JPS59204418A - Trestle multichannel ground-fault protecting relay - Google Patents

Trestle multichannel ground-fault protecting relay

Info

Publication number
JPS59204418A
JPS59204418A JP8048983A JP8048983A JPS59204418A JP S59204418 A JPS59204418 A JP S59204418A JP 8048983 A JP8048983 A JP 8048983A JP 8048983 A JP8048983 A JP 8048983A JP S59204418 A JPS59204418 A JP S59204418A
Authority
JP
Japan
Prior art keywords
phase
zero
line
ground fault
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8048983A
Other languages
Japanese (ja)
Other versions
JPH0452696B2 (en
Inventor
藤田 好人
隆章 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP8048983A priority Critical patent/JPS59204418A/en
Publication of JPS59204418A publication Critical patent/JPS59204418A/en
Publication of JPH0452696B2 publication Critical patent/JPH0452696B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電力系統の保護装置に係り、特に共架多回線の
高抵抗接地系統(iPc系を含む)が並行2回線の共架
多回線の誘導によって発生する回線間零相循慎電流を補
償する地絡保護リレーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power system protection device, and in particular, the present invention relates to a protection device for a power system, and in particular, a high-resistance grounding system (including an iPc system) of a shared multi-circuit line is connected to This invention relates to a ground fault protection relay that compensates for zero-phase circulating current.

超高圧送電線と共架される高抵抗接地系統の送電線には
、超高圧送電線が非ねん架、逆相配置であるために超高
圧送電線の潮流による誘導によって回線間零相循蟻電流
(単に零相循環電流と言えばこれをさす)が生じ、この
ために地絡保饅リレーが誤動作、誤不動作するので零相
循環電流を補償し力ければならない。
Transmission lines with high resistance grounding systems that are co-extended with ultra-high-voltage transmission lines have a non-straight, anti-phase arrangement, so zero-phase circulation between lines occurs due to induction by the power flow of the ultra-high-voltage transmission lines. A current (simply referred to as zero-sequence circulating current) is generated, which causes the earth fault protection relay to malfunction or malfunction, so it is necessary to compensate for the zero-sequence circulating current.

第1図(4)、a3)は本発明を適用する共架多回線モ
デル系統を示すもので第1図(4)において回線1(1
A、IB、IC)、回線2 (2A、2B、2C)は1
87〜500KVの超高圧送電線(以下被誘導系統と称
する)、A、B、Cは相順を示し母線5 (5A、5B
、5C)は超高圧送電線のA、 B。
Figure 1 (4), a3) shows a shared multi-line model system to which the present invention is applied. In Figure 1 (4), line 1 (1
A, IB, IC), line 2 (2A, 2B, 2C) is 1
87 to 500KV ultra-high voltage transmission line (hereinafter referred to as the guided system), A, B, and C indicate the phase sequence, bus 5 (5A, 5B
, 5C) are ultra-high voltage power transmission lines A and B.

C相の母線である。iはa、b、c各相の電流でアル。This is the bus bar of the C phase. i is the current of each phase of a, b, and c.

第1図(B) において回線3 (Sa、 6b、 3
c)、回線4(4a、4b、4c)は66Kv〜154
KVの高抵抗接地系送電線(以下被誘導系統と称する)
a、b、cは相Ill ’e示し回線6(6a、6b。
In Figure 1 (B), line 3 (Sa, 6b, 3
c), line 4 (4a, 4b, 4c) is 66Kv~154
KV high resistance grounding system power transmission line (hereinafter referred to as guided system)
a, b, c indicate the phase Ill'e line 6 (6a, 6b.

6e)は高抵抗接地系送電線のa、b、C相の母線であ
る。7は送電線3a〜6CのT分岐負荷である。37a
 〜37e及び47a 〜47cは電流変成器で、3a
、3b、3c及び4a、4b、4cのa、b、e各相の
回線間差電流検出器50a〜50cを介してそれぞれ差
回路接続されており電第1図(5)の誘導系統の潮流の
誘導によって回線3から回線4へ循環するa、b、c各
相の循環電流である。
6e) is the bus bar of the a, b, and c phases of the high-resistance grounding system power transmission line. 7 is a T-branch load of the power transmission lines 3a to 6C. 37a
~37e and 47a ~47c are current transformers, 3a
, 3b, 3c and 4a, 4b, 4c are connected to differential circuits via line difference current detectors 50a to 50c for each phase of a, b, e, respectively, and the power flow of the induction system shown in Figure 1 (5) is shown. These are the circulating currents of each phase of a, b, and c that circulate from line 3 to line 4 due to the induction of .

被誘導系統の母線6側の電気所をSA、反対側のそれヲ
SBとする。SA及びSBの中性点は、それぞれ中性点
接地抵抗RNA + RNB全通して大地に接地されて
いる。
Let the electric station on the bus 6 side of the guided system be SA, and that on the opposite side be SB. The neutral points of SA and SB are each grounded to the earth through the neutral point grounding resistance RNA+RNB.

第1図に示すよう寿高抵抗接地系では、上位糸を流れる
電流により、零相循環電流が発生し、1椋地絡故障時に
内部方向(内部故障)と外部方向(外部故障)との誤判
定を招く。例えば、第1回国に示す系統において2回線
併用時、上位系に650OAの負荷が接続されている場
合267Aの循環電流が流れ、地絡回線選択継電器には
434Aの零相入力が入る。通常の高抵抗接地系では、
10゜〜400A接地系が多いが、このような系統では
地絡電流よりも循環電流の方が大きく、1線地絡故障時
に故障判定できなくなる。またこのような循環電流対策
に変化中を用いた継電器すなわち予め定常状態の循環電
流を記憶しておき、異常時における循環電流から□予め
記憶しておいた循環電流を差引いて故障電流を求める方
式があるが、これは先行し中断時や3端子系統では使用
できず、また再閉路時等は使用できない。また、健全2
相から循環電流を推定する方式すなわち健全2相から正
相分を除外し′fCtと零相循環電流の比が起誘導系の
潮流に無関係であることを利用して零相循環電流を健全
2相から正相分を除去した量から推定し、この値を零相
入力から差し引くことにより地絡成分をとり出す方式の
継電器は特願昭54−67184号(特開昭55−16
0929号)によって既に提案をみるところである。こ
の継電器によれば、前述の問題は解決できるが、超高圧
系の欠相時に盲点となる場合がある。これは循環電流を
推定するための定数が1種類しかなく、上位系の欠相状
態により変化する定数の変化に対ろしきれないためであ
る。
As shown in Figure 1, in the Juko resistance grounding system, a zero-phase circulating current is generated due to the current flowing through the upper thread, and when a single ground fault occurs, the internal direction (internal fault) and external direction (external fault) are mistaken. invite judgment. For example, when two circuits are used together in the system shown in the first report, when a load of 650OA is connected to the upper system, a circulating current of 267A flows, and a zero-phase input of 434A enters the ground fault line selection relay. In a normal high resistance grounding system,
There are many 10° to 400A grounding systems, but in such systems, the circulating current is larger than the ground fault current, making it impossible to determine the failure in the event of a one-wire ground fault. In addition, as a countermeasure against such circulating current, there is a relay that uses a changing current, that is, a method in which the circulating current in a steady state is memorized in advance, and the fault current is determined by subtracting the circulating current stored in advance from the circulating current in an abnormal state. However, this cannot be used during a prior interruption or in a 3-terminal system, and cannot be used when re-closing. Also, healthy 2
A method of estimating the circulating current from the phases, that is, excluding the positive phase component from the healthy 2 phases, and using the fact that the ratio of 'fCt and the zero-sequence circulating current is unrelated to the power flow of the induced system, the zero-sequence circulating current can be estimated from the healthy 2 phases. A relay that extracts the ground fault component by estimating the amount by removing the positive phase component from the phase and subtracting this value from the zero phase input is disclosed in Japanese Patent Application No. 54-67184 (Japanese Unexamined Patent Publication No. 55-16
No. 0929), we are already seeing a proposal. Although this relay can solve the above-mentioned problems, it may become a blind spot in the event of a phase failure in an ultra-high voltage system. This is because there is only one type of constant for estimating the circulating current, and it cannot cope with changes in the constant that change depending on the open phase state of the upper system.

本発明は上述の点に鑑みてなされたものでその目的は、
いか彦る上位系の欠相状態に対しても循慎重派を補償す
ることができ、確実に故障を判定し、この故障を除去す
ることにより電力の安定供給を可能にした共架多回線地
絡保護継電装置を提供することである。
The present invention has been made in view of the above points, and its purpose is to:
A shared multi-circuit ground system that can compensate for unreliable phase loss in the upper system, reliably determines failures, and eliminates these failures to ensure a stable supply of power. An object of the present invention is to provide a short circuit protection relay device.

以下に本発明の共架多回線地絡保護リレーについて第2
図〜第4図を参照して説明する。
The following is a second explanation of the shared multi-line ground fault protection relay of the present invention.
This will be explained with reference to FIGS.

第2図は本発明の地絡保護リレーの概略構成を示し、1
00は上位系のしゃ断器条件から上位系の系統状りを判
定する判定部である。上位系のし中継器条件は、上位系
が下位系と同一の変電所にある場合にはパレット条件を
そのまま受は取り、上位系と下位系のしゃ断器が同一の
変電所にない場合は、光ファイバーや通信ケーブル等の
伝送手段を用いて上位系のしゃ断条件を取得する。この
場合、必要な情報はしゃ断器条件だけであるので、伝送
は比較的容易である。
FIG. 2 shows a schematic configuration of the earth fault protection relay of the present invention, and shows 1
00 is a determination unit that determines the system status of the upper system from the breaker condition of the upper system. If the upper system is in the same substation as the lower system, the relay conditions for the upper system are the same as the pallet conditions, and if the upper system and lower system breaker are not in the same substation, Obtain the cutoff conditions of the upper system using transmission means such as optical fiber or communication cables. In this case, the only information required is the breaker conditions, so transmission is relatively easy.

200は系統運用状態により出力を変更する機能を持っ
た定数設定部である。この定数は後記するように零相循
環電流を推定するための定数で、各系統運用ケース毎の
定数を記憶してもよいが、定数の似かよった複数のケー
スに対して一個づつ定数ケ記憶しておいたほうが、記憶
領域や整定上も有利である。すなわち、上位系の運用状
態を定数の似かよったケース毎にまとめて数棟のパター
ンに分けることになる。またこの定数はシミニレ−V 
vxンによって計算機で予め求めることができる。
Reference numeral 200 is a constant setting unit having a function of changing the output depending on the system operation state. This constant is a constant for estimating the zero-sequence circulating current, as described later.Although it is possible to memorize a constant for each system operation case, it is better to memorize one constant for multiple cases with similar constants. It is advantageous in terms of storage space and configuration. In other words, the operational status of the upper system is grouped into several patterns for each case with similar constants. Also, this constant is Siminire-V
It can be determined in advance by a computer using vxn.

600は零相循環電流演算部で、その入力は中性点接地
の相電圧Vと健全相電流工と定数設定部200からの定
数出力S4である。400は補償部で、入力電流の零相
分■。aから零相循環電流演算部300の出力S++’
kuし引くことにより、零相循環電流を消去(補償)す
る。500は地絡回線選択部で補償部400の出力S1
.と零相電圧■。から、区間内故障、区間外故障を判定
する。
Reference numeral 600 denotes a zero-phase circulating current calculating section, and its inputs are the phase voltage V of the neutral point grounding, the healthy phase current generator, and the constant output S4 from the constant setting section 200. 400 is a compensation section, which is the zero-sequence component of the input current. a to the output S++' of the zero-phase circulating current calculation section 300
By subtracting ku, the zero-phase circulating current is eliminated (compensated). 500 is a ground fault line selection section and output S1 of the compensation section 400
.. and zero-sequence voltage■. Based on this, it is determined whether the fault is within the section or the fault is outside the section.

第3図は本発明の実施例による共架多回線地絡保護リレ
ーを示すもので、第1図および第2図と同一部分は同一
符号で示しである。9はしゃ断器9a〜9fが図示した
ように接続されたしゃ断部、10は第1のデータ変換部
で電流検出部8からの電気量S1す彦わちa、b、c各
相の回線間差電流AD変換をする。11は電圧検出部で
母線6a〜6Cに設置された第1の電圧検出部12(零
相電圧検出用変成器)と第2の電圧検出部16(相電圧
検出用変成器)を有する。14は第2のデータ変換部で
、第1の電圧検出部12の検出信号S、すなわち零相電
圧立0ヲ入力して前記第1のデータ変換部と同期して一
定周期で!。をサンプリングしてAD変換する。15は
フィルタ部で第1のデータ変換部10の出力であるIB
Bw Ibs+ iceの各ディジタル量5sff入力
して2つの相の回線間差電流より夫k IBB  ”b
se ibs  aICs、 I(!!l  ””6B
(但しa−εj2/3π)なる演算処理を行い正相分を
除去する。18は零相循環電流を演算するための演算部
で前記フィルタ部15の出力S6と前記定数回路200
の出力S、及び地絡相判定部16の出力Syを入力して
演算を行う。17は第3のデータ変換部で、第2の電圧
検出部16で検出された出力電圧信号s0=※をディジ
タル量に変換する。これらの第1のデータ変換部10、
フィルタ部15、地絡相判定s16および第3のデータ
変換部17によって、零相循環電流演算部600が構成
される。
FIG. 3 shows a shared multi-line ground fault protection relay according to an embodiment of the present invention, and the same parts as in FIGS. 1 and 2 are designated by the same reference numerals. 9 is a breaker to which circuit breakers 9a to 9f are connected as shown, 10 is a first data converter, and the amount of electricity S1 from the current detector 8 is between the lines of each phase of a, b, and c. Performs differential current AD conversion. Reference numeral 11 denotes a voltage detecting section, which includes a first voltage detecting section 12 (zero-phase voltage detecting transformer) and a second voltage detecting section 16 (phase voltage detecting transformer) installed on the bus bars 6a to 6C. Reference numeral 14 denotes a second data converter which inputs the detection signal S of the first voltage detector 12, that is, the zero-phase voltage 0, at a constant cycle in synchronization with the first data converter! . is sampled and AD converted. 15 is a filter section and IB is the output of the first data conversion section 10;
By inputting each digital quantity 5sff of Bw Ibs+ice and calculating the difference current between the lines of the two phases, k IBB ”b
se ibs aICs, I(!!l ””6B
(However, a−εj2/3π) is performed to remove the positive phase component. Reference numeral 18 denotes an arithmetic unit for calculating the zero-phase circulating current, which includes the output S6 of the filter unit 15 and the constant circuit 200.
The calculation is performed by inputting the output S of and the output Sy of the ground fault phase determining section 16. 17 is a third data converter that converts the output voltage signal s0=* detected by the second voltage detector 16 into a digital quantity. These first data converters 10,
The filter section 15, the ground fault phase determination s16, and the third data conversion section 17 constitute a zero-phase circulating current calculation section 600.

19は零相循環it流検出部で、信号S、全直接導入し
てA/D変換するか或いはA/D変換された信号5II
th導入して回線聞達の零相分i。5(=Ias+ib
B+1cll)ヲ求める。補償部400は零相循環電流
600の出力全零相分i。、から差し引くことにより、
零相循環電流を消去した量を求める。
Reference numeral 19 denotes a zero-phase circulation IT flow detection unit, which inputs the signal S directly and performs A/D conversion, or the A/D converted signal 5II.
After introducing th, the zero-phase portion of the line was delivered. 5(=Ias+ib
B + 1 cll) wo seek. The compensator 400 outputs all zero-phase components i of the zero-phase circulating current 600. , by subtracting from
Find the amount by which the zero-phase circulating current is eliminated.

地絡回線選択部500は、第1の補償部400で零相循
環電流が補償された回線間差電流の零相分と、第2のデ
ータ変換部14からの零相電圧Staとを入カレ地絡回
線の選択全行う。地絡回線選択部500は地絡回線トリ
ップ信号5lll k出力し、この信号によって地絡回
線のしゃ断器9をトリップして共架多回路の高抵抗接地
系送電線の地絡保護する。
The ground fault line selection unit 500 inputs the zero-sequence component of the inter-line difference current whose zero-sequence circulating current has been compensated by the first compensation unit 400 and the zero-sequence voltage Sta from the second data conversion unit 14. Perform all ground fault line selections. The ground fault line selection unit 500 outputs a ground fault line trip signal 5lllk, and this signal trips the breaker 9 of the ground fault line to protect the high resistance grounding system power transmission line of the shared multi-circuit from a ground fault.

上記構成の地絡保W IJシレーおいて、1例として被
誘導系統a相地絡時の各相の循環電流及びa相の回線6
aと4aK流れる地絡電流と回線6と4に流れる負荷電
流の分布が第3図に示されている。
In the ground fault protection W IJ relay with the above configuration, as an example, the circulating current of each phase and the line 6 of the a phase in the case of a ground fault of the a phase of the induced system
The distribution of the ground fault currents flowing in a and 4aK and the load currents flowing in lines 6 and 4 is shown in FIG.

ここで、回線6から回線4の方向へ循環するa。Here, a circulates in the direction from line 6 to line 4.

b、e各相の循環電流はia th * I b th
 、ic thであり、回線6と回線4のa、b、c各
相に流れる負荷′wL流はそれぞれi、、 Ibe ■
Q及びIa+ Ibe Icである。また回線6のa相
を流れる地絡電流は■1、回線4のa相を流れる地絡電
流はI、である。
The circulating current of each phase b, e is ia th * I b th
, ic th, and the load 'wL currents flowing through each phase of a, b, and c of line 6 and line 4 are i, , Ibe ■
Q and Ia+Ibe Ic. Further, the ground fault current flowing through the a-phase of the line 6 is 1, and the ground fault current flowing through the a-phase of the line 4 is I.

第3図は被誘導系統のみ示され本発明による地絡保nM
 IJシレー電気所SAに設置されている。被誘導系統
が図示したようなT分岐負荷7をもつ場さが異なる。
FIG. 3 shows only the guided system and the ground fault protection nM according to the present invention.
It is installed at IJ Shire Electric Station SA. The case where the guided system has a T-branch load 7 as shown is different.

地絡時の零相循環電流i。th i地絡相に応じて演算
するためにあらかじめ定数I’a+Rh+Rcを求めて
おく必要がある。これらの定数は、第3図に示すように
定数設定部200において求められる。
Zero-sequence circulating current i during a ground fault. It is necessary to obtain the constant I'a+Rh+Rc in advance in order to perform the calculation according to the th i ground fault phase. These constants are determined by constant setting section 200 as shown in FIG.

すなわち、系統状態検出部100に上位系のしゃ断器条
件信号S0が入力されると、定数設定部200の出力S
4の設定値が変更される。循壌電IALXoth+例す
る。
That is, when the upper system breaker condition signal S0 is input to the system state detection section 100, the output S of the constant setting section 200
The setting value of 4 is changed. Circulating electricity IALXoth+ example.

系統健全時のa、b、c相の回線間差電流1astIb
s−’asは 出されて第1のデータ変換部10にてディジタル量に変
換される。変換されたディジタル量−はフィルタ部15
にて次の演算を行い正相分を除去する。
Line difference current 1astIb of a, b, and c phases when the system is healthy
s-'as is output and converted into a digital quantity by the first data conversion section 10. The converted digital quantity - is filtered by the filter section 15
Perform the following calculation to remove the positive phase component.

第3のデータ変換部17は、電圧検出部16にて検出し
た相電圧をディジタル量に変換して地絡相判定部16に
田方する。判定部16は入力された相電圧を前もって定
められた整定値と比較し1地絡判定時に信号S、全演算
部18に出力する。一方、判定部100では、上位系の
しゃ断器の投入有無条件信号を監視して上位系の系統状
態を判定し、その系統運用状態を定数設定部200に知
らせる。定数設定部200は系統運用状態に対応した定
数を前もって記憶されている定数テーブル中より選定し
て演算部18に出力する。
The third data conversion section 17 converts the phase voltage detected by the voltage detection section 16 into a digital quantity and sends it to the ground fault phase determination section 16 . The determination unit 16 compares the input phase voltage with a predetermined set value and outputs a signal S to all calculation units 18 when determining a 1-ground fault. On the other hand, the determining unit 100 monitors the closing condition signal of the breaker of the upper system to determine the system status of the upper system, and notifies the constant setting unit 200 of the system operation status. The constant setting section 200 selects constants corresponding to the system operation state from a constant table stored in advance and outputs them to the calculation section 18.

いまa相が地絡したとすると、a相地絡時のフィルタ部
15の出力Ibs  ”Ic8は、健全相の循環電流2
 (I b th  a I c th )の値となる
。演算部18は、定数設定部200にて選定された値R
aと、フィルタ部15の出力Ibs  aIc8  と
を乗することにより2倍の零相循環電流を求める。
Assuming that the a-phase has a ground fault, the output Ibs "Ic8" of the filter section 15 at the time of the a-phase ground fault is the circulating current 2 of the healthy phase.
(I b th a I c th ). The calculation unit 18 calculates the value R selected by the constant setting unit 200.
By multiplying a by the output Ibs aIc8 of the filter section 15, twice the zero-sequence circulating current is obtained.

系統健全時の信号S6は、それぞれ正しい零相循環電流
と々り共に等しいが、被誘導系統地絡時は、地絡相の回
線間差電流に地絡による電流成分が含まれる。そこでフ
ィルタ部15の出力S6と選定された定数との演算によ
って地絡検出を行うことができる。
The signal S6 when the system is healthy is equal to the correct zero-phase circulating current, but when the induced system has a ground fault, the line difference current of the ground fault phase includes a current component due to the ground fault. Therefore, ground fault detection can be performed by calculating the output S6 of the filter section 15 and the selected constant.

(3)は健全時は成立するが、地絡時は上記の理由から
成立しない。
(3) holds when the system is healthy, but does not hold when there is a ground fault for the reasons mentioned above.

演算部18は、S6の任意の2つの演算値と定数と金入
力し比較することによって地絡検出を行う。
The calculation unit 18 performs ground fault detection by inputting and comparing two arbitrary calculation values of S6, a constant, and gold.

同様にしてb相地絡時には工ea (= I(yB  
’Ias)と選択された定数kbとを乗じて零相循環電
流を求め補償部400に出力する。補償部400は、リ
レーの不正動作原因となる零相循環電流を補償するため
のもので、回線間差電流の零相分工。、を零相循環電流
検出部19を介して導入し、地絡時の零相循環電流の演
算値を差引くことにより零相循環電流をキャンセルした
値を求め、地絡回線選択リレーまたは地絡方向リレーで
ある地絡回線選択部500に出力する。選択部500は
、零相循環電流成分をほとんど含まない零相電流と第2
のデータ変換部14にてディジタル量に変換された零相
電圧や。とから、区間内故障、区間外故障を正しく判定
し、トリップ信号Sl、によってしゃ断部9のしゃ断器
9a、9b、9cまたは9 d+ 9 e*9fをトリ
ップする。
Similarly, in the case of b-phase ground fault, ea (= I(yB
'Ias) and the selected constant kb to obtain a zero-phase circulating current and output it to the compensator 400. The compensation unit 400 is for compensating for zero-sequence circulating current that causes malfunction of relays, and is for compensating for zero-sequence circulating current of line difference current. , is introduced through the zero-sequence circulating current detection unit 19, and a value that cancels the zero-sequence circulating current is obtained by subtracting the calculated value of the zero-sequence circulating current at the time of a ground fault, and a value that cancels the zero-sequence circulating current is obtained. It is output to the ground fault line selection section 500, which is a directional relay. The selection unit 500 selects a zero-sequence current containing almost no zero-sequence circulating current component and a second
The zero-sequence voltage converted into a digital quantity by the data conversion unit 14. From this, it is correctly determined whether the fault is within the section or the fault outside the section, and the circuit breaker 9a, 9b, 9c or 9d+9e*9f of the circuit breaker 9 is tripped by the trip signal Sl.

第4図は本発明の原理をマイクロコンピスータによって
実現した場合の処理フローの一例を示すもので主要表処
理について述べる。
FIG. 4 shows an example of a processing flow when the principle of the present invention is realized by a microcomputer, and the main table processing will be described.

第4図においてブロック馬は、第1.2.3のデータ変
換器および零相電流検出部に相当しa。
In FIG. 4, the block corresponds to the data converter and zero-sequence current detection section 1.2.3.

b、c各相の電圧E、、Eb、i。と回線開基電流Ia
s* Ibs+ I。8及び零相電圧V。と零相電流i
。Sを電流変成器、電圧変成器で測定したものを一定周
期でサンプリングホールドしてAD変換処理する。
b, c voltage of each phase E, , Eb, i. and line opening current Ia
s*Ibs+I. 8 and zero-sequence voltage V. and zero-sequence current i
. S is measured by a current transformer and a voltage transformer, and is sampled and held at a constant period to perform AD conversion processing.

(但し第3図では零相循環電流検出部にはAD変換後の
信号が入力された実施例を示している。)ブロックB3
はフィルタ部15に相当しIas + Ib5sics
の各相の回線間差電流のうち2相の回縁間差電流から正
相分を除去する。a、b相、b、c相、c、a相同線間
差電流より正相分を除去したものを■ab + Ibe
 + Icaとする。ブロックB4は判定部100に相
当し系統運用状態を入力している。
(However, Fig. 3 shows an embodiment in which a signal after AD conversion is input to the zero-phase circulating current detection section.) Block B3
corresponds to the filter section 15, and Ias + Ib5sics
The positive phase component is removed from the line difference current of two phases among the line difference currents of each phase. A, b phase, b, c phase, c, a phase The positive phase component is removed from the difference current between the same lines as ■ab + Ibe
+ Ica. Block B4 corresponds to the determination unit 100 and inputs the system operation status.

ブロックB、は定数設定部200に相当し、ブロックB
4で求めた系統運用状態に対応した定数を選定する。
Block B corresponds to the constant setting section 200, and block B
Select constants that correspond to the system operation status determined in step 4.

ブロックB6は地絡判定部16に相当し、この判定部1
6にて演算して求まった値※が整定値よ9小ならば系統
健全状態とみなし、小ならば地絡事故とみなす。
Block B6 corresponds to the ground fault determination section 16, and this determination section 1
If the value calculated in step 6* is 9 less than the set value, the system is considered to be in a healthy state, and if it is smaller, it is considered to be a ground fault.

ブロックB6で地絡故障と判定する演算部に相当する。This corresponds to the arithmetic unit that determines a ground fault in block B6.

ブロックB、 、 B、 、 B、 、 B、。で地絡
相の検出を行う。これらのブロックは、ブロックB、と
B。
Block B, , B, , B, , B,. Detects ground fault phase. These blocks are block B, and B.

で検出されfC,a、b、c相地絡検出信号と定数とを
用いて求めた演算値を地絡相に応じて選択して零相循環
電流i。thヲ導出するブロックである。
A calculated value obtained using the fC, a, b, and c phase ground fault detection signals and a constant is selected according to the ground fault phase, and the zero-phase circulating current i is determined. This is a block for deriving th.

ブロックBllは補償部400に相当しブロックB!で
ディジタル量に変換して求められたI。、とブロックB
7〜Btoで導出した零相循環電流Iothk入力して
回線間差電流の零相分i。Sによって補償する。
Block Bll corresponds to the compensation section 400, and block B! I was calculated by converting it into a digital quantity. , and block B
Input the zero-sequence circulating current Iothk derived at 7-Bto and calculate the zero-sequence component i of the inter-line difference current. Compensate by S.

ブロック13ttは地絡回線選択部500に相当しブロ
ックBll  で、零相循環電流を補償した回線間差電
流の零相分と、零相電圧※。全入力して地絡回線の選択
し地絡回線に対してしゃ断器トリップ信号を発する。
Block 13tt corresponds to the ground fault line selection unit 500, and block Bll calculates the zero-sequence portion of the inter-line difference current that compensated for the zero-sequence circulating current, and the zero-sequence voltage*. Enter all inputs, select the ground fault line, and issue a breaker trip signal to the ground fault line.

以上説明したように本発明によれば、超高圧送電線に共
架した高抵抗接地2回線送電線をディジタル量にて保護
する継電装置において、上位系のし中断器条件を入手し
、これにより上位系の連用状態を検出し、この検出信号
に応じて予め整定された数種の定数を切替えるとともに
、前記系統に1線地絡が発生した場合に地絡相を検出し
、健全2相の電流から正相分を除去し、前記切替られた
整定定数を地絡相に厄じて選んだ値と前記正相分を除去
した量を乗じて零相循環電流を演算し、これにより得ら
れた零相循環電流演算値を入力零相分から差し引いて故
障電流を抽出し補償するとともに、この補償された量の
零相電圧に対する方向と大きさから、地絡回線を選択す
るようにしたものである。したがって本発明によれば、
上位系の欠相ケースに対しても循環電流を補償すること
ができ、確実に故障を判定し、故障を除去することによ
り、電力の安定供給を行危うことができる。
As explained above, according to the present invention, in a relay device that protects a high-resistance grounded two-circuit transmission line co-extended with an ultra-high voltage transmission line in digital quantities, the upper system interrupter conditions are obtained and detects the connected state of the upper system, switches several types of constants set in advance according to this detection signal, detects the ground fault phase when a one-wire ground fault occurs in the system, and connects the two healthy phases. The positive sequence component is removed from the current of The fault current is extracted and compensated by subtracting the computed zero-sequence circulating current value from the input zero-sequence, and the ground fault line is selected based on the direction and magnitude of this compensated amount of zero-sequence voltage. It is. According to the invention, therefore:
It is possible to compensate for the circulating current even in the case of an open phase in the upper system, and by reliably determining a failure and eliminating the failure, it is possible to ensure a stable supply of electric power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図囚、a3)は共架多回線モデル系統図、第2図は
本発明による地絡保護リレーの原理を示すブロック線図
、第3図は本発明による共架多回線地絡保N IJシレ
ー一実施例、第4図は本発明の原理=fc −v イク
ロコンピュータによって実現した場合の処理フロー図で
ある。 1A〜IC,2A〜2C・・・超高圧系送電線、3a〜
3c、4a〜4c・・・高抵抗接地系送電線、5八〜5
C・・・超高圧系送電線の母線、6a〜6c・・・高抵
抗接地系送電線の母線、67a〜67c。 47a〜470・・・電流変成器、50a〜50e・・
・被誘導系統の回線間差電流検出器、7・・・T分岐負
荷、8・・・電流検出部、51・・・共架鉄塔、9・・
・しゃ断部、10・・・第1のデータ変換器、11・・
・電圧検出部、12・・・零相電圧変成器、16・・・
相電圧変成器、14・・・第2のデータ変換器、15・
・・演算部、16・・・判定部、17・・・第3のデー
タ変換器、18・・・第1の選択部、100・・・上位
系統判定部、200・・・定数設定部、600・・・零
相循環電流演算部、400・・・補償部、500・・・
地絡回線選択部。
Figure 1, a3) is a system diagram of the shared multi-line circuit model, Figure 2 is a block diagram showing the principle of the ground fault protection relay according to the present invention, and Figure 3 is the shared multi-line earth fault protection relay according to the present invention. FIG. 4 is a processing flow diagram of an embodiment of the IJ system when the principle of the present invention is realized by a microcomputer. 1A~IC, 2A~2C...Ultra high voltage power transmission line, 3a~
3c, 4a~4c...High resistance grounding system power transmission line, 58~5
C... Bus bars of ultra-high voltage power transmission lines, 6a to 6c... Bus bars of high resistance grounding power transmission lines, 67a to 67c. 47a-470...Current transformer, 50a-50e...
- Line difference current detector of guided system, 7...T branch load, 8...Current detection unit, 51...Common steel tower, 9...
・Shutoff unit, 10...first data converter, 11...
・Voltage detection unit, 12... Zero-phase voltage transformer, 16...
Phase voltage transformer, 14... second data converter, 15.
...Arithmetic section, 16.. Judgment section, 17.. Third data converter, 18.. First selection section, 100.. Upper system judgment section, 200.. Constant setting section. 600...Zero-phase circulating current calculation section, 400...Compensation section, 500...
Ground fault line selection section.

Claims (1)

【特許請求の範囲】[Claims] 送電線に共架した高抵抗接地2回線送電線をディジタル
量にて保護する継電装置において、上位系のしゃ断器条
件を入手しこの条件により上位糸の運用状態を判定する
判定手段と、この判定手段によって検出された検出信号
に応じて予め設定された数種の定数を切替える機能を有
する定数設定手段と、前記上位系統に1線地絡が発生し
たとき当該地絡相を検出し、健全2相の電流から正相分
全除去し、前記切替られた整定定数を地絡相に応じて泗
んだ値と前記正相分を除去した量を乗じて零相循環電流
を演算する零相循環電流演算手段と、この零相循環電流
演算手段による演算値を入力零相分から差し引いて故障
電流を抽出し補償する補償手段と、この補償された量の
零相電圧に対する方向と大きさから地絡回線を選択する
地絡回線選択手段とによって構成したことを特徴とする
共架多回線地絡保護リレー。
In a relay device that digitally protects a high-resistance grounded two-circuit power transmission line co-extended with a power transmission line, there is provided a determination means for obtaining upper system breaker conditions and determining the operating state of the upper line based on the conditions; a constant setting means having a function of switching several kinds of constants set in advance according to the detection signal detected by the judgment means; A zero phase that calculates a zero-sequence circulating current by removing all the positive phase from the two-phase current, and multiplying the value obtained by dividing the switched setting constant according to the ground fault phase by the amount by which the positive phase was removed. A circulating current calculating means, a compensating means for extracting and compensating the fault current by subtracting the calculated value by the zero-sequence circulating current calculating means from the input zero-sequence, and a compensating means for extracting and compensating for the fault current, 1. A shared multi-line ground fault protection relay comprising: ground fault line selection means for selecting a fault line.
JP8048983A 1983-05-09 1983-05-09 Trestle multichannel ground-fault protecting relay Granted JPS59204418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8048983A JPS59204418A (en) 1983-05-09 1983-05-09 Trestle multichannel ground-fault protecting relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8048983A JPS59204418A (en) 1983-05-09 1983-05-09 Trestle multichannel ground-fault protecting relay

Publications (2)

Publication Number Publication Date
JPS59204418A true JPS59204418A (en) 1984-11-19
JPH0452696B2 JPH0452696B2 (en) 1992-08-24

Family

ID=13719703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8048983A Granted JPS59204418A (en) 1983-05-09 1983-05-09 Trestle multichannel ground-fault protecting relay

Country Status (1)

Country Link
JP (1) JPS59204418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263316A (en) * 1986-06-04 1987-03-20 Murata Mach Ltd Unmanned vehicle guiding device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422044B2 (en) 2020-09-30 2024-01-25 大王製紙株式会社 Boxer shorts type disposable diaper and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263316A (en) * 1986-06-04 1987-03-20 Murata Mach Ltd Unmanned vehicle guiding device

Also Published As

Publication number Publication date
JPH0452696B2 (en) 1992-08-24

Similar Documents

Publication Publication Date Title
WO2001076036A2 (en) Differential protective relay for electrical buses with improved immunity to saturation of current transformers
EP1275184A2 (en) Improved line current differential protective relaying method and relay for in-zone tapped transformers
Nelson System grounding and ground fault protection in the petrochemical industry: A need for a better understanding
US5566082A (en) Method of detecting a fault section of busbar
JPS59204418A (en) Trestle multichannel ground-fault protecting relay
JPH01190215A (en) Phase selector
US7206177B2 (en) Device and method for protection against overcurrents in an electrical energy distribution cabinet
Menezes et al. Dual-Layer Based Microgrid Protection Using Voltage Synchrophasors
Kasztenny et al. Digital low-impedance bus differential protection with reduced requirements for CTs
Kasztenny et al. Digital low-impedance bus differential protection–Review of principles and approaches
JPH08265957A (en) Matrix operation type system protector
JP2778148B2 (en) Ground fault line selection relay for shared multi-line system
JP2675207B2 (en) Ratio differential relay system
JP3074695B2 (en) Circulating zero-phase current suppression circuit
JP2561984B2 (en) Substation fault section detection system
JP5224760B2 (en) Disconnection protection relay
JPH0444493B2 (en)
JPH0532972B2 (en)
JPH09308085A (en) Distribution line ground relay
JPH06284556A (en) Grounding current detection method for three-phase four-wire circuit
JPS63316617A (en) Faulty facility judging system
JPH07236226A (en) Ground protector
JPS60128830A (en) Load selection breaking unit
JPS5846836A (en) Network protector
JPS61293116A (en) Ground fault protector