station via a communication line and outputs a normally open sectional switch closure command signal in the event of a ground fault. The ground fault section detection logic circuit 90 performs ground fault section detection by transmitting and receiving its own ground fault direction signal and the ground fault direction signal of an adjacent section switch, and issues a ground fault section detection signal.

第2図は、このような地絡発生信号出力機能を備えたリ
レー子局の接続方法を示したものである。
FIG. 2 shows a method of connecting a relay slave station equipped with such a function of outputting a ground fault signal.

ここでは、配電線の第2区間に接続されている3つの区
分開閉器20−1〜20−3におけるリレー回路の接続
を示している。各リレー子局同士は、一対の信号ケーブ
ル70で接続されている。第2区間の接続に注目すると
、区分開閉器20−1のB側信号、区分開閉器20−2
の入側信号及び区分開閉器20−3のA側信号とが、リ
レーシーケンス回路で接続されている。この回路におい
て、FAI、  Pst(+ =1.2.3)は、それ
ぞれ直流定電流電源を示している。直流定電流電源を用
いるのは、実際の配電線に設置した場合、区分開閉器間
の距離は1〜2 kmに及ぶ。
Here, connections of relay circuits in three section switches 20-1 to 20-3 connected to the second section of the power distribution line are shown. Each relay slave station is connected by a pair of signal cables 70. Paying attention to the connections in the second section, the B side signal of section switch 20-1, section switch 20-2
The input side signal of the section switch 20-3 and the A side signal of the section switch 20-3 are connected by a relay sequence circuit. In this circuit, FAI and Pst (+ = 1.2.3) each indicate a DC constant current power supply. When a DC constant current power source is installed on an actual distribution line, the distance between sectional switches is 1 to 2 km.

このような長距離での信号授受は信号線の抵抗分が大き
く影響し、一般の定電圧電源では電圧降下部により不具
合が生じる。そこで、本実施例では、定電流電源を用い
て、信号線の抵抗分が大きくなっても一定の電流を供給
するようにして、確実に信号の授受が行われるように考
慮している。
Signal transmission and reception over such long distances is greatly affected by the resistance of the signal line, and in general constant voltage power supplies, problems occur due to voltage drop sections. Therefore, in this embodiment, a constant current power supply is used to supply a constant current even if the resistance of the signal line increases, so that signals can be reliably exchanged.

いま、配電線の第2区間において地絡事故が発生した場
合、第1図のブロック図において説明したように、区分
開閉器20−1のリレー子局40−1においては、B方
向における事故であるので、リレー接点1111及びO
A+が閉じる。同時に、区分開閉器20−2については
、六方向における事故であるので、IA2及び0112
が閉じる。さらに、区分開閉器2o−3のリレー子局に
ついては、同様にtA3及びOR3が閉じる。接点11
+1.  IA2及びIA3が閉じる止、各区分開閉器
のトリップリレーT B I I T A 2及びIA
3が各定電流電源Pad、  PA2及びpa3の電源
で励磁され、区分開閉器20−1.20−2及び20−
3を開放させる。この場合、接点1811 1A2及び
IA3の何れか1つが閉じれば、トリップリレーT B
 + 、  T A 2及びTAjの全部が励磁され、
電源PBl+  PA2及びPA3はそれぞれ前記全て
のトリップリレーの励磁電流を供給できるように設定さ
れている。
If a ground fault occurs in the second section of the distribution line, as explained in the block diagram of Fig. 1, the relay slave station 40-1 of the sectional switch 20-1 will detect the fault in the B direction. Therefore, relay contacts 1111 and O
A+ closes. At the same time, regarding section switch 20-2, since the accident occurred in six directions, IA2 and 0112
closes. Furthermore, regarding the relay slave station of the section switch 2o-3, tA3 and OR3 are similarly closed. Contact 11
+1. IA2 and IA3 are closed, trip relays for each section switch T B I I T A 2 and IA
3 is excited by the constant current power supplies Pad, PA2 and pa3, and the section switches 20-1, 20-2 and 20-
3 is released. In this case, if any one of contacts 1811 1A2 and IA3 closes, trip relay T B
+, TA2 and TAj are all excited,
Power supplies PBl+ PA2 and PA3 are each set to be able to supply excitation current to all of the trip relays.

一般に、電源FBI及びFAIは、それら電源が挿入さ
れているリレー回路内のトリップリレーの励磁電流を一
斉に供給できるように設定される。
Generally, the power supplies FBI and FAI are set so that they can simultaneously supply the excitation current of the trip relay in the relay circuit in which these power supplies are inserted.

次に、配電線の第1区間において地絡事故が発生したと
仮定すると、この場合には、区分開閉器20−1に右け
るA側の事故であるとともに、区分開閉器20−2及び
20−3におし)てもA側の事故である。
Next, assuming that a ground fault has occurred in the first section of the distribution line, in this case, the fault is on the A side of the sectional switch 20-1, and the -3), it is still an accident on the A side.

したがって、区分開閉1120−1のリレー子局におい
ては、リレー接点+ A、 、1び0Illが閉じ、区
分開閉器20−2についてはIA2及びOB 2が閉じ
、さらに、区分開閉器20−3のリレー子局については
、TA3及び○R3が閉じる。このとき、前に説明した
ように、O接点の方がI接点よりも感度が高く、かつ速
く作動するように設定しているので、接点IA2及びI
A3が閉じる前に接点On +が閉じることになる。
Therefore, in the relay slave station of section switch 1120-1, relay contacts +A, , 1 and 0Ill are closed, and for section switch 20-2, IA2 and OB 2 are closed, and furthermore, section switch 20-3's Regarding relay slave stations, TA3 and ○R3 are closed. At this time, as explained earlier, the O contact is set to have higher sensitivity and operate faster than the I contact, so the contacts IA2 and I
Contact On + will close before A3 closes.

このため、その後に接点rA2及びIA3が閉じてもリ
レー回路の電源回路が短絡され、したがってト’J 7
プリレーTRI、 TA2及びT A 3は励磁されな
い。
Therefore, even if contacts rA2 and IA3 are subsequently closed, the power supply circuit of the relay circuit is short-circuited, so that
Prelays TRI, TA2 and TA3 are not energized.

したがって、区分開閉器20−2及び20−3は開放さ
れないことになる。一方、区分開閉器20−1について
は、接点IAIが投入されることにより、開放される。
Therefore, the section switches 20-2 and 20-3 will not be opened. On the other hand, the section switch 20-1 is opened by closing the contact IAI.

このようにして、地絡事故が発生した区間に接続されて
いる区分開閉器のみが開放し、それ以外の区間、すなわ
ち健全区間には影響を与えない。
In this way, only the section switch connected to the section where the ground fault occurred is opened, and other sections, that is, healthy sections, are not affected.

以上の動作を論理式で表すと次のようになる。The above operation can be expressed as a logical formula as follows.

(In + + IA2 + Iks)・(Oat +
OAm 十〇A3)また、各区間での事故に対する方向
信号の動作状態は次のようになる。
(In + + IA2 + Iks)・(Oat +
OAm 10A3) In addition, the operation status of direction signals in response to accidents in each section is as follows.

本発明の継電器を使用して、事故区間の切り離しに先立
つ逆送融通送電により健全区間の無停電を達成する配電
システムについて説明する。第2図の説明においては、
第2区間に地絡事故が発生した場合、区分開閉器20−
1.20−2及び20−3が開放し、第3区間には電源
側からの送電が停止されるようであるが、第3区間及び
区分開閉器20−3のB側である第4区間には、事故区
間の切り離しに先立って他の配電系統からの融通送電を
行う。
A power distribution system that uses the relay of the present invention to achieve uninterrupted power in a healthy section by reverse power interchange prior to disconnection of the faulty section will be described. In the explanation of Figure 2,
If a ground fault occurs in the second section, the sectional switch 20-
1. 20-2 and 20-3 are open, and power transmission from the power supply side seems to be stopped in the third section, but the third section and the fourth section, which is the B side of the section switch 20-3, In this case, prior to disconnection of the faulty section, interchange power transmission from other power distribution systems will be carried out.

第3図に示すように、区分開閉器20−1のリレー子局
には、第2区間に地絡事故が発生したときには常開区分
開閉器21−1及び21−2のリレー子局に対し、通信
線60(第4図参照)を通して投入指令信号を発信する
ように設定しておく。これにより、常開区分開閉器21
−1及び21−2が投入し、第3区間及び第4区間に対
する逆送融通送電を行う。ついで、前記のように区分開
閉器20−1.20−2及び20−3を開放して第2区
間を切り離す。一般的には、地絡事故が発生すると、そ
の系統の遮断器が遮断するが、常開区分開閉器の投入及
び事故区間の切り離しを、遮断器の遮断時間、たとえば
1秒以内に行うことにより、遮断器を遮断させることな
く事故区間の切り離しを行うことが可能となる。
As shown in Fig. 3, when a ground fault occurs in the second section, the relay slave stations of the sectional switch 20-1 are connected to the relay slave stations of the normally open sectional switches 21-1 and 21-2. , the setting is made so that a closing command signal is transmitted through the communication line 60 (see FIG. 4). As a result, the normally open section switch 21
-1 and 21-2 are turned on to perform reverse power interchange power transmission for the third section and the fourth section. Then, as described above, the section switches 20-1, 20-2 and 20-3 are opened to separate the second section. Generally, when a ground fault occurs, the circuit breaker in that system shuts off, but by closing the normally open section switch and disconnecting the fault section within the circuit breaker's trip time, for example, 1 second. , it becomes possible to disconnect the accident section without tripping the circuit breaker.

したがって、地絡事故が発生した場合においても、健全
X間を停電させることなく、継続した配電を行うことが
可能となる。
Therefore, even if a ground fault occurs, it is possible to continue power distribution without causing a power outage to the healthy section X.

統計によると、停電事故の8〜9割は地絡事故であり、
短絡事故は少ないため、本発明のように地絡事故に対す
る無停電対策を施すことにより、はとんどの事故に対す
る健全区間の停電を解消することができる。
According to statistics, 80-90% of power outage accidents are ground faults.
Since short circuit accidents are rare, by implementing uninterruptible measures against ground fault accidents as in the present invention, it is possible to eliminate power outages in healthy sections in response to most accidents.

[発明の効果〕 以上に説明したように、本発明においては、地絡事故が
発生したときに、事故区間を切り離すための4つの地絡
事故発生方向信号を出力するようにしている。この信号
を用いることにより、事故区間の検出が可能となり、事
故発生後の逆送融通送電や事故区間の切り離し等を迅速
に行うことができる。したがって、電力供給の質を向上
させることができる。
[Effects of the Invention] As described above, in the present invention, when a ground fault occurs, four ground fault occurrence direction signals are output for separating the fault section. By using this signal, it becomes possible to detect the accident section, and it is possible to quickly carry out reverse power transfer or disconnection of the accident section after the occurrence of an accident. Therefore, the quality of power supply can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロフク図、第2図は本
発明の継電器を使用した事故区間検出回路の構成を示す
回路図、第3図は本発明の継電器を組み込んだ配電系統
の構成図、第4図は本発明が適用される配電線事故区間
検出システムの構成の一部を示すブロック図、第5図は
従来のDM方式の配電系統のブロック図である。 10A、IOB:変電所 20−1〜20−3 :区分
開閉器20−4 :常開区分開閉器 30−1〜30−4 :地絡方向継電器40−1〜40
−4 :リレー子局 50:親局 60:地絡区間検出用ケーブル 81:零相電流検出・波形整形回路 82:零相電圧検出・波形整形回路 83:過電流検出・波形整形回路 84、87 :入出力インターフェース85 : CP
U      86 : ROM88:開閉器開放回路 89:開閉器投入回路 90:地絡区間検出用論理回路 91:ROM
Figure 1 is a block diagram showing an embodiment of the present invention, Figure 2 is a circuit diagram showing the configuration of a fault section detection circuit using the relay of the present invention, and Figure 3 is a diagram of a power distribution system incorporating the relay of the present invention. FIG. 4 is a block diagram showing a part of the configuration of a distribution line fault section detection system to which the present invention is applied, and FIG. 5 is a block diagram of a conventional DM type power distribution system. 10A, IOB: Substation 20-1 to 20-3: Division switch 20-4: Normally open division switch 30-1 to 30-4: Earth fault direction relay 40-1 to 40
-4: Relay slave station 50: Master station 60: Ground fault section detection cable 81: Zero-phase current detection/waveform shaping circuit 82: Zero-phase voltage detection/waveform shaping circuit 83: Overcurrent detection/waveform shaping circuit 84, 87 :I/O interface 85 :CP
U86: ROM88: Switch opening circuit 89: Switch closing circuit 90: Ground fault section detection logic circuit 91: ROM

Claims (1)

【特許請求の範囲】[Claims] 1、配電用変電所母線、配電用遮断器、事故検出装置、
区分開閉器、逆送融通送電を行うための常開区分開閉器
及びそれら相互を接続する電線からなる配電系統におい
て、前記区分開閉器設置点における高圧配電線の零相電
圧及び零相電流のレベル及び位相に基づいて、電源側の
事故であるときにオン状態となる信号I_A、負荷側の
事故であるときにオン状態となる信号I_B、同じく負
荷側の事故であるときにオン状態となり、前記信号I_
Bが動作する前にオンとなる信号O_A及び電源側の事
故であるときにオン状態となり、前記信号I_Aが動作
する前にオンとなる信号O_Bという4つの信号を発生
する構成としたことを特徴とする配電線地絡事故区間検
出用継電器。
1. Distribution substation busbar, distribution circuit breaker, fault detection device,
In a power distribution system consisting of a sectional switch, a normally open sectional switch for performing reverse power interchange transmission, and the wires that connect them, the level of zero-sequence voltage and zero-sequence current of the high-voltage distribution line at the installation point of the sectional switch. and the phase, the signal I_A is turned on when there is a fault on the power supply side, the signal I_B is turned on when there is a fault on the load side, and the signal I_B is turned on when there is a fault on the load side. Signal I_
It is characterized by a configuration in which four signals are generated: a signal O_A that is turned on before the signal I_A operates, and a signal O_B that is turned on when there is an accident on the power supply side and is turned on before the signal I_A operates. A relay for detecting ground fault fault sections of distribution lines.
JP62119866A 1987-05-15 1987-05-15 Distribution line Ground fault Fault relay for detecting section Expired - Fee Related JPH071979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62119866A JPH071979B2 (en) 1987-05-15 1987-05-15 Distribution line Ground fault Fault relay for detecting section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119866A JPH071979B2 (en) 1987-05-15 1987-05-15 Distribution line Ground fault Fault relay for detecting section

Publications (2)

Publication Number Publication Date
JPS63287322A true JPS63287322A (en) 1988-11-24
JPH071979B2 JPH071979B2 (en) 1995-01-11

Family

ID=14772205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119866A Expired - Fee Related JPH071979B2 (en) 1987-05-15 1987-05-15 Distribution line Ground fault Fault relay for detecting section

Country Status (1)

Country Link
JP (1) JPH071979B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518995B1 (en) * 1997-05-22 2005-11-25 로베르트 보쉬 게엠베하 Electric circuit arrangement
CN111856313A (en) * 2020-07-20 2020-10-30 北京交通大学 Double-circuit power supply real-time monitoring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518995B1 (en) * 1997-05-22 2005-11-25 로베르트 보쉬 게엠베하 Electric circuit arrangement
CN111856313A (en) * 2020-07-20 2020-10-30 北京交通大学 Double-circuit power supply real-time monitoring device

Also Published As

Publication number Publication date
JPH071979B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
US9941739B2 (en) Process bus associated protective control system, merging unit, and calculation device
JP2004312848A (en) Load unbalance resolution control system for three-phase circuit
JPS59209018A (en) Protecting relaying device and method
KR100347488B1 (en) Positive electrode fire extinguishing system of distribution line
US11112815B1 (en) Fault isolation and restoration scheme
JPS63287322A (en) Relay for detecting ground fault section in distribution line
JP5645535B2 (en) Protective relay system for multi-terminal transmission systems
JPS63287321A (en) Fault section detecting/separating device for distribution line
CN213754084U (en) Dual-power supply system adopting power supplies with different grounding modes
JPH11299087A (en) Bus protecting system for spot network power receiving equipment
JPH06311642A (en) Fault point isolating system for distribution line
JP3328365B2 (en) Islanding detection device
JP3141807B2 (en) Automatic distribution line switchgear
JPS63287324A (en) Fault section detecting/separating device for distribution line
JPH01180469A (en) Accident section detecting device for power transmission line
JPH02106131A (en) Protection and coordination system for distribution line
JP2558350B2 (en) How to disconnect the faulty section of the distribution line
JP2503961B2 (en) Loop line protection device
JP3221342B2 (en) Automatic distribution line switchgear
JP3641567B2 (en) Ground fault protection device for distribution substation
JPS6223222Y2 (en)
JPH0520976B2 (en)
JPH03251031A (en) Fault zone detector
JP2547647B2 (en) Failure zone detector
JPH0510512Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees